TMS320TCI6487/88 DSP
Ethernet Media Access Controller (EMAC)/
Management Data Input/Output (MDIO)

User's Guide

I3 TEXAS
INSTRUMENTS

Literature Number: SPRUEFOC
July 2006—Revised March 2012

l '{EXAS
NSTRUMENTS

Contents

=T =T = 11
1 0T LU 1 o T 12
11 Purpose of the Peripheralo s 12

1.2 = L | 5 12

1.3 FuNnctional BIOCK DIagram .u.uesussseeessaesessaasse s ssasssesssassesssasssssssannssssannnesssannsnessssnnnesss 13

14 Industry Standard(s) Compliance StatemMEeNtviieeiiieeiiiii i 14

2 EMAC FUNCHiONal ArChItECIUIE vt et e e s e e e e s s e e e e e e e enens 15
21 [o o] Q@ T 1o) 15

2.2 LT T Y2 1Y F= o T 15

23 SyStem Level CONNECHION .uuiuueiiteiisii st r e s st s s s s e aan e aaneenas 16

2.4 Ethernet ProtOCOl OVEIVIEWuueeeiiiteisitse s raaas e s ta s e st s e s s s saaan s s saannn e s ssannnasssannnnnsss 18

25 [oTo =T a T g a1 oo L4 1=T 5 = (o =S 20

2.6 Y @ @0 1 I8 1Y o T [][29

2.7 Management Data Input/Output (MDIO) MOAUIEeiiiiiieiiiiie i s s s s aare e rananes 31

2.8 1Yo 36

29 Media INndependent INtErfACES ...ivuueiiit e r s e raaeans 39

2.10 Packet RECEIVE OPEIatiONuuiiiiseeeiiieeeiraiaatesraaate s sraastasssaassesssaaasnssasantsssaannneessannnnssss 44

2.11 Packet TranSmit OPeratiOnueuieeeeeessseiseeessasneeseaasnneessaannressaannresssansnesssesnnessssssnnessssnnnees 49

2.12 Receive and TranSMit LAIENCY .uuuuruueiuesiiusesaseiseisissssss s sass st sasssasssansssanssaansianes 50

P2 R B I = 1153 (= g AT To [g T 50

pZ Y =T A] = [T = o] 51

P72 T 111> 2= o o 52

B2 T 101 (=] 07 0] ST o oo o 55

2 A = U1 == 1 =T 0 0 o £ 59

B2 < BT €11 101 (=] 7= Lo 60

2.19 SERDES Macro and CONfIgUIatiONSeesiiseeeiiiiteessiatssssaansse s ssasssessaannessaaannsssaaannnsssnns 61

B2 O |1 OV [| =7 64

P2 R e 0 11T Y = g =T =T o 4= o 65

Py = 4110 - LT @0 g 0 =T = 4o o 65

3 EMAC Subsystem SGMII REQISIEIS .iuiiiitiiiiit it ettt e e e s eeens 66
3.1 10 0 8o 1T o 66

3.2 Identification and Version Register (IDVER)ueiiiiiiiiiiiiii i rris e sniinse s ssaann e e rannnaeens 67

3.3 Software Reset Register (SOFT_RESET) ..uuuiiiiiiiiiiiiiiiiiii s rsiss s s s nnnnnees 67

3.4 Emulation Control Register (EM_CONTROL) .uuutiiutiriiiintirseiaeerasssnsnssissisissssnssanesansssnnnss 68

3.5 Interrupt Control Register (INT_CONTROL) .uuuueiieeiisiiiteraseinisssse e sassssinnssisssasssansssanns 68

3.6 Core 0/1/2 Receive Threshold Enable Register (CO/1/2_RX_THRESH_EN) ...ccviiiiiiiiiiiniiiiiiininnnns 68

3.7 Core 0/1/2 Receive Enable Register (CO/L/2_RX_EN) .iiiuuiiiiiiiiiiiiiiiiiiirisiasssnssnnnesans 69

3.8 Core 0/1/2 Transmit Enable Register (CO/L/2_TX_EN) wuuviutiiiuiiiiiiiiiii i ssnesannenas 70

3.9 Core 0/1/2 Misc Enable Register (CO/L/2_MISC_EN) ..iiiiiuuiiiiiiiieiiiiieiiiinsssisaanrssssaansnsssaanes 70

3.10 Core0/1/2 Receive Threshold Status Register (CO/1/2_RX_THRESH_STAT) .vvvveriiiiriiiieiineininninnnss 71

3.11 Core0/1/2 Receive Status Register (CO/L/2_RX_STAT) turuiiuiiiiniiiineiiiiiisiris i 71

2 Table of Contents SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I3 TEXAS
INSTRUMENTS

www.ti.com
3.12 Core0/1/2 Transmit Status Register (CO/L/2_TX_STAT) uuuriutirintiiteiiierineirirsrissinne i 72
3.13 Core0/1/2 Misc Status Register (CO/L/2_MISC_STAT) tiuuutirueerinterintirintisiseiateiaeriianeiane. 72
3.14 Core0/1/2 Receive Interrupts per Millisecond Register (CO/L/2_RX_IMAX) .iivieiiiiiiiiinniiiiieeiiniinness 73
3.15 Core0/1/2 Transmit Interrupts per Millisecond Register (CO/1/2_TX_IMAX) «iouviiiniiiinriiiininirinenann, 73

4] €Y L =T RS =] PP 74
4.1 10 8o T o 74
4.2 Identification and Version Register (IDVER)uuiiiiiiiiiiiiies i ssanseessasnsessssnnneessannnnessns 75
4.3 Software Reset Register (SOFT_RESET) .uuiuutiiiutirieiretiissinserassisissssssianssasssisssasssannnins 75
4.4 Control RegiSter (CONTROL) ..uuiiiiieeeiiiiieerr it e s aate s ssaase st saase st saaa s s s aaananssasannneessannnns 76
45 StatUS REGISIEI (STATUS) 1tiiitiiiie et seiiaee s saasaneeseaanneessaannressaannnessaasnnesssssnneessssnnneessnnnnes 77
4.6 Advertised Ability Register (MR_ADV_ABILITY) wuuuuiiiiiiiiiii i s ss s s naneens 78
4.7 Link Partner Advertised Ability Register (MR_LP_ADV_ABILITY) iiiiuiiiiiiiiiiiiiii i sniaeneeas 79
4.8 Transmit Configuration RegiSter (TX_CFG) ...uiiiiiiiniesisiinsesssaaneessaannresssannresssannsesssennneessnnns 80
4.9 Receive Configuration Register (RX_CFG) .uiiiuiiiiuiirintirinriieiie it sisssississssasssnsssaneisnnns 82
4.10 Auxiliary Configuration Register (AUX_CFG) ..iiiiiiuiiiiiiiiiiiiiiitesisitssssaissssssainssssssannnssanannns 84

5 [AN O = o Al 2 =T e [1] = = PP 86
5.1 10 0 8o 1T o 86
5.2 Transmit Identification and Version Register (TXIDVER)uuuiiiiiiiiiiiiiiiiiiire i srniaeesaaas 90
5.3 Transmit Control Register (TXCONTROL) 1uuiuuuiiiiiiiieeiiiiisiisiis s ssansnss s sannssssssannssannns 90
5.4 Transmit Teardown Register (TXTEARDOWN) ..iuuiiiitiiiiiiiierierieinisssssssinnssansssnnssasssannesas 91
55 Receive Identification and Version Register (RXIDVER)uuuuiiiiiiiiiiiiiiieeasiins s e snannneeenns 91
5.6 Receive Control Register (RXCONTROL) ..uueiiiuttesiiinsesisasnesisainssssaiisnesssannnrsssaasresisannness 92
5.7 Receive Teardown Register (RXTEARDOWN) ..uiiuutiiiutiiiteiisiniesiasesinsansssissssnnssansssaessanns 92
5.8 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) .oviiiiiiiiiiiiinineninneas 93
5.9 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) ...ivviuiiiiiiiireiiiinneiiiineeiians 94
5.10 Transmit Interrupt Mask Set Register (TXINTMASKSET) .uuuiuuiiiuieiintirianirisrinnseiainssisisinsanneianes 95
5.11 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) ...oiiiiiiieiiiiiieeiaaiinesrninnnessnannnaens 96
5.12 MAC Input Vector Register (MACINVECTOR) ..uuuutiiiietssiiistssssainsesssaisssssssisnssssinnnssssannnnsiss 97
5.13 MAC End Of Interrupt Vector Register (MACEOIVECTOR) ..uuviiuiiiiiiiriiniiinsiiisiieesinnisinssannsianes 97
5.14 Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) ...uuuiiiiiiiiiiiiiiiee e renanees 98
5.15 Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) ...uvviiiiiiiiiiiiiiiiiiinniinneens 99
5.16 Receive Interrupt Mask Set Register (RXINTMASKSET) .uvviiuiiiietiiiieiiiieiine i, 100
5.17 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR)uiiiiiiiiiiiiiiiie s iaaineeinninnesannness 101
5.18 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) ..iiiuiiiiiiiiieiniiinsiinnesnninness 102
5.19 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED)viviiiiiiiiiiiiiiininninineianeeas 102
5.20 MAC Interrupt Mask Set Register (MACINTMASKSET) 1.uviiiiiiiniiiiiiiiiisiiiiinssisisnssannenas 102
5.21 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) ...uuuiiiiiiiiieiiiiiiesiniiinsissinnnsssnannns 103
5.22 Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE)c.vv... 103
5.23 Receive Unicast Enable Set Register (RXUNICASTSET) .vviiutiiieriiieiinerisiriririeiannsaneninneas 106
5.24 Receive Unicast Clear Register (RXUNICASTCLEAR) ...uuiiiiiiiiiiiiiiiiieeiiiiiessnsiinnrsssainnnsssanns 107
5.25 Receive Maximum Length Register (RXMAXLEN) ..uuiiiiiiiiiiiii i i ssiassnneeaas 107
5.26 Receive Buffer Offset Register (RXBUFFEROFFSET) ...ceiiiiiiiiiiiiaiiesirannesiaaasessaaannessaaanness 108
5.27 Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH)ccvvviiiiiiiinnnnn 108
5.28 Receive Channel 0-7 Flow Control Threshold Register (RXNFLOWTHRESH)ccvvvviiiiiiiiiniiinennns 109
5.29 Receive Channel 0-7 Free Buffer Count Register (RXNFREEBUFFER)cccvviiiiiiiiiiiiiiiiiiaeess 109
5.30 MAC Control Register (MACCONTROL) ..uuuetiiiuntesiiinnssssainsesssaisnsssssinnssssaannrsssaannnssssannes 110
5.31 MAC Status Register (MACSTATUS) 1ttt r i s e e ran s s s s s aanneras 112
5.32 Emulation Control Register (EMCONTROL) ...iuuuuiiiiiiiiteeiaaantesssaaaseessaansessaannnesasannnresaannnes 114
5.33 FIFO Control Register (FIFOCONTROL) +uuutiutiseiutiserasissssesnisssassnssassssiasssssassassnesanens 114

SPRUEFOC-July 2006 —Revised March 2012 Contents 3

Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I3 TEXAS
INSTRUMENTS
www.ti.com
5.34 MAC Configuration Register (MACCONFIG) ..uiiuuiiiuieiiteiineirisrisiaies st sins s sainssanneias 115
5.35 Soft Reset RegiSter (SOFTRESET) 1uuuuiutirseiistiisseiisterassisistsssssassrassssasssasiaassraissanneins 115
5.36 MAC Source Address Low Bytes Register (MACSRCADDRLO) ..viiiiiiiieiiiiiieiiiiinissinninnesaninnns 116
5.37 MAC Source Address High Bytes Register (MACSRCADDRHI) ...oiiiiiiiiiiiiiiiiiiiirisinaeas 116
5.38 MAC Hash Address Register 1 (MACHASHL) ...uuiiiiiiiiiieiiiiii it ssassansenas 117
5.39 MAC Hash Address Register 2 (MACHASH2) ...t s arnes 118
5.40 Back Off Test Register (BOFFTEST) .uuiuuteiiutirutiiseiiteiassristsrissssissisisesansssanrasassisinssanneins 118
5.41 Transmit Pacing Algorithm Test Register (TPACETEST) .uvviiriiiietiiiieiiiiiri e, 119
5.42 Receive Pause Timer Register (RXPAUSE) ...iiiiuiiiiiiieiiiitesisaissssisaissss s sssannnssssannnes 119
5.43 Transmit Pause Timer Register (TXPAUSE) ...iiueiiiiiiiii i i s rin s s s saanenas 120
5.44 MAC Address Low Bytes Register (MACADDRLO) ...iuuuuiiiiiiiiresiiantesssaannessaaansesssannnsssaannns 120
5.45 MAC Address High Bytes Register (MACADDRHI) ..iiuiiiiiiii s s s s nnnees 121
5.46 MAC Index Register (MACINDEX) .uuuiiuteiiseiiitiie it iitesiats s sssssssssanns i ssassssinssansesns 121
5.47 Transmit Channel 0-7 DMA Head Descriptor Pointer Register (TXNHDP)cviiiiiiiiiiiiiiiiiiieees 122
5.48 Receive Channel 0-7 DMA Head Descriptor Pointer Register (RXNHDP) ...oviiviiiiiiiiiiiiiinninens 122
5.49 Transmit Channel 0-7 Completion Pointer Register (TXNCP) ..uiiuiiiiiiiiiiiiiini e 122
5.50 Receive Channel 0-7 Completion Pointer Register (RXNCP)ciiiiiiiiiiiiiiiiee i rrinee s nnnneees 123
5,51 Network StatiStiCS REGISIEIS .uuutiiiieeiiiiieirs i ra et sr st ss s aaaaan e ssaannressannes 124
6 D (@ I = To [1 =] =T PP PRPPPTRE 133
6.1 10 8o 1T o 133
6.2 MDIO Version Register (VERSION) ...ttt taise s sasiase s ssains s s ssaanns s s saannssssaannnesss 133
6.3 MDIO Control Register (CONTROL) +tuiiuttetiieieessaaneessaasnnessassnneessasnneessaanseessssnnressesnnnens 134
6.4 PHY Acknowledge Status Register (ALIVE) ..uiuuiiiiuiiiiiiiiiii s s s snnsssneanaes 135
6.5 PHY Link Status RegiSter (LINK)euiieieiiiiteiisitessraiss s saiassssraass s ssann s s ssannesssannnnessn 135
6.6 MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW)cvviiiiiieriiineeriinnneenss 136
6.7 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED)ccvvviviivinniiiniinineinnes 136
6.8 MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW)coviiiiiiiiiinnnnns 137
6.9 MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) ...cvvvvvvveviiinneenn. 137
6.10 MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) ...cvviviiiieeninennns 138
6.11 MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) 138
6.12 MDIO User Access Register 0 (USERACCESS0) .uvvviiiiutrerriinnresssanneesssannsesssssnsesssssnnnessssnnnes 139
6.13 MDIO User PHY Select Register 0 (USERPHYSELOD) +.uuuvviiuiiiiiiiiiieiiie i sssssnnnenas 140
6.14 MDIO User Access Register 1 (USERACCESSL) ..uiiiiiiuiiiiiiiiieiiiistesisassssiaainssssssannssssnannns 141
6.15 MDIO User PHY Select Register 1 (USERPHYSELL) ...uviiiiiiiiiiiiiiesisiineesssnnnneesannnnnessnnnnnes 142
F Y o] 01T g Lo T q N €1 o 1= X3 - oY 143
VAT o T T 1 (0 PP 145
4 Contents SPRUEFOC-July 2006—Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1 EMAC and MDIO BlOCK Diagram. eseeesssaesesssaansaessaanssssssansessaaannsssaaannsessaannnesssannnnssss 13
2 Ethernet Configuration With SGMII INterfaCe.uvueieiiiii i i s aane e 16
3 =T T o = 18
4 27 TS (ol I To T Yol] o] o] gl o 02T | N 20
5 Typical DeSCrPtOr LINKEA LiSt. .. uuuessisseteiisistssisasssssaisssssssisessssisnssssananssssannsssssannsnssinnnns 21
6 LI S L TS]) o o g 0 T 23
7 Lo T AY LI D=2 Tod] o (o] gl o] 1 | N 26
8 EMAC Control Module BlOCK Diagramsesesrsssesisasssssssisssssssissssisainnssssainnsssssasnnssssasnnnesss 29
9 YT 1 1@ 1Y oo LU 1= = o Tt QI T Vo | = Ly 32
10 Y @R oo [(=N 2] (oot 0 =T = T N 36
11 [Y X O o TN o 0 1= g =Tl 60
12 YN @ 0 3 L= o L] (= 64
13 O | 2 = L= o 1) =] N 64
14 Identification and Version RegiSter (IDVER) ...uuuiiueieiiiiissiriiesiiiiissssssissssssainsssssainnssssannnnssss 67
15 Software Reset Register (SOFT_RESET) .uutiuteiiterintinnterieisiesiansssiate it 67
16 Emulation Control Register (EM_CONTROL) ...uuuuuiiiiiiiaieeiiiies s saaee s ssaians s ssaansessaannnesssannneesss 68
17 Interrupt Control Register (INT_CONTROL) . uutuiutteiiiistesisissssssaisssssssiinsssssainnsssssannnesssannnnsiss 68
18 Core 0/1/2 Receive Threshold Enable Register (CO/1/2_RX_THRESH_EN) ...iovviiiiiiiiiiiiiiiininenaaes 69
19 Core 0/1/2 Receive Enable Register (CO/L/2_RX_EN)..uiiiuiiiieiiiieiirininissn s snasesaaesnnes 69
20 Core 0/1/2 Transmit Enable Register (CO/L/2_TX_EN) wuuiiiuuiiiiiiiiiiiiei i sssinsssasannes 70
21 Core 0/1/2 Misc Enable Register (CO/L/2_MISC_EN) ..uueiiuiiiiuiirintiriuiiteiierisisinrisssianesansaainnss 70
22 Core 0/1/2 Receive Threshold Status Register (CO/1/2_RX_THRESH_STAT) ..utiviiiiiiiiiiiinirrineianens 71
23 Core 0/1/2 Receive Status Register (CO/L/2_RX_STAT) wuiiiiuiiiiiiieiriiesiinnesisnssesssninss e 71
24 Core 0/1/2 Transmit Status Register (CO/L/2_TX _STAT) wututiriteiiiteiite it ar e aresarsrns 72
25 Core 0/1/2 Misc Status Register (CO/L/2_MISC_STAT) tuuuutiruutiiternniristirisrirnseiaierassarasainns 72
26 Core 0/1/2 Receive Interrupts per Millisecond Register (CO/1/2_RX_IMAX) cuvviiiiinieriiiiiineiniiiennannns 73
27 Core 0/1/2 Transmitinterrupts per Millisecond Register (CO/1/2_TX_IMAX) .vvviuiiriniininiiiiieiiirerineininess 73
28 Identification and Version Register (IDVER)iieiiiiiieeiiiae s srraee s ssaians s ssaanssssaannesssannnaeess 75
29 Software Reset Register (SOFT_RESET) 1iuuuuiiiiiiiiiiiiiiiriiis s s s sssinss s sasannes 75
30 Control REGISTEr (CONTROL) . uutiuuterstinatesse st sa s s tr s st e saae s s s s s saa s san s tanesannsrnes 76
31 StatUS REGISIEr (STATUS) wiuuutiintirttiretiat ittt r st s e et e ra e s neranes 77
32 Advertised Ability Register (MR_ADV _ABILITY) cuuuuuiiiiiieiiiiiesiniirssssisrs s ssassssssannsssssaansnssannns 78
33 Link Partner Advertised Ability Register MR_LP_ADV_ABILITYMr_Lp_Adv_ADbility)cvveviiiiniiinnninnnnns 79
34 Transmit Configuration RegIStEr (TX _CFG) ... uuiiieiiiiiesiaaieeesaaaneesraaanre s saaanr s s ssannraessaannnesannns 80
35 Receive Configuration Register (RX_CFG) cuuuiuiiiiiisiiiiiiseiiiiissiisiiss s ssainsssssannnssssannnnssss 82
36 Auxiliary Configuration Register (AUX_CFG) ... uuuiiiutiiieiiiieiiiiisirisiaisransssiassssssnnssansssannssanss 84
37 Transmit Identification and Version Register (TXIDVER)uiiiiiiiii i ssinnee s snnnnae s snnas 90
38 Transmit Control Register (TXCONTROL) ..uuuuiiueieiiiiiesisiieessssisrs s ssaassssssansssssaainnssinnns 90
39 Transmit Teardown Register (TXTEARDOWN) ...ttt snsssasssansssinsssnnssanes 91
40 Receive Identification and Version Register (RXIDVER)......uiiiiiiiriiiiiiie i raaianeessaannesssannnaess 91
41 Receive Control Register (RXCONTROL) . .uuutetiiiuissisiisnnesisissssisaissssssaisrsssaanssssssannnssssannnness 92
42 Receive Teardown Register (RXTEARDOWN) .. .uiiuetiiieiite i iasssassssinnssiasssisssainssannsias 92
43 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) ..viiiiiiiiiiiiiiiiiisisiasnnennes 93
44 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED).....uiiiiiutiiiiiinnreiiiiinesiiinssesiaanes 94
45 Transmit Interrupt Mask Set Register (TXINTMASKSET) +uuuuiiiieiiiiieiiiiris i nsssansssinsssnssianes 95
46 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) ..t riaee s rrne e naaas 96
47 MAC Input Vector Register (MACINVECTOR) 1.uuuuuttiiiiiniiesianntesisnnsssississsssssinnnssssannnssssannsnesins 97
SPRUEFOC-July 2006 —Revised March 2012 List of Figures 5

Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I3 TEXAS

INSTRUMENTS

www.ti.com

48 MAC End Of Interrupt Vector Register (MACEOIVECTOR) 1.uutiiuieiitirintirinriiieianneransssinnesansiannsins 97
49 Receive Interrupt Status Register Raw (RXINTSTATRAW) 1.uuiiitiiiiiiiiiis s rannansssensnenans 98
50 Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) ..ciiiiiiiiiiiiiiiiiiii i rnnnnneea 99
51 Receive Interrupt Mask Set Register (RXINTMASKSET) .uuuiuutirieinieeiinerinnerineisissasssannsaneaannns 100
52 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR)uiiiiiiiiiiiiiiiieiraiane e anianne e ssnnnneeas 101
53 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) ...uiiiiiiiiiiiiiiii e rnnnneenas 102
54 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) ...uviiuiiiiiiiiiieiiierinsininrsnnsianeens 102
55 MAC Interrupt Mask Set Register (MACINTMASKSET) ..uutiiuuiiiieiintirissisininneiaise i 102
56 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR)uuuiiiiiiiineiiiiineessiinsnsisanansesiannnnenss 103
57 Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE)ccvcvvvuienn 103
58 Receive Unicast Enable Set Register (RXUNICASTSET)..uuviuiiiitiiiiiiiiiinirinisniesineaneannns 106
59 Receive Unicast Clear Register (RXUNICASTCLEAR)uttiiiiiietiiiiiesiniineeisainnrssssannsnsssannnnssss 107
60 Receive Maximum Length Register (RXMAXLEN) .. .uutiuiiiieiiiteiierississrss s snnsssnnnssaaessaness 107
61 Receive Buffer Offset Register (RXBUFFEROFFSET) ...uuuiiiiiiiiiiiiiiieiaiiieeersinr s s snnnnn e nsnnnneeas 108
62 Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH)........ccovviiiiiiiiiininnnns 108
63 Receive Channel n Flow Control Threshold Register (RXNFLOWTHRESH)cccvviiiiiiiiiiiiiiieiineens 109
64 Receive Channel n Free Buffer Count Register (RXNFREEBUFFER)ccoiiiiiiiiiiiiiiiiiiieeeenes 109
65 MAC Control Register (MACCONTROL) 1.uuuuteiiintesiiisnesisaissessssnsnssssisnnssssaannrsssaassesssassness 110
66 MAC Status Register (MACSTATUS) .uuuuiiiueeiiateiiterstissrsase st sais s sanrsraessanns 112
67 Emulation Control Register (EMCONTROL) ..iuuuitiiiiiiesiraaeeessnanesssaaansesssaannssssaansaessaannnesss 114
68 FIFO Control Register (FIFOCONTROL) 1.uuuuteiiiustessiinsssisaissesssssinnssssasnssessaansssssassnesssasnness 114
69 MAC Configuration Register (MACCONFIG) .. utiuuteiiuteritiriatirseias s sians s ssiesasssanssaesaanns 115
70 Soft Reset RegiSter (SOFTRESET) +uuuutiistiiteiisteiastiristisss it iassrasssisaarsianns 115
71 MAC Source Address Low Bytes Register (MACSRCADDRLO)uuiviiuieiiiiinnneiriiinnssininnnssssannnnenss 116
72 MAC Source Address High Bytes Register (MACSRCADDRHI) ...vviiiiiiiiiiini i rnaeannes 116
73 MAC Hash Address Register 1 (MACHASHL) ...ttt s ranesanes 117
74 MAC Hash Address Register 2 (MACHASH2)uuuiiiiiiiriiii i s s s sraaaaneaas 118
75 Back Off Random Number Generator Test Register (BOFFTEST) vuivuviiiiiriiiiiiiirinineiiinenneennes 118
76 Transmit Pacing Algorithm Test Register (TPACETEST) +uviueiiiiiriiiiiiiiiini s ssssannenas 119
77 Receive Pause Timer Register (RXPAUSE) ...uuiuiiiiiiiieiiiiiies s sssisssssssinsnssssannnssssannnsssss 119
78 Transmit Pause Timer Register (TXPAUSE) ... uuuiiietiiiteiiie it ssiss s sanssass s ssinssansesas 120
79 MAC Address Low Bytes Register (MACADDRLO)uiueieeiiiiie e s ssaianneessaannesssaannnessaannnesss 120
80 MAC Address High Bytes Register (MACADDRHI) ..uuiiiieiiiiieniiiesssiis s ss s ssnnnse s snnnnnenas 121
81 MAC Index Register (MACINDEX) 1.uutiuutiueeisteistesssssasssse e sasss s ssisssasssannssanessnnns 121
82 Transmit Channel n DMA Head Descriptor Pointer Register (TXNHDP)viiiiiiiiiiiiienniiaeeeenas 122
83 Receive Channel n DMA Head Descriptor Pointer Register (RXNHDP)......iviieeiiiiiiiiiiiiiinniianeens 122
84 Transmit Channel n Completion Pointer Register (TXNCP) ..uuuiiuiiiieiiiieiiie i aeesinneas 122
85 Receive Channel n Completion Pointer Register (RXNCP) ..ot r e rsnnneeeas 123
86 IS o] [T T 0 L] (T 124
87 MDIO Version Register (VERSION)uutiiieiiiieiieinisss st srsssaasssas s ssessaasssannssansssness 133
88 MDIO Control RegiSter (CONTROL) . .uiiieteiiaietessaaatesssaanaesssaaanessaaanneesaaanraessaannaessaannnesss 134
89 PHY Acknowledge Status RegiSter (ALIVE) ..uuiiuieiiiiiiesiiiiesissinssssiinsssssannsssssannssesssannnesss 135
90 PHY Link Status Register (LINK) .uuuueieeiieesieiieersnssas s sass s s s ssssssssaasssannssansssnnss 135
91 MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW)c.vviiiiiiiiiiiiiiiiiinnens 136
92 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED)uvviiiiiiiieiriinnnesininnnens 136
93 MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW)cvviiiiiiiieiinninnnnns 137
94 MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED)......ccvvvviaiiiineinnnnns 137
95 MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) ...vvviiiiiineiiinnnnenns 138
96 MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR)ccvvviviinnanns 138
List of Figures SPRUEFOC-July 2006—Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS

INSTRUMENTS

www.ti.com

97 MDIO User Access Register 0 (USERACCESS0). .. .uuturutiretirteiaeeiistssianesineisissiasssannssaesainns 139
98 MDIO User PHY Select Register 0 (USERPHYSELOQ) ..uuuutiiutirseiineiisesinsriseisississesinssansssanns 140
99 MDIO User Access Register 1 (USERACCESSL)...uuuiiiiutteiirissesinaissssissinssissinnnssisansnssssannnesss 141
100 MDIO User PHY Select Register 1 (USERPHYSELL) ..uuuuiiiuiirieiiietiissiinerineisinrssnnsiansssaessannss 142
SPRUEFOC-July 2006 —Revised March 2012 List of Figures 7

Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Tables

1 EMAC and MDIO Signals With SGMII INtEIACE ... uueiiiiiii i s r e a e e saaneeeenas 16
2 Ethernet Frame DeSCriDtON ... e et ias e tss e ss e s s st et ss s e st s aa e s s aanae s s asaannesssannnressns 18
3 272 L]0 =TT 0 (o £ 20
4 Receive Frame TreatMent SUMIMANYeeeiiieeraaateessaanse s saanssesssannnessaaannrssaaannnssssannseessnn 47
5 Middle of Frame OVerrun TreatmMENt. ... i uuviseiriseiiiseiiteristeriseisiase i it e rasesiansras 48
6 CPGMAC IN_VECTOR ValUBS . . ttetiieeieeteatessaaaneessaanneesssannesssannnesssaannesssasnnnessssnnnesssnnnnes 58
7 L0 T g1 (T 1]) N 59
8 Y O V=T g O 0 1 =T o 10 59
9 Line Rate versus PLL Output CIOCK FIrEOUENCY t.uvuueerstiratiiseisee s sisssssessnnssansssannssansssnnnsns 61
10 =T o 0 o (O] Lo =1 62
11 Frequency Range VErsuS MPY VaAlUE ...iuuueeiiiiiiiiiiiiineriite s isasse s sssiae s ssnins s ssainnssssannnsessas 62
12 MACID1 Register Field DeSCriPtiONS . .. uuuu ittt s s s sare s ssiar s sannssasssannsras 64
13 MACID2 Register Field DeSCIPIIONS . ..t ttearieteeraaanteessaanses s saanee s saaannsssaaanneessaannressaannnnsssn 64
14 0T = T o I] o 65
15 EMAC CoNntrol MOAUIE REGISTEIS . v uuutistiiseesteiastesatssassase e s s s s sssetan s rassssannsrasesannnrans 66
16 Identification and Version Register (IDVER) Field DeSCHPtIONS. .. .uueiiiiiieiiiiiieeriiiaesrnannesssannnness 67
17 Software Reset Register (SSOFT_RESET) Field DeSCIPLONS «..uuutseiiiisseeiiiiiesiniiinessssiinnrsssannnness 67
18 Emulation Control Register (EM_CONTROL) Field DeSCIIPtONS «.vvviuiireeiiiteiineerinsrineisinsisieesineeas 68
19 Interrupt Control Register (INT_CONTROL) Field DeSCHPIONS.uueiiiiiieiiiiieeeanaineessninnesssannneess 68
20 Core 0/1/2 Receive Threshold Enable Register (C0/1/2_RX_THRESH_EN) Field Descriptions 69
21 Core 0/1/2 Receive Enable Register (C0/1/2_RX_EN) Field DeSCrPtioNSvvivreirieriiieriiineiiieerinnernss 69
22 Core 0/1/2 Transmit Enable Register (C0/1/2_TX_EN) Field DeSCriptionScevviiiiiiiniiiiiiniineinnnn. 70
23 Core 0/1/2 Misc Enable Register (C0/1/2_MISC_EN) Field DeSCrptioNS.....c.uuviiiinesiiiiinneiiiiineeainainns 70
24 Core 0/1/2 Receive Threshold Status Register (C0/1/2_RX_THRESH_STAT) Field Descriptions............. 71
25 Core 0/1/2 Receive Status Register (CO/1/2_RX_STAT) Field DeSCPtioNS ..vvvuriviseiiieerinssrinrerineianens 71
26 Core 0/1/2 Transmit Status Register (C0/1/2_TX_STAT) Field DeSCriptionscccevviiiiuineiiiiinneiiniiaeess 72
27 Core 0/1/2 Misc Status Register (C0/1/2_MISC_STAT) Field DeSCriptionscevviueivieriiiisininernneininnss 72
28 Core 0/1/2 Receive Interrupts per Millisecond Register (C0/1/2_RX_IMAX) Field Descriptions................ 73
29 Core 0/1/2 Transmit Interrupts per Millisecond Register (C0/1/2_TX_IMAX) Field Descriptions 73
30 ST T L0 L] (= £ 74
31 Read/Write/Clear/Set ADDreVIiatioNSi.uuiissiriseiiiiiii i s aanreras 74
32 Identification and Version Register (IDVER) Field DeSCrptiONS.uueiiiiiueeiiiiiriiiinessniinsssssannnness 75
33 Software Reset Register (SOFT_RESET) Field DeSCHPONS ..vvviiiiiieiieieesiianeessnannnessnannnessaannnees 75
34 Control Register (CONTROL) Field DESCIPLONS .. .uuueeeiiiiteeiaiittesaaaaressaaannesssaannessaaannsesaaannness 76
35 Status Register (STATUS) Field DeSCIIPHONS . uuutiuueteiiiiatssisiistssssiissesssaisessssinnsssssaansrsssannnnesss 7
36 Advertised Ability Register (MR_ADV_ABILITY) Field DeSCriptionS.....vvveiiiiiiiiiiiiieiiieiinineennnenaes 78
37 LT 1o o 78
38 Link Partner Advertised Ability Register (MR_LP_ADV_ABILITY) Field Descriptionscovvereriiinnnnenss 79
39 Transmit Configuration Register (TX_CFG) Field DeSCriPtiONSuvieiiiuiiiiiiieiiieeiiiesiisiassninennes 80
40 D 7 81
41 SWVING BilS.u s tutiuseiutiusunssras st st r e e s s e s e s e s e s e s e e s et a e e e 81
42 Receive Configuration Register (RX_CFG) Field DeSCHPONS ... vuueiruttriaeiiiteiieerissrineisinsisinsaanneas 82
43 T 83
44 Auxiliary Configuration Register (AUX_CFG) Field DeSCrPtONS ...uiviieieiiiiinrriiiiirssiriinssisiinnsiannns 84
45 Ethernet Media Access Controller (EMAC) REJISIEIS ..uuuuuiiiuterineirinriiiaeiiieerasssinssiasisnsssaisssanneias 86
46 Transmit Identification and Version Register (TXIDVER) Field DesCrptionScvviiieieiiiiiieriiiianeianns 920
47 Transmit Control Register (TXCONTROL) Field DeSCHPtIONS. ..uuuiiviieeiiiiinsiniiinsessiinnsssiannnnesinnnes 90
List of Tables SPRUEFOC-July 2006—Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS

INSTRUMENTS

www.ti.com

48 Transmit Teardown Register (TXTEARDOWN) Field DeSCriptioNS.....vvieiritiiieiiieiiieriesinsennneinnes 91
49 Receive Identification and Version Register (RXIDVER) Field DeSCrpPtioNSccueeiiiiiieeiiiiineriaianeaesss 91
50 Receive Control Register (RXCONTROL) Field DeSCHPLONS «...uuuteiiiissesisiinnesisiinessssinnnssssannnnesas 92
51 Receive Teardown Register (RXTEARDOWN) Field DESCHPLONS +..uueiiutirinriiseineerinsisinrirnssiaineians 92
52 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) Field DescCriptionSvvvvvvinriineinnes 93
53 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) Field Descriptionscevvvviiaeeiinnns 94
54 Transmit Interrupt Mask Set Register (TXINTMASKSET) Field DeSCrptionsvvuvvvieeivieeiiiiiirerineianes 95
55 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) Field DesCriptionsvvvviiieeiiiinneiinnns 96
56 MAC Input Vector Register (MACINVECTOR) Field DeSCrptiONS ..uuvvvviuuesiiiiinessrniinnsessainnnessaannnness 97
57 MAC End Of Interrupt Vector Register (MACEOIVECTOR) Field DeSCriptionS......cvvveviiiiiiinirineininninns 97
58 Receive Interrupt Status Register Raw (RXINTSTATRAW) Field DeSCHPtioNS. .. vvvivieeiissirinnirineininninns 98
59 Receive Interrupt Status Status (MASKED) Register (RXINTSTATMASKED) Field Descriptions 99
60 Receive Interrupt Mask Set Register (RXINTMASKSET) Field DeSCriptionsvvvvvivieriiiiniiiieinnininnns 100
61 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) Field DescriptionSccvvviiiieneiiinnneenns 101
62 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) Field Descriptionscoveeeeiiinnneenns 102
63 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) Field DescriptionS.......cccevvveaaneeenn. 102
64 MAC Interrupt Mask Set Register (MACINTMASKSET) Field DeSCrptionSvvviseivisriiineiinieiineninens 102
65 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) Field DeSCriptionscvveeeviviinereiiinnneens 103
66 Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) Field
[1o] 1T N 103
67 Receive Unicast Enable Set Register (RXUNICASTSET) Field DeSCriptionsvvvviiereiiiiinreeirinnneens 106
68 Receive Unicast Clear Register (RXUNICASTCLEAR) Field DeSCriptionsc.vvvieeiiieeiiiiiinrerineinnens 107
69 Receive Maximum Length Register (RXMAXLEN) Field DeSCrptioNS.cviviiieeiiiiiieiiiiinneisannneenns 107
70 Receive Buffer Offset Register (RXBUFFEROFFSET) Field DeSCriptionS....uvvveeeirriinreeiriinnnerrannnness 108
71 Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) Field Descriptions 108
72 Receive Channel n Flow Control Threshold Register (RXnFLOWTHRESH) Field Descriptions.............. 109
73 Receive Channel n Free Buffer Count Register (RXnFREEBUFFER) Field Descriptionscovueeennn. 109
74 MAC Control Register (MACCONTROL) Field DeSCIPONS v.uuviuteiitirintiririiineiaieeransesineriaesanens 110
75 MAC Status Register (MACSTATUS) Field DeSCIPLIONS . . .uuetiiiesiaaiineessaiinreessaanreessaannaessaannnesss 112
76 Emulation Control Register (EMCONTROL) Field DeSCIPLONS +.uuueeiiiieeeiiiiinneisiiinnneisinnnnesisnnnenss 114
77 FIFO Control Register (FIFOCONTROL) Field DeSCIPtONS ...uuiiuteiiiriiniiniseiiieernsesinrernneananees 114
78 MAC Configuration Register (MACCONFIG) Field DeSCHPLONSviiiieieiiiiiieeiaaiieessninnreesaannneess 115
79 Soft Reset Register (SOFTRESET) Field DeSCrPIONS «.uuuutteiriittesisistssisninnesisiinessssinnnssssannnes 115
80 MAC Source Address Low Bytes Register (MACSRCADDRLO) Field Descriptionsvvvevviurerineinunens 116
81 MAC Source Address High Bytes Register (MACSRCADDRHI) Field DeScriptionS.......cvvvivereiiianneenns 116
82 MAC Hash Address Register 1 (MACHASH1) Field DeSCrpliONS....uvvvueeiiiiieeiiniiinressniinnssssannnness 117
83 MAC Hash Address Register 2 (MACHASH2) Field DeSCrptioNS....vvuevriutirieiiiiieiiieiitrinsennneinness 118
84 Back Off Test Register (BOFFTEST) Field DESCHPLONS .. .uuuiiiiieeiiiiiieeiaaianteessaanrnsssannnaessaannnenss 118
85 Transmit Pacing Algorithm Test Register (TPACETEST) Field DeSscCriptionsvvvveieiiiiiineiiiiinneiinns 119
86 Receive Pause Timer Register (RXPAUSE) Field DeSCriptioNSueiveeivuisriieiineininnisinsiinnsianesanns 119
87 Transmit Pause Timer Register (TXPAUSE) Field DeSCIPONS ..uvviuiiiiseiiiseiisiiniiinieiisesanneas 120
88 MAC Address Low Bytes Register (MACADDRLO) Field DeSCIPLONS ...uvviiiiieeeiriiinnreiriinnnesiannnnenns 120
89 MAC Address High Bytes Register (MACADDRHI) Field DeSCrptioNS ...vvueeviesiireiriiniriieiinneineeniness 121
90 MAC Index Register (MACINDEX) Field DeSCIPLONSuueieiiiiiieeiaaaieeeiasianneessannnesssannnaessaannnenss 121
91 Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP) Field Descriptionscceveus.. 122
92 Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP) Field Descriptionsccvoue.. 122
93 Transmit Channel n Completion Pointer Register (TXNCP) Field DesCriptionsS......coeeeeviiiiieeeiininnneanns 122
94 Receive Channel n Completion Pointer Register (RXnCP) Field Descriptionsvvvveeviviiieesiniiinneannns 123
95 Statistics Register Field DeSCriPtiONS. ...ttt r s rs e ras e ranraaaes 124
SPRUEFOC-July 2006 —Revised March 2012 List of Tables 9

Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com

96 Management Data Input/Output (MDIO) ReQISIEIS...uueuiutiretiiieiieerisesinrerieirierrass s ranesaanns 133
97 MDIO Version Register (VERSION) Field DeSCIPtONS. .. .utivstiiseiierissssinssiseisiesssssinesasesainns 133
98 MDIO Control Register (CONTROL) Field DeSCHPLONS 1. .uutetiiiisseeiiiiinnesssiinsressainnssssaassesssansnesss 134
99 PHY Acknowledge Status Register (ALIVE) Field DeSCrptioNSvvvvsiirieeiiieiiiiieiiriaininesnnaeianeens 135
100 PHY Link Status Register (LINK) Field DeSCHPONS ... uueiseiiiieesiaiiee e rrainee s ssinre s ssanna s s sannaess 135
101 MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) Field Descriptions 136
102 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) Field Descriptions.............. 136
103 MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW) Field Descriptions 137
104 MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) Field Descriptions 137
105 MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) Field Descriptions... 138
106 MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) Field
[1o X 138
107 MDIO User Access Register 0 (USERACCESSO) Field DeSCHPLONS ..vvvutivisririneiiiesiineiineraneiainnss 139
108 MDIO User PHY Select Register 0 (USERPHYSELQ) Field DeSCPtiONS. ..uvvuerivsseiiseerineirineiineiannens 140
109 MDIO User Access Register 1 (USERACCESS1) Field DeSCrPtioNS v.uuueeiiviiueeiiriinreisiinnrssrsinnnness 141
110 MDIO User PHY Select Register 1 (USERPHYSEL1) Field DeSCPLONS. ..uvveriiteiieiriaeininrinnsinneess 142
111 Physical Layer DefiNItIONSeeiiieeiiiiiteiiaiate s ssaaare st saaaae et sa s et saanne s ssaann e e ssaannraesaannnnessn 144
10 List of Tables SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

/ Preface
I TEXAS SPRUEF0C-July 2006—Revised March 2012

INSTRUMENTS
Read This First

About This Manual

This document provides a functional description of the Ethernet Media Access Controller (EMAC) and
Physical layer (PHY) device Management Data Input/Output (MDIO) module integrated with the
TMS320TC16487/88 devices.

Notational Conventions

This document uses the following conventions.

» Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

* Registers in this document are shown in figures and described in tables.
— Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

— Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the C6000™ devices and related support tools. Copies of these
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box
provided at www.ti.com.

SPRU189 — TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C6000 digital signal processors
(DSPs).

SPRU198 — TMS320C6000 Programmer's Guide. Describes ways to optimize C and assembly code for
the TMS320C6000™ DSPs and includes application program examples.

SPRU301 — TMS320C6000 Code Composer Studio Tutorial. Introduces the Code Composer Studio™
integrated development environment and software tools.

SPRU321 — Code Composer Studio Application Programming Interface Reference Guide.
Describes the Code Composer Studio™ application programming interface (API), which allows you
to program custom plug-ins for Code Composer.

SPRU871 — TMS320C64x+ Megamodule Reference Guide. Describes the TMS320C64x+ digital signal
processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

C6000, TMS320C6000, Code Composer Studio are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

SPRUEFOC-July 2006 —Revised March 2012 Preface 11

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru189
http://www.ti.com/lit/pdf/spru198
http://www.ti.com/lit/pdf/spru301
http://www.ti.com/lit/pdf/spru321
http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

User's Guide

I —{IE)S(’?IEUMENTS SPRUEF0C-July 2006—Revised March 2012
TMS320TCl16487/88 EMAC/MDIO
1 Introduction

This document provides a functional description of the Ethernet Media Access Controller (EMAC) and
Physical layer (PHY) device Management Data Input/Output (MDIO) module integrated with
TMS320TCl16487/88 devices. Included are the features of the EMAC and MDIO modules, a discussion of
their architecture and operation, how these modules connect to the outside world, and the registers
description for each module.

The EMAC controls the flow of packet data from the processor to the PHY. The MDIO module controls
PHY configuration and status monitoring.

Both the EMAC and the MDIO modules interface to the DSP through a custom interface that allows
efficient data transmission and reception. This custom interface is referred to as the EMAC control
module, and is considered integral to the EMAC/MDIO peripheral.

1.1 Purpose of the Peripheral

The EMAC module is used on TMS320TCI16487/88 devices to move data between the device and another
host connected to the same network, in compliance with the Ethernet protocol.

1.2 Features
* Synchronous 10/100/1000 Mbit operation.
e CBA3.1 compliant DMA controllers with VBUSP data transfers.
* G/MIl Interface.
» Hardware Error Handling including CRC.
» Little and Big endian Support.
» Eight receive channels with VLAN tag discrimination for receive hardware QOS support.
» Eight transmit channels with round-robin or fixed priority for hardware QOS support.
» Full Duplex Gigabit operation (half duplex gigabit is not supported).
e CPPI 3.0 compliant.
» EtherStats and 802.3Stats RMON statistics gathering.
» Transmit CRC generation selectable on a per channel basis.
» Broadcast frames selectable for reception on a single channel.
» Multicast frames selectable for reception on a single channel.

» Promiscuous receive mode frames selectable for reception on a single channel (all frames, all good
frames, short frames, error frames).

* Tl Adaptive Performance Optimization for improved half duplex performance.

» Hardware flow control.

» Supports External SGMII gasket.

* No-chain mode truncates frame to 1st buffer for network analysis applications.

« Configurable receive address matching/filtering, receive FIFO depth, and transmit FIFO depth.
e Emulation Support.

* Loopback Mode.

12 TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I

TEXAS
INSTRUMENTS

www.ti.com Introduction

1.3

Functional Block Diagram

Figure 1 shows the three main functional modules of the EMAC/MDIO peripheral:
* EMAC control module

* EMAC module

* MDIO module

The EMAC control module is the main interface between the device core processor and the EMAC
module and MDIO module. The EMAC control module contains the necessary components to allow the
EMAC to make efficient use of device memory, plus it controls device interrupts. The EMAC control
module incorporates 8K byte internal RAM to hold EMAC buffer descriptors.

The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to
interrogate and control up to 32 Ethernet PHY(s) connected to the device, using a shared two-wire bus.
Application software uses the MDIO module to configure the auto-negotiation parameters of each PHY
attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC
module for correct operation. The module is designed to allow almost transparent operation of the MDIO
interface, with very little maintenance from the core processor.

The Ethernet Media Access Controller (EMAC) module provides an efficient interface between the
TCl16487/88 core processor and the networked community. The EMAC supports 10Base-T (10 Mbits/sec),
and 100BaseTX (100 Mbits/sec), in either half or full duplex mode, and 1000BaseT (1000 Mbits/sec) in full
duplex mode, with hardware flow control and quality-of-service (QOS) support.

Figure 1. EMAC and MDIO Block Diagram

Interrupt
controller

DMA memory transfer

Configuration bus
controller

I Peripheral bus

EMAC control module

EMAC/MDIO
interrupt

EMAC module MDIO module

11 11
A 7

GMII MDIO bus

Figure 1shows the main interface between the EMAC control module and the CPU. The following
connections are made to the device core:

e The peripheral bus connection from the EMAC control module allows the EMAC module to read and
write both internal and external memory through the switch fabric interface.

» The EMAC control, EMAC and MDIO modules all have control registers. These registers are memory
mapped into device memory space via the device configuration bus. The control module internal RAM
is mapped to this same range along with these registers.

* The EMAC and MDIO interrupts are combined within the control module. The interrupts from the
control module then go to the devices interrupt controller.

The EMAC and MDIO interrupts are combined within the control module, so only the control module
interrupts need to be monitored by the application software or device driver. The interrupts are mapped to
a specific CPU interrupt through the use of the enhanced interrupt selector within the C64x+ core. The
combined EMAC/MDIO interrupts are mapped to the interrupt controller input as system events 5, 6, 7 and
8.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl16487/88 EMAC/MDIO 13
Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

Introduction www.ti.com

1.4 Industry Standard(s) Compliance Statement

The EMAC peripheral conforms to the IEEE 802.3 standard, describing the Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) Access Method and Physical Layer specifications. The IEEE 802.3
standard has also been adopted by ISO/IEC and re-designated as ISO/IEC 8802-3:2000(E).

In difference from this standard, the EMAC peripheral integrated with the TCI6487/88 devices does not
use the Transmit Coding Error signal MTXER. Instead of driving the error pin when an underflow condition
occurs on a transmitted frame, the EMAC will intentionally generate an incorrect checksum by inverting
the frame CRC, so that the transmitted frame will be detected as an error by the network.

14 TMS320TCl6487/88 EMAC/MDIO SPRUEFOC-July 2006—Revised March 2012
Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I

TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

2

2.1

211

21.2

2.2

EMAC Functional Architecture
This chapter discusses the architecture and basic function of the EMAC peripheral.

Clock Control

The frequencies for the transmit and receive clocks are fixed by the IEEE 802.3 specification as shown
below:

2.5 Mhz at 10 Mbps
* 25 Mhz at 100 Mbps
e 125 MHz at 1000 Mbps

The TCI16487/88 device uses PLL controller to generate all the clocks needed by the DSP. The Main PLL
controller has seven SYSCLK outputs. SYSCLK9 runs at a rate equal to 1/6th of the CPU clock frequency
(chip_clks).

The MDIO clock is based on a divide-down of the peripheral clock(SYSCLK9) and is specified to run up to
2.5Mhz, although typical operation would be 1.0Mhz. as the peripheral clock frequency is variable, the
application software or driver controls the divide-down amount.

GMII Clocking

The transmit and receive clock sources for 10/100/1000 Mbps modes are provided from an external PHY
via GMII_MTCLK and GMII_MRCLK pins.

SGMII Clocking

All clock sources are sourced from the Main PLL Controller, which is CPU clock/6 (chip_clk6). This clock
source is shared by a majority of the modules on the TCI6487/88 device. The SGMII protocol takes a
GMII data stream and converts it to a serial stream using the SerDes macro, sending the same amount of
data with an embedded clock (using 8b/10b). An SGMII output clock is not provided so the connected
device must support clock recovery. This device must be configured for clock recovery before the interface
can be used so the CP-SGMII logic derives its operating clocks from the SerDes output which has a
dedicated PLL to set the link rate. The SGMII protocol also allows for dynamic switching between
10/100/1000 Mbps modes. This negotiation data is embedded in the incoming data stream from the
external PHY and can happen at any time. Since the CP-SGMII logic only supports the protocol with an
embedded clock, 10/100Mbps rates are supported by duplicating the data across multiple data phases
(modified by 8b/10b at the physical interface), allowing the CP-SGMII to keep the same data on the pins
for the slower rates to the CP-GMAC module. The SGMII SerDes requires a dedicated clock input of 125,
156.25, or 312.5 MHz.

Memory Map

The EMAC includes an internal memory which holds information about the Ethernet packets received or
transmitted. This internal RAM is 2K x 32 bits in size. Data can be written to and read from the EMAC
internal memory by either the EMAC or the CPU. It is used to store buffer descriptors that are 4 words (16
bytes) deep. This 8K local memory can hold enough information to transfer up to 512 Ethernet packets
without CPU intervention.

On the TCI6487/88 device, the packet buffer descriptors can also be placed in the internal processor
memory (L2). There are some tradeoffs in terms of cache performance and throughput when descriptors
are placed in L2, versus when they are placed in EMAC internal memory. Cache performance is improved
when the buffer descriptors are placed in internal memory. However, the EMAC throughput is better when
the descriptors are placed in the local EMAC RAM.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl16487/88 EMAC/MDIO 15
Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

EMAC Functional Architecture

13 TEXAS
INSTRUMENTS

www.ti.com

2.3 System Level Connection

The TCI16487/88 device support only SGMII interface to the physical layer device.

23.1

Serial Gigabit Media Independent Interface(SGMII) Connections

Figure 2 shows a device with intergrated EMAC and MDIO interfaced via a SGMII connection to the PHY
device. This interface is available in 10 Mbps, 100 Mbps and 1000 Mbps modes.

System
core

Figure 2. Ethernet Configuration with SGMII Interface

GMIl_MTCLK TX_ENC (10) TXN
 GMIl_MRCLK RX_ENC (10) TXP R
GMII_MTXD (8) TX_CFG (32) 2.5 MHz,
—1 25 MHZ,or
GMIl_MTXEN RX_CFG (32) ol RXN 125 MHz
GMII_MRXD (8) AUX_CFG (32) w RXP
Q| GMII_MRXDV S @ e
= 15} n o
@ | GMI_MRXER 3| RxCLK b
(S]
GMII_MCOL TX_CLK 3
hl ©
GMII_MCRS ®
>
FULLDUPLEX &
GIG 8 | Transformer
7]
z [
o
RJ-45
MDIO_OE_N R
© | MDCLK O
[m)] »
= | MDIO

The SGMII interface supports 10/100/1000 Mbps modes. Only full-duplex mode is available in 1000 Mbps
mode. In 10/100 Mbps modes, the GMII interface acts like an Ml interface, and only the lower 4 bits of
data are transferred for each of the data buses.

Table 1 summarizes the individual EMAC and MDIO signals with SGMII interface.

Table 1. EMAC and MDIO Signals with SGMII Interface

Signal Name
GMII_MTCLK

GMII_MRCLK

GMII_MTXD (8)

GMII_MTXEN

GMII_MRXD (8)

GMII_MRXDV

lfe}
|

Description

Transmit clock (MTCLK). The transmit clock is a continuous clock that provides the timing
reference for transmit operations. The MTXD and MTXEN signals are tied to this clock.
The clock is generated by the PHY and is 2.5 MHz at 10 Mbps operation, 25 MHz at 100
Mbps operation and 125 MHz at 1000 Mbps operation.

Receive clock (MRCLK). The receive clock is a continuous clock that provides the timing
reference for receive operations. The MRXD, MRXDV, and MRXER signals are tied to
this clock. The clock is generated by the PHY and is 2.5 MHz at 10 Mbps operation, 25
MHz at 100 Mbps operation and 125 MHz at 1000 Mbps operation.

Transmit data (MTXD). The transmit data pins are a collection of 8 data signals
comprising 8 bits of data. MTDXO is the least-significant bit (LSB). The signals are
synchronized by MTCLK in 10/100 Mbps mode, and by GMTCLK in Gigabit mode, and
valid only when MTXEN is asserted.

Transmit enable (MTXEN). The transmit enable signal indicates that the MTXD pins are
generating nibble data for use by the PHY. It is driven synchronously to MTCLK in 10/100
Mbps mode, and to GMTCLK in Gigabit mode.

Receive data (MRXD). The receive data pins are a collection of 8 data signals comprising
8 bits of data. MRDXO is the least-significant bit (LSB). The signals are synchronized by
MRCLK and valid only when MRXDV is asserted.

Receive data valid (MRXDV). The receive data valid signal indicates that the MRXD pins
are generating nibble data for use by the EMAC. It is driven synchronously to MRCLK.

16 TMS320TCl6487/88 EMAC/MDIO

SPRUEFOC-July 2006—Revised March 2012
Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

Table 1. EMAC and MDIO Signals with SGMII Interface (continued)

Signal Name 110 Description

GMII_MRXER | Receive error (MRXER). The receive error signal is asserted for one or more MRCLK
periods to indicate that an error was detected in the received frame. This is meaningful
only during data reception when MRXDV is active.

GMII_MCOL | Collision detected (MCOL). The MCOL pin is asserted by the PHY when it detects a
collision on the network. It remains asserted while the collision condition persists. This
signal is not necessarily synchronous to MTCLK nor MRCLK. This pin is used in half-
duplex operation only.

GMII_MCRS | Carrier sense (MCRS). The MCRS pin is asserted by the PHY when the network is not
idle in either transmit or receive. The pin is de-asserted when both transmit and receive
are idle. This signal is not necessarily synchronous to MTCLK nor MRCLK. This pin is
used in half-duplex operation only.

FULLDUPLEX | External Fullduplex

GIG | External Gigabit mode

MDIO_OE_N O Serial data output enable. Asserted ‘0’ when data output is valid.

MDCLK_O (0] Management data clock (MDCLK). The MDIO data clock is sourced by the MDIO module
on the system. It is used to synchronize MDIO data access operations done on the MDIO
pin. The frequency of this clock is controlled by the CLKDIV bits in the MDIO control
register (CONTROL).

MDIO /0 Management data input output (MDIO). The MDIO pin drives PHY management data into
and out of the PHY by way of an access frame consisting of start of frame, read/write
indication, PHY address, register address, and data bit cycles. The MDIO pin acts as an
output for everything except the data bit cycles, when the pin acts as an input for read
operations.

TX_ENC(10) (0] Transmit data encoded. The transmit data encoding is a collection of 10 data bits.

RX_ENC(10) | Receive data encoded. The receive data encoding is a collection of 10 data bits.

TX_CFG(32) (0] Transmit configuration register output, this is a 32-bit general purpose output used to
control the SERDES transmit configuration.

AUX_CFG(32) (0] Auxiliary configuration register output, this is a 32-bit general purpose output used to
control the SERDES PLL configuration.

RX_CLK | Receive clock. Clock recovered from the SERDES.

TX_CLK | Transmit clock. Clock recovered from the SERDES.

TXN (0] Negative polarity differential transmit output.

TXP (0] Positive polarity differential transmit output.

RXN | Negative polarity differential receive input.

RXP | Positive polarity differential receive input.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCI16487/88 EMAC/MDIO 17

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS

INSTRUMENTS
EMAC Functional Architecture www.ti.com
2.4 Ethernet Protocol Overview

Ethernet provides an unreliable, connectionless service to a networking application. A brief overview of the

Ethernet protocol follows. For more information on the Carrier Sense Multiple Access with Collision

Detection (CSMA/CD) Access Method (Ethernets multiple access protocol), see the IEEE 802.3 standard

document.
24.1 Ethernet Frame Format
All the Ethernet technologies use the same frame structure. The format of an Ethernet frame shown in

Figure 3, and described in Table 2. The Ethernet packet is the collection of bytes representing the data

portion of a single Ethernet frame on the wire (shown outlined in bold in Figure 3).

The Ethernet frames are of variable lengths, with no frame smaller than 64 bytes or larger than 1518 bytes

(header, data, and CRC).

Figure 3. Ethernet Frame
Number of bytes
7 1 6 6 2 46-1500 4
Preamble SFD Destination Source Len Data FCS
Legend: SFD = Start Frame Delimiter; FCS = Frame Check Sequence (CRC)
Table 2. Ethernet Frame Description

Field Bytes Description

Preamble 7 These 7 bytes have a fixed value of 55h. They wake up the receiving EMAC ports and
synchronize their clocks to that of the senders clock.

Start of Frame Delimiter 1 This field with a value of 5Dh immediately follows the preamble pattern and indicates the start
of important data.

Destination address 6 This field contains the Ethernet MAC address of the intended EMAC port for the frame. It may
be an individual or multicast (including broadcast) address. If the destination EMAC port
receives an Ethernet frame with a destination address that does not match any of its MAC
physical addresses, and no promiscuous, multicast or broadcast channel is enabled, it
discards the frame.

Source address 6 This field contains the MAC address of the Ethernet port that transmits the frame to the Local
Area Network.

Length/Type 2 The length field indicates the number of EMAC client data bytes contained in the subsequent
data field of the frame. This field can also be used to identify the data type carried by the
frame.

Data 46 to This field carries the datagram containing the upper layer protocol frame (the IP layer

1500 datagram). The maximum transfer unit (MTU) of Ethernet is 1500 bytes. Therefore, if the
upper layer protocol datagram exceeds 1500 bytes, the host must fragment the datagram and
send it in multiple Ethernet packets. The minimum size of the data field is 46 bytes. Thus, if
the upper layer datagram is less then 46 bytes, the data field must be extended to 46 bytes
by appending extra bits after the data field, but prior to calculating and appending the FCS.

Frame Check Sequence 4 A cyclic redundancy check (CRC) is used by the transmit and receive algorithms to generate
a CRC value for the FCS field. The frame check sequence covers the 60 to 1514 bytes of the
packet data. Note that the 4-byte FCS field may not be included as part of the packet data,
depending on the EMAC configuration.

18 TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I

www.ti.com

TEXAS
INSTRUMENTS

EMAC Functional Architecture

24.2

Multiple Access Protocol

Nodes in an Ethernet Local Area Network are interconnected by a broadcast channel; as a result, when
an EMAC port transmits a frame, all the adapters on the local network receive the frame. Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) algorithms are used when the EMAC operates in
half-duplex mode. When operating in full-duplex mode, there is no contention for use of a shared medium,
because there are exactly two ports on the local network.

Each port runs the CSMA/CD protocol without explicit coordination with the other ports on the Ethernet
network. Within a specific port, the CSMA/CD protocol is as follows:

1.

2.

3.

The port obtains data from upper layer protocols at its node, prepares an Ethernet frame, and puts the
frame in a buffer.

If the port senses that the medium is idle, it starts to transmit the frame. If the port senses that the
transmission medium is busy, it waits until it senses no signal energy (plus an Inter-Packet Gap time)
and then starts to transmit the frame.

While transmitting, the port monitors for the presence of signal energy coming from other ports. If the
port transmits the entire frame without detecting signal energy from other Ethernet devices, the port is
done with the frame.

If the port detects signal energy from other ports while transmitting, it stops transmitting its frame and
instead transmits a 48-bit jam signal.

After transmitting the jam signal, the port enters an exponential backoff phase. Specifically, when
transmitting a given frame, after experiencing a number of collisions in a row for the frame, the port
chooses a random value that is dependent on the number of collisions. The port then waits an amount
of time which is multiple of this random value, and returns to step 2.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl16487/88 EMAC/MDIO 19
Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

EMAC Functional Architecture

13 TEXAS
INSTRUMENTS

www.ti.com

2.5 Programming Interface

25.1 Packet Buffer Descriptors

The buffer descriptor is a central part of the EMAC module. It determines how the application software
describes Ethernet packets to be sent and empty buffers to be filled with incoming packet data. The basic
descriptor format is shown in Figure 4 and described in Table 3.

Figure 4. Basic Descriptor Format

Word Offset

Bit Fields

31

16|15 0

Next Descriptor Pointer

Buffer Pointer

Buffer Offset Buffer Length

W[(N|F~|O

Flags Packet Length

Table 3. Basic Descriptors

Word

Offset Field

Field Description

Next Descriptor
Pointer

Buffer Pointer
Buffer Offset
Buffer Length

Flags

Packet Length

The next descriptor pointer creates a single linked list of descriptors. Each descriptor describes a
packet or a packet fragment. When a descriptor points to a single buffer packet or the first fragment
of a packet, the start of packet (SOP) flag is set in the flags field. When a descriptor points to a
single buffer packet or the last fragment of a packet, the end of packet (EOP) flag is set. When a
packet is fragmented, each fragment must have its own descriptor and appear sequentially in the
descriptor linked list.

The buffer pointer refers to the memory buffer that either contains packet data during transmit
operations, or is an empty buffer ready to receive packet data during receive operations.

The buffer offset is the offset from the start of the packet buffer to the first byte of valid data. This
field only has meaning when the buffer descriptor points to a buffer that contains data.

The buffer length is the number of valid packet data bytes stored in the buffer. If the buffer is empty
and waiting to receive data, this field represents the size of the empty buffer.

The flags field contains more information about the buffer, such as whether it is the first fragment in
a packet (SOP), the last fragment in a packet (EOP), or contains an entire contiguous Ethernet
packet (both SOP and EOP). Section 2.5.4 and Section 2.5.5 describe the flags.

The packet length only has meaning for buffers that both contain data and are the start of a new
packet (SOP). For SOP descriptors, the packet length field contains the length of the entire Ethernet
packet, even if it is contained in a single buffer or fragmented over several buffers.

20 TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I

TEXAS

INSTRUMENTS

www.ti.com EMAC Functional Architecture

25.2

For example, consider three packets to be transmitted, Packet A is a single fragment (60 bytes), Packet B
is fragmented over three buffers (1514 bytes total), and Packet C is a single fragment (1514 bytes).
Figure 5 shows the linked list of descriptors to describe these three packets.

Figure 5. Typical Descriptor Linked List

pNext
pBuffer Packet A
0 60 60 bytes
SOP | EOP 60
pNext
pBuffer Packet B
Fragment 1
0 512 512 bytes
SOP 1514
pNext
pBuffer Packet B
Fragment 2
9 f?f 502 bytes
pNext
pBuffer Packet B
Fragment 3
0 500 500 bytes
EOP -
pNext (NULL)
pBuffer Packet C
0 1514 1514 bytes
SOP | EOP 1514

Transmit and Receive Descriptor Queues

The EMAC module processes descriptors in linked list chains (Section 2.5.1). The lists controlled by the
EMAC are maintained by the application software through the use of the head descriptor pointer (HDP)
registers. As the EMAC supports eight channels for both transmit and receive, there are eight head
descriptor pointer registers for both. They are designated as:

* TXnHDP: Transmit Channel n DMA Head Descriptor Pointer Register

* RXnHDP: Receive Channel n DMA Head Descriptor Pointer Register
After an EMAC reset, and before enabling the EMAC for send or receive, all 16 head descriptor pointer
registers must be initialized to zero.

The EMAC uses a simple system to determine if a descriptor is currently owned by the EMAC or by the
application software. There is a flag in the descriptor Flags field called OWNER. When this flag is set, the
referenced packet is considered to be owned by the EMAC. Note that ownership is done on a packet-
based granularity, not on descriptor granularity. Thus, only SOP descriptors make use of the OWNER flag.
As packets are processed, the EMAC will patch the SOP descriptor of the corresponding packet and clear
the OWNER flag. This is an indication that the EMAC has finished processing all descriptors up to and
including the first with the EOP flag set indicating the end of the packet. Note that this may only be one
descriptor with both the SOP and EOP flags set.

To add a descriptor or a linked list of descriptors to an EMAC descriptor queue for the first time, the
software application writes the pointer to the descriptor or first descriptor of a list to the corresponding
HDP register. Note that the last descriptor in the list must have its next pointer cleared so that the EMAC
can detect the end of the list. If only a single descriptor is added, its next descriptor pointer must be
initialized to zero.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl16487/88 EMAC/MDIO 21
Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

2.5.3

The HDP register must never be written to a second time while a previous list is active. To add additional
descriptors to a descriptor list already owned by the EMAC, the NULL next pointer of the last descriptor of
the previous list is patched with a pointer to the first descriptor in the new list. The list of new descriptors
to be appended to the existing list must itself be NULL terminated before the pointer patch is performed.

If the EMAC reads the next pointer of a descriptor as NULL in the instant before an application appends
additional descriptors to the list by patching the pointer, this may result in a race condition. Thus, the
software application must always examine the Flags field of all EOP packets, looking for a special flag
called end of queue (EOQ). The EOQ flag is set by the EMAC on the last descriptor of a packet when the
descriptors next pointer is NULL, allowing the EMAC to indicate to the software application that it has
reached the end of the list. When the software application sees the EOQ flag set, and there are more
descriptors to process, the application may then submit the new list or missed list portion by writing the
new list pointer to the same HDP register that started the process.

This process applies when adding packets to a transmit list, and empty buffers to a receive list.

Transmit and Receive EMAC Interrupts

The EMAC processes descriptors in linked list chains (Section 2.5.1), using the linked list queue
mechanism (Section 2.5.2).

The EMAC synchronizes the descriptor list processing by using interrupts to the software application. The
interrupts are controlled by the application by using the interrupt masks, global interrupt enable, and the
completion pointer register (CP). This register is also called interrupt acknowledge register.

As the EMAC supports eight channels for both transmit and receive, there are eight CP registers for both.
They are designated as:

e TXnCP: Transmit Channel n Completion Pointer (Interrupt Acknowledge) Register

* RXnCP: Receive Channel n Completion Pointer (Interrupt Acknowledge) Register

These registers serve two purposes. When read, they return the pointer to the last descriptor that the
EMAC has processed. When written by the software application, the value represents the last descriptor
processed by the software application. If these two values do not match, the interrupt is active.

The system configuration determines whether an active interrupt can interrupt the CPU. In general, the
global interrupt for EMAC and MDIO must be enabled in the EMAC control module, and it also must be
mapped in the DSP interrupt controller and enabled as a CPU interrupt. If the system is configured
properly, the interrupt for a specific receive or transmit channel executes under these conditions when the
corresponding interrupt is enabled in the EMAC using the RXINTMASKSET or TXINTMASKSET registers.

The current state of the receive or transmit channel interrupt can be examined directly by the software
application by reading the RXINTSTATRAW and TXINTSTATRAW registers, whether or not the interrupt
is enabled.

Interrupts are acknowledged when the application software updates the value of TXnCP or RXnCP with a
value that matches the internal value kept by the EMAC.

This mechanism ensures that the application software never misses an EMAC interrupt, as the interrupt
and its acknowledgment are tied directly to the actual buffer descriptors processing.

22

TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com

EMAC Functional Architecture

254

Transmit Buffer Descriptor Format

A transmit (TX) buffer descriptor (Figure 6) is a contiguous block of four 32-bit data words aligned on a 32-
bit boundary that describes a packet or a packet fragment. Example 1 shows the transmit buffer descriptor
described by a C structure.

Figure 6. Transmit Descriptor Format

(a) Word 0
31 0
\ Next Descriptor Pointer \
(b) Word 1
31 0
Buffer Pointer
(c) Word 2
31 16 15 0
\ Buffer Offset Buffer Length \
(d) Word 3
31 30 29 28 27 26 25 16
TDOWN | PASS
SOP | EOP | OWNER | EOQ CMPLT | crC Reserved
15 0

Packet Length

Example 1. Transmit Descriptor in C Structure Format

/*

/1 EMAC Descri ptor

/1

/1l The following is the format

/1 on the EMAC.

*/

typedef struct _EMAC Desc {
struct _EMAC Desc *pNext;

uint8
Ui nt 32
Ui nt 32

} EMAC Desc;

/* Packet Flags */

#def i
#def i
#def i
#def i
#def i
#def i

2541

ne EMAC_DSC FLAG SOP
ne EMAC DSC FLAG ECP

*pBuffer;
Buf O f Len;
Pkt Fl gLen;

of a single buffer descriptor

/* Pointer to next descriptor in chain */

ne EMAC DSC FLAG OMNER

ne EMAC_DSC FLAG EOQ

ne EMAC DSC_FLAG TDOANCMPLT
ne EMAC DSC FLAG PASSCRC

Next Descriptor Pointer

0x80000000u
0x40000000u
0x20000000u
0x10000000u
0x08000000u
0x04000000u

/* Pointer to data buffer */
/* Buffer Offset(MSW and Length(LSW */
/* Packet Flags(MSW and Length(LSW */

The next descriptor pointer indicates the 32-bit word aligned memory address of the next buffer descriptor
in the transmit queue. The pointer creates a linked list of buffer descriptors. If the value of this pointer is
zero, then the current buffer is the last buffer in the queue. The software application must set this value
prior to adding the descriptor to the active transmit list. The pointer is not altered by the EMAC.

SPRUEFOC-July 2006 —Revised March 2012
Submit Documentation Feedback

TMS320TCI16487/88 EMAC/MDIO

Copyright © 2006-2012, Texas Instruments Incorporated

23

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

The value of pNext should never be altered once the descriptor is in an active transmit queue, unless its
current value is NULL. If the pNext pointer is initially NULL, and more packets need to be queued for
transmit, the software application may alter this pointer to point to a newly appended descriptor. The
EMAC will use the new pointer value and proceed to the next descriptor unless the pNext value has
already been read. If the pNext value has already been read, the transmitter will halt on the specified
transmit channel, and the software application may restart it then. The software can detect this issue by
searching for an end of queue (EOQ) condition flag on the updated packet descriptor when it is returned
by the EMAC.

25.4.2 Buffer Pointer

The buffer pointer is the byte-aligned memory address of the memory buffer associated with the buffer
descriptor. The software application must set this value prior to adding the descriptor to the active transmit
list. This pointer is not altered by the EMAC.

2543 Buffer Offset

This 16-bit field indicates how many unused bytes are at the start of the buffer. For example, a value of
0000h indicates that no unused bytes are at the start of the buffer and that valid data begins on the first
byte of the buffer. A value of 000Fh indicates that the first 15 bytes of the buffer are to be ignored by the
EMAC and that valid buffer data starts on byte 16 of the buffer. The software application must set this
value prior to adding the descriptor to the active transmit list. This field is not altered by the EMAC.

Note that this value is only checked on the first descriptor of a given packet (where the SOP flag is set). It
cannot specify the offset of subsequent packet fragments. Also, as the buffer pointer may point to any
byte-aligned address, this field may be unnecessary, depending on the device driver architecture.

The range of legal values for this field is 0 to (Buffer Length 1).

25.4.4 Buffer Length

This 16-bit field indicates how many valid data bytes are in the buffer. On single fragment packets, this
value is also the total length of the packet data to be transmitted. If the buffer offset field is used, the offset
bytes are not counted as part of this length. This length counts only valid data bytes. The software
application must set this value prior to adding the descriptor to the active transmit list. This field is not
altered by the EMAC.

2.5.4.5 Packet Length

This 16-bit field specifies the number of data bytes in the entire packet. Any leading buffer offset bytes are
not included. The sum of the buffer length fields of each of the packets fragments (if more than one) must
be equal to the packet length. The software application must set this value prior to adding the descriptor to
the active transmit list. This field is not altered by the EMAC. This value is only checked on the first
descriptor of a given packet, where the SOP flag is set.

25.4.6 Start of Packet (SOP) Flag

When set, this flag indicates that the descriptor points to a packet buffer that is the start of a new packet.
For a single fragment packet, both the SOP and end of packet (EOP) flags are set. Otherwise, the
descriptor pointing to the last packet buffer for the packet sets the EOP flag. This bit is set by the software
application and is not altered by the EMAC.

2.5.4.7 End of Packet (EOP) Flag

When set, this flag indicates that the descriptor points to the last packet buffer for a given packet. For a
single fragment packet, both the start of packet (SOP) and EOP flags are set. Otherwise, the descriptor
pointing to the last packet buffer for the packet sets the EOP flag. This bit is set by the software
application and is not altered by the EMAC.

24 TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

25.48 Ownership (OWNER) Flag

When set, this flag indicates that all the descriptors for the given packet (from SOP to EOP) are currently
owned by the EMAC. This flag is set by the software application on the SOP packet descriptor before
adding the descriptor to the transmit descriptor queue. For a single fragment packet, the SOP, EOP, and
OWNER flags are all set. The OWNER flag is cleared by the EMAC once it is finished with all the
descriptors for the given packet. Note that this flag is valid on SOP descriptors only.

2549 End of Queue (EOQ) Flag

When set, this flag indicates that the descriptor in question was the last descriptor in the transmit queue
for a given transmit channel, and that the transmitter has halted. This flag is initially cleared by the
software application prior to adding the descriptor to the transmit queue. This bit is set by the EMAC when
the EMAC identifies that a descriptor is the last for a given packet (the EOP flag is set), and there are no
more descriptors in the transmit list (next descriptor pointer is NULL).

The software application can use this bit to detect when the EMAC transmitter for the corresponding
channel has halted. This is useful when the application appends additional packet descriptors to a transmit
gueue list that is already owned by the EMAC. Note that this flag is valid on EOP descriptors only.

2.5.4.10 Teardown Complete (TDOWNCMPLT) Flag

This flag is used when a transmit queue is being torn down, or aborted, instead of allowing transmission,
such as during device driver reset or shutdown conditions. The EMAC sets this bit in the SOP descriptor
of each packet as it is aborted from transmission.

Note that this flag is valid on SOP descriptors only. Also note that only the first packet in an unsent list has
the TDOWNCMPLT flag set. The EMAC does not process subsequent descriptors.

2.5.4.11 Pass CRC (PASSCRC) Flag

The software application sets this flag in the SOP packet descriptor before it adds the descriptor to the
transmit queue. Setting this bit indicates to the EMAC that the 4-byte Ethernet CRC is already present in
the packet data, and that the EMAC should not generate its own version of the CRC.

When the CRC flag is cleared, the EMAC generates and appends the 4-byte CRC. The buffer length and
packet length fields do not include the CRC bytes. When the CRC flag is set, the 4-byte CRC is supplied
by the software application and is appended to the end of the packet data. The buffer length and packet
length fields include the CRC bytes, as they are part of the valid packet data. Note that this flag is valid on
SOP descriptors only.

255 Receive Buffer Descriptor Format

A receive (RX) buffer descriptor (Figure 7) is a contiguous block of four 32-bit data words aligned on a 32-
bit boundary that describes a packet or a packet fragment. Example 2 shows the receive descriptor
described by a C structure.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl6487/88 EMAC/MDIO 25
Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

Figure 7. Receive Descriptor Format

(a) Word 0
31 0
‘ Next Descriptor Pointer ‘
(b) Word 1
31 0
’ Buffer Pointer ‘
(c) Word 2
31 16 15 0
’ Buffer Offset ‘ Buffer Length ‘
(d) Word 3
31 30 29 28 27 26 25 24
| sop | EoP | OWNER | EOQ | TDOWNCMPLT | PASSCRC | JABBER | OVERSIZE |
23 22 21 20 19 18 17 16

| FRAGMENT | UNDERSIZED | CONTROL | OVERRUN | CODEERROR | ALIGNERROR | CRCERROR | NOMATCH |

15 0
’ Packet Length ‘

Example 2. Receive Descriptor in C Structure Format

/*

/1 EMAC Descri ptor

/1

/1 The following is the format of a single buffer descriptor
/1 on the EVAC.

*/

typedef struct _EMAC Desc {
struct _EMAC Desc *pNext; /* Pointer to next descriptor in chain */
Uint8 *pBuffer; /* Pointer to data buffer */
Ui nt 32 Buf Of fLen; /* Buffer O fset(MSW and Length(LSW */
U nt 32 Pkt Fl gLen; /* Packet Flags(MSW and Length(LSW */

} EMAC Desc;

/* Packet Flags */

#def i ne EMAC_DSC_FLAG_SCP 0x80000000u
#defi ne EMAC_DSC_FLAG EOP 0x40000000u
#def i ne EMAC_DSC_FLAG OWNER 0x20000000u
#def i ne EMAC_DSC_FLAG EOQ 0x10000000u
#defi ne EMAC_DSC_FLAG TDOANCMPLT 0x08000000u
#define EMAC_DSC_FLAG PASSCRC 0x04000000u
#def i ne EMAC_DSC_FLAG JABBER 0x02000000u
#defi ne EMAC DSC_FLAG OVERSI ZE 0x01000000u
#def i ne EMAC_DSC_FLAG_FRAGVENT 0x00800000u
#def i ne EMAC_DSC_FLAG_UNDERS| ZED 0x00400000u
#define EMAC DSC_FLAG CONTROL 0x00200000u
#def i ne EMAC_DSC_FLAG OVERRUN 0x00100000u
#def i ne EMAC_DSC_FLAG_CCDEERROR 0x00080000u
#defi ne EMAC DSC_FLAG ALI GNERROR 0x00040000u
#def i ne EMAC_DSC_FLAG CRCERROR 0x00020000u
#def i ne EMAC_DSC_FLAG_NOVATCH 0x00010000u

26 TMS320TC16487/88 EMAC/MDIO SPRUEFOC-July 2006—Revised March 2012

Copyright © 2006-2012, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

2.5.5.1 Next Descriptor Pointer

The next descriptor pointer indicates the 32-bit word aligned memory address of the next buffer descriptor
in the receive queue. The pointer creates a linked list of buffer descriptors. If the value of the pointer is
zero, then the current buffer is the last buffer in the queue. The software application must set this value
prior to adding the descriptor to the active receive list. This pointer is not altered by the EMAC.

The value of pNext should never be altered once the descriptor is in an active receive queue, unless its
current value is NULL. If the pNext pointer is initially NULL, and more empty buffers can be added to the
pool, the software application may alter this pointer to indicate a newly appended descriptor. The EMAC
will use the new pointer value and proceed to the next descriptor unless the pNext value has already been
read. If the pNext value has already been read, the receiver will halt the receive channel in question, and
the software application may restart it at that time. The software can detect this case by searching for an
end of queue (EOQ) condition flag on the updated packet descriptor when it is returned by the EMAC.

2552 Buffer Pointer

The buffer pointer is the byte-aligned memory address of the memory buffer associated with the buffer
descriptor. The software application must set this value prior to adding the descriptor to the active receive
list. This pointer is not altered by the EMAC.

2.55.3 Buffer Offset

This 16-bit field must be initialized to zero by the software application before adding the descriptor to a
receive queue.

This field will be updated depending on the RXBUFFEROFFSET register setting. When the offset register
is set to a non-zero value, the received packet is written to the packet buffer at an offset given by the
value of the register, and this value is also written to the buffer offset field of the descriptor.

When a packet is fragmented over multiple buffers because it does not fit in the first buffer supplied, the
buffer offset only applies to the first buffer in the list, which is where the start of packet (SOP) flag is set in
the corresponding buffer descriptor. In other words, the buffer offset field is only updated by the EMAC on
SOP descriptors.

The range of legal values for the BUFFEROFFSET register is O to (Buffer Length 1) for the smallest value
of buffer length for all descriptors in the list.

2554 Buffer Length

This 16-bit field has two functions:

» Before the descriptor is first placed on the receive queue by the application software, the software
initializes the buffer length field with the physical size of the empty data buffer specified by the buffer
pointer field.

» After the empty buffer has been processed by the EMAC and filled with received data bytes, the EMAC
updates the buffer length field to reflect the actual number of valid data bytes written to the buffer.

2555 Packet Length

This 16-bit field specifies the number of data bytes in the entire packet. The software application initializes
this value to zero for empty packet buffers. The EMAC fills in the value on the first buffer used for a given
packet, as signified by the EMAC setting a start of packet (SOP) flag. The EMAC sets the packet length
on all SOP buffer descriptors.

2.5.5.6 Start of Packet (SOP) Flag

When set, this flag indicates that the descriptor points to the starting packet buffer of a new packet. For a
single fragment packet, both the SOP and end of packet (EOP) flags are set. Otherwise, the descriptor
pointing to the last packet buffer for the packet has the EOP flag set. The software application initially
clears this flag before adding the descriptor to the receive queue. The EMAC sets this bit on SOP
descriptors.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCI16487/88 EMAC/MDIO 27

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

2.5.5.7 End of Packet (EOP) Flag

When set, this flag indicates that the descriptor points to the last packet buffer for a given packet. For a
single fragment packet, both the start of packet (SOP) and EOP flags are set. Otherwise, the descriptor
pointing to the last packet buffer for the packet has the EOP flag set. The software application initially
clears this flag before adding the descriptor to the receive queue. The EMAC sets this bit on EOP
descriptors.

2.5.5.8 Ownership (OWNER) Flag

When set, this flag indicates that the descriptor is currently owned by the EMAC. The software application
sets this flag before adding the descriptor to the receive descriptor queue. The EMAC clears this flag once
it is finished with a given set of descriptors associated with a received packet. The EMAC updates the flag
on SOP descriptor only. If the application identifies that the OWNER flag is cleared on an SOP descriptor,
it may assume that the EMAC has released all descriptors up to and including the first with the EOP flag
set. Note that for single buffer packets, the same descriptor will have both the SOP and EOP flags set.

2.5.5.9 End of Queue (EOQ) Flag

When set, this flag indicates that the specified descriptor was the last descriptor in the receive queue for a
given receive channel, and that the corresponding receiver channel has halted. The software application
initially clears this flag prior to adding the descriptor to the receive queue. The EMAC sets this bit when
the EMAC identifies that a descriptor is the last for a given packet received (it also sets the EOP flag), and
there are no more descriptors in the receive list (the next descriptor pointer is NULL).

The software application uses this bit to detect when the EMAC receiver for the corresponding channel
has halted. This is useful when the application appends additional free buffer descriptors to an active
receive queue. Note that this flag is valid on EOP descriptors only.

2.5.5.10 Teardown Complete (TDOWNCMPLT) Flag

This flag is used when a receive queue is being torn down, or aborted, instead of being filled with received
data, such as during device driver reset or shutdown conditions. The EMAC sets this bit in the descriptor
of the first free buffer when the teardown occurs. No additional queue processing is performed.

25511 Pass CRC (PASSCRC) Flag
The EMAC sets this flag in the SOP buffer descriptor, if the received packet includes the 4-byte CRC. The
software application must clear this flag before submitting the descriptor to the receive queue.

2.5.5.12 Jabber Flag
The EMAC sets this flag in the SOP buffer descriptor if the received packet is a jabber frame and was not
discarded because the RXCEFEN bit was set in the RXMBPENABLE register.

2.5.5.13 Oversize Flag
The EMAC sets this flag in the SOP buffer descriptor if the received packet is an oversized frame and was
not discarded because the RXCEFEN bit was set in the RXMBPENABLE register.

255.14 Fragment Flag
The EMAC sets this flag in the SOP buffer descriptor if the received packet is only a packet fragment and
was not discarded because the RXCEFEN bit was set in the RXMBPENABLE register.

2.5.5.15 Undersized Flag

The EMAC sets this flag in the SOP buffer descriptor if the received packet is undersized and was not
discarded because the RXCSFEN bit was set in the RXMBPENABLE register.

28 TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture
2.5.5.16 Control Flag

The EMAC sets this flag in the SOP buffer descriptor if the received packet is an EMAC control frame and
was not discarded because the RXCMFEN bit was set in the RXMBPENABLE register.

2.5.5.17 Overrun Flag

The EMAC sets this flag in the SOP buffer descriptor if the received packet was aborted due to a receive
overrun.

2.5.5.18 Code Error (CODEERROR) Flag

The EMAC sets this flag in the SOP buffer descriptor if the received packet contained a code error and
was not discarded because the RXCEFEN bit was set in the RXMBPENABLE register.

2.5.5.19 Alignment Error (ALIGNERROR) Flag

The EMAC sets this flag in the SOP buffer descriptor if the received packet contained an alignment error
and was not discarded because the RXCEFEN bit was set in the RXMBPENABLE register.

2.5.5.20 CRC Error (CRCERROR) Flag

The EMAC sets this flag in the SOP buffer descriptor if the received packet contained a CRC error and
was not discarded because the RXCEFEN bit was set in the RXMBPENABLE register.

2.5.5.21 No Match (NOMATCH) Flag

The EMAC sets this flag in the SOP buffer descriptor if the received packet did not pass any of the EM
ACs address match criteria and was not discarded because the RXCAFEN bit was set in the
RXMBPENABLE register. Although the packet is a valid Ethernet data packet, it is only received because
the EMAC is in promiscuous mode.

2.6 EMAC Control Module

The EMAC control module (Figure 8) interfaces the EMAC and MDIO modules to the rest of the system,
and provides a local memory space to hold EMAC packet buffer descriptors. Local memory is used to
avoid contention to device memory spaces. Other functions include the bus arbiter, and interrupt logic

control.
Figure 8. EMAC Control Module Block Diagram
DMA controllers «—» .
_ . bArbltertaer CPU
Configuration bus «——»{ PUS switches
8K Byte
descriptor
memory
Configuration
registers
EMAC interrupts ———— ¥
P Inlterr_upt «— Interrupts to CPU
MDIO interrupts —————) ogic
SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl16487/88 EMAC/MDIO 29

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

26.1

2.6.2

2.6.3

Internal Memory

The control module includes 8K bytes of internal memory. The internal memory block allows the EMAC to
operate more independently of the CPU. It also prevents memory underflow conditions when the EMAC
issues read or write requests to descriptor memory. (The EMAC's internal FIFOs protect memory
accesses to read or write actual Ethernet packet data.)

A descriptor is a 16-byte memory structure that holds information about a single Ethernet packet buffer,
which may contain a full or partial Ethernet packet. Thus, with the 8K memory block provided for
descriptor storage, the EMAC module can send and receive up to a combined 512 packets before it must
be serviced by application or driver software.

Bus Arbiter

The control modules bus arbiter operates transparently to the rest of the system. It arbitrates between the
device core and EMAC buses for access to internal descriptor memory, and arbitrates between internal
EMAC buses for access to system memory.

Interrupt Control

The EMAC control module combines the multiple interrupt conditions generated by the EMAC and MDIO
modules into 4 interrupt signals like Control, Transmit, Receive and Receive Threshold interrupts that are
mapped to the CPU interrupts via the CPU interrupt controller.

There are four interrupt enable registers and interrupt pacing register. Each bit in these registers
corresponds to the RX/TX/RX_THRESH/MISC interrupts that is enabled to generate an interrupt on
C(0/1/2) (TX/RX/RX_THRESH/MISC)_PULSE.

2.6.3.1 Transmit Interrupt Description

The transmit interrupts are each a paced pulse interrupt selected from the CPGMAC TXINTSTATRAW
interrupts. The transmit pending interrupt(s) is selected by setting one or more bits in the C_TX_EN
register. The masked interrupt status can be read in the C_TX_STAT address location. Upon reception of
an interrupt, software should perform the following:

 Read the C_TX_STAT address location to determine which channel(s) caused the interrupt.
» Process received packets for the interrupting channel(s).
* Write the CPGMAC completion pointer(s).

* Write the appropriate value (0x2, 0x6 or Oxa) to the MACEOIVECTOR register in the CPGMAC slave
address space.

2.6.3.2 Receive Interrupt Description

The receive interrupts are each a paced pulse interrupt selected from the CPGMAC RXINTSTATRAW
interrupts. The receive pending interrupt(s) is selected by setting one or more bits in the C_RX_EN
register. The masked interrupt status can be read in the C_RX_STAT address location. Upon reception of
an interrupt, software should perform the following:

 Read the C_RX_STAT address location to determine which channel(s) caused the interrupt.
» Process received packets for the interrupting channel(s).
* Write the CPGMAC completion pointer(s).

* Write the appropriate value (0x1, 0x5 or 0x9) to the MACEOIVECTOR register in the CPGMAC slave
address space.

2.6.3.3 Receive Threshold Interrupt Description

The Receive threshold interrupts are an immediate (non-paced) pulse interrupt selected from the
CPGMAC RXINTSTATRAW interrupts. The receive threshold pending interrupt(s) is selected by setting
one or more bhits in the C_RX_THRESH_EN register. The masked interrupt status can be read in the
C_RX _THRESH_STAT address location. Upon reception of an interrupt, software should perform the
following:

30

TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I

TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

2.6.34

* Read the C_RX_THRESH_STAT address location to determine which channel(s) caused the interrupt.

» Process received packets in order to add more buffers to any channel that is below the threshold
value.

* Write the CPGMAC completion pointer(s).

» Write the appropriate value (0x0, 0x4 or 0x8) to the MACEOIVECTOR register in the CPGMAC slave
address space.

Miscellaneous Interrupt Description

The Miscellaneous interrupts are an immediate (non-paced) pulse interrupt selected from the
miscellaneous interrupts (STAT_PEND, HOST_PEND, MDIO_LINKINT[0], MDIO_USERINTIO0]). The
miscellaneous interrupt(s) is selected by setting one or more bits in the C_MISC_EN register. The masked
interrupt status can be read in the C_MISC_STAT address location. Upon reception of an interrupt,
software should perform the following:

* Read the C_MISC_STAT address location to determine which channel(s) caused the interrupt.
» Process received packets for the interrupting channel(s).
e Write the CPGMAC completion pointer(s).

* Write the appropriate value (0x3, 0x7 or Oxb) to the MACEOIVECTOR register in the CPGMAC slave
address space.

2.6.3.5 Interrupt Pacing

2.7

2.7.1

The receive and transmit pulse interrupts can be paced. The interrupt pacing feature limits the number of
interrupts that occur during the given period of time. The interrupt pacing module counts the number of
interrupts that occur over 1 ms interval of time. At the end of each 1ms interval, the current number of
interrupts is compared with target number of interrupts. Based on the results of the comparison, the length
of time during which interrupts are blocked is dynamically adjusted. The 1ms interval is derived from a 4us
pulse that is created from a prescale counter whose value is set in the Int_Prescale value in the
Int_Control register. The Int_Prescale value should be written with the number of CPUCLK/6 periods in
4us. The pacing timer determines the interval during which interrupts are blocked and decrements every
4us. It is reloaded each time a zero count is reached.

Management Data Input/Output (MDIO) Module

The Management Data Input/Output (MDIO) module manages up to 32 physical layer (PHY) devices
connected to the Ethernet Media Access Controller (EMAC). The MDIO module allows almost transparent
operation of the MDIO interface with little maintenance from the CPU.

The MDIO module enumerates all PHY devices in the system by continuously polling 32 MDIO addresses.
Once it detects a PHY device, the MDIO module reads the PHY status register to monitor the PHY link
state. The MDIO module stores link change events that can interrupt the CPU. The event storage allows
the CPU to poll the link status of the PHY device without continuously performing MDIO module accesses.
However, when the system must access the MDIO module for configuration and negotiation, the MDIO
module performs the MDIO read or write operation independent of the CPU. This independent operation
allows the DSP to poll for completion or interrupt the CPU once the operation has completed.

MDIO Module Components

The MDIO module (Figure 9) interfaces to PHY components through two MDIO pins (MDCLK and MDIO),
and to the DSP core through the EMAC control module and the configuration bus. The MDIO module
consists of the following logical components:

» MDIO clock generator

* Global PHY detection and link state monitoring
* Active PHY monitoring

» PHY register user access

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl16487/88 EMAC/MDIO 31
Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS

INSTRUMENTS
EMAC Functional Architecture www.ti.com
Figure 9. MDIO Module Block Diagram
Peripheral
clock MDIO
clock
generator MDIO MDCLK
EMAG USERINT interface MDIO
control
module
LINKINT PHY _ PHY
monitoring polling
Control
< Configuration bus registers
and logic

2.7.1.1 MDIO Clock Generator

The MDIO clock generator controls the MDIO clock based on a divide-down of the peripheral clock
(CPUCLK/6) in the EMAC control module. The MDIO clock is specified to run up to 2.5 MHz, although
typical operation would be 1.0 MHz. As the peripheral clock frequency is variable (CPUCLK/6), the
application software or driver controls the divide-down amount.

2.7.1.2 Global PHY Detection and Link State Monitoring

The MDIO module enumerates all PHY devices in the system by continuously polling all 32 MDIO
addresses. The module tracks whether a PHY on a particular address has responded, and whether the
PHY currently has a link. This information allows the software application to quickly determine which
MDIO address the PHY is using, and if the system is using more than one PHY. The software application
can then quickly switch between PHYs based on their current link status.

2.7.1.3 Active PHY Monitoring

Once a PHY candidate has been selected for use, the MDIO module transparently monitors its link state
by reading the PHY status register. The MDIO device stores link change events that may optionally
interrupt the CPU. Thus, the system can poll the link status of the PHY device without continuously
performing MDIO accesses. Up to two PHY devices can be actively monitored at any given time.

2.7.14 PHY Register User Access

2.7.2

When the DSP must access the MDIO for configuration and negotiation, the PHY access module performs
the actual MDIO read or write operation independent of the CPU. Thus, the CPU can poll for completion
or receive an interrupt when the read or write operation has been performed. There are two user access
registers (USERACCESSO0 and USERACCESS1), allowing the software to submit up to two access
requests simultaneously. The requests are processed sequentially.

MDIO Module Operational Overview

The MDIO module implements the 802.3 serial management interface to simultaneously interrogate and
control up to two Ethernet PHYs, using a shared two-wired bus. It separately performs auto-detection and
records the current link status of up to 32 PHYs, polling all 32 MDIO addresses.

32

TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

Application software uses the MDIO module to configure the auto-negotiation parameters of the primary
PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the
EMAC. Up to two Ethernet PHYs can be directly controlled and queried. The Media Independent Interface
addresses of these two PHY devices are specified in the PHYADRMON fields of the USERPHYSELnN
register. The module can be programmed to trigger a CPU interrupt on a PHY link change event by setting
the LINKINTENB bit in USERPHYSELN. Reads and writes to registers in these PHY devices are
performed using the USERACCESSh register.

The MDIO module powers up in an idle state until it is enabled by setting the ENABLE bit in the
CONTROL register. This also configures the MDIO clock divider and preamble mode selection. The MDIO
preamble is enabled by default, but it can be disabled if none of the connected PHYs require it.

Once the MDIO module is enabled, the MDIO interface state machine continuously polls the PHY link
status (by reading the generic Status register) of all possible 32 PHY addresses and records the results in
the ALIVE and LINK registers. The corresponding bit for each PHY (0-31) is set in the ALIVE register if the
PHY responded to the read request. The corresponding bit is set in the LINK register if the PHY
responded and also is currently linked. In addition, any PHY register read transactions initiated by the
application software using the USERACCESSh register cause the ALIVE register to be updated.

The USERPHYSELRn register is used to track the link status of any two of the 32 possible PHY addresses.
Changes in the link status of the two monitored PHYs sets the appropriate bit in the LINKINTRAW and
LINKINTMASKED registers, if they are enabled by the LINKINTENB bit in USERPHYSELN.

While the MDIO module is enabled, the host can issue a read or write transaction over the management
interface using the DATA, PHYADR, REGADR, and WRITE bits in the USERACCESSh register. When
the application sets the GO bit in USERACCESSn, the MDIO module begins the transaction without any
further intervention from the CPU. Upon completion, the MDIO module clears the GO bit and sets the
USERINTRAWI[0-1] bit in the USERINTRAW register corresponding to the USERACCESSnN used. The
corresponding USERINTMASKED bit in the USERINTMASKED register may also be set, depending on
the mask setting configured in the USERINTMASKSET and USERINTMASKCLEAR registers.

A round-robin arbitration scheme schedules transactions that may be queued using both USERACCESSO
and USERACCESSLI. The application software must verify the status of the GO bit in USERACCESSnh
before initiating a new transaction to ensure that the previous transaction has completed. The application
software can use the ACK bit in USERACCESSN to determine the status of a read transaction.

2.7.21 Initializing the MDIO Module

To have the application software or device driver initialize the MDIO device, perform the following:

1. Configure the PREAMBLE and CLKDIV bits in the CONTROL register.

2. Enable the MDIO module by setting the ENABLE bit in the CONTROL register.

3. The ALIVE register can be read after a delay to determine which PHYs responded, and the LINK
register can determine which of those (if any) already have a link.

4. Set up the appropriate PHY addresses in the USERPHYSELRnN register, and set the LINKINTENB bit to
enable a link change event interrupt if desirable.

5. If an interrupt on a general MDIO register access is desired, set the corresponding bit in the
USERINTMASKSET register to use the USERACCESSH register. If only one PHY is to be used, the
application software can set up one of the USERACCESSN registers to trigger a completion interrupt.
The other register is not set up.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCI16487/88 EMAC/MDIO 33

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

2.7.2.2 Writing Data to a PHY Register

The MDIO module includes a user access register (USERACCESSN) to directly access a specified PHY
device. To write a PHY register, perform the following:

1. Ensure that the GO bit in the USERACCESSN register is cleared.

2. Write to the GO, WRITE, REGADR, PHYADR, and DATA bits in USERACCESSn corresponding to the
desired PHY and PHY register.

3. The write operation to the PHY is scheduled and completed by the MDIO module. Completion of the
write operation can be determined by polling the GO bit in USERACCESSn for a 0.

4. Completion of the operation sets the corresponding bit in the USERINTRAW register for the
USERACCESSN used. If interrupts have been enabled on this bit using the USERINTMASKSET
register, then the bit is also set in the USERINTMASKED register and an interrupt is triggered on the
DSP.

2.7.2.3 Reading Data From a PHY Register

The MDIO module includes a user access register (USERACCESSN) to directly access a specified PHY
device. To read a PHY register, perform the following:

1. Ensure that the GO bit in the USERACCESSNh register is cleared.

2. Write to the GO, REGADR, and PHYADR bits in USERACCESSnh corresponding to the desired PHY
and PHY register.

3. The read data value is available in the DATA bits of USERACCESSh after the module completes the
read operation on the serial bus. Completion of the read operation can be determined by polling the
GO and ACK bits in USERACCESSnN. Once the GO bit has cleared, the ACK bit is set on a successful
read.

4. Completion of the operation sets the corresponding bit in the USERINTRAW register for the
USERACCESSH used. If interrupts have been enabled on this bit using the USERINTMASKSET
register, then the bit is also set in the USERINTMASKED register and an interrupt is triggered on the
DSP.

2.7.24 Example of MDIO Register Access Code

The MDIO module uses the USERACCESSN register to access the PHY control registers. Software
functions that implement the access process include the following four macros:

BHVREG-IARESr BRfReh oo R R R e 00

It is not necessary to wait after a write operation, as long as the status is checked before every operation
to make sure the MDIO hardware is idle. An alternative approach is to call PHYREG_wait() after every
write, and PHYREG_waitResults() after every read, then the hardware can be assumed to be idle when
starting a new operation.

The implementation of these macros using the Chip Support Library (CSL) is shown in Example 3
(USERACCESSO is assumed).

Note that this implementation does not check the ACK bit on PHY register reads; in other words, it does
not follow the procedure outlined in Section 2.7.2.3. As the ALIVE register initially selects a PHY, it is
assumed that the PHY is acknowledging read operations. It is possible that a PHY could become inactive
at a future point in time. For example, a PHY can have its MDIO addresses changed while the system is
running, although it is not a common occurrence. This condition can be tested by periodically checking the
PHY state in the ALIVE register.

34 TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com

EMAC Functional Architecture

Example 3. MDIO Register Access Macros

#defi ne PHYREG read(regadr, phyadr)
MDI O_REGS- >USERACCESSO =
CSL_FMK(MDI O_USERACCESS0_GO, 1u) |
CSL_FMK(MDI O_USERACCESS0_REGADR, r egadr) |
CSL_FMK(MDI O_USERACCESSO_PHYADR, phyadr)

— - - -

#defi ne PHYREG write(regadr, phyadr, data) \
MDI O_REGS- >USERACCESSO =
CSL_FMK(MDI O_USERACCESS0_GO, 1u) |
CSL_FMK(MDI O_USERACCESSO_WRI TE, 1) |
CSL_FMK(MDI O_USERACCESS0_REGADR, r egadr) |
CSL_FMK(MDI O_USERACCESS0_PHYADR, phyadr) |
CSL_FMK(MDI O_USERACCESSO_DATA, dat a)

— - - - —

#def i ne PHYREG wai t () \
whi | e(CSL_FEXT(MDI O_REGS- >USERACCESSO0, MDI O_USERACCESS0_GO))

#defi ne PHYREG wai t Resul ts(results) { \
whi | e(CSL_FEXT(MDI O_REGS- >USERACCESSO0, MDI O_USERACCESS0_GO)); |\
results = CSL_FEXT(MD O REGS- >USERACCESSO, MDI O USERACCESSO_DATA) ;

}

SPRUEFOC-July 2006 —Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

TMS320TCI16487/88 EMAC/MDIO

35

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com
2.8 EMAC Module

Section 2.8 discusses the architecture and basic functions of the EMAC module.

2.8.1 EMAC Module Components

The EMAC module (Figure 10) interfaces to PHY components through the Media Independent Interface
(SGMII), and interfaces to the system core through the EMAC control module. The EMAC module consists
of the following logical components:

The EMAC module consists of the following logical components:

e The receive path includes: receive DMA engine, receive FIFO, MAC receiver, and receive address
submodule

* The transmit path includes: transmit DMA engine, transmit FIFO, and MAC transmitter
» Statistics logic

+ State RAM

* Interrupt controller

e Control registers and logic

e Clock and reset logic

Figure 10. EMAC Module Block Diagram

Configuration bus L Clock and Receive
e — reset logic address
T -
Receive Receive MAC
DMA engine |— FIFO receiver |—
EMAC ¢ [
Interrupt State -
control <l——— > controller RAM Statistics kvl [K——> GMil
module [Nl
Transmit [— Transmit MAC —
DMA engine FIFO transmitter
Control
<"::\,> registers
Configuration bus

2811 Receive DMA Engine

The receive DMA engine performs the data transfer between the receive FIFO and the device internal or
external memory. It interfaces to the processor through the bus arbiter in the EMAC control module. This
DMA engine is totally independent of the TCI6487/88 DSP EDMA.

2.8.1.2 Receive FIFO

The receive FIFO consists of sixty-eight cells of 64 bytes each and associated control logic. The FIFO
buffers receive data in preparation for writing into packet buffers in device memory, and also enable
receive FIFO flow control.

36 TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

2.8.1.3 MAC Receiver

The MAC receiver detects and processes incoming network frames, de-frames them, and places them into
the receive FIFO. The MAC receiver also detects errors and passes statistics to the statistics RAM.

2.8.1.4 Receive Address

This submodule performs address matching and address filtering based on the incoming packets
destination address. It contains a 32 by 53 bit two-port RAM in which up to 32 addresses can be stored to
be either matched or filtered by the EMAC.

The RAM may contain multicast packet addresses, but the associated channel must have the unicast
enable bit set, even though it is a multicast address. The unicast enable bits are used with multicast
addresses in the receive address RAM (not the multicast hash enable bits). Therefore, hash matches can
be disabled, but specific multicast addresses can be matched (or filtered) in the RAM. If a multicast packet
hash matches, the packet may still be filtered in the RAM. Each packet can be sent to only a single
channel.

2.8.1.5 Transmit DMA Engine

The transmit DMA engine performs the data transfer between the device internal or external memory and
the transmit FIFO. It interfaces to the processor through the bus arbiter in the EMAC control module. This
DMA engine is totally independent of the TCI6487/88 DSP EDMA.

2.8.1.6 Transmit FIFO

The transmit FIFO consists of twenty-four cells of 64 bytes each and associated control logic. This
enables the largest allowed packet (1518 bytes) to be sent without the possibility of underrun. The FIFO
buffers data in preparation for transmission.

2.8.1.7 MAC Transmitter

The MAC transmitter formats frame data from the transmit FIFO and transmits the data using the
CSMA/CD access protocol. The frame CRC can be automatically appended, if required. The MAC
transmitter also detects transmission errors and passes statistics to the statistics registers.

2.8.1.8 Statistics Logic

The statistics logic RAM counts and stores the Ethernet statistics, keeping track of 36 different Ethernet
packet statistics.

2.8.1.9 State RAM
The state RAM contains the head descriptor pointers and completion pointers registers for both transmit
and receive channels.

2.8.1.10 EMAC Interrupt Controller
The interrupt controller contains the interrupt related registers and logic. The 26 raw EMAC interrupts are
input to this submodule and masked module interrupts are output.

2.8.1.11 Control Registers and Logic
The EMAC is controlled by a set of memory-mapped registers. The control logic also signals transmit,
receive, and status related interrupts to the CPU through the EMAC control module.

2.8.1.12 Clock and Reset Logic
The clock and reset submodule generates all the clocks and resets for the EMAC peripheral.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCI16487/88 EMAC/MDIO 37

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

2.8.2

EMAC Module Operational Overview

After reset, initialization, and configuration of the EMAC, the application software running on the host may
initiate transmit operations. Transmit operations are initiated by host writes to the appropriate transmit
channel head descriptor pointer contained in the state RAM block. The transmit DMA controller then
fetches the first packet in the packet chain from memory. The DMA controller writes the packet into the
transmit FIFO in bursts of 64-byte cells. The MAC transmitter initiates the packet transmission when either
the threshold number of cells (configurable via TXCELLTHRESH in the FIFOCONTROL register) have
been written to the transmit FIFO, or a complete packet has been written, whichever is smaller. The SYNC
block transmits the packet over one of the MIl interfaces in accordance with the 802.3 protocol. The
statistics block counts transmit statistics.

Receive operations are initiated by host writes to the appropriate receive channel head descriptor pointer
after host initialization and configuration. The SYNC submodule receives packets and strips off the
Ethernet related protocol. The packet data is input to the MAC receiver, which checks for address match
(in conjunction with the receive address block) and processes errors. Accepted packets are written to the
receive FIFO in bursts of 64-byte cells. The receive DMA controller then writes the packet data to memory.
The statistics block counts receive statistics.

The EMAC module operates independently of the CPU. It is configured and controlled by its register set
mapped into device memory. Information about data packets are communicated using 16-byte descriptors
that are placed in an 8K-byte block of RAM in the EMAC control module.

For transmit operations, each 16-byte descriptor describes a packet or packet fragment in the systems
internal or external memory. For receive operations, each 16-byte descriptor represents a free packet
buffer or buffer fragment. On both transmit and receive, an Ethernet packet is allowed to span one or
more memory fragments, represented by one 16-byte descriptor per fragment. In typical operation, there is
only one descriptor per receive buffer, but transmit packets may be fragmented, depending on the
software architecture.

An interrupt is issued to the CPU whenever a transmit or receive operation has completed. However, it is
not necessary for the CPU to service the interrupt while there are additional resources available. In other
words, the EMAC continues to receive Ethernet packets until its receive descriptor list has been
exhausted. On transmit operations, the transmit descriptors need only be serviced to recover their
associated memory buffer. Thus, it is possible to delay servicing of the EMAC interrupt if there are real
time tasks to perform.

Eight channels are supplied for both transmit and receive operations. On transmit, the eight channels
represent eight independent transmit queues. The EMAC can be configured to treat these channels as an
equal priority round-robin queue, or as a set of eight fixed-priority queues. On receive, the eight channels
represent eight independent receive queues with packet classification. Packets are classified based on the
destination MAC address. Each of the eight channels is assigned its own MAC address, enabling the
EMAC module to act like eight virtual MAC adapters. Also, specific types of frames can be sent to specific
channels. For example, multicast, broadcast, or other (promiscuous, error, etc.) frames can each be
received on a specific receive channel queue.

The EMAC tracks 36 different statistics, as well as recording the status of each individual packet in its
corresponding packet descriptor.

38

TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I3 TEXAS
INSTRUMENTS
www.ti.com EMAC Functional Architecture
2.9 Media Independent Interfaces
The following sections cover the operation of the Media Independent Interface in 10/100/1000Mbps
modes. An IEEE 802.3 complaint Ethernet MAC controls the interface.
29.1 Data Reception

29.11 Receive Control

Data received from the PHY is interpreted and output to the EMAC receive FIFO. Interpretation involves
detection and removal of the preamble and start of frame delimiter, extraction of the address and frame
length, data handling, error checking and reporting, cyclic redundancy checking (CRC), and statistics
control signal generation. Receive address detection and frame filtering of the frames that do not address-
match is performed outside the Media Independent interface.

2.9.1.2 Receive Inter-Frame Interval

The 802.3 required inter-packet gap (IPG) is 24 GMII clocks (96 bit times) for 10/100 Mbit modes, and 12
GMII clocks (96 bit times) for 1000 Mbit mode. However, the MAC can tolerate a reduced IPG (2 GMII
clocks in 10/100 mode and 5 GMII clocks in 1000 mode) with a correct preamble and start frame delimiter.

1. An Inter-Packet Gap (IPG).
2. A seven octet preamble (all octets 0x55).
3. A one octet start frame delimiter (0x5D).

2.9.1.3 Receive Flow Control

When enabled and triggered, receive flow control is initiated to limit the EMAC from further frame
reception. Two forms of receive flow control are implemented on the TCI6487/88 device:

» Receive buffer flow control

* Receive FIFO flow control

When enabled and triggered, receive buffer flow control prevents further frame reception based on the
number of free buffers available. Receive buffer flow control issues flow control collisions in half-duplex
mode and IEEE 802.3X pause frames for full-duplex mode.

Receive buffer flow control is triggered when the number of free buffers in any enabled receive channel
(RXnFREEBUFFER) is less than or equal to the channel flow control threshold register
(RXnFLOWTHRESH) value. Receive flow control is independent of receive QOS, except that both use the
free buffer values.

When enabled and triggered, receive FIFO flow control prevents further frame reception based on the
number of cells currently in the receive FIFO. Receive FIFO flow control may be enabled only in full-
duplex mode (FULLDUPLEX bit is set in the MACCONTROL register). Receive flow control prevents
reception of frames on the port until all of the triggering conditions clear, at which time frames may again
be received by the port.

Receive FIFO flow control is triggered when the occupancy of the FIFO is greater than or equal to the
RXFIFOFLOWTHRESH value in the FIFOCONTROL register. The RXFIFOFLOWTHRESH value must be
greater than or equal to 1h and less than or equal to 42h (decimal 66). The RXFIFOFLOWTHRESH reset
value is 2h.

Receive flow control is enabled by the RXBUFFERFLOWEN bit and the RXFIFOFLOWEN bit in the
MACCONTROL register. The FULLDUPLEX bit in the MACCONTROL register configures the EMAC for
collision or IEEE 802.3X flow control.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl16487/88 EMAC/MDIO 39
Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

29.1.4 Collision-Based Receive Buffer Flow Control

Collision-based receive buffer flow control provides a means of preventing frame reception when the
EMAC is operating in half-duplex mode (FULLDUPLEX bit is cleared in MACCONTROL register). When
receive flow control is enabled and triggered, the EMAC generates collisions for received frames. The jam
sequence transmitted is the twelve byte sequence C3.C3.C3.C3.C3.C3.C3.C3.C3.C3.C3.C3in
hexadecimal. The jam sequence begins approximately when the source address starts to be received.
Note that these forced collisions are not limited to a maximum of 16 consecutive collisions, and are
independent of the normal back-off algorithm.

Receive flow control does not depend on the value of the incoming frame destination address. A collision
is generated for any incoming packet, regardless of the destination address, if any EMAC enabled
channels free buffer register value is less than or equal to the channels flow threshold value.

2.9.15 IEEE 802.3X Based Receive Buffer Flow Control

29.2

IEEE 802.3x based receive buffer flow control provides a means of preventing frame reception when the
EMAC is operating in full-duplex mode (the FULLDUPLEX bit is set in the MACCONTROL register). When
receive flow control is enabled and triggered, the EMAC transmits a pause frame to request that the
sending station stop transmitting for the period indicated within the transmitted pause frame.

The EMAC transmits a pause frame to the reserved multicast address at the first available opportunity
(immediately if currently idle, or following the completion of the frame currently being transmitted). The
pause frame contains the maximum possible value for the pause time (FFFFh). The EMAC counts the
receive pause frame time (decrements FFOOh to 0) and retransmits an outgoing pause frame, if the count
reaches zero. When the flow control request is removed, the EMAC transmits a pause frame with a zero
pause time to cancel the pause request.

Note that transmitted pause frames are only a request to the other end station to stop transmitting.
Frames that are received during the pause interval are received normally (provided the receive FIFO is not
full).

Pause frames are transmitted if enabled and triggered, regardless of whether or not the EMAC is
observing the pause time period from an incoming pause frame.

The EMAC transmits pause frames as described below:

» The 48-bit reserved multicast destination address 01.80.C2.00.00.01h.

» The 48-bit source address (set via the MACSRCADDRLO and MACSRCADDRHI registers).
» The 16-bit length/type field containing the value 88.08h.

e The 16-bit pause opcode equal to 00.01h.

e The 16-bit pause time value of FF.FFh. A pause-quantum is 512 bit-times. Pause frames sent to
cancel a pause request have a pause time value of 00.00h.

e Zero padding to 64-byte data length (EMAC transmits only 64-byte pause frames).
» The 32-bit frame-check sequence (CRC word).

All quantities are hexadecimal and are transmitted most-significant-byte first. The least-significant-bit
(LSB) is transferred first in each byte.

If the RXBUFFERFLOWEN bit in the MACCONTROL register is cleared while the pause time is nonzero,
then the pause time is cleared and a zero count pause frame is sent.

Data Transmission

The EMAC passes data to the PHY from the transmit FIFO (when enabled). Data is synchronized to the
transmit clock rate. Transmission begins when there are TXCELLTHRESH cells of 64 bytes each, or a
complete packet, in the FIFO.

40

TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

I

TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

29.2.1 Transmit Control

A jam sequence is output if a collision is detected on a transmit packet. If the collision was late (after the
first 64 bytes hae been transmitted) the collision is ignored. If the collision is not late, the controller will
back off before retrying the frame transmission. When operating in full duplex mode the carrier sense
(GMII_MCRS) and collision sensing modes are disabled. In full duplex mode, the collision input
(GMII_MCOL) operates as a hardware flow control input. No new frames will begin transmission when
GMII_MCOL is asserted. However, any frame currently in transmission will complete. Due to the
transmission pipeline latency, GMII_MTXEN will not be asserted until up to 10 wire side clocks after the
GMII_MCOL signal is deasserted. Also due to the latency, frame transmission may begin up to 10 wire
side clocks after GMII_MCOL is asserted, indicating that the packet transmission was started before the
flow control condition was detected.

2.9.2.2 CRC Insertion

If the SOP buffer descriptor PASSCRC flag is cleared, the EMAC generates and appends a 32-bit
Ethernet CRC onto the transmitted data. For the EMAC-generated CRC case, a CRC (or placeholder) at
the end of the data is allowed but not required. The buffer byte count value should not include the CRC
bytes, if they are present.

If the SOP buffer descriptor PASSCRC flag is set, then the last four bytes of the transmit data are
transmitted as the frame CRC. The four CRC data bytes should be the last four bytes of the frame and
should be included in the buffer byte count value. The MAC performs no error checking on the outgoing
CRC.

2.9.2.3 Adaptive Performance Optimization (APO)

The EMAC incorporates adaptive performance optimization (APO) logic that may be enabled by setting
the TXPACE bit in the MACCONTROL register. Transmission pacing to enhance performance is enabled
when the TXPACE bit is set. Adaptive performance pacing introduces delays into the normal transmission
of frames, delaying transmission attempts between stations, and reducing the probability of collisions
occurring during heavy traffic (as indicated by frame deferrals and collisions). These actions increase the
chance of a successful transmission.

When a frame is deferred, suffers a single collision, multiple collisions, or excessive collisions, the pacing
counter is loaded with an initial value of 31. When a frame is transmitted successfully (without
experiencing a deferral, single collision, multiple collision, or excessive collision), the pacing counter is
decremented by 1 down to 0.

If the pacing counter is zero, this allows a new frame to immediately attempt transmission (after one IPG).
If the pacing counter is nonzero, the frame is delayed by a pacing delay of approximately four inter-packet
gap delays. APO only affects the IPG preceding the first attempt at transmitting a frame; APO does not
affect the back-off algorithm for retransmitted frames.

2.9.24 Interpacket-Gap (IPG) Enforcement

The measurement reference for the IPG of 96 bit times is changed depending on frame traffic conditions.
If a frame is successfully transmitted without collision and MCRS is de-asserted within approximately 48
bit times of MTXEN being de-asserted, then 96 bit times is measured from MTXEN. If the frame suffered a
collision or MCRS is not de-asserted until more than approximately 48 bit times after MTXEN is de-
asserted, then 96 bit times (approximately, but not less) is measured from MCRS.

2.9.25 Back Off

The EMAC implements the 802.3 binary exponential back-off algorithm.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl16487/88 EMAC/MDIO 41
Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

2.9.2.6 Transmit Flow Control

When enabled, incoming pause frames are acted upon to prevent the EMAC from transmitting any further
frames. Incoming pause frames are only acted upon when the FULLDUPLEX and TXFLOWEN bits in the
MACCONTROL register are set. Pause frames are not acted upon in half-duplex mode. Pause frame
action is taken if enabled, but normally the frame is filtered and not transferred to memory. MAC control
frames are transferred to memory, if the RXCMFEN bit in the RXMBPENABLE register is set. The
TXFLOWEN and FULLDUPLEX bits affect whether MAC control frames are acted upon, but they have no
effect upon whether MAC control frames are transferred to memory or filtered.

42 TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

Pause frames are a subset of MAC control frames with an opcode field of 0001h. Incoming pause frames
are only acted upon by the EMAC if the following conditions occur:

* The TXFLOWEN bit is set in the MACCONTROL register.
» The frames length is between 64 bytes and RXMAXLEN bytes inclusive.
e The frame contains no CRC error or align/code errors.

The pause time value from valid frames is extracted from the two bytes following the opcode. The pause
time is loaded into the EMAC transmit pause timer and the transmit pause time period begins.

If a valid pause frame is received during the transmit pause time period of a previous transmit pause
frame, then either the destination address is not equal to the reserved multicast address or any enabled or
disabled unicast address, and the transmit pause timer immediately expires; or the new pause time value
is 0, and the transmit pause timer immediately expires. Otherwise, the EMAC transmit pause timer is set
immediately to the new pause frame pause time value. (Any remaining pause time from the previous
pause frame is discarded.)

If the TXFLOWEN bit in MACCONTROL is cleared, then the pause timer immediately expires.

The EMAC does not start the transmission of a new data frame any sooner than 512-bit times after a
pause frame with a non-zero pause time has finished being received (MRXDV going inactive). No
transmission begins until the pause timer has expired (the EMAC may transmit pause frames to initiate
outgoing flow control). Any frame already in transmission when a pause frame is received is completed
and unaffected.

Incoming pause frames consist of:
* A 48-bit destination address equal to one of the following:
— The reserved multicast destination address 01.80.C2.00.00.01h

— Any EMAC 48-bit unicast address. Pause frames are accepted, regardless of whether the channel
is enabled.

» The 48-bit source address of the transmitting device

* The 16-bit length/type field containing the value 88.08h

» The 16-bit pause opcode equal to 00.01h

* The 16-bit pause time. A pause-quantum is 512 bit-times
e Padding to 64-byte data length

» The 32-bit frame-check sequence (CRC word)

All quantities are hexadecimal and are transmitted most-significant-byte first. The least-significant-bit
(LSB) is transferred first in each byte.

The padding is required to make up the frame to a minimum of 64 bytes. The standard allows pause
frames longer than 64 bytes to be discarded or interpreted as valid pause frames. The EMAC recognizes
any pause frame between 64 bytes and RXMAXLEN bytes in length.

2.9.2.7 Speed, Duplex, and Pause Frame Support

The MAC can operate in half-duplex or full-duplex mode at 10 Mbps or 100 Mbps, and can operate in full
duplex only in 1000 Mbps. Pause frame support is included in 10/100/1000 Mbps modes as configured by
the host.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCI16487/88 EMAC/MDIO 43

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

2.10 Packet Receive Operation

2.10.1 Receive DMA Host Configuration

To configure the receive DMA for operation, the host must perform the following actions:
» Initialize the receive addresses

» Initialize the RXnHDP registers to zero

* Write the MACHASH1 and MACHASH2 registers, if multicast addressing is desired

 Initialize the RXnNFREEBUFFER, RXnFLOWTHRESH, and RXFILTERLOWTHRESH registers, if flow
control is to be enabled

« Enable the desired receive interrupts using the RXINTMASKSET and RXINTMASKCLEAR registers
» Set the appropriate configuration bits in the MACCONTROL register

» Write the RXBUFFEROFFSET register value (typically zero)

» Set up the receive channel(s) buffer descriptors and initialize the RXnHDP registers

» Enable the receive DMA controller by setting the RXEN bit in the RXCONTROL register

e Configure and enable the receive operation, as desired, in the RXMBPENABLE register and by using
the RXUNICASTSET and RXUNICASTCLEAR registers

2.10.2 Receive Channel Enabling

Each of the eight receive channels has an enable bit (RXCHNEN) in the RXUNICASTSET register that is
controlled using the RXUNICASTSET and RXUNICASTCLEAR registers. The RXCHNEN bits determine
whether the given channel is enabled (when set to 1) to receive frames with a matching unicast or
multicast destination address.

The RXBROADEN bit in the RXMBPENABLE register determines if broadcast frames are enabled or
filtered. If broadcast frames are enabled, then they are copied to only a single channel selected by the
RXBROADCH field of RXMBPENABLE register.

The RXMULTEN bit in the RXMBPENABLE register determines if hash matching multicast frames are
enabled or filtered. Incoming multicast addresses (group addresses) are hashed into an index in the hash
table. If the indexed bit is set, the frame hash will match and it will be transferred to the channel selected
by the RXMULTCH field when multicast frames are enabled. The multicast hash bits are set in the
MACHASH1 and MACHASH?2 registers.

The RXPROMCH bhits in the RXMBPENABLE register select the promiscuous channel to receive frames
selected by the RXCMFEN, RXCSFEN, RXCEFEN, and RXCAFEN bits. These four bits allow reception of
MAC control frames, short frames, error frames, and all frames (promiscuous), respectively.

The address RAM can be configured to send multiple unicast and/or multicast addresses to a given
channel (if the match bit is set in the RAM). Multicast addresses in the RAM are enabled by the
RXUNICASTSET register and not by the RXMULTEN bit in the RXMBPENABLE register. The
RXMULTEN bit enables the hash multicast match only. The address RAM takes precedence over the
hash match.

If a multicast packet is received that hash matches (multicast packets enabled), but is filtered in the RAM,
then the packet is filtered. If a multicast packet does not hash match, regardless of whether or not hash
matching is enabled, but matches an enabled multicast address in the RAM, then the packet will be
transferred to the associated channel.

44 TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

2.10.3 Receive Channel Addressing

The receive address block can store up to 32 addresses to be filtered or matched. Before enabling packet
reception, all the address RAM locations should be initialized, including locations to be unused. The
system software is responsible for adding and removing addresses from the RAM.

A MAC address location in RAM is 53 bits wide and consists of:

» 48 bits of the MAC address

» 3 bits for the channel to which a valid address match will be transferred. The channel is a dont care if
MATCHFILT bit is cleared.

» A valid bit

* A match or filter bit

First, write the index into the address RAM in the MACINDEX register to start writing a MAC address.
Then write the upper 32 bits of the MAC address (MACADDRHI register), and then the lower 16 bits of
MAC address with the VALID and MATCHFILT control bits (MACADDRLO). The valid bit should be
cleared for the unused locations in the receive address RAM.

The most common uses for the receive address submodule are:

» Set EMAC in promiscuous mode, using RXCAFEN and RXPROMCH bits in the RXMBPENABLE
register. Then filter up to 32 individual addresses, which can be both unicast and/or multicast.

» Disable the promiscuous mode (RXCAFEN = 0) and match up to 32 individual addresses, multicast
and/or unicast.

2.10.4 Hardware Receive QOS Support

Hardware receive quality of service (QOS) is supported, when enabled, by the Tag Protocol Identifier
format and the associated Tag Control Information (TCI) format priority field. When the incoming frame
length/type value is equal to 81.00h, the EMAC recognizes the frame as an Ethernet Encoded Tag
Protocol Type. The two octets immediately following the protocol type contain the 16-bit TCI field. Bits 15-
13 of the TCI field contain the received frames priority (0 to 7). The received frame is a low-priority frame if
the priority value is 0 to 3. The received frame is a high-priority frame if the priority value is 4 to 7. All
frames that have a length/type field value not equal to 81.00h are low-priority frames.
Received frames that contain priority information are determined by the EMAC as:
» A 48-bit (6 bytes) destination address equal to:

— The destination stations individual unicast address

— The destination stations multicast address (MACHASH1 and MACHASH?2 registers)

— The broadcast address of all ones
e A 48-byte (6 bytes) source address
* The 16-bit (2 bytes) length/type field containing the value 81.00h
» The 16-bit (2 bytes) TCI field with the priority field in the upper 3 bits
» Data bytes
* The 4-bytes CRC
The RXFILTERLOWTHRESH and the RXnFREEBUFFER registers are used in conjunction with the
priority information to implement receive hardware QOS. Low-priority frames are filtered if the number of
free buffers (RXnFREEBUFFER) for the frame channel is less than or equal to the filter low threshold

(RXFILTERLOWTHRESH) value. Hardware QOS is enabled by the RXQOSEN bit in the RXMBPENABLE
register.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCI16487/88 EMAC/MDIO 45

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

2.10.5

2.10.6

2.10.7

Host Free Buffer Tracking

The host must track free buffers for each enabled channel (including unicast, multicast, broadcast, and
promiscuous) if receive QOS or receive flow control is used. Disabled channel free buffer values are dont
cares. During initialization, the host should write the number of free buffers for each enabled channel to
the appropriate RXnFREEBUFFER register. The EMAC decrements the appropriate channels free buffer
value for each buffer used. When the host reclaims the frame buffers, the host should write the channel
free buffer register with the number of reclaimed buffers (write to increment). There are a maximum of 65
535 free buffers available. The RXnFREEBUFFER registers only need to be updated by the host if receive
QOS or flow control is used.

Receive Channel Teardown

The host commands a receive channel teardown by writing the channel number to the RXTEARDOWN
register. When a teardown command is issued to an enabled receive channel, the following occurs:

* Any current frame in reception completes normally.

« The TDOWNCMPLT flag is set in the next buffer descriptor in the chain, if there is one.

« The channel head descriptor pointer is cleared.

» Areceive interrupt for the channel is issued to the host.

» The corresponding RXnCP register contains the value FFFF FFFCh.

» The host should acknowledge a teardown interrupt with an FFFF FFFCh acknowledge value.

Channel teardown may be commanded on any channel at any time. The host is informed of the teardown
completion by the set teardown complete buffer descriptor bit. The EMAC does not clear any channel
enables due to a teardown command. A teardown command to an inactive channel issues an interrupt
that software should acknowledge with an FFFF FFFCh acknowledge value to RXnCP (note that there is
no buffer descriptor in this case). Software may read RXnCP to determine if the interrupt was due to a
commanded teardown. The read value is FFFF FFFCh if the interrupt was due to a teardown command.

Receive Frame Classification

Received frames are proper, or good, frames if they are between 64 and RXMAXLEN in length (inclusive)
and contain no code, align, or CRC errors.

Received frames are long frames if their frame count exceeds the value in the RXMAXLEN register. The
RXMAXLEN register default reset value is 5EEh (1518 in decimal). Long received frames are either
oversized or jabber frames. Long frames with no errors are oversized frames; long frames with CRC,
code, or alignment errors are jabber frames.

Received frames are short frames if their frame count is less than 64 bytes. Short frames that address
match and contain no errors are undersized frames; short frames with CRC, code, or alignment errors are
fragment frames. If the frame length is less than or equal to 20, then the frame CRC is passed regardless
of whether the RXPASSCRC bit is set or cleared in the RXMBPENABLE register.

A received long packet always contains RXMAXLEN number of bytes transferred to memory (if the
RXCEFEN bit is set in RXMBPENABLE) regardless of the value of the RXPASSCRC bit. Following is an
example with RXMAXLEN set to 1518:

» If the frame length is 1518, then the packet is not a long packet and there are 1514 or 1518 bytes
transferred to memory depending on the value of the RXPASSCRC bit.

« If the frame length is 1519, there are 1518 bytes transferred to memory regardless of the
RXPASSCRC hit value. The last three bytes are the first three CRC bytes.

» If the frame length is 1520, there are 1518 bytes transferred to memory regardless of the
RXPASSCRC bit value. The last two bytes are the first two CRC bytes.

» If the frame length is 1521, there are 1518 bytes transferred to memory regardless of the
RXPASSCRC bit value. The last byte is the first CRC byte.

« If the frame length is 1522, there are 1518 bytes transferred to memory. The last byte is the last data
byte.

46

TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com EMAC Functional Architecture

2.10.8 Promiscuous Receive Mode

When the promiscuous receive mode is enabled by setting the RXCAFEN bit in the RXMBPENABLE
register, non-address matching frames that would normally be filtered are transferred to the promiscuous
channel. Address matching frames that would normally be filtered due to errors are transferred to the
address match channel when RXCAFEN and RXCEFEN bits are set. Address matching frames with the
filter bit set (MATCHFILT = 0) are always filtered regardless of the RXCAFEN and RXCEFEN bit setting. A
frame is considered to be an address matching frame only if it is enabled to be received on a unicast,
multicast, or broadcast channel. Frames received to disabled unicast, multicast, or broadcast channels are
considered non-address matching.

MAC control frames address match only if RXCMFEN bit is set. RXCEFEN and RXCSFEN determine
whether error frames are transferred to memory or not, but they do not determine whether error frames
are address matching or not. Short frames are a special type of error frames.

A single channel is selected as the promiscuous channel by the RXPROMCH field in the RXMBPENABLE
register. The promiscuous receive mode is enabled by the RXCMFEN, RXCEFEN, RXCSFEN, and
RXCAFEN bits in RXMBPENABLE. Table 4 shows the effects of the promiscuous enable bits. Proper
frames are frames that are between 64 and RXMAXLEN bytes in length inclusive and contain no code,
align, or CRC errors.

Table 4. Receive Frame Treatment Summary

RXMBPENABLE Bits

Address
Match RXCAFEN RXCEFEN RXCMFEN RXCSFEN Frame Treatment

0 0 X X X No frames transferred.

0 1 0 0 0 Proper frames transferred to promiscuous channel.

0 1 0 0 1 Proper/undersized data frames transferred to promiscuous
channel.

0 1 0 1 0 Proper data and control frames transferred to promiscuous
channel.

0 1 0 1 1 Proper/undersized data and control frames transferred to

promiscuous channel.

0 1 1 0 0 Proper/oversize/jabber/code/align/CRC data frames transferred
to promiscuous channel. No control or undersized/fragment
frames are transferred.

0 1 1 0 1 Proper/undersized/fragment/oversize/jabber/code/align/CRC
data frames transferred to promiscuous channel. No control
frames are transferred.

0 1 1 1 0 Proper/oversizel/jabber/code/align/CRC data and control frames
transferred to promiscuous channel. No undersized frames are
transferred.

0 1 1 1 1 All non-address matching frames with and without errors
transferred to promiscuous channel.

X 0 0 0 Proper data frames transferred to address match channel.

1 X 0 0 1 Proper/undersized data frames transferred to address match
channel.

1 X 0 1 0 Proper data and control frames transferred to address match
channel.

1 X 0 1 1 Proper/undersized data and control frames transferred to
address match channel.

1 X 1 0 0 Proper/oversize/jabber/code/align/CRC data frames transferred
to address match channel. No control or undersized frames are
transferred.

1 X 1 0 1 Proper/oversizel/jabber/fragment/undersized/code/align/CRC

data frames transferred to address match channel. No control
frames are transferred.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl6487/88 EMAC/MDIO 47
Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

2.10.9

Table 4. Receive Frame Treatment Summary (continued)

Address RXMBPENABLE Bits
Match RXCAFEN RXCEFEN RXCMFEN RXCSFEN Frame Treatment

1 X 1 1 0 Proper/oversizel/jabber/code/align/CRC data and control frames
transferred to address match channel. No undersized/fragment
frames are transferred.

1 X 1 1 1 All address matching frames with and without errors transferred
to the address match channel.

Receive Overrun

The types of receive overrun are:

* FIFO start of frame overrun (FIFO_SOF)

e FIFO middle of frame overrun (FIFO_MOF)
» DMA start of frame overrun (DMA_SOF)

» DMA middle of frame overrun (DMA_MOF)

The statistics counters used to track these types of receive overrun are:
* Receive Start of Frame Overruns Register (RXSOFOVERRUNS)

* Receive Middle of Frame Overruns Register (RXMOFOVERRUNS)
* Receive DMA Overruns Register (RXDMAOVERRUNS)

Start of frame overruns happen when there are no resources available when frame reception begins. Start
of frame overruns increment the appropriate overrun statistic(s) and the frame is filtered.

Middle of frame overruns happen when there are some resources to start the frame reception, but the
resources run out during frame reception. In normal operation, a frame that overruns after starting the
frame reception is filtered and the appropriate statistic(s) are incremented; however, the RXCEFEN bit in
the RXMBPENABLE register affects overrun frame treatment. Table 5 shows how the overrun condition is
handled for the middle of frame overrun.

Table 5. Middle of Frame Overrun Treatment

Address Match RXCAFEN RXCEFEN Middle of Frame Overrun Treatment

0 0 X Overrun frame filtered.
0 1 0 Overrun frame filtered.
0 1 1 As much frame data as possible is transferred to the promiscuous channel until

overrun. The appropriate overrun statistic(s) is incremented and the OVERRUN
and NOMATCH flags are set in the SOP buffer descriptor. Note that the
RXMAXLEN number of bytes cannot be reached for an overrun to occur (it
would be truncated and be a jabber or oversize).

X 0 Overrun frame filtered with the appropriate overrun statistic(s) incremented.

X 1 As much frame data as possible is transferred to the address match channel
until overrun. The appropriate overrun statistic(s) is incremented and the
OVERRUN flag is set in the SOP buffer descriptor. Note that the RXMAXLEN
number of bytes cannot be reached for an overrun to occur (it would be
truncated).

48

TMS320TCl16487/88 EMAC/MDIO SPRUEFOC-July 2006—-Revised March 2012

Submit Documentation Feedback
Copyright © 2006-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

www.ti.com

EMAC Functional Architecture

2.11 Packet Transmit Operation

The transmit DMA is an eight channel interface. Priority between the eight queues may be either fixed or

round robin as selected by the TXPTYPE bit in the MACCONTROL register. If the priority type is fixed,
then channel 7 has the highest priority and channel 0 has the lowest priority. Round robin priority
proceeds from channel 0 to channel 7.

2111

Transmit DMA Host Configuration

To configure the transmit DMA for operation, the host must perform the following:

2.11.2

Write the MACSRCADDRLO and MACSRCADDRHI registers (used for pause frames on transmit).
Initialize the TXnHDP registers to zero.

Enable the desired transmit interrupts using the TXINTMASKSET and TXINTMASKCLEAR registers.

Set the appropriate configuration bits in the MACCONTROL register.
Set up the transmit channel(s) buffer descriptors in host memory.
Enable the transmit DMA controller by setting the TXEN bit in the TXCONTROL register.

Write the appropriate TXnHDP registers with the pointer to the first descriptor to start transmit
operations.

Transmit Channel Teardown

The host commands a transmit channel teardown by writing the channel number to the TXTEARDOWN
register. When a teardown command is issued to an enabled transmit channel, the following occurs:

Any frame currently in transmission completes normally.

The TDOWNCMPLT flag is set in the next SOP buffer descriptor in the chain, if there is one.
The channel head descriptor pointer is cleared.

A transmit interrupt is issued, informing the host of the channel teardown.

The corresponding TXnCP register contains the value FFFF FFFCh.

The host should acknowledge a teardown interrupt with an FFFF FFFCh acknowledge value.

Channel teardown may be commanded on any channel at any time. The host is informed of the teardown
completion by the set teardown complete buffer descriptor bit (TDOWNCMPLT). The EMAC does not
clear any channel enables due to a teardown command. A teardown command to an inactive channel
issues an interrupt that software should acknowledge with an FFFF FFFCh acknowledge value to TXnCP
(note that there is no buffer descriptor). Software may read the interrupt acknowledge location (TXnCP) to
determine if the interrupt was due to a commanded teardown. The read value is FFFF FFFCh if the
interrupt was due to a teardown command.

SPRUEFOC-July 2006 —Revised March 2012 TMS320TCl16487/88 EMAC/MDIO
Submit Documentation Feedback

Copyright © 2006-2012, Texas Instruments Incorporated

49

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEF0C

13 TEXAS
INSTRUMENTS

EMAC Functional Architecture www.ti.com

2.12

2.13

Receive and Transmit Latency

The transmit FIFO contains twenty four 64-byte cells, and the receive FIFO contains sixty eight 64-byte
cells. The EMAC begins transmission of a packet on the wire after TXCELLTHRESH cells (configurable
through the FIFOCONTROL register) or a complete packet are available in the FIFO.

Transmit underrun cannot occur for packet sizes of TXCELLTHRESH times 64 bytes (or less). For larger
packet sizes, transmit underrun can occur if the memory latency is greater than the time required to
transmit a 64-byte cell on the wire; this is 0.512 s in 1 Gbit mode, 5.12 s in 100 Mbps mode, and 51.2 s in
10 Mbps mode. The memory latency time includes all buffer descriptor reads for the entire cell data.

The EMAC transmit FIFO uses 24 cells; thus, underrun cannot happen for a normal size packet (less than
1536 packet bytes). Cell transmission can be configured to start only after an entire packet is contained in
the FIFO; for a maximum-size packet, set the TXCELLTHRESH field to the maximum possible value of
24,

Receive overrun is prevented if the receive memory cell latency is less than the time required to transmit a
64-byte cell on the wire (0.512 s in 1 Gbps mode, 5.12 s in 100 Mbps mode, or 51.2s in 10 Mbps mode).
The latency time includes any required buffer descriptor reads for the cell data.

Latency to systems internal and external RAM can be controlled through the use of the transfer node
priority allocation register in the TCI6487/88 device. Latency to descriptor RAM is low because RAM is
local to the EMAC, as it is part of the EMAC control module.

Transfer Node Priority

The TCI16487/88 device contains a system level priority allocation register (PRI_ALLOC) that sets the
priority of the transfer node used in issuing memory transfer requests to system memory.

Although the EMAC has internal FIFOs to help alleviate memory transfer arbitration problems, the average
transfer rate of data read and written by the EMAC to internal or external DSP memory must be at least
equal to the Ethernet wire rate. In addition, the internal FIFO system can not withstand a single memory
latency event greater than the time it takes to fill or empty a TXCELLTHRESH number of internal 64-byte
FIFO cells.

For example, for 1000 Mbps operation, these restrictions translate into the following rules:

» For the short-term average, each 64-byte memory read/write request from the EMAC must be serviced
in no more than 0.512 s.

* Any single latency event in request servicing can be no longer than (0.512 * TXCELLTHRESH) s.

Bits [0-2] of the PRI