
TMS320C6000
Network Developer’s Kit (NDK) Support

Package for EVMDM6437

User's Guide

Literature Number: SPRUET4

June 2007

2 SPRUET4–June 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

Contents

Preface ... 5
1 Getting Started ... 7

1.1 Introduction ... 7

1.2 Installing the Support Package... 7

1.3 Rebuilding HAL Libraries.. 7

1.4 Required Terms and Concepts... 8

2 User LED Driver .. 8
3 Timer Driver ... 8
4 Serial Driver ... 9
5 Ethernet Driver ... 9

5.1 Introduction ... 9

5.2 Ethernet Driver ... 9

5.3 Ethernet Packet Mini-Driver ... 10

SPRUET4–June 2007 Table of Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

List of Tables

1 Ethernet Packet Driver Source Files .. 9
2 Structure Entries.. 11

4 List of Tables SPRUET4–June 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

Preface
SPRUET4–June 2007

Read This First

About This Manual

This document contains information about the Network Developer’s Kit (NDK) Support Package for
EVMDM6437. The package includes source code for HAL drivers, and examples to reuse or modify them
for customer designed platforms. Pre-built HAL libraries are also delivered with the package.

How to Use This Manual

This document is divided into the following sections:

• Section 1 – Getting Started: Introduces the NDK Support Package, which is designed to run the NDK
on EVMDM6437 platform.

• Section 2 – User LED Driver: Describes the user LED driver for EVMDM6437.
• Section 3 – Timer Driver: Describes the timer driver for EVMDM6437.
• Section 4 – Serial Driver: Describes the serial driver for TL 16C752.
• Section 5 – Ethernet Driver: Describes the EMAC driver for DM6437.

Notational Conventions

This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a special typeface.
• In syntax descriptions, the function or macro appears in a bold typeface and the parameters appear in

plainface within parentheses. Portions of a syntax that are in bold should be entered as shown;
portions of syntax that are within parentheses describe the type of information that should be entered.

• Macro names are written in uppercase text; function names are written in lowercase.

Related Documentation from Texas Instruments

The following books describe the TMS320C6x™ devices and related support tools. To obtain a copy of
any of these TI documents, call the Texas Instruments Literature Response Center at (800) 477–8924.
When ordering, please identify the book by its title and literature number. Many of these documents can
be found on the Internet at http://www.ti.com.

SPRU189 — TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C6000™ digital signal
processors (DSPs).

SPRU190 —TMS320C6000DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000™ family of digital signal
processors (DSPs).

SPRU197 —TMS320C6000 Technical Brief. Provides an introduction to the TMS320C62x™ and
TMS320C67x™ digital signal processors (DSPs) of the TMS320C6000™ DSP family. Describes
the CPU architecture, peripherals, development tools and third-party support for the C62x™ and
C67x™ DSPs.

SPRU198 —TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000™
digital signal processors (DSPs). Before you use this manual, you should install your code
generation and debugging tools. Includes a brief description of the EVMDM6437 DSP architecture
and code development flow, includes C code examples and discusses optimization methods for the
C code, describes the structure of assembly code and includes examples and discusses
optimizations for the assembly code, and describes programming considerations for the C64x™
DSP.

SPRUET4–June 2007 Preface 5
Submit Documentation Feedback

http://www.ti.com
http://www-s.ti.com/sc/techlit/SPRU189
http://www-s.ti.com/sc/techlit/SPRU190
http://www-s.ti.com/sc/techlit/SPRU197
http://www-s.ti.com/sc/techlit/SPRU198
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

www.ti.com

Related Documentation from Texas Instruments

SPRU509 — TMS320C6000 Code Composer Studio Development Tools v3.3 Getting Started Guide
introduces some of the basic features and functionalities in Code Composer Studio™ to enable you
to create and build simple projects.

SPRU523 — TMS320C6000 Network Developer’s Kit (NDK) Software User’s Guide. Describes how to
use the NDK libraries, how to develop networking applications on TMS320C6000™ platforms, and
ways to tune the NDK to fit a particular software environment.

SPRU524 — TMS320C6000 Network Developer’s Kit (NDK) Software Programmer’s Reference
Guide. Describes the various API functions provided by the stack libraries, including the low level
hardware APIs.

Trademarks

TMS320C6x, TMS320C6000, TMS320C62x, TMS320C67x, C62x, C67x, C64x, Code Composer Studio
are trademarks of Texas Instruments.

6 Read This First SPRUET4–June 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU509
http://www-s.ti.com/sc/techlit/SPRU523
http://www-s.ti.com/sc/techlit/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

1 Getting Started

1.1 Introduction

1.2 Installing the Support Package

1.3 Rebuilding HAL Libraries

User's Guide
SPRUET4–June 2007

TMS320C6000 Network Developer’s Kit (NDK) Support
Package for EVMDM6437

This section introduces the NDK Support Package for EVMDM6437.

The TMS320C6000 NDK Support Package for EVMDM6437 includes:
• Source codes and pre-built libraries for the NDK Hardware Adaptation Layer (HAL) drivers
• NDK examples

There are four basic HAL drivers required to operate the NDK: timer, user LED, serial port, and Ethernet.
The Support Package provides Ethernet, serial, and user LED drivers specific to EVMDM6437 platform.
The timer driver is implemented by using DSP/BIOS PRD module from the NDK.

The support package installs over the NDK installation. Once installed, the following directories are
created under the <NDK_INSTALL_DIR>/packages/ti/ndk directory:

• <docs/evmdm6437> Documentation files for Support Package
• <example/network/cfgdemo/evmdm6437> CCStudio project files for cfgdemo example
• <example/network/client/evmdm6437> CCStudio project files for client example
• <example/network/helloWorld/evmdm6437> CCStudio project files for helloWorld example
• <example/tools/evmdm6437> Common tools used by Support Package
• <lib/hal/evmdm6437> Pre-built HAL libraries for EVMDM6437
• <src/hal/evmdm6437/eth_dm6437> Source code for DM6437 EMAC driver
• <src/hal/evmdm6437/userled_dm6437> Source code for EVMDM6437 LED driver

Included with the Support Package is a new batch file (MAKEHAL_EVMDM6437.BAT) that resides in the
<NDK_INSTALL_DIR>/packages/ti/ndk directory.

Before using MAKEHAL_EVMDM6437 from a command prompt, the NDK batch file DOSRUN_BIOS.BAT
must be run from the <NDK_INSTALL_DIR>/packages/ti/ndk directory to set up the correct
environment for running the TI code generation tools from a command prompt. Make sure that the TI_DIR
environment variable is set to point to your Code Composer Studio Development Tools installation. The
form of the MAKEHAL_EVMDM6437 command is: makehal_evmDM6437 [library] (noclean)

The library name is required in this command. The value of library determines what device library (or
libraries) to build. The value of library can be any of the following:
• ETHERNET: Texas Instruments DM6437 Ethernet MAC Driver
• USERLED: EVMDM6437 User LED Driver

The final parameter noclean can be added to the command line to suppress cleaning old object files from
the target directory. This is only useful when rebuilding the same driver for the same platform baseboard.

SPRUET4–June 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM6437 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

www.ti.com

1.4 Required Terms and Concepts

1.4.1 HAL Driver Source Files

1.4.2 Network Control Module (NETCTRL)

1.4.3 Stack Event (STKEVENT) Object

1.4.4 Packet Buffer (PBM) Object

2 User LED Driver

3 Timer Driver

User LED Driver

The batch file does not perform stringent argument checking, so incorrect calling arguments may result in
an incorrect build.

To port the NDK Support Package device drivers, you should be familiar with the following concepts.

Section 1.3 described how to build different HAL drivers for EVMDM6437.

The network control module (NETCTRL) is at the center of the NDK and controls the interface of the HAL
device drivers to the internal stack functions.

The NETCTRL module and its related APIs are described in both the TMS320C6000 Network Developer's
Kit (NDK) Software Programmer's Reference Guide (SPRU524) and the TMS320C6000 Network
Developer's Kit (NDK) Software User's Guide (SPRU523). To write device drivers, you must be familiar
with NETCTRL. The description given in the TMS320C6000 Network Developer's Kit (NDK) Software
User's Guide (SPRU523) is more appropriate for device driver work.

The STKEVENT event object is a central component to the low-level architecture. It ties the HAL layer to
the scheduler thread in the network control module (NETCTRL). The network scheduler thread waits on
events from various device drivers in the system, including the Ethernet, serial, and timer drivers.

The STKEVENT object is used by the device drivers to inform the scheduler that an event has occurred.
The STKEVENT object and its related API are described in the TMS320C6000 Network Developer's Kit
(NDK) Software Programmer's Reference Guide (SPRU524). To write device drivers, you must be familiar
with STKEVENT.

The PBM object is a packet buffer that is sourced and managed by the Packet Buffer Manager (PBM).
The PBM is part of the OS adaptation layer. It provides packet buffers for all packet based devices in the
system. Therefore, the serial port and Ethernet drivers both use this module.

The PBM object and its related API are described in the TMS320C6000 Network Developer's Kit (NDK)
Software Programmer's Reference Guide (SPRU524). The TMS320C6000 Network Developer's Kit (NDK)
Software User's Guide (SPRU523) also includes a section on adapting the PBM to a particular included
software.

This section describes the User LED software. The User LED driver is a collection of functions that turn on
and off LED lights on the EVMDM6437 platform. There is only one C file for the User LED: LLLED.C LED
driver, located in the subdirectory SRC\HAL\EVMDM6437\USERLED_DM6437.

This section discusses the software that drives event timing. The timer driver determines the timing for all
time driven events in the NDK. The EVMDM6437 platform uses the NDK provided timer_bios driver, which
is implemented using a DSP/BIOS PRD object.

TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM64378 SPRUET4–June 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU523
http://www-s.ti.com/sc/techlit/SPRU523
http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

www.ti.com

4 Serial Driver

5 Ethernet Driver

5.1 Introduction

5.1.1 Ethernet Driver Source Files

5.2 Ethernet Driver

5.2.1 Important Note on Data Alignment

Serial Driver

There are no serial drivers supported on the EVMDM6437 platform. The NDK delivered serial stub driver
is used instead.

This section describes the operational theory of the low-level Ethernet driver, including instructions on the
use and porting of the device driver source code.

The Ethernet packet driver provided in the NDK is broken down into two parts, a device independent
upper layer, and a device dependent layer. The device dependent layer is called a mini-driver because it
only implements a subset of the full driver functions. The mini-driver API is documented at the end of this
section. The full NDK Ethernet packet driver API is documented in Appendix D of TMS320C6000 Network
Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524).

The Ethernet packet driver source files are located in various subdirectories according to their function.

Table 1. Ethernet Packet Driver Source Files

Directory File Function

<SRC\HAL\EVMDM6437\ETH_DM6437> Source code of the Texas Instruments DM6437
Ethernet Driver

LLPACKET.C Hardware independent portion of the Low-Level
Ethernet Packet Driver

LLPACKET.H Private include file for LLPACKET drivers

DM64LC.C Packet mini-driver for DM6437 EMAC

DM64LC_MDIO.C MDIO Control functions for DM6437 EMAC

DM64LC_MDIO.H Header file of MDIO file

<SRC\HAL\EVMDM6437\ETH_DM6437\CSLR>

CSLR.H Central register layer - contains field manipulation
macro definitions

DM64LC_COMMON.H Common peripheral register structures and
definitions

CSLR_ECTL.H Register descriptions for ECTL

CSLR_EMAC.H Register descriptions for EMAC

CSLR_MDIO.H Register descriptions for MDIO

The NDK packet driver API is discussed in Appendix D of the TMS320C6000 Network Developer's Kit
(NDK) Software Programmer's Reference Guide (SPRU524), which includes how to implement the
individual API functions. The sections below discuss the implementation of an Ethernet packet mini-driver.

The NDK libraries have been built with the assumption that the IP header in a data packet is 16-bit
aligned. In other words, the first byte of the IP packet (the version/length field) must start on an even 16-bit
boundary. In any fixed length header protocol, this requirement can be met by backing off any odd byte
header size, and adding it to the header padding specified to the stack. For Ethernet and PPP, the only
requirement is that the Ethernet or PPP packet not start on an odd byte boundary.

SPRUET4–June 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM6437 9
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

www.ti.com

5.2.2 Hardware Independent Low-Level Ethernet Driver: LLPACKET.C

5.2.3 Hardware Specific Low-Level Ethernet (Mini) Driver

5.3 Ethernet Packet Mini-Driver

5.3.1 Overview

Ethernet Driver

In addition, all drivers in the NDK are set up to have a 22 byte header. This is the header size of a PPPoE
packet when sent using a 14 byte Ethernet header. When all arriving packets use the 22 byte header, it
guarantees that they can be routed to any egress device with a header requirement up to that size. For
Ethernet operation, this requires that a packet has 8 bytes of pre-pad to make its total header size 22
bytes.

The value of this pre-pad is #defined as PKT_PREPAD in the file LLPACKET.H.

The low-level Ethernet packet driver is very similar to the low-level serial port driver. It consists of two
parts: a hardware independent module and a hardware specific module, which makes the hardware
specific portion of the driver easier to port. When deciding how to port the packet driver, you must choose
whether to use the device independent LLPACKET.C module.

The standard API to access the packet device as defined in Appendix D of the TMS320C6000 Network
Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524) is implemented by the
LLPACKET.C module. This module also handles multiple device instances, and handles the queuing for
all received packet data.

To implement the low-level packet API in a device independent manner, the LLPACKET.C module calls
down to a hardware specific module. The interface functions to this module are defined in the
LLPACKET.H include file. They are documented to some degree in the example source code to the
hardware specific modules. The LLPACKET.H file also contains the specifications for the buffering of
packets.

The mini-driver module is a device driver specific to its target hardware. Its basic function is to talk to the
Ethernet MAC hardware. It also must interface to any other hardware specific to the target platform. For
example, it can set up interrupts, cache control, and the EDMA controller.

The interface specification is capable of handling multiple devices, but the example implementations
mostly only support a single device instance. Notes are made in the source code as to where alterations
can be made to support multiple devices.

As mentioned in the previous section, the low-level Ethernet packet driver is broken down into two distinct
parts, a hardware independent module (LLPACKET.C) that implements the llPacket API described in the
TMS320C6000 Network Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524),
Appendix D, and a hardware specific module that interfaces to the hardware independent module. This
section describes this small hardware specific module, or mini-driver.

Note that this module is purely optional. A valid packet driver can be developed by directly implementing
the llPacket API described in the TMS320C6000 Network Developer's Kit (NDK) Software Programmer's
Reference Guide (SPRU524). Even if the mini-driver is used, you may change any of the internal data
structures as long as the llPacket interface remains unchanged.

TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM643710 SPRUET4–June 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

www.ti.com

5.3.2 Global Instance Structure

Ethernet Driver

Nearly all the functions in the mini-driver API take a pointer to a packet driver instance structure called
PDINFO. This structure is defined in LLPACKET.H:
//
// Packet device information
// typedef struct _pdinfo {

uint PhysIdx; // Physical index of this device (0 to –1)
HANDLE hEther; // Handle to logical driver
STKEVENT_Handle hEvent;
UINT8 bMacAddr[6]; // MAC Address
uint Filter; // Current RX filter
uint MCastCnt; // Current MCast Address Countr
UINT8 bMCast[6*PKT_MAX_MCAST];
uint TxFree; // Transmitter "free" flag
PBMQ PBMQ_tx; // Tx queue (one for each PKT device)

} PDINFO;

Only some of these fields are used in a mini-driver. The structure entries as defined as follows:

Table 2. Structure Entries

Field Description

PhysIdx Physical Index of This Device (0 to n–1). The physical index of the device determines
how the device instance is represented to the outside world. The mini-driver is not
concerned about the physical index.

hEther Handle to Ethernet Driver. This is a handle NDK Ethernet instance that is bound to the
physical Ethernet driver. When a packet is received, it is tagged with this Ethernet
handle before being placed on the global PBMQ_rx queue. This allows the Ethernet
module to identify the ingress device.

hEvent Handle to Scheduler Event Object. The handle hEvent is used with the STKEVENT
function STKEVENT_signal() to signal the system whenever a new packet is received.

bMacAddr Ethernet MAC Address. This is a byte array that holds the Ethernet MAC address. It is
set to a default value by LLPACKET.C, but can be used or altered by the mini-driver
when the device opens. If the MAC contains its own unique MAC address, this value is
written to bMacAddr. If the MAC does not have a MAC address, the value bMacAddr
programs the MAC device.

Filter Current Rx Filter. The receive filter determines how the packet device should filter
incoming packets. This field is set by LLPACKET.C and used by the mini-driver to
program the MAC. Legal values include:

• ETH_PKTFLT_NOTHING: No Packets
• ETH_PKTFLT_DIRECT: Only directed Ethernet
• ETH_PKTFLT_BROADCAST: Directed plus Ethernet Broadcast
• ETH_PKTFLT_MULTICAST: Directed, Broadcast, and selected Ethernet Multicast
• ETH_PKTFLT_ALLMULTICAST: Directed, Broadcast, and all Multicast
• ETH_PKTFLT_ALL: All packets

MCastCnt Number of Multicast Addresses Installed. The field holds the current number of
multicast addresses stored in the multicast address list (also in this structure). The
multicast address list determines what multicast addresses (if any) the MAC is allowed
to receive.

bMCast Multicast Address List. This field is a byte array of consecutive 6 byte multicast MAC
addresses. The number of valid addresses is stored in the MCastCnt field. The
multicast address list determines what multicast addresses (if any) the MAC is allowed
to receive.

TxFree Transmitter Free Flag. The TxFree flag is used by LLPACKET.C to determine if a new
packet can be sent immediately by the mini-driver, or if it should be placed on the
transmit pending queue for later. If the flag is not zero, the mini-driver function
HwPktTxNext() is called when a new packet is queued for transmission. This flag is
maintained by the mini-driver.

PBMQ_tx Transmit Pending Queue. The transmit pending queue holds all the packets waiting to
be sent on the Ethernet device. The mini-driver pulls PBM packet buffers off this queue
in its HwPktTxNext() function and posts them to the Ethernet MAC for transmit. Once
the packet has been transmitted, the packet buffer is freed by calling PBM_free().

SPRUET4–June 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM6437 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

www.ti.com

5.3.3 Mini-Driver Operation

5.3.3.1 Receive Operation

5.3.3.2 Transmit Operation

5.3.4 Ethernet Packet Mini-Driver API

HwPktInit — Initialize Packet Driver Environment

The Ethernet packet mini-driver maintains the device hardware, and services any required
communications interrupts. It is built around a simple open/close concept. When open, the driver is active,
and when closed, it is not. In general, it must implement the mini-driver API described in the following
section. The following sections provide additional information on its internal operation.

The mini-driver receives packets when the device is open. When an Ethernet packet is received, it is
placed in a PBM packet buffer. Empty packet buffers are allocated by calling PBM_alloc().

Once the packet buffer is filled, it should be placed onto the receive pending queue (PBMQ_rx) defined in
the LLPACKET.C module. There is one RX queue for all Ethernet devices. The mini-driver must set the
RX IF device to the value of hEther in the instance structure before placing it on the RX queue.

After the data frame buffer has been pushed onto the Rx queue, the mini-driver signals an Ethernet event
to the STKEVENT handle supplied in the driver instance structure.

When the transmitter is idle, the mini-driver must set the TxFree field of its instance structure to 1. When a
new packet is ready for transmission, LLPACKET.C will place the PBM packet buffer on the PBMQ_tx
queue of the mini-driver's instance structure.

Once a new packet has been written to the transmit pending queue, if TxFree is set, LLPACKET.C will call
the mini-driver HwPktSendNext() function. At this time, the mini-driver should clear the TxFree field, and
start transmission of the packet. Once the packet has been sent, the packet buffer is freed by calling
PBM_free(). This call can be made at interrupt time.

The following API functions must be provided by a mini-driver.

HwPktInit Initialize Packet Driver Environment

Syntax uint HwPktInit();

Parameters None

Return Value The number of Ethernet packet devices in the system

Description Called to initialize the packet mini-driver environment, and enumerate the number of
devices in the system. A device instance may be opened for each device represented in
the return count. If the function returns zero, no devices are supported.

HwPktShutdown Shutdown Packet Driver Environment

Syntax void HwPktShutdown();

Parameters None

Return Value None

Description Called to indicate that the packet driver environment should be completely shut down.

12 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM6437 SPRUET4–June 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

www.ti.com

Ethernet Driver

HwPktOpen Open Ethernet Packet Device Instance

Syntax uint HwPktOpen(PDINFO *pi);

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value Returns 1 if the driver was opened, or 0 on error.

Description Called to open a packet device instance. When called, PDINFO structure is valid. The
device should be opened and made ready to receive and transmit Ethernet packets.

HwPktClose Close Ethernet Packet Device Instance

Syntax void HwPktClose(PDINFO *pi);

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value None

Description Called to close a packet device instance. When called, any outstanding packet buffers
held by the instance should be freed using PBM_free().

HwPktTxNext Transmit Next Buffer in Transmit Queue

Syntax void HwPktTxNext(PDINFO *pi);

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value None

Description Called to indicate that a packet buffer has been queued in the transmit pending queue
contained in the device instance structure, and LLPACKET.C believes the transmitter to
be free (TxFree set to 1). The mini-driver uses this function to start the transmission
sequence.

HwPktSetRx Set Ethernet Rx Filter

Syntax void HwPktSetRx(PDINFO *pi);

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value None

Description Called when the values contained in the PDINFO instance structure for the Rx filter or
multicast list are altered. The mini-driver should update its filter settings at this time.

_HwPktPoll Mini-Driver Polling Function

Syntax void _HwPktPoll(SDINFO *pi, uint fTimerTick);

Parameters pi- Pointer to serial device instance structure

fTimerTick- Flag indicating the 100 ms have elapsed

Return Value None

Description Called by LLPACKET.C at least every 100 ms, but calls can come faster when there is
network activity. The mini-driver is not required to perform any operation in this function,
but it can be used to check for device lockup conditions. When the call is made due to
the 100 ms time tick, the fTimerTick calling parameter is set.

Note that this function is not called in kernel mode (hence the underscore in the name).
This is the only mini-driver function called from outside kernel mode (done to support
polling drivers).

SPRUET4–June 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM6437 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUET4

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Getting Started
	1.1  Introduction
	1.2 Installing the Support Package
	1.3 Rebuilding HAL Libraries
	1.4 Required Terms and Concepts
	1.4.1 HAL Driver Source Files
	1.4.2 Network Control Module (NETCTRL)
	1.4.3 Stack Event (STKEVENT) Object
	1.4.4 Packet Buffer (PBM) Object

	2 User LED Driver
	3 Timer Driver
	4 Serial Driver
	5 Ethernet Driver
	5.1  Introduction
	5.1.1 Ethernet Driver Source Files

	5.2 Ethernet Driver
	5.2.1 Important Note on Data Alignment
	5.2.2 Hardware Independent Low-Level Ethernet Driver: LLPACKET.C
	5.2.3 Hardware Specific Low-Level Ethernet (Mini) Driver

	5.3 Ethernet Packet Mini-Driver
	5.3.1 Overview
	5.3.2 Global Instance Structure
	5.3.3 Mini-Driver Operation
	5.3.3.1 Receive Operation
	5.3.3.2 Transmit Operation

	5.3.4 Ethernet Packet Mini-Driver API

