TMS320TCI6487/8 DSP Power/Sleep Controller (PSC)

User's Guide

Literature Number: SPRUEF3A March 2006–Revised August 2008

Contents

Prefa	асе		
1	Introd	uction/Fea	ature Overview
	1.1	Purpose	of the Peripheral
	1.2	Features	
	1.3	Terms ar	d Abbreviations
2	Power	/Sleep Co	ntroller 7
	2.1	Power an	nd Reset Domains 7
	2.2	Power Do	omain and Module States Defined 9
		2.2.1	Power Domain States
		2.2.2	Module States 9
		2.2.3	Local Reset 9
	2.3	Executing	g State Transitions 9
		2.3.1	Power Domain State Transitions 10
		2.3.2	Module State Transitions 10
		2.3.3	Power Domain/Module State Transitions Concurrently 10
		2.3.4	Recommendations for Power Domain/Module Sequencing 11
	2.4	Emulation	n Support in the PSC 11
3	PSC R	egisters	
	3.1	Power an	nd Sleep Controller (PSC) Register Map 12
	3.2	Register	Descriptions 13
		3.2.1	Peripheral Identification Register (PID) 13
		3.2.2	Power Domain Transition Command Register (PTCMD) 13
		3.2.3	Power Domain Transition Status Register (PTSTAT) 14
		3.2.4	Power Domain Status Register 0-5 (PDSTATx) 14
		3.2.5	Power Domain Control Register 0-5 (PDCTLx) 15
		3.2.6	Module Status Register 0-11 (MDSTATy) 16
		3.2.7	Module Control Register 0-11 (MDCTLy) 17
Appe	endix A	Revision	History

List of Figures

1	Power and Clock Domains	. 7
2	Peripheral Identification Register (PID)	13
3	Power Domain Transition Command Register (PTCMD)	13
4	Power Domain Transition Status Register (PTSTAT)	14
5	Power Domain Status Register 0-5 (PDSTATx)	14
6	Power Domain Control Register 0-5 (PDCTLx)	15
7	Module Status Register 0-11 (MDSTATy)	16
8	Module Control Register 0-11 (MDCTLy)	17

List of Tables

TMS320TCI6487/8 Power Domains	8
TMS320TCI6487/8 Clock Domains	8
Module States	9
PSC Register Memory Map	12
Peripheral Identification Register (PID) Field Descriptions	13
Power Domain Transition Command Register (PTCMD) Field Descriptions	13
Power Domain Transition Status Register (PTSTAT) Field Descriptions	14
Power Domain Status Register 0-5 (PDSTATx) Field Descriptions	14
Power Domain Control Register 0-5 (PDCTLx) Field Descriptions	15
Module Status Register 0-11 (MDSTATy) Field Descriptions	16
Module Control Register 0-11 (MDCTLy) Field Descriptions	17
TCI6487/8 Revision History	18
	TMS320TCI6487/8 Clock Domains

Preface SPRUEF3A–March 2006–Revised August 2008

About This Manual

This document describes the power/sleep controller (PSC) for the TMS320TCI6487/8 DSP.

Notational Conventions

This document uses the following conventions.

- Hexadecimal numbers are shown with the suffix h. For example, the following number is 40 hexadecimal (decimal 64): 40h.
- Registers in this document are shown in figures and described in tables.
 - Each register figure shows a rectangle divided into fields that represent the fields of the register.
 Each field is labeled with its bit name, its beginning and ending bit numbers above, and its read/write properties below. A legend explains the notation used for the properties.
 - Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the TMS320TCI6487/8 DSP. Copies of these documents are available on the Internet at <u>www.ti.com</u>. *Tip:* Enter the literature number in the search box provided at www.ti.com.

- SPRU189 TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C6000 digital signal processors (DSPs).
- <u>SPRU198</u> *TMS320C6000 Programmer's Guide.* Describes ways to optimize C and assembly code for the TMS320C6000[™] DSPs and includes application program examples.
- <u>SPRU301</u> *TMS320C6000 Code Composer Studio Tutorial.* Introduces the Code Composer Studio™ integrated development environment and software tools.
- <u>SPRU321</u> Code Composer Studio Application Programming Interface Reference Guide. Describes the Code Composer Studio[™] application programming interface (API), which allows you to program custom plug-ins for Code Composer.
- SPRU871 TMS320C64x+ Megamodule Reference Guide. Describes the TMS320C64x+ digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache.

Trademarks

TMS320C6000, Code Composer Studio are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

TMS320TCI6487/8 Power/Sleep Controller (PSC)

1 Introduction/Feature Overview

The TMS320TCI6487/8 device is single-chip DSP platform for 3GPP WCDMA baseband processing. This document covers the usage of the power/sleep controller (PSC) in the TMS320TCI6487/8 device.

1.1 Purpose of the Peripheral

The purpose of the power/sleep controller (PSC) is to reduce power when a module is not being utilized. In the TMS320TCI6487/8 system, the PSC is responsible for managing transitions of clock on/off and memory sleep on/off. The PSC provides the user with an interface to control several important power and clock operations. These operations are the focus of this document.

1.2 Features

The PSC includes the following features:

- Provides software interface to:
 - Control module memory sleep ON/OFF.
 - Control module clock ON/OFF.
 - Control CPU Local Resets.
- Supports emulation features: power, clock, and reset .

1.3 Terms and Abbreviations

3GPP— Third-Generation Partnership Project

- CPU— Central Processing Unit of the C64x+ Core
- **DSP** Digital Signal Processor
- **GPSC** Global Power/Sleep Controller. Manages the LPSCs.
- LPSC— Local Power/Sleep Controller. One per module.
- **PSC** Power/Sleep Controller, including one GPSC and multiple LPSCs
- RAC- Receive Accelerator, including GCCP cores, FEI, and BEI
- RSA— Rake/Search Accelerator for accelerating CR functions
- TCP— Turbo Coprocessor
- VCP— Viterbi Coprocessor
- WCDMA— Wideband Code Division Multiple Access

2 Power/Sleep Controller

2.1 Power and Reset Domains

The TMS320TCI6487/8 device comprises several power domains to enable minimizing power dissipation for unused logic on the device. The GPSC is used to control sleep for memories within each power domain.

Additionally, clock gating to each of the logic blocks is managed by the LPSCs of each module. For modules with a dedicated clock, or multiple clocks, its LPSC communicates with the PLL controller to enable and disable that modules clock(s) at the source. For modules that share a clock with other modules, the LPSC controls the clock gating.

Figure 1 shows the PSC components and the power and clock domains they control.

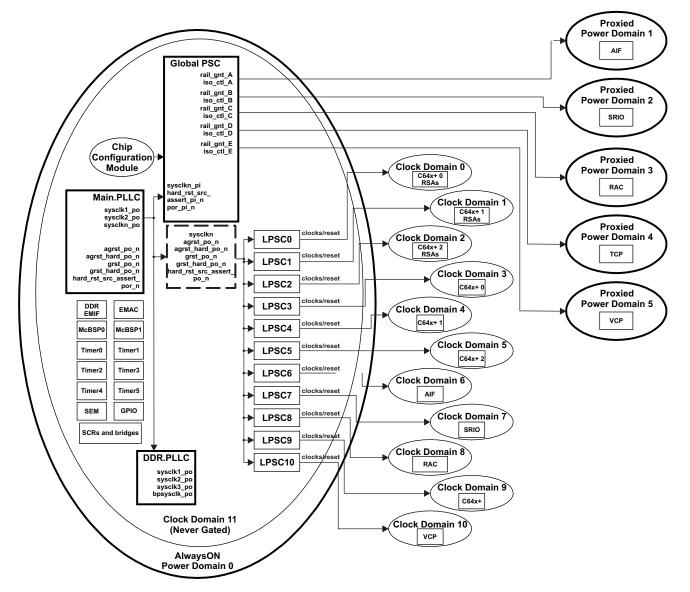


Figure 1. Power and Clock Domains

Power/Sleep Controller

www.ti.com

Figure 1 shows all of the power and clock domains on the device. As shown, many modules reside in the *AlwaysOn* domain, which always has power and clocks provided. These consist primarily of the infrastructure components that are responsible for the clock and reset control (PLL Controller, PSC), the switch fabric that connects all of the modules, and small modules that don't need dynamic enable/disable because they do not consume a significant amount of power.

Table 1 summarizes the TMS320TCI6487/8 power domains.

Domain	Block(s)	Note	Power Connection
0 (AlwaysOn)	C64x+ Cores L1/L2 Memories Most peripheral logic I/Os	C64x+ Cores and L1/L2 can be placed in low power states.	C64x+ Cores and L1/L2 software control via C64x+ Core. For details, see the <i>TMS320C64x</i> + <i>Megamodule</i> <i>Reference Guide</i> (<u>SPRU871</u>). Everything else is always on.
1	AIF	RAMs can sleep, contents maintained.	Software control.
2	RapidIO	RAMs can sleep, contents maintained.	Software control.
3	RAC	RAMs can sleep, contents maintained.	Software control.
4	ТСР	RAMs can sleep, contents maintained.	Software control.
5	VCP	RAMs can sleep, contents maintained.	Software control.

Table 1. TMS320TCI6487/8 Power Domains

Table 2 summarizes the TMS320TCI6487/8 clock domains. These may also be referred to later in the document as modules.

Module	Block(s)	Power Connection	
0	C64x+ CORE 0 RSAs	Software control	
1	C64x+ CORE 1 RSAs	Software control	
2	C64x+ CORE 2 RSAs	Software control	
3	C64x+ CORE 0	Always on	
4	C64x+ CORE 1	Always on	
5	C64x+ CORE 2	Always on	
6	AIF	Software control	
7	RapidIO	Software control	
8	RAC	Software control	
9	ТСР	Software control	
10	VCP	Software control	
11	PSC, other peripherals, PLLs	Always on	

Table 2. TMS320TCI6487/8 Clock Domains

2.2 Power Domain and Module States Defined

The PSC module organizes modules into different power domains and into different modules (clock domains). Please note that there is no relationship between a power domain and a module. These are completely separate entities and may be controlled separately.

2.2.1 Power Domain States

A power domain can only be in one of two states: ON or OFF, defined as follows.

- **ON:** Power to the power domain is on. Memories are awake.
- **OFF:** Power to the power domain is off. Memories are asleep (low-leakage standby mode).

In the TMS320TCI6487/8, the AlwaysOn Power Domain is always in the ON state, when the chip is powered on. The other power domains, however, can be in either the ON or OFF state; i.e., the memories for a specific module can remain powered down if it is not used.

2.2.2 Module States

A module can be in one of two states: **Enable** or **SwRstDisable**. As shown in Table 3, these two states correspond to combinations of module reset asserted or de asserted and module clock on or off. Note that Module Reset is defined to completely reset a given module, such that all hardware is put back into its default state.

Table 3. Module States

Module State	Module Reset	Module Clock	
Enable	De-asserted	ON	
SwRstDisable	Asserted	OFF	

The module states are defined as follows:

- Enable: A module in the Enable state has its module reset de-asserted and its clock on. This is the normal run-time state for a given module.
- **SwRstDisable:** A module in the SwResetDisable state has its module reset asserted and its clock OFF. This state is not expected to be initiated by software.

2.2.3 Local Reset

In addition to Module Reset described in the previous section, the C64x+ CPUs can be reset using a special Local Reset. When Local Reset is asserted, the internal memories (L1P, L1D, and L2) for that particular core are still accessible. The Local Reset only resets the corresponding C64x+ core, not the rest of the chip. Local reset is intended to be used by the Watchdog Timers to reset the corresponding C64x+ core in the event of an error.

The procedures for asserting and de-asserting Local Reset are as follows (X denotes the module domain number):

- Set MDCTL[Y].LRSTZ to 0x0 to assert Local Reset.
- Set **MDCTL[Y].LRSTZ** to 0x1 to de-assert Local Reset. The 64x+ core will immediately execute program instructions after reset is de-asserted. Note that the boot sequence does not re-occur unless there is a chip-level reset. Execution of code previously in L2 will begin execution.

2.3 Executing State Transitions

This section describes how to execute state transitions for Power Domains and Modules. Examples are shown of how to enable only power domains, only modules, or a combination. Even though you have complete control of the sequencing, for TI recommendations, see Section 2.3.4.

2.3.1 Power Domain State Transitions

This section describes the basic procedure for transitioning the state of a Power Domain which, in the case of the TMS320TCI6487/8 is limited to the memories located in a particular domain. The majority of the modules on the chip are always in the ON state. The PSC handles all required internal operations to wake memories for the controlled power domains.

Note: As mentioned previously, in the TMS320TCI6487/8 there are multiple power domains. The AlwaysOn Power Domain is always in the ON state when the chip is powered-on, and therefore it is not possible to transition this domain to the OFF state. Conversely, the other domains are in the OFF states when the chip is powered-on. Transitions from ON to OFF are never allowed.

Procedure for Power Domain State Transitions ('x' corresponds to the power domain):

- Wait for **PTSTAT.GOSTAT[X]** to clear to 0x0. You need to wait for any previously initiated transitions to finish before initiating a new transition.
- Set **PDCTL[X].NEXT** for an ON (0x1) transition. Note: When **PTCMD.GO[X]** is set to 0x1 in the next step, the **PDCTL[X].NEXT** field of this Power Domain and the **MDCTL[Y].NEXT** field of the module in this Power Domain is evaluated. Therefore, you may set the **MDCTL[Y].NEXT** field for multiple modules before executing this step. Note that if enabling other modules you should ensure that if they are not in the AlwaysOn Domain that the memories for that module are not asleep.
- Set **PTCMD.GO[X]** 0x1 to initiate the state transition(s). The PSC will awaken the memory for that particular domain.
- Wait for PTSTAT.GOSTAT[X] to clear to 0x0. The domain is safely in the new state only after PTSTAT.GOSTAT[X] is cleared to 0x0.

2.3.2 Module State Transitions

This section describes the procedure for transitioning the Module state.

Note: In the TMS320TCI6487/8, the following procedure is directly applicable for all LPSC controlled modules except the C64x+ Core Domains. To transition the module state, you must be aware of several system considerations. Transitions from Enable to any other state are not allowed. Also, before transitioning a module to Enable, if the memories are not in the AlwaysOn Power Domain they must be turned on before or in parallel (see Section 2.3.1).

Procedure for Module State Transitions ('x' corresponds to the module) :

- Wait for PTSTAT.GOSTAT[X] to clear to 0x0. You need to wait for any previously initiated transitions to finish before initiating a new transition.
- Set **MDCTL[Y].NEXT** to **Enable** (0x3). Note that you may set transitions in multiple **MDCTL[Y].NEXT** fields in this step as long as the corresponding power domain is On.
- Set **PTCMD.GO[X]** to 0x1 to initiate the transition(s).
- Wait for PTSTAT.GOSTAT[X] to clear to 0x0. The module is safely in the new state only after PTSTAT.GOSTAT[X] clears to 0x0.

2.3.3 Power Domain/Module State Transitions Concurrently

This section describes the basic procedure for transitioning the state of a Power Domain and module domain for modules which are not in the AlwaysOn domain. You may do these separately as described in the sections above if desired.

Procedure for Power Domain/Module State Transitions concurrently ('x' corresponds to the power domain, 'y' corresponds to the module domain):

- Wait for **PTSTAT.GOSTAT[X]** to clear to 0x0. You need to wait for any previously initiated transitions to finish before initiating a new transition.
- Set **PDCTL[X].NEXT** for an ON (0x1) transition.

- Set **MDCTL[Y].NEXT** to **Enable** (0x3). Note that you may set transitions in multiple **MDCTL.NEXT** fields in this step as long as the corresponding power domain is On.
- Set **PTCMD.GO[X]** 0x1 to initiate the state transition(s). The PSC will awaken the memory for that particular domain, start the module clock, then de-assert module reset.
- Wait for **PTSTAT.GOSTAT[X]** to clear to 0x0. The domain is safely in the new state only after **PTSTAT.GOSTAT[X]** is cleared to 0x0.

2.3.4 Recommendations for Power Domain/Module Sequencing

As you may have noted in Section 2.2and Section 2.3, for a particular peripheral the power domain must be enabled before the module is enabled.

Unless there is a system level reason to not perform both functions separate from each other, the recommendation is to use the sequence listed in Section 2.3.3 rather than the individual sequencing. Even though a single write to the appropriate "Go" bit starts the power domain and module transition, it is still sequenced such that the memory is guaranteed awake before the module is enabled. Thus there is no ill effect of doing these together.

It is important to know that when a power domain is enabled that all memories for that module are immediately moved from a low-leakage sleep state to an active awake state. This means that there will be a spike in power consumption for that particular time, in other words di/dt will be affected. To minimize the effect on di/dt of enabling power domains it is recommended to power up modules one at a time. It is also recommended that all modules be initialized early in the application to avoid a large spike in di/dt during normal operation where the application may already be drawing a fair amount of current from the supply.

2.4 Emulation Support in the PSC

The PSC supports commands that allow emulation tools to have some control over the state of Power Domains and Modules.

In particular, the PSC supports the following emulation commands:

- Power On and Enable Features
 - Force Power: Allows emulation to force the Power Domain into and ON state.
 - Force Active: Allows emulation to force the Power Domain into and ON state and force the Module into the Enable state.
- Reset Features
 - Assert Reset: Allows emulation to asserts the module's Local Reset.
 - Wait Reset: Allows emulation to keep Local Reset asserted for an extended period of time after software initiates Local Reset de-assert.
 - Block Reset: Allows emulation to block software initiated Local and Module resets.

Local reset applies only to the C64x+ Core Domains and Module Reset applies to all other domains.

3 **PSC Registers**

This section includes the PSC memory map and bit registers.

3.1 Power and Sleep Controller (PSC) Register Map

Table 4 provides the PSC register memory map.

Table 4.	PSC	Register	Memory Map	
----------	-----	----------	------------	--

Offset	Register	Description	See
0x0	PID	Peripheral Revision and Class Information	Section 3.2.1
0x120	PTCMD	Power Domain Transition Command Register	Section 3.2.2
0x128	PTSTAT	Power Domain Transition Status Register	Section 3.2.3
0x200	PDSTAT	Power Domain Status Register	Section 3.2.4
0x300	PDCTL0	Power Domain Control Register 0 (AlwaysOn)	Section 3.2.5
0x304	PDCTL1	Power Domain Control Register 1 (Antenna Interface)	Section 3.2.5
0x308	PDCTL2	Power Domain Control Register 2 (Serial RapidIO)	Section 3.2.5
0x30C	PDCTL3	Power Domain Control Register 3 (RAC)	Section 3.2.5
0x310	PDCTL4	Power Domain Control Register 4 (TCP)	Section 3.2.5
0x314	PDCTL5	Power Domain Control Register 5 (VCP)	Section 3.2.5
0x800	MDSTAT0	Module Status Register 0 (C64x+ Core 0 RSAs)	Section 3.2.6
0x804	MDSTAT1	Module Status Register 1 (C64x+ Core 1 RSAs)	Section 3.2.6
0x808	MDSTAT2	Module Status Register 2 (C64x+ Core 2 RSAs)	Section 3.2.6
0x80C	MDSTAT3	Module Status Register 3 (C64x+ Core 0)	Section 3.2.6
0x810	MDSTAT4	Module Status Register 4 (C64x+ Core 1)	Section 3.2.6
0x814	MDSTAT5	Module Status Register 5 (C64x+ Core 2)	Section 3.2.6
0x818	MDSTAT6	Module Status Register 6 (Antenna Interface)	Section 3.2.6
0x81C	MDSTAT7	Module Status Register 7 (Serial RapidIO)	Section 3.2.6
0x820	MDSTAT8	Module Status Register 8 (RAC)	Section 3.2.6
0x824	MDSTAT9	Module Status Register 9 (TCP)	Section 3.2.6
0x828	MDSTAT10	Module Status Register 10 (VCP)	Section 3.2.6
0x82C	MDSTAT11	Module Status Register 11 (Never Gated)	Section 3.2.6
0xA00	MDCTL0	Module Control Register 0 (C64x+ Core 0 RSAs)	Section 3.2.7
0xA04	MDCTL1	Module Control Register 1 (C64x+ Core 1 RSAs)	Section 3.2.7
0xA08	MDCTL2	Module Control Register 2 (C64x+ Core 2 RSAs)	Section 3.2.7
0xA0C	MDCTL3	Module Control Register 3 (C64x+ Core 0)	Section 3.2.7
0xA10	MDCTL4	Module Control Register 4 (C64x+ Core 1)	Section 3.2.7
0xA14	MDCTL5	Module Control Register 5 (C64x+ Core 2)	Section 3.2.7
0xA18	MDCTL6	Module Control Register 6 (Antenna Interface)	Section 3.2.7
0xA1C	MDCTL7	Module Control Register 7 (Serial RapidIO)	Section 3.2.7
0xA20	MDCTL8	Module Control Register 8 (RAC)	Section 3.2.7
0xA24	MDCTL9	Module Control Register 9 (TCP)	Section 3.2.7
0xA28	MDCTL10	Module Control Register 10 (VCP)	Section 3.2.7
0xA2C	MDCTL11	Module Control Register 11 (Never Gated)	Section 3.2.7

3.2 Register Descriptions

This section describes in detail the registers of the module with a register figure and a description table. Each register figure identifies the bit field, the register name, read/write capability, and the default.

3.2.1 Peripheral Identification Register (PID)

The peripheral identification register is shown in Figure 2 and described in Table 5. The PID offset is 0.

Figure 2. Peripheral Identification Register (PID)

31		0
	PID	
	_	

R-0x44821105

LEGEND: R = Read only; -n = value after reset

Table 5. Peripheral Identification Register (PID) Field Descriptions

Bit	Field	Value	Description
31-0	PID		Peripheral ID used to differentiate different modules in the system.

3.2.2 Power Domain Transition Command Register (PTCMD)

The power domain transition command register is shown in Figure 3 and described in Table 6.

Figure 3. Power Domain Transition Command Register (PTCMD)

31		6	5	0
	Reserved		GO[X]	
	R-0		W-0	

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 6. Power Domain Transition Command Register (PTCMD) Field Descriptions

E	Bit	Field	Value	Description
3	1-6	Reserved		Reserved
5	5-0	GO[X]		Power domain GO transition command (X denotes power domain).
			1	Write 1 to cause the state transition interrupt generation block to evaluate the new PTNEXT and MDCTL.NEXT states as the application desired states.

PSC Registers

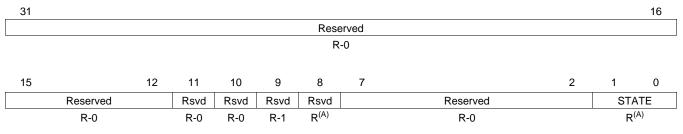
3.2.3 Power Domain Transition Status Register (PTSTAT)

The Power Domain Transition Status Register is shown in Figure 4 and described in Table 7. PSTST offset is 0x128.

Figure 4. Power Domain Transition Status Register (PTSTAT)

31	6	5	0
Reserved		GOSTAT[X]	
R-0		R-0	

LEGEND: R = Read only; -n = value after reset


Table 7. Power Domain Transition Status Register (PTSTAT) Field Descriptions

Bit	Field	Value	Description
31-6	Reserved		Reserved
5-0	GOSTAT[X]		Power domain transition status (X denotes power domain number).
		0	No transition in progress.
		1	Power domain is transitioning (i.e., either the power domain is transitioning or modules in this power domain are transitioning).

3.2.4 Power Domain Status Register 0-5 (PDSTATx)

Power Domain Status Register 0-5 is shown in Figure 5 and described in Table 8. PDSTAT[X] offset is 0x200.

Figure 5. Power Domain Status Register 0-5 (PDSTATx)

LEGEND: R = Read only; -n = value after reset

A. Default value after reset: AlwaysOn domain -1; other domains -0.

Table 8. Power Domain Status Register 0-5 (PDSTATx) Field Descriptions

Bit	Field	Value	Description
31-2	Reserved		Reserved
1-0	STATE		Power domain status
		0	Power Domain is in the OFF state.
		1	ower Domain is in the ON state.

3.2.5 Power Domain Control Register 0-5 (PDCTLx)

Power Domain Control Register 0-5 is shown in Figure 6 and described in Table 9. PDSTAT[X] offset is 0x300.

Figure 6. Power Domain Control Register 0-5 (PDCTLx)

31 1	0
Reserved	NEXT
R-0	R/W ^(A)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

A. Default value after reset: AlwaysOn domain -1; other domains -0.

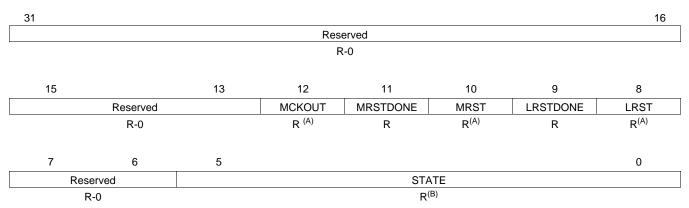

Bit	Field	Value	Description
31-1	Reserved		Reserved
0	NEXT		Power domain next state
		0	Power domain OFF.
		1	Power domain ON.
		Others	Indicates transition.

Table 9. Power Domain Control Register 0-5 (PDCTLx) Field Descriptions

3.2.6 Module Status Register 0-11 (MDSTATy)

Module Status Register 0-11 is shown in Figure 7 and described in Table 10. MDSTAT[Y] offset is 0x800.

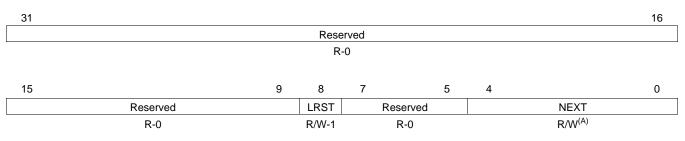
Figure 7. Module Status Register 0-11 (MDSTATy)

LEGEND: R = Read only; -n = value after reset

A. Default value after reset: C64x+ domain -1; other domains -0.

B. Default value after reset: C64x+ domain -0x3; other domains -0.

Bit	Field	Value	Description	
31-13	Reserved		Reserved	
12	MCKOUT		Module clock output status. Shows status of module clock; ON/OFF.	
		0	Module clock is OFF.	
		1	Module clock is ON.	
11	MRSTDONE		Module reset done. Software is responsible for checking that mode reset is done before accessing the module.	
		0	Module reset is not done.	
		1	Module reset is done.	
10	MRST		Module reset status. Reflects actual state of module reset.	
		0	Module reset is asserted.	
		1	Module reset is de-asserted.	
9	LRSTDONE		Local reset done. Software is responsible for checking that local reset is done before accessing this module.	
		0	Local reset is not done.	
		1	Local reset is done.	
8	LRST		Module local reset status. (This bit applies to C64x+ domains only.)	
		0	Local reset is asserted.	
		1	Local reset is de-asserted.	
7-6	Reserved		Reserved	
5-0	STATE		Module state status. Indicates current module status.	
		0	SwRstDisable state.	
		0x3	Enable state.	
		Others	Reserved.	


Table 10. Module Status Register 0-11 (MDSTATy) Field Descriptions

3.2.7 Module Control Register 0-11 (MDCTLy)

Module Control Register 0-11 is shown in Figure 8 and described in Table 11. MDCTL[Y] offset is 0xA00.

Figure 8. Module Control Register 0-11 (MDCTLy)

LEGEND: R/W = Read/Write; R = Read only; -*n* = value after reset

A. Default value after reset: C64x+ domain -0x3; other domains -0.

Table 11. Module Control Register 0-11 (MDCTLy) Field Descriptions

Bit	Field	Value	Description	
31-9	Reserved		Reserved	
8	LRST		Nodule local reset control. (This bit applies to C64x+ modules only.)	
		0	Assert local reset.	
		1	De-assert local reset.	
7-5	Reserved		Reserved	
4-0	NEXT		Module next state.	
		0	SwRstDisable state.	
		0x3	Enable state.	
		Others	Reserved.	

Appendix A Revision History

This revision history highlights the technical changes made to the SPRUEF3 user's guide to make it an SPRUEF3A revision.

Scope: Applicable updates to the C64x device family, specifically relating to the TMS320TCI6487/8 devices, have been incorporated.

See	Additions/Modifications/Deletions
Preface	Read This First: Added Notational Conventions and Related Documentation From Texas Instruments sections to Preface
Section 2.1	Power and Reset Domains: Updated Note column for Domains 1-5 in Table 1, TMS320TCI6487/8 Power Domains
	Updated Block(s) column for Module 11 in Table 2, TMS320TCI6487/8 Clock Domains

Table A-1. TCI6487/8 Revision History

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated