Sequential JPEG Decoder Codec
on DM355

User’s Guide

Literature Number: SPRUFEG6B
February 2008

” TEXAS
INSTRUMENTS

Revision History

31 July 2006 Created v. 0.1
04 Sep 2006 Updated v 0.2
03 Oct 2006 Updated with scaling v 0.3
15 Feb 2007 Minimum image width supported is 64 pixels for yuv422/420 v 0.4
17 July 2007 gﬁsﬁézg with XDMv1.0 specific APl changes and LINUX specific vO5
11 Sep 2007 Added documentation on area decode and rotation v 0.6
03 October Updated with review comments from Tl v 1.0
18 Dec 2007 Updated API support and codec’s extended error details vl.l
08 Jan 2008 Updated parameter structure in API section v1.2
06 Feb 2008 Added the sample code for algCreate and control call v1.3

Read This First

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’ (TI) JPEG
Decoder implementation on the DM355 platform. It also provides a detailed Application
Programming Interface (API) reference and information on the sample application that
accompanies this component.

TI's codec implementations are based on the eXpressDSP Digital Media (XDM) v1.0
standard. XDM is an extension of the eXpressDSP Algorithm Interface Standard (XDAIS).
Intended Audience

This document is intended for system engineers who want to integrate TI's codecs with
other software to build a multimedia system based on the DM355 platform.

This document assumes that you are fluent in the C language, having working knowledge of
Digital Signal Processing (DSP), digital signal processors, and DSP applications. Good
knowledge of eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP Digital
Media (XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

U Chapter 1 - Introduction, introduces the XDAIS and XDM standards. It also provides an
overview of the codec and lists its supported features.

U Chapter 2 - Installation Overview, describes how to install, build, and run the codec.
O Chapter 3 - Sample Usage, describes the sample usage of the codec.

U Chapter 4 — Features Supported, describes the additional features supported in jpeg
decoder.

O Chapter 5 - API Reference, describes the data structures and interface functions used
in the codec.

Related Documentation From Texas Instruments

The following documents describe TI’'s DSP algorithm standards such as, XDAIS and XDM.
To obtain a copy of any of these Tl documents, visit the Texas Instruments website at
www.ti.com.

O TMS320 DSP Algorithm Standard API Reference (SPRU360) describes all the APIs that
are defined by the TMS320 DSP Algorithm Interface Standard (also known as XDAIS)
specification.

http://www.ti.com/

Read This First

U Technical Overview of eXpressDSP - Compliant Algorithms for DSP Software Producers
(SPRA579) describes how to make algorithms compliant with the TMS320 DSP
Algorithm Standard which is part of TI's eXpressDSP technology initiative.

O xDAIS-DM (Digital Media) User Guide (SPRUECS)

O Using DMA with Framework Components for C64x+ (SPRAAG1).

Related Documentation

You can use the following documents to supplement this user guide:

O CCITT Recommendation T.81,

specifying the JPEG standard. Available

http://www.w3.org/Graphics/JPEG/itu-t81.pdf

Abbreviations

The following abbreviations are used in this document.

Table 1-1. List of Abbreviations

Abbreviation

Description

CIF

DCT

DMA

DMAN3

EVM

IDMA3

JPEG

MCU

XDAIS

XDM

YUV

Exif

JFIF

Common Intermediate Format
Discrete Cosine Transform
Direct Memory Access

DMA Resource Manager
Evaluation Module

DMA Resource specification and
negotiation protocol

Joint Photographic
Group

Experts

Minimum Coded Unit

eXpressDSP Algorithm Interface
Standard

eXpressDSP Digital Media

Raw Image format

Y: Luminance Component

U,V : Chrominance components
Exchangeable image file format

JPEG File Interchange Format

at

Read This First

Text Conventions
The following conventions are used in this document:
U Textinside back-quotes (“) represents pseudo-code.

O Program source code, function and macro names, parameters, and command line
commands are shown in a mono- spaced font.

Product Support

When contacting Tl for support on this codec, please quote the product name (JPEG
Decoder on DM355) and version number. The version number of the codec is included in
the Title of the Release Notes that accompanies this codec.

Trademarks

Code Composer Studio and eXpressDSP are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

Software Copyright

Software Copyright © 2008 Texas Instruments Inc.

Contents

L4 0= T 01 T N PSP 10
1.1 Overview of XDAIS, XDM and IDMAS.........oiiiii i 11
1.1.1 XDAIS OVEIVIEW ...iiiiiiiiiee ettt ettt e e e e e ittt e e e e e e e anbbbbe e e e e e e e e annbbeaeeaaans 11

1.1.2 XM OVEIVIBW .ieeiiiieiieeee e e e ettt e e e e e ettt e e e e e e e s e kbt be e e e e e e e s anbbbbeeeeaaeesanbbneeeaaans 11

1.1.3 IDMAS OVEIVIEWeeiiniiieiieiiiteeesiree ettt ss e snne e e e snne e s e s e e nnee e 12

1.2 Overview Of JPEG DECOUENccceiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 13

1.3 Supported Services and FEALUIES............uuuiiiiiieiiieeece e 13

T 01 7= 1 L 14

(O =01 1T PSSP 15
2.1 System REQUITEMENTS......cooviiiii i e e e e e e e e e e ae s 16
% I A o - o 111 T TP RRRT P 16

2,12 SOFIWAIE ettt e e e e e e e e e e b e e e e e e e e e anneees 16

2.2 Installing the COMPONENTii e e e e 16

2.3 Building the Sample Test Application on LiNUX..........ccooiveeeiieeiiiiiinieeeeeeeeeeiiiennn, 17

2.4 Configuration FilS..........ooeiiiiiiii i 17
2.4.1 Generic Configuration Fileccuueiiiiii i 18

2.4.2 Decoder Parameter File ... 18

(O =01 1T PSSP 20
3.1 JPEG Decoder Client interfacing constraints............cccoooveeeiiieiiiiieiiieeeeeeeeeinn, 21

3.2 Overview of the Test Application — Usage in single instance scenario 22
3.2.1 Parameter SETUDcooiiiiiiieceee e 23

3.2.2 Algorithm Instance Creation and Initialization..............cccooceieiiiiiiiiiie e 23

3.2.3 Process Call with algActivate and algDeactivate.............ccccceeiviiiiiiiiiiie e 24

3.2.4 Algorithm InsStance Deltionc..uuiiiiiiiiiiiie e 24

3.3 Usage in multiple iNStanCe SCENANO...........uuuueueeeiieiiiieiieiiieieeeeeeeeeeeeeeeeeeeeeneennenns 24
3.3.1 Process Call with algActivate and algDeactivate.............cccccceeevvevcvieeeeeee e 25

L o= T 0} T PSP 26
4.1 Bitstream ring bUffer iNn DDRoooiiiiii e 27
4.1.1 MOdE Of OPEIALIONceiiiiiiiiiie et e e e ee e e e e 28

o A ©7o 1 0 111 -] | TP UP T TUPPUPPPRUP 28

4.1.3 Guidelines for using ring buffer with JPEG decoderccccccvveeeeviiciiieeneeeneennns 29

S [Tot R g To T Lo o] o Tot X7 T o S 30
4.2.1 Slice mode processing CONSLIAINTSuuvvveeeeiiiiiiiiiiie e e e s er e e e e e s e e e e e 31

4.2.2 Slice mode processing OVErhEadcouiiiiiiiiiiiiiiiiee e 31

4.2.3 How to operate slice-mode processing using JPEG APISccccoviiiiiiiiiniinnnnnn, 31

4.2.4 Example of application code that operates slice-mode decoding..........ccccceeenne. 32

4.3 RESIZING . ..ttttuuuutititiieitieeee e 33

S (0] 10 o Y 34

I N £ =T T D 1= o o Lo = 34

(O =01 (=T PRSPPI 36
5.1 Symbolic Constants and Enumerated Data TYPEScuvvvrvrmemmrmmimimniriinniiinnnns 37

5.2 DAta SITUCIUIESueii ettt e et e e e e e e e 40
5.2.1 Common XDM Data SITUCIUIES.........ccceiiiiiiiiiiiiiiiieeeeeeeeeeeee e 41

5211 XDMI1 BUFDESCccceitieieciesiiesieceesteesteeee st esae e sreeste e sneesseenesneennens 42

Vi

5212 XDM1 _SiNGIEBUIDESC.......coiieiiiiinieenieeie st 42
52.1.3 XDMZI1 AIGBUFINFO...ccieiiiiiieese ettt 42
5214 [IMGDECL FXNS.....ooiiiiiiiciic et ssaae e s s snnee e 43
5215 [IMGDECL Params.......ccccceiiiiieeiiiieie e riee e esieee e s sreee e e snne e e s snneee e 44
521.6 [IIMGDECL DYyNnamiCParamsS.........ccccererruereesuesseeseesieseesseessesssessesseens 45
5.2.1.7 TIMGDECL INATGS ..eeiiitiiiiiiiesiie e siee et siree st snee s snnee e 45
52.1.8 [IMGDECL SEAUS.....cccciueeiieeeiiieecieeesieeesreeesssesssseeessseessseessseessnseeens 46
5.2.1.9 [IMGDECL OULATGS.cttiiiiieetieesieeesiteessieeessiseessieeesseessseeesseessnee e 47
52.1.10 IDMAS3 HaNAI@.....ccveeeeee e 47
52111 IDMA3 ChannEIRECcceeieeeteecee e 49
5.2.2 JPEG Decoder Data StrUCIUIESueeiieeeiiiiiiiiiieeeeessstieeee e e e e s s s snvveneee e e e s ennnnnnees 50
5221 [IPEGDEC Params......ccccceiiiiiiiiiiiieesieessiesesisessssaeessseesssee s sneessnsee e 50
5222 |JPEGDEC _DYyNnamiCParams..........ccccerverurseesemseeseessessesseessessssssesssens 51
5223 [IPEGDEC SHAUS.....cccciiieiiieeeiieesieeesieessireessise e sniee e ssiee e s e s e snnee e 52
5224 [IPEGDEC INATGS...ciiiiiiiiiiisiie et esree et snee e 53
5225 [IPEGDEC OULATGS....cuvtiiiieeciieeeiee e sieessttesesisesssaae e ssraeessne s sseessnsee e 53
5.3 Interface FUNCLIONScoiiiii et e e e e e e et e eeeeeaas 54
IR 0 A O 1 - 10 1Y = [P EER 54
5.3.2 INItIANZAtION AP....ooii et 56
5.3.3 CoNtrol ProCeSSING APlueeiiii ettt e e e e e e s ee e e e e e e 58
5.3.4 Data ProCeSSING APl ...ttt e e e e e e 60
5.3.5 Termination APL.........oooiii 62

Figures

Figure 1-1. XDM interface to the client applicationcccccceeeeiiieeiiieeiiieenn. 12
Figure 2-1. Component DireCtory SrUCLUIEuoiiiieeieiiiiiiiiiiee e 16
Figure 3-1. Test Application Sample Implementation..............ccccoeeeeeevvvveiiiinnnnnnn. 22
Figure 4-1. Ring buffer before JPEG decoder starts............couveiiiiiieiiiieeiiiinnnn. 27
Figure 4-2. Ring buffer shortly after JPEG decoder startscocoeeevvvevvvnnnnnnnn. 27
Figure 4-3. Ring buffer once JPEG decoder fills lower half..............ccooeveiiiinnnn. 27
Figure 4-4. Ring buffer once application starts filling first half and JPEG decode
starts processing second half. ... 28
Figure 4-5. Area Decode EXampPIe........ccooeiiiiiiiieiiiiiee e 35

viii

Tables

Table 1-1. List of ADDreviations ..o \Y
Table 2-1. CompPoNent DIFECIOMESuuiiiiiiie e e e e e e e e eenes 17
Table 5-1. List of Enumerated Data TYPESccceevvveviiiiiiiie e eeeveeeiine e e e e eeeenaenns 37
Table 5-2. [JPEGDEC_ErrorStatus LiSt.......coooeeiiiiiiiiiiiiiee e 39

Chapter 1

Introduction

This chapter introduces XDAIS, XDM, and IDMA3. It also provides an overview of TI's
implementation of the JPEG Decoder on the DM355 platform and its supported features.

10

Sequential JPEG Decoder User Guide

1.1 Overview of XDAIS, XDM and IDMA3

TI's multimedia codec implementations are based on the eXpressDSP Digital Media (XDM)
1.0 standard. XDM is an extension of the eXpressDSP Algorithm Interface Standard (XDAIS).
IDMA3 is the standard interface to algorithms for DMA resource specification and negotiation
protocols. This interface allows the client application to query and provide the algorithm its
requested DMA resources.

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the abstract interface IALG.
The IALG API takes the memory management function away from the algorithm and places it
in the hosting framework. Thus, an interaction occurs between the algorithm and the
framework. This interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to be moved around
while an algorithm is operating in the system. In order to facilitate these functionalities, the
IALG interface defines the following APIs:

a algAloc()
alglnit()
al gActi vat e()

a
a
U al gDheactivate()
a

al gFree()

The al gAl | oc() API allows the algorithm to communicate its memory requirements to the
client application. The al gl ni t () API allows the algorithm to initialize the memory allocated
by the client application. The al gFree() API allows the algorithm to communicate the
memory to be freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process data in real-time. The
al gActi vate() API provides a notification to the algorithm instance that one or more
algorithm processing methods is about to be run zero or more times in succession. After the
processing methods have been run, the client application calls the al gDeacti vat e() API
prior to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs al gControl (), al gNumAl | oc(),
and al gMoved() . For more details on these APIs, see TMS320 DSP Algorithm Standard API
Reference (SPRU360).

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any codec into your
multimedia system. For example, if you are building an imaging decoder system, you can use
any of the available image decoders (such as Sequential JPEG, Progressive JPEG Decoder)
in your system. To enable easy integration with the client application, it is important that all
codecs with similar functionality use similar APIs. XDM was primarily defined as an extension
to XDAIS to ensure uniformity across different classes of codecs (for example audio, video,
image, and speech). The XDM standard defines the following two APIs:

4 control ()

O process()

11

Sequential JPEG Decoder User Guide

The control () API provides a standard way to control an algorithm instance and receive
status information from the algorithm in real-time. The control () API replaces the
al gControl () API defined as part of the IALG interface. The process() API does the
basic processing (encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also standardizes the
generic parameters that the client application must pass to these APIs. The client application
can define additional implementation specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

Client Application

XDM Interface

XDAIS Interface (IALG)

TI's Codec Algorithms

Figure 1-1. XDM interface to the client application

As depicted in the figure, XDM is an extension to XDAIS and forms an interface between the
client application and the codec component. XDM insulates the client application from
component-level changes. Since TI's multimedia algorithms are XDM compliant, it provides
you with the flexibility to use any Tl algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-compliant JPEG still image
decoder, then you can easily replace JPEG with another XDM-compliant image decoder with
minimal changes to the client application.

For more details, see xXDAIS-DM (Digital Media) User Guide (SPRUEC8b [XDM v1.0 is
employed]).
1.1.3 IDMA3 Overview

Client applications use the algorithm’s IDMAS3 interface to query the algorithm’s DMA resource
requirements and grant the algorithm logical DMA resources via handles. Figure 1-1 shows a
typical IDMAS3 interface implemented by the algorithm module, which is used by the client
applications to query the algorithm’s DMA needs. The algorithm specifies the number of
separate EDMA/QDMA channels and PaRamSets it requires, through memRecs. The IDMA3
standard defines following APIs:

O dnmaChangeChannel s()
U dmaGet Channel Cnt ()

O dnmaGet Channel s()
a

dmal nit ()

12

Sequential JPEG Decoder User Guide

dnmaChangeChannel s() is called by an application whenever logical channels are moved at
run-time. This allows for the application to re-initialize the channel properties whenever allocated
resources are not available. dmaGet Channel Cnt () s called by an application to query an
algorithm about its number of logical DMA channel requests. dmaGet Channel s() is called by
an application to query an algorithm about its DMA channel requests at initialization time, or to get
the current channel holdings. Through this API, the algorithm specifies the number of TCCs and
PaRamSets it requires and the properties of these resources when called during initialization time.
dmal ni t () is called by an application to grant DMA handle(s) to the algorithm at initialization.

For more details, see Using DMA with Framework Components for C64x+ (SPRAAG1).

1.2 Overview of JPEG Decoder

JPEG is the ISO/IEC recommended standard for image compression.

See the CCITT Recommendation T.81, specifying the JPEG standard document at
http://www.w3.0rg/Graphics/JPEG/itu-t81.pdf for details on the JPEG encoding/decoding
process.

1.3 Supported Services and Features

This user guide accompanies TI's implementation of JPEG Decoder on the DM355 platform.

This version of the codec has the following supported features of the standard:

0 eXpressDSP™ Algorithm Interface Standard (XDAIS) compliant

U eXpressDSP Digital Media (xDM) v1.0 interface and IDMA3 compliant

O Support baseline sequential process with the following limitations:

» Cannot support non-interleaved scans

» Only supports 1 and 3 components

» Huffman tables and quantization tables for U and V components must be the same
Supports a maximum of four (two tables each) for AC and DC DCT coefficients
Supports YUV 422 interleaved output format only [Planar output is not supported]
Supports yuv420, yuv422, yuv444, gray level with 8x8 pixels MCU
Supports 8-bit quantization tables

Supports frame level decoding of images

0O 0O 0 0 0 O

Images with resolutions up to 700 Mpixels can be decoded. This is the theoretical
maximum; however, only images up to 64 Mpixels have been tested. If the codec memory
and /O buffer requirements exceed the DDR memory availability for frame based
decoding, use ring buffer and slice mode decoding to decode higher resolution images.

U JPEG File Interchange Format (JFIF) header is skipped

13

http://www.w3.org/Graphics/JPEG/itu-t81.pdf

Sequential JPEG Decoder User Guide

O Supports frame level re-entrancy for multiple instance support

U Supports resizing by various factors from 1/8 to 7/8

O Supports frame pitch greater than picture width, specified as display width parameter

U Supports Rotation and Decode area individually, but does not support both together

u Supports limited IDMA3 interface with user-configurable additional PaRamSet
requirements

O Supports ring buffer configuration of bitstream buffer for reducing buffer size requirement

U Supports Rotation of 90, 180 and 270 degree

O Validated on DM355 EVM (MV 4.0)

1.4 Limitations

The limitations will not be removed in future releases. These limitations are not defects, but
intentional or known deficiencies.

Does not support Extended DCT-based process
Does not support Lossless process
Does not support Hierarchical process

Does not support progressive scan

Q
Q
a
Q
U Supports YUV 422 interleaved output format only. Planar output is not supported.
O Does not support yuv411, gray level with 16x16 pixels MCU

U Does not support image width less than 64 pixels for yuv420/422 and 32 pixels for yuv444
U Does not support source images of 12-bits per sample

O Ring buffer size should be multiple of 4096 Bytes

a

Only limited support of IDMA3 interface. See Sec 3.1 for details.

14

Sequential JPEG Decoder User Guide

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and instructions for
installing the codec component. It also provides information on building and running the
sample test application.

15

Sequential JPEG Decoder User Guide

2.1 System Requirements

This section describes the hardware and software requirements for the normal functioning of
the codec component.

2.1.1 Hardware

This codec has been tested as an executable on DM355 board.

2.1.2 Software

The following are the software requirements for the normal functioning of the codec:

O Linux:_MV Linux Pro 4.0 (kernel 2.6.10)

U Code Generation Tools: This project is compiled, assembled, and linked using the
arm_v5t_le-gcc compiler.

2.2 Installing the Component

The codec component is released as tar-zipped file. To install the codec, follow the
instructions in the Release notes. The code location is as follows:

JPEG Decoder algorithm code is in a directory jpegdec placed in DM355Codecs/release.

Figure 2-1 shows the sub-directories structure of jpegdec directory.

4 release
bin
include

4 jpegdec
4 Client
4 Test
Inc
Sre
TestVecs
Docs
Inc
lib

Figure 2-1. Component Directory Structure

Table 2-1 provides a description of the sub-directories created in the jpegdec directory.

16

Sequential JPEG Decoder User Guide

Table 2-1. Component Directories

Sub-Directory Description

jpegdec /Docs Contains user guide, datasheet, and release notes

jpegdec /Client/Test/Src Contains application C files

jpegdec /Client/Test/Inc Contains header files needed for the application code

jpegdec /Client/Test/TestVecs Contains test vectors and configuration files

/Include Contains the include files needed by application and
codec.

/lib Contains JPEG Decoder and other support libraries

/bin Contains JPEG Decoder executable “jpgdec”

The DM355 JPEG Decoder library is put into the DM355Codecs/release/lib directory and the
xdm headers are put in DM355Codecs/release/include directory.

2.3 Building the Sample Test Application on Linux

The sample test application that accompanies this codec component will take jpeg input files
and dumps output YUV files as specified in the configuration file. To build and run the sample
test application, follow these steps:

1) Verify that libjpegdec.a library is present in DM355Codecs/release/lib directory.

2) Verify that support libraries (libimx.a, libimcop.a, libcosl.a, libdm355.a, libcmem.a) are
present in DM355Codecs/releasel/lib directory.

3) Change directory to DM355Codecs/releasel/jpegdec/Client/Test/Src and type “make clean”
followed by a “make” command. This will use the makefile in that directory to build the test
executable jpgdec into the DM355Codecs/release/bin directory.

4) To run the jpgdec executable on your DM355 EVM board, see the following instructions.
» Set up the DM355 environment.
For information about setting up the DM355 environment, see the DVEVM Hardware Setup
and the DVEVM Software Setup chapters in the DVEVM Getting Started Guide.
» Copy the binary jpgdec and the entire TestVecs directory into target directory.

» Run following commands from prompt
$./jpgdec

2.4 Configuration Files

This codec is shipped along with:

17

Sequential JPEG Decoder User Guide

O A generic configuration file (Testvecs.cfg) — specifies input .jpg file, output yuv file and
parameter file for each test case.

U A Decoder parameter file (Testparams.cfg) — specifies the configuration parameters used
by the test application to configure the Decoder for a particular test case.

2.4.1 Generic Configuration File

The sample test application shipped along with the codec uses the configuration file,
Testvecs.cfg, for determining the parameter file for each test case. The Testvecs.cfg file is
available in the DM355Codecs/release/jpegdec/Client/Test/TestVecs/Config sub-directory.

The format of the Testvecs.cfg file is:

X

Config

| nput

Qut put / Ref er ence

where:

a X

0 - for random pattern comparison, no input file read, no output file is created.
Compliance checking is done by comparing checksum.

1 - for compliance checking with reference output file. Input YUV file read, no output file is
created

2 - for writing the output to the output file

Please note that in the current test app file provided only X=2 is supported and other
values of X is ignored.

U Confi g isthe Decoder parameter file.
4 | nput is the input JPEG file name (use complete path).
U OQut put/ Ref er ence is the output YUV file name.

A sample Testvecs.cfg file is as shown:

2

./ Test Vecs/ Confi g/ Test paransl. cfg

./ Test Vecs/ | nput/ 420/ RST_01. j pg

./ Test Vecs/ Qut put / 420/ RST_01. yuv

2

./ Test Vecs/ Confi g/ Test paransl. cfg

./ Test/ Test Vecs/ | nput / 420/ RST_02. j pg
./ Test/ Test Vecs/ Qut put / 420/ RST_02. yuv

2.4.2 Decoder Parameter File

The decoder configuration file, Testparams.cfg, contains the configuration parameters
required for the decoder. The Testparams.cfg file is available in the
/Client/Test/TestVecs/Config sub-directory.

18

Sequential JPEG Decoder User Guide

A sample Testparams.cfg file is as shown:

New Input File Format is as follows

<Par anet er Nane> = <Par anet er Val ue> # Comment

#

HHHHHHH R P HHHHHHHH RHHH HRHHH RHHH HHH HHH HHH HHH HHH R HHH RHHH H RHHHRRH
HHHHH SRR

Paraneters

HHHHHHH R R HH R R R R R R R R R R R R R R R R R R R
HH R

Resi ze =0 # 0: No resizing, 1. resize by 1/2, resize by 1/4, resize
by 1/8

Di spl ayW dt h =0 # 0: display width = i mage out put wi dth

rotation =0 # 0: No Rotation, 90, 180, 270

maxW dth = 720
maxHei ght = 480
forceChromaFormat = 4 # 0. XDM DEFAULT, 4: 422 |LE
dat aEndi anness = 1

subRegi onUpLeft X =
subRegi onUpLeftY =
subRegi onDownRi ght X
subRegi onDownRi ght Y

0
0

Any field in the |1 M3DEC1_Par ans structure (see Section 5.2.1.5) can be set in the
Testparams.cfg file using the syntax shown above. If you specify additional fields in the
Testparams.cfg file, you must appropriately modify the array sTokenMap in the test
application to handle these fields.

19

Sequential JPEG Decoder User Guide

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application that accompanies
this codec component.

20

Sequential JPEG Decoder User Guide

3.1 JPEG Decoder Client interfacing constraints

The following constraints should be taken into account when implementing the client for
the JPEG decoder library in this release:

1) DMA requirements of JPEG Decoder: Current implementation of the JPEG decoder uses the
following TCCs for its DMA resource requirements along with its associated PaRamSets:

33to 47,52 to 55 33 to 47, 52 to 55 (PaRamSet number
= channel number)

Apart from these 19 TCCs requirements, it also needs 8 more PaRamSets that are
allocated through the IDMA3 interface.

2) The client application shall map all the DMA channels used by JPEG decoder to the same
gueue. This is required for the codec to function normally. Codec shall not map channels to
queue.

3) If there are multiple instances of a codec and/or different codec combinations, the application
can use the same group of channels and PaRAM entries across multiple codecs. AlgActivate
and AlgDeactivate calls, implemented by the codec and made by the client application
perform context save/restore to allow multiple instances of the same codec and/or different
codec combinations.

4) As all codecs use the same hardware resources, only one process call per codec should be
invoked at a time (frame level reentrancy). The process call needs to be wrapped within
activate and deactivate calls for context switch. Refer to XDM specification on
activate/deactivate.

5) If multiple codecs are running with frame level reentrancy, the client application has to
perform time multiplexing of process calls of different codecs to meet desired timing
requirements between video/image frames.

6) The ARM and DDR clock to be set to required frequency for running single or multiple
codecs.

7) The codec combinations feasibility is limited by processing time (computational hardware
cycles) and DDR bandwidth.

8) Codec atomicity is supported at frame level processing only. The process call has to run until
completion before another process call can be invoked.

21

Sequential JPEG Decoder User Guide

3.2 Overview of the Test Application — Usage in single instance scenario

The test application exercises the IMGDEC1_Params extended class of the JPEG Decoder
library. The main test application files are jpgdTest355.c and testFramework.h. These files are
available in the /Client/Test/Src and /Client/Test/Inc sub-directories respectively.

The following figure illustrates the sequence of APIs exercised in the sample test application.

Integration Layer XDM-XDIAS-IDMA3 Interface Codec Library

Param Setup

algNumAlloc () —»

Algorithm
Instance creation | gjgAlloc) —>
and initialization

alglnit () —

—— dmacChannelCnt () —»
DMA channels

request and —— dmaGetChannels () —»
granting — dmainit () —
E— algActivate () —>

Process call N process () —

e algDeactivate () —>

_ _ algNumAlloc () —>
Algorithm

instance deletion
e algFree () —

Figure 3-1. Test Application Sample Implementation
The test application is divided into four logical blocks:

U Parameter setup

Algorithm instance creation and initialization

a
Q Process call
a

Algorithm instance deletion

22

Sequential JPEG Decoder User Guide

3.2.1 Parameter Setup

Each codec component requires various codec configuration parameters to be set at
initialization. The test application obtains the required parameters from the Decoder
configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, Testvecs.cfg and reads the compliance checking
parameter Decoder configuration file name (Testparams.cfg), and, if applicable, the input
file name, and output/reference file name.

2) Opens the Decoder configuration file, (Testparams.cfg) and reads the various configuration
parameters required for the algorithm. For more details on the configuration files, see
Section [

3) Sets the IMGDEC1_Params structure based on the values it reads from the Testparams.cfg
file.

4) Reads the input bit stream into the application input buffer.

After successful completion of the above steps, the test application does the algorithm
instance creation and initialization.

3.2.2 Algorithm Instance Creation and Initialization

In this logical block, ALG creat e() is called by the test application and accepts the various
initialization parameters and returns an algorithm instance pointer. The following APIs
implemented by the codec are called in sequence by ALG create():

1) al gNumAl loc() - To query the algorithm about the nunber of nenory
records it requires.

2) al gAl l oc() - To query the algorithm about the memory requirement to be filled in the
memory records.

3) alglnit() - To initialize the algorithm with the memory structures provided by the
application.

A sample implementation of the create function that calls al gNumAl | oc(), al gAlloc(),
and al glnit() in sequence is provided in the ALG creat e() function implemented in the
alg_create.c file.

In addition, ALG create() use some APIs that deal with memory allocation, such as:
_ALG al | ocMenory(), _ALG freeMenory(). They are provided in file al g_mal | oc. c .

Apart from algorithm memory allocation, the application needs to call the IDMA3_Create()
function. This function uses the algorithm instance created in the previous call of ALG_create
and provides the algorithm with the requisite DMA resources. The following APIs implemented
by the algorithm are called in the following sequence:

1)dmaGet Channel Cnt () - To query the algorithm about the number of memory records it
requires. In the present implementation, it always defaults to 1.

2) dmaGet Channel s() - To query the algorithm about the number of additional PaRamSets
it requires in the channel records. In the current implementation, the algorithm uses hard-
coded channels and its associated TCCs and PaRamSets internally. The client using the
algorithm’s IDMAZ3 interface allocates additional PaRamSets requirements.

23

Sequential JPEG Decoder User Guide

3) dmal nit() - To initialize the algorithm with continuous PaRamSet addresses allocated
to the algorithm during this instance. A sample implementation of this function is included
in the idma3_create.c file.

3.2.3 Process Call with algActivate and algDeactivate

After algorithm instance creation and initialization, the test application does the following:

1) Calls al gActi vat e(), which initializes the decoder state and some hardware memories
and registers.

2) Sets the input and output buffer descriptors required for the pr ocess() function call.

3) Calls the process() function to encode a single frame of data. The inputs to the process
function are input and output buffer descriptors, pointer to the | | MGDEC1_| nAr gs and
I 1| MGDEC1_Qut Ar gs structures. process() function should be called multiple times to
decode multiple images.

4) Call al gDeact i vat e(), which performs releasing of hardware resources and saving of
decoder instance values.

5) process() is made a blocking call, but an internal OS specific layer enables the process
to be pending on a semaphore while hardware performs complete JPEG decode.

6) Other specific details of the process() function remains same as the described in section
3.1.3 and constraints describe in sec 3.1.1 are applicable.

NOTE: al gActivate () is a mandatory call before process(), as it does hardware
initialization.
3.2.4 Algorithm Instance Deletion

Once encoding is complete, the test application must delete the current algorithm instance.
The following APIs are called in sequence:

1) al gNumAl | oc() - To query the algorithm about the number of memory records it used

2) al gFree() - To query the algorithm to get the memory record information and then free
them up for the application

A sample implementation of the delete function that calls al gNunmAl | oc() and al gFree()
in sequence is provided in the ALG del et e() function implemented in the alg_create.c file.
3.3 Usage in multiple instance scenario

If the client application supports multiple instances of the JPEG decoder, initialization and
process calls are altered. One of the main issues in converting a single instance decoder to a
multiple instance decoder is resource arbitration and data integrity of shared resources
between various codec instances. Resources that are shared between instances and need to
be protected include:

1) DMA channels and PaRamSets
2) JPEG Hardware Co-Processors and their memory areas

To protect one instance of the JPEG decoder from overwriting into these shared resources
when the other instance is actually using them, the application needs to implement mutexes in

24

Sequential JPEG Decoder User Guide

the test-applications. The application developer can implement custom resource sharing
mutex and call the algorithm APIs after acquiring the corresponding mutex. Since all codecs
(JPEG encoder/decoder and MPEG-4 encoder/decoder) use the same hardware
resources, only one codec instance can run at a time.

Here are some of the API combinations that need to be protected with single mutex.

e dnualnit() of one instance initializes DMA resources when the other instance is actually
active in its pr ocess() function.

e control () call of one instance sets post-processing function properties by setting the
command length, etc. when the other instance is active or has already set its post
processing properties.

e process() call of one instance tries to use the same hardware resources [co-processor
and DMA] when the other instance is active in its pr ocess() call.

If multiple instances of the JPEG decoder are used in parallel, the hardware must be reset
between every process call and algorithm memory to be restored. This is achieved by calling
algActivate() and algDeactivate() before and after process() calls.

Thus, the Process call section as explained in the above section would change to include both
algActivate() and algDeactivate() as mandatory calls of the algorithm.
3.3.1 Process Call with algActivate and algDeactivate
After algorithm instance creation and initialization, the test application does the following:
1) Sets the input and output buffer descriptors required for the pr ocess() function call.

2) Calls al gActivate(), which initializes the decoder state and some hardware
memories and registers.

3) Calls the process() function to encode a single frame of data. The inputs to the
process function are input and output buffer descriptors, pointer to the | | MGENC1_| nAr gs
and | | MGENC1_Qut Ar gs structures.

4) Calls al gDeactivate(), which performs releasing of hardware resources and saving
of decoder instance values.

5) Other specific details of the process() function remains same as the described in section
3.1.3 and constraints describe in sec 3.1.1 are applicable.

NOTE: In the multiple instance scenario, al gActi vate() and al gDeactivate() are
mandatory function calls before and after pr ocess() respectively.

25

Sequential JPEG Decoder User Guide

Chapter 4

Feature Descriptions

This chapter provides some description on special features not commonly found in a standard
JPEG decoder such as:

Ring-buffer configuration of input bit stream buffer.
Slice-mode processing.
Resizing

Area decode

(I S W R W W

Rotation

26

Sequential JPEG Decoder User Guide

4.1 Bitstream ring buffer in DDR

To minimize the memory requirement, the JPEG decoder reads the JPEG bitstream from a
circular or ring buffer residing in DDR, which acts as an intermediary storage area between
the originating storage media (SD card, HD, memory stick, etc.) and the decoder. Therefore,
the size of the ring buffer can be much smaller than the final bitstream’s size, effectively
reducing the amount of physical DDR memory allocated for storing the bitstream. The
complete bitstream is processed eventually because as JPEG decodes one half of the ring
buffer, the application fills the other half from the media. The JPEG decoder and the
application operate in parallel and on a different half, thus sustaining the maximum JPEG
processing throughput.

The figure below depicts the state of the ring buffer at different states of JPEG processing:

Lower half full Upper half full

Figure 4-1. Ring buffer before JPEG decoder starts

JPEG decoder

EG reads and decodes data from ring buffer

Lower half partially decoded

Upper half full

Figure 4-2. Ring buffer shortly after JPEG decoder starts

Application callback

JPEG decoder

Sl

JPEG stops reading data from ring buffer and
calls application callback function

—

Figure 4-3. Ring buffer once JPEG decoder fills lower half

Sequential JPEG Decoder User Guide

Media storage JPEG decoder

I

Figure 4-4. Ring buffer once application starts filling first half and JPEG decode starts
processing second half.

4.1.1 Mode of operation

The address and size of the ring buffer are passed to the JPEG decoder as runtime input
arguments of the pr ocess function. The JPEG decoder manages this output ring buffer as
follows.

As MCUs are decoded, the application fills the ring buffer with the bitstream. Each time half of
the buffer is decoded, the decoder will call a user-defined callback function. That callback
function of type XDAS Void (*hal fBuf CB) (Ui nt32 curBuf Ptr, XDAS Void*arg)is
passed to the decoder as creation parameter during ALG_create() function call.

The input argument cur Buf Pt r is passed by the decoder and its value is the pointer to the
first free byte in the ring buffer. All the bytes located before cur Buf Pt r are bytes already
decoded by the decoder and can be overwritten by new bitstream data. The callback function
must save cur Buf Pt r so next time it is called, it knows where to overwrite the data from.
However, the first time it is called is a particular case, as the starting point of the valid data is
the starting address of the ring buffer.

Note that successive values of cur Buf Pt r are not necessarily in increasing order due to the
circular nature of the ring buffer. The application must implement the case where cur Buf Pt r
rolls back to the beginning of the ring buffer.

The second argument XDAS_Voi d*ar g is a generic pointer that can be typecast to a pointer
to a user-defined data structure and can be used by the application to pass extra information
needed during the execution of the callback function. The example in section 4.1.3 uses that
feature to pass a structure that keeps track of the transfers between the ring buffer and the
media storage.

4.1.2 Constraint

The ring buffer size must be multiple of 4096 bytes.

Sequential JPEG Decoder User Guide

4.1.3 Guidelines for using ring buffer with JPEG decoder

This section introduces few guidelines and tips to help the programmer to implement ring
buffer into an application using JPEG decoder. It doesn’t provide all the steps required to
initialize/run the JPEG decoder but only those related to ring buffer handling.

The following structure Medi a2R ng can be used to keep track of the state of the transfers
between the ring buffer and the storage media.

typedef struct Medi a2R ng{
Int8* nediaPtr; // Pointer to first free location in the nedia buffer
Int8 ringQurPr; // Pointer to the first free location in the ring buffer
Int8 ringStartPtr; // Pointer to the start of the ring buffer
Int8 ringEndPtr; // Pointer to the end of the ring buffer

} Medi a2R ng;

The members nedi aPtr and ringQurPr will be updated by the half-buffer callback function
each time they are called.

Assuming that there is a ring buffer array and media array defined as global:
U nt8 ringbuf [R NBUS ZH ;
U nt8 nedi a] MAX | MG WDTH MAX | MG HE GHT* 2] ;

The application creates and initializes an instance of Media2Ring as follows:
Medi a2R ng nedi a2ri ng={nedi a, ringbuf, ringbuf, ringbuf + R NBUS Z8;

Note that the callback function that handles half-buffer can accept a second argument in
addition to cur Buf Pt r . Use this feature by passing the pointer to nedi a2ri ng to the callback
function each time the decoder calls it.

The pointer to callback function and its second argument are passed to the decoder during
creation time in the specific extended JPEG creation parameters structure ext n_par ans of type
| IPEQEC Par ans.

extn_parans. hal fBuf (B = (XDAS Int32 (*)())JPEAEC TI _DVB55 Hal f Buf CB;
ext n_par ans. hal f Buf (Bar g= (voi d*) &edi a2ri ng;

Before calling the process() function, starting address of ring buffer and its size are
communicated to the decoder as run-time input parameters to the process function.

inArgs. ringBuf Sart= (XDAS U nt 8*) ri ngbuf ;

i NArgs. ri ngBuf S ze= R NBUFS ZE

The members ringQur Ptr and nedi aPt r of nedi a2ri ng must be reinitialized to their initial values
before each call to process() since the callback function updates them.

i ng2nedi a. nedi aP r= nedi a;

nedi a2ri ng. ri ngQur Ptr= ri ngbuf;

Also, the ring buffer must be filled by the application prior to the first call of the JPEG
decoder’s process function:

nencpy(nedi a2ring. ri ngQurPtr, nedi a2ring. nediaPtr, RNBF S7B);

nedi a2ri ng. nedi aPt r += R NBUF_S ZE;

The process() function is normally called. During JPEG execution, the half-buffer callback
function is called by the codec each time half-buffer boundary is crossed. The responsibility of
the callback function is to refresh the portion of data in the ring buffer delimited by

29

Sequential JPEG Decoder User Guide

nedi a2ri ng. ri ngQur Ptr and cur Buf Pt r, the latter parameter being the first input argument of the
callback function.

The following is an example of half-buffer callback implementation using memcpy function for
transfers. A more efficient implementation might use EDMA for memory transfers. The
callback function should not wait for the EDMA transfers to complete before returning to JPEG
to allow parallel processing with JPEG.

XDAS_Voi d JPEGDEC Tl _DMB55_Hal f Buf CB(XDAS_I nt 32 buf Ptr, void *arg)

{
unt32 i, x, y, nunloXfer;

Medi a2Ri ng *nedi a2ri ng= arg;

/*

Detect if a pointer rollback occurred due the circular nature of the ring
buf fer

If it didn’t occur then transfer is nornal.

*/
if ((XDAS_Int8*)bufPtr > medi a2ring->ringCurPtr){

nunToXf er= (XDAS_I nt 8*) buf Pt r - medi a2ri ng->ri ngCur Ptr;
mencpy(medi a2ring->ringCurPtr, medi a2ring->medi aPtr, numloXfer);

medi a2ri ng- >nmedi aPt r += numloXf er;

medi a2ri ng->ri ngCur Pt r += numloXf er;

}
/*

If pointer rollback occurred then copy first end of the ring buffer into
the storage nedia and then copy the portion at the beginning of the ring
buffer.

*/
el se {
nunToXf er =(XDAS_I nt 8*) medi a2ri ng->ri ngEndPtr -
nmedi a2ri ng->ri ngCur Ptr;
mencpy(medi a2ring->ringCurPtr, medi a2ring->medi aPtr, numloXfer);
medi a2ri ng- >medi aPt r += nunloXf er;
medi a2ri ng->ri ngCur Pt r= nedi a2ri ng->ringStartPtr;
numroXf er= (XDAS_I nt 8*) buf Pt r-nmedi a2ring->ringStartPtr;
mencpy(medi a2ring->ri ngCur Ptr, medi a2ri ng->medi aPtr, nuniToXfer);
medi a2ri ng- >medi aPt r += nuniloXf er;
medi a2ri ng->ri ngCur Pt r+= nuniroXf er;
}
return;
}

Note how the members nedi aPtr and ringQurPtr of the structure Medi a2R ng are updated. At
the exit of the callback function, nedi a2ri ng->ri ngQur Rtr should be the same value as buf Ptr.
4.2 Slice-mode processing

Instead of processing an entire frame in one shot, JPEG can be configured so a call to
pr ocess only decodes a slice of the frame.

To decode an entire frame, several calls to pr ocess function are needed. Between calls, it is
possible to change the output pointer to YUV data. However, contrary to the JPEG decoder,
the output pointer cannot be changed.

30

Sequential JPEG Decoder User Guide

This feature is useful for a system that doesn’t have enough memory to store the YUV output
data of the entire frame dumped by the decoder. The slice based decode feature allows a
smaller memory footprint to be used.

4.2.1 Slice mode processing constraints

A slice size is expressed in number of MCUs and must be a multiple of the number of MCUs
along the image’s width, x 2. For instance, if the image width is W pixels and its color format is
yuv422, then a slice size must be multiple of (W/16) x 2.

The slice size must remain constant in the processing of a frame; it is not possible to mix
different slice sizes within the processing of the same frame. Only the last slice can be of
different size, as it ends with EOl marker.

4.2.2 Slice mode processing overhead

Because there is control overhead each time JPEG is started/stopped, you should try to
process as few slices as possible per frame. For instance, a 1.2 Mpix frame partitioned in 20
slices would incur 15% overhead versus 11% overhead for a frame partitioned in 10 slices.

Also the larger the frame is, the less impact the overhead has on the overall processing time.
For instance, given a 4.4 Mpix frame, the overhead would be only 4% for a 20 slices frame
and 2% for a 10 slices frame.

4.2.3 How to operate slice-mode processing using JPEG APIs

Slice-mode processing is controlled by the run-time parameter numAU of the structure
I I MGDEC1_Dynam cPar anms. Run time parameters are set when calling the cont r ol API. If
numAU is set to XDM DEFAULT then entire frame will be decoded when the process APl is
called. Otherwise, it must be set to the number of MCUs contained in a slice.

The parameter numAU should be set such that it is multiple of (W/w) x 2, where W is the width
of the image and w is the width of a MCU.

If that constraint is not respected, the decoder automatically rounds up numAU to the next valid
value and returns it in the structure | | MGDEC1_Status. It is then the responsibility of the
application to use this corrected numAU as the effective slice’s size.

The pr ocess API is then called as many times as there are slices in the image. Note that the
process API returns the current position of the input and output pointers in the member
curlnPtr and curQut Ptr of t he | JPEGDEC Qut Ar gs structure. The cur Cut Ptr value
can be used to initialize correctly the output buffer pointers next time the process API is
called. If the output buffer pointer is equal to the cur r Qut Pt r value returned by the previous
call to process API, then slices are stitched together as non-slice processing of a whole
frame would do.

Note that JPEG decoder slice based decoding is simpler to operate than JPEG decoder’s
because there is no need to update a sl i ceNum parameter each time process function is
called and last slice does not require special parameter settings.

Slice-mode decoding seamlessly operates with the input bitstream’s ring-buffer configuration
so both are automatically enabled.

31

Sequential JPEG Decoder User Guide

4.2.4 Example of application code that operates slice-mode decoding

The following example implements the different steps described in the previous section. Note
that some initialization sections are skipped, see the file jpgdTest355.c for the full example.

i NArgs. ringBuf Start= ringbuf;
i nArgs. ri ngBuf Si ze= Rl NGBUF_SI ZE;
/* Basic Algorithmprocess() call, to parse header */
retVal = |1 MEGDECFxns->process(
(11 MGDEC1_Handl e) handl e,
(XDML_Buf Desc *) & nput Buf Desc,
(XDML_Buf Desc *) &out put Buf Desc,
(1'I MGDECL_I nArgs *) & nArgs,
(1l MGDEC1_CQut Args *) &out Args) ;

byt esConsuned += out Args. i ngdecQut Args. byt esconsuned;

/* Call get status to get number of total MCUs */

I I MGDECFxns->control ((I | MEDECL_Handl e) handl e, XDM GETSTATUS,
(1l MGDEC1_Dynami cParans *) &xt n_dynani cPar ans,
(1l MGDEC1_St at us *) &st at us) ;

t ot al AU= st atus.ingdecSt at us. t ot al AU,

/* Set run-tine paranmeters such as: no header decodi ng and size of
slice */

ext n_dynam cPar ans. i ngdecDynam cPar ans. decodeHeader = XDM DECODE_ AU,

ext n_dynam cPar ans. i ngdecDynami cPar ans. nunAU= t ot al AU/ 20;

/* Set Run tine paranmeters in the Algorithmvia control () */
I I MGDECFxns->control ((I 1 MEDECL_Handl e) handl e, XDM SETPARANS,

(1l MGDEC1_Dynanmi cParans *) &xt n_dynani cPar arns,

('l MGDEC1_St at us *) &st at us) ;
numAU= st at us. numAY,

i nput Buf Desc. descs[0] . buf = outArgs.curlnPtr;

/*Basic Al gorithmprocess() call */

32

Sequential JPEG Decoder User Guide

/1 Repeat JPEG encoding as many tines as necessary until last slice
for (i=0;i<total AU; i += numAU) {
if (retvVal = |1 M3DECFxns->process((!l MDECL Handl e) handl e,
(XDML_Buf Desc *) & nput Buf Desc,
(XDML_Buf Desc *) &out put Buf Desc,
(1l MGDEC1_I nArgs *) & nArgs,
(1l MGDEC1_CQut Args *) &out Args)){

printf("!!!'!l Error during JPEG decode !!!!\n");
break; // break on error.

/*Error code is in outArgs.ingdecQutArgs. extendedError*/
}
/1 we just stitch the slices one after the other.
out put Buf Desc. descs[0] . buf = outArgs.curQutPtr; sequentially
byt esConsuned += out Args. i ngdecQut Ar gs. byt esconsuned,;
} /* End of For |oop */

4.3 Resizing

The JPEG decoder possesses some simple resizing capabilities; it can downsize the output
along each dimension by a factor of 1/8, V4, 3/8, ¥, 5/8, 3/4, or 7/8.

The application sets the resize ratio by setting r esi zeQpt i on of | JPEGDEC Dynani cPar ans.
The interpretation of resizeOption value is as follows:

0: No resize

1: 1/2 resize factor applied to horizontal and vertical dimension.
2: 1/4 resize factor applied to horizontal and vertical dimension.
3: 1/8 resize factor applied to horizontal and vertical dimension.
4: 3/8 resize factor applied to horizontal and vertical dimension.
5: 5/8 resize factor applied to horizontal and vertical dimension.
6: 6/8 resize factor applied to horizontal and vertical dimension.
7: 7/8 resize factor applied to horizontal and vertical dimension.

This feature can be used to save memory for the output buffer. For instance, if the display is
VGA size (640x480) and the decoded bitstream is 3296x2480, then the application can set the
resize option to %4, so the output is reduced to an 824 x 620 image That image can be further
resized using the preview engine to exactly fit the display size. The output buffer must be
large enough to contain an 824 x 620 image.

Finally, if resizing is enabled (r esi zeQpti on not 0), and if post-processing is enabled, the
post-processing input format is forced to block format.

33

Sequential JPEG Decoder User Guide

If resizing is disabled, then the application can choose either yuv422 interleaved or block
format for the post-processing input format.

4.4 Rotation

On-the fly rotation can be performed by the decoder during image decoding. Choices of
rotation are 90, 270, and 180 degrees rotation. Use the parameter r ot at i on in the structure
| JPEGDEC Dynani cParans to set the appropriate rotation. If no rotation is desired, the
parameter must be set to 0.

When the rotation is 90 and slice mode is enabled, then the outputBufDesc.descs[0].buf has
to be updated.

The following example implements the update,
cformat = status.ingdecSt at us. out put Chr omaFor mat ;
i f (extn_dynam cParans.rotation== 90) {
Ui nt16 slicewWdth;
sl i ceW dt h=numAU* ncuW dt h[cf ormat] / st at us. i ngdecSt at us. i mageW dt h) *m
cuHei ght[cformat];
sliceWdth= (sliceWdth*resizeOption)/8;

out put Buf Desc. descs[0] . buf += 2* (st at us. i ngdecSt at us. out put Wdth -
sliceWdth);

}

Rotation, post-processing, and resizing features can be enabled at the same time. Rotation
and area decode features cannot be enabled at the same time.

45 Area Decode

With this feature, the application can choose to output a sub-area within the whole image. If
the original image is much larger than the display, then the end result will be equivalent to
zooming into a portion of the image.

The following figure illustrates the area decode feature:

34

Sequential JPEG Decoder User Guide

Image total height

Image total width
/\

(subRegionUpLeftX, subRegionUpLeftY) I

A

e —

(subRegionDownRighttX, subRegionDownRightY)

o

Figure 4-5. Area Decode Example

The slightly dotted area is the area that the decoder will output. The upper left corner of the
dotted area will match the upper left corner of the display.

The application passes the coordinates of the upper left corner and lower right corner of the
decode area to the JPEG decoder interface by setting the parameters subRegionUpLeftX,
subRegionUpLeftY, subRegionDownRightX, subRegionDownRightY in the structure
IJPEGDEC_DynamicParams. These coordinates must be multiples of 16 or 8 (depending on
the color format) or the decoder will automatically internally round them down. If all
coordinates are 0s, the decoder decodes the entire image.

35

Sequential JPEG Decoder User Guide

Chapter 5

APl Reference

This chapter provides a detailed description of the data structures and interfaces functions
used in the codec component.

36

5.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either #define macros and/or
enumerated C data types. Described alongside the macro or enumeration is the semantics or
interpretation of the same in terms of what value it stands for and what it means.

Table 5-1. List of Enumerated Data Types

Group or Symbolic Value Description or Evaluation
Enumeration Constant Name
Class

XDM Dat aFor mat XDM_BYTE 1 Big endian stream. Not used in

this version of JPEG Decoder.

XDM LE 16 2 16-bit little endian stream. Not
used in this version of JPEG
Decoder.
XDM LE 32 3 32-bit little endian stream. . Not
used in this version of JPEG
Decoder.
XDM_Chr omaFor XDM_CHROVA _ -1 Not applicable
mat NA
XDM_YUV_420 1 YUV 4:2:.0 planar. Used to
P specify output color format. Not

supported in this version of
JPEG Decoder.

XDM _YUV_422 2 YUV 4:2:2 planar. Used to

P specify output color format. Not
supported in this version of
JPEG Decoder.

XDM YUWV_422 3 YUV 4:2:2 interleaved (big

| BE endian). Used to specify output
color format. Not supported in
this version of JPEG Decoder.

XDM _YUV_422 4 YUV 4:2:2 interleaved (little
| LE endian). Default choice for
output color format.

XDM _YUV_444 5 YUV 4:4:4 planar. Used to

P specify output color format. Not
supported in this version of
JPEG Decoder.

37

APl Reference

Group or Symbolic Value Description or Evaluation
Enumeration Constant Name
Class

XDM YUV_411 6 YUV 4:1:1 planar. Used to

P specify output color format. Not
supported in this version of
JPEG Decoder.

XDM_GRAY 7 Gray format. Used to specify
output color format. Not
supported in this version of
JPEG Decoder.

XDM RGB 8 RGB color format. Used to
specify output color format. Not
supported in this version of
JPEG Decoder.

XDM_CHROVAF 4 Default chroma format value

ORMAT_DEFAU setto XDM_YUV_422| LE

LT

XDM Cndl d XDM_CGETSTAT 0 Query algorithm instance to fill
us St at us structure

XDM_SETPARA 1 Set run time dynamic

VS parameters via the
Dynami cPar ans structure

XDM_RESET 2 Reset the algorithm

XDM SETDEFA 3 Initialize all fields in Parans

ULT structure to default values
specified in the library

XDM_FLUSH 4 Handle end of stream
conditions. This command
forces algorithm instance to
output data without additional
input.

XDM_GETBUFI 5 Query algorithm instance

NFO regarding the properties of
input and output buffers

XDM_GETVERS 6 Query the algorithm's version.

| ON The result will be returned in

38

the @c data field of the
respective _Status structure.
This control command s
presently not supported.

API Reference

Group or Symbolic Value Description or Evaluation
Enumeration Constant Name
Class
XDM DecMbde XDM_DECODE _ 0 Decode entire access unit.
AU Default value.
XDM _PARSE_H 1 Parse only header.
EADER
XDM ErrorBit XDM_APPLI ED 9 Bit 9
CONCEALMENT O 1 - Applied concealment
Q O0-Ignore
XDM _| NSUFFI 10 Bit 10
Cl ENTDATA O 1 - Insufficient data
Q O0-Ignore
XDM_CORRUPT 11 Bit 11
EDDATA O 1 - Data problem/corruption
Q O0-Ignore
XDM_CORRUPT 12 Bit 12
EDHEADER O 1 - Header problem/corruption
Q O0-Ignore
XDM_UNSUPPO 13 Bit 13
RTEDI NPUT 1 - Unsupported
feature/parameter in input
0 — Ignore
XDM_UNSUPPO 14 Bit 14
RTEDPARAM O 1 - Unsupported input parameter
or configuration
Q O0-Ignore
XDM _FATALER 15 Bit 15
ROR O 1 - Fatal error (stop encoding)
O O - Recoverable error

Note:

The remaining bits that are not mentioned in XDM ErrorBit are interpreted as per the
| JPEGDEC _Err or St at us descriptions given below.

The algorithm can set multiple bits to 1, depending on the error condition.

Table 5-2. IJPEGDEC _ErrorStatus List

Group
Enumeration
Class

Symbolic Constant Name

Description or Evaluation

39

APl Reference

Group or
Enumeration
Class

Symbolic Constant Name

Description or Evaluation

| JPEGDEC ErrorS
tatus

JPEGDEC_ERROR | NSUFFI Cl EN
T_DATA

JPEGDEC_ERROR_DI SPLAY_W D
TH

JPEGDEC_ERROR | NVALI D_ROT
ATl ON_PARAM

JPEGDEC_ERROR | NVALI D_RES
| ZE

JPEGDEC_ERRCR_| NVALI D_num
AU

JPEGDEC_ERROR | NVALI D Dec
odeHeader

JPEGDEC_ERROR_UNSUPPORTED
_Chr ormraFor nat

JPEGDEC_ERRCR_UNSUPPORTED
_dat aEndi anness

JPEGDEC_ERRCR | NVALI D_SuB
W NDOW

Bit O:
1 - Input buffer underflow
0 - Ignore

Bit 1:
1 - Invalid display width
0 - Ignore

Bit 2:
1 - Invalid rotation
0 - Ignore

Bit 3:
1 - Invalid resize
0 - Ignore

Bit 4:
1 - Invalid numAU
0 - Ignore

Bit 5:

1 - When DecodeHeader is
otherthan O or 1

0 - Ignore

Bit 6:
1 - Invalid force chroma
0 - Ignore

Bit 7:

1 - Invalid

dat aEndi anness
0 - Ignore

Bit 8:
1 - Invalid decode area
0 - Ignore

5.2 Data Structures

This section describes the XDM defined data structures that are common across codec
classes. These XDM data structures can be extended to define any implementation specific

parameters for a codec component.

40

API Reference

5.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

O 000U 0000 o o000

41

XDML_Buf Desc

XDML_Si ngl eBuf Desc
XDM Al gBuf I nf o

I | MGDEC1_Fxns

I | MGDECL1_Par ans

I 1| MGDEC1_Dynani cPar ans
I | MGDECL_I nAr gs

I | MGDEC1_St at us

I | MGDEC1_CQut Ar gs

| DMA3_Handl e

| DMA3_Channel Rec

APl Reference

5.2.1.1 XDM1_BufDesc

| Description
This structure defines the buffer descriptor for input and output buffers.
| Fields
Field Datatype Input/ Description
Output
nunBuf s XDAS_I nt 32 Input Number of buffers contained
descs XDML_Si ngl eBuf Desc Input An array of single buffer
(*) [XDM_MAX_| O_BUFFERS] descriptor objects.

XDM_MAX_IO_BUFFERS is
defined to be 16.

5.2.1.2 XDM1_SingleBufDesc

| Description
This structure contains elements required to hold one data buffer..
| Fields
Field Datatype Input/ Description
Output
*puf XDAS_I nt 8 Input Pointer to the vector containing
buffer address
buf Si ze XDAS_I nt 32 Input Size of buffer in bytes

5.2.1.3 XDM1_AlgBufinfo

| Description

This structure defines the buffer information descriptor for input and output buffers. This
structure is filled when you invoke the control () function with the XDM GETBUFI NFO
command.

| Fields
Field Datatype Input/ Description
Output
m nNum nBuf s XDAS I nt 32 Output Number of input buffers
m nNunmQut Buf s XDAS I nt 32 Output Number of output buffers
m nl nBuf Si ze[XD XDAS_I nt 32 Output Size in bytes required for each

42

API Reference

M_MAX_| O BUFFER
9]

m nQut Buf Si ze[X
DM MAX | O BUFFE
RS]

input buffer

XDAS I nt 32 Output Size in bytes required for each
output buffer

5.2.1.4 IIMGDEC1_Fxns

| Description

Note:

For JPEG Decoder, the buffer details are:
Number of input buffer required is 1 for the bitstream.

The input buffer size is the size of the bitstream. Worst case input
size is (height * width * 3) bytes for YUV444

Number of output buffer required is 1 for YUV 4221 LE
The output buffer sizes (in bytes) = (height * width * 2)

This structure contains pointers to all the XDAIS and XDM interface functions.

| Fields

Field

Datatype Input/ Description
Output

ialg

*process

43

| ALG_Fxns Input Structure
containing
pointers to all the
XDAIS interface
functions.

For more details,
see TMS320
DSP Algorithm
Standard API
Reference
(SPRU360).

XDAS_I nt 32 Input Pointer to the
(*process) (11 MGDEC1_Handl process()
e handl e, XDML_Buf Desc function.

*i nBuf s,

XDML_Buf Desc *out Buf s,

Il MEDECL_I nArgs *inargs,

I | MGDEC1_Qut Ar gs

*out ar gs)

APl Reference

*control XDAS_I nt 32 Input Pointer to the
(*control) (11 M3DEC1_Handl control ()
e handl e, I 1 MGDEC1_Cnd function.
id,
I | MGDEC1_Dynani cPar ans
*par ans, I I MGDEC1_St at us
*st at us)

5.2.1.5 IIMGDEC1_Params

| Description

This structure defines the creation parameters for an algorithm instance object. Set this data
structure to NULL, if you are unsure of the values to be specified for these parameters.
| Fields

Field Datatype Input/ Description
Output

si ze XDAS_I nt 32 Input Size of the basic or extended
(if being used) data structure
in bytes.

maxHei ght XDAS I nt 32 Input Maximum image height to be
supported in pixels. Default is
1600.

maxW dt h XDAS I nt 32 Input Maximum image width to be
supported in pixels. Default is
2048.

maxScans XDAS_I nt 32 Input Not supported in this version

of the JPEG decoder.

dat aEndi anness XDAS_I nt 32 Input Endianness of output data.
This version of the JPEG
decoder supports only
XDM_BYTE (Default).

f or ceChr omaFor XDAS I nt 32 Input Force decoding in given

mat Chroma format. This version
of the JPEG decoder
supports only
XDM_YUV_422ILE (Default).

44

API Reference

5.2.1.6

| Description

IIMGDEC1_DynamicParams

This structure defines the run time parameters for an algorithm instance object. Set this data
structure to NULL, if you are unsure of the values to be specified for these parameters. Run
time parameters change the behavior of the JPEG processing and can be set before each call

to the process() function.
| Fields

Field

Datatype

Input/
Output

Description

si ze

numAU

decodeHeader

di spl ayWdth

XDAS_| nt 32

XDAS_| nt 32

XDAS_| nt 32

XDAS_| nt 32

Input

Input

Input

Input

0o

Size of the basic or extended
(if being used) data structure in
bytes.

Number of Access unit to
decode, must be set to
XDM_DEFAULT in case of
decoding entire frame.

Decode entire access unit or
only header. See

XDM DecMbde enumeration
for details.

If the field is set to:
0 - Use image width as pitch.
Any non-zero value, display
width is used as pitch (if capture
width is greater than image
width).

5.2.1.7

| Description

IIMGDEC1_InArgs

This structure defines the run time input arguments for an algorithm instance object.

| Fields
Field Datatype Input/ Description
Output
si ze XDAS | nt 32 Input Size of the basic or extended (if being
used) data structure in bytes.
nunB XDAS_I nt 32 Input Number of valid input data in bytes in
ytes input buffer

45

APl Reference

5.2.1.8 IIMGDEC1_Status

| Description

This structure defines parameters that describe the status of an algorithm instance object.

| Fields
Field Datatype Input/ Description
Output

si ze XDAS_I nt 32 Input Size of the basic or
extended (if being used)
data structure in bytes.

ext endedError XDAS_I nt 32 Output Extended error code. See
XDM ErrorBit
enumeration for details.

out put Hei ght XDAS_I nt 32 Output Output height

out put Wdt h XDAS_I nt 32 Output Output width (image width
rounded up to a multiple of
the MCU width)

i mgeW dt h XDAS_I nt 32 Output image width

out Chr orat f or mat XDAS_I nt 32 Output Output chroma format:
XDM_ChromaFormat

t ot al AU XDAS_I nt 32 Output Total number of Access
Units (say MCU) in the
image.

t ot al Scan XDAS_I nt 32 Output Total number of scans

bufinfo XDM_Al gBuf I nf o Output Input and output buffer

information. See
XDM_Al gBuf I nf o data
structure for details.

46

API Reference

5.2.1.9 [IMGDEC1_OutArgs

| Description

This structure defines the run time output arguments for an algorithm instance object.

| Fields
Field Datatype Input/ Description
Output

si ze XDAS I nt 32 Input Size of the basic or extended (if
being used) data structure in
bytes.

ext endedError XDAS_I nt 32 Output Extended error code. See
XDM Er ror Bi t enumeration
for details.

current AU XDAS_I nt 32 Output Current Access Unit (MCU)
Number

current Scan XDA I nt 32 Output Current scan number

byt esConsuned XDAS_I nt 32 Output The number of bytes consumed.

5.2.1.10 IDMA3_Handle

| Description

IDMA3_Handle is a pointer of type IDMA3_Obj holds the private state associated with each
logical DMA channel.

| Fields
Field Datatype Input/ Description
Output
nunifccs unsi gned Output The number of TCCs allocated to
short this channel. In the present
implementation since TCCs are
fixed this value is set to zero.
nunmPaRans unsi gned Output The number of PaRam entries
short allocated to this channel.
*tccTable unsigned Output TCCs assigned to channel - set
char to NULL.
paRamAddr Uns * Output PaRAMs assigned to channel
gdmaChan unsigned Output Physical QDMA Channel
short assigned to handle - set to zero

47

APl Reference

since no QDMA channels are
used in current implementation.

transferPending

env

protocol

persistent

Bool

void *

IDMA3_Proto
colHandle

Bool

Output

Output

Output

Output

Set to true when a new transfer
is started on this channel. Set to
false when a wait/sync operation
is performed on this channel..

IDMA3_ProtocolHandle
(‘protocol’) dependent private
channel memory The memory for
the 'env' is allocated and
reclaimed by the framework
when this IDMA3 channel has
been requested with a non-NULL
'‘protocol'. The size, type and
alignment of the allocated 'env'
memory is obtained by calling
the channel's 'protocol'-
>getEnvMemRec() function.
During channel creation, the ‘env'
pointer must always be created
as a private and persistent
memory assigned to the IDMA3
channel object. However, the
framework/resource manager is
also allowed to allocate
requested internal ‘env' memory
as 'scratch’ memory which can
only be used when the channel is
in active state.

In the 'scratch’ allocation case,
the framework/resource manager
must still allocate the ‘env' as
‘persistent’, possibly in external
memory, and must pass the
address of the 'scratch’ ‘internal’
‘env' memory in the first word of
the 'env' memory. If the channel
‘env' memory is created as
'persistent’ with no 'scratch’
shadow, then the first word of
the env memory must be set to
NULL.

The channel protocol functions
used by the DMA manager to
determine memory requirements
for the 'env'.

Indicates if the channel has been
allocated with persistent
property.

48

API Reference

5.2.1.11 IDMA3_ChannelRec

| Description

DMA Channel Descriptor to logical DMA channels.

| Fields

Field

Datatype

Input/
Output

Description

handl e

numir ansfers

numhai ts

priority

pr ot ocol

persi st ent

| DVA3_Handl e

I nt

I nt

| DMA3_Priority

| DMA3_Pr ot ocol H
andl e

Bool

Input

Output

Output

Output

Output

Output

Handle to logical DMA channel

Number of DMA transfers that
are submitted using this logical
channel handle. Single (==1)
or Linked (>= 2). In the current
implementation this is set to
number of PaRamSets
required by the application.

Number of individual transfers
that can be waited in a linked
start. (Always set to 1 - for
single transfers or for waiting
all)

Relative priority
recommendation:

High, Medium, Low. - set to
IDMA3_PRIORITY_LOW
always

When non-NULL, the protocol
object provides interface for
querying and initializing logical
DMA channel for use by the
given protocol. The protocol
can be
IDMA3_PROTOCOL_NULL in
this case no 'env' is allocated
In current implementation its
set to NULL always.

When persistent is set to
TRUE, the PaRAMs and TCCs
will be allocated exclusively for
this channel. They cannot be
shared with any other IDMA3
channel. In the current
implementation, this is always
set to TRUE.

49

APl Reference

5.2.2 JPEG Decoder Data Structures
This section includes the following JPEG Decoder specific extended data structures:
Q 1 JPEGDEC Par ans
4 |1 JPEGDEC Dynani cPar ans
Q |1 JPEGDEC St at us
a 1 JPEGDEC | nArgs

O 1 JPEGDEC_Qut Ar gs
5.2.2.1 1JPEGDEC_Params

| Description

This structure defines the base creation parameters and any other implementation specific
parameters for the JPEG Decoder instance object. The base creation parameters are defined
in the XDM data structure, | | MGDEC1_Par ans.

| Fields
Field Datatype Input/ Description
Output
imgdecParams I 1 MGDEC1_Par ans Input Base creation parameters.
See | | MGDEC1_Par ans
data structure for details
halfBufCB XDAS_Void (*) (Uint32 Input Half buffer callback function
curBufPtr, pointer
XDAS_Void*arg)
halfBufCBarg XDAS_Void * Input Half buffer callback

argument

50

API Reference

5.2.2.2 |JPEGDEC_DynamicParams

| Description

This structure defines the base runtime creation parameters and any other implementation
specific runtime parameters for the JPEG Decoder instance object. The base runtime
parameters are defined in the XDM data structure, | | MGDEC1_Dynairi cPar ans.

| Fields

Field Datatype Input/ Description
Output
imgdecDynamicParams I 1 MGDEC1_Dynani Input Base creation
cPar ams parameters. See

I 1| MGDECL1_Par ans
data structure for
details

disableEOI XDAS_Int16 Input 0: EOI decoding
enabled (Default).
1: EOI decoding
disabled

resizeOption XDAS_Int32 Input Set the resize option:
0: no resizing
(Default)

: resize 1/2

:resize 1/4

:resize 1/8

. resize 3/8

. resize 5/8

. resize 6/8

: resize 7/8

~NOoO oA WNE

postProc IJPEGDECPOostP Input Pointer to post-
processing object.
This version of the
JPEG decoder does
not support this field.
Please set this as
NULL.

subRegionUpLeftX XDAS_Int16 Input X coordinate of
upper left corner of
area decode. Must
be multiple of 16.

subRegionUpLeftY XDAS_Int16 Input Y coordinate of
upper left corner of
area decode. Must
be multiple of 8 for
yuv422, yuv444, 16
for yvu420.

subRegionDownRightX XDAS_Int16 Input X coordinate of lower
right corner of area
decode. Must be
multiple of 16.

51

APl Reference

Field Datatype Input/ Description
Output
subRegionDownRightY XDAS_Int16 Input Y coordinate of lower

right corner of area
decode. Must be
multiple of 8 for
yuv422, yuv444, 16
for yvu420.

rotation XDAS_Int16 Input Set the rotation
angle:

0: no rotation
(default)

180, 90, 270.

5.2.2.3 |IJPEGDEC_Status

| Description

This structure defines the base status parameters and any other implementation specific
status parameters for the JPEG Decoder instance object. The base status parameters are
defined in the XDM data structure, | | MGDEC1_ St at us. Status parameters are returned by
the JPEG decoder upon calling the control function with XDM GETSTATUS as command.
Usually application gets status parameters after header is parsed.

| Fields
Field Datatype Input/ Description
Output
imgdecStatus I 1 MGDEC1_St at Output Base status parameters.
us See | | MGDEC1_St at us

data structure for details

mode XDAS_Int32 Output 0: baseline sequential
1: progressive

imageHeight XDAS_Int32 Output Actual image height of the
image.

stride[3] XDAS_Int32 Output Stride values for Y,U and
V components. This
version does not support
this.

declmageSize XDAS_Int32 Output Size of the decoded image
in bytes

lastMCU XDAS_Int32 Output Last MCU in the frame
0: Not last

numAU XDAS_Int32 Output Number of MCUs in a slice
computed by the decoder

52

API Reference

Field Datatype Input/ Description
Output
nextFreeCmdPtr XDAS_Uint16* Output Pointer to next free word in

co-processor command
memory — not used in
current implementation.

nextFreelmBufPtr XDAS_Uint8* Output Pointer to next free byte in
image buffer — not used in
current implementation.

nextFreeCoefBufPtr XDAS_Uint8* Output Pointer to next free byte in
co-processor coeff
memory — not used in
current implementation.

5.2.2.4 |JPEGDEC_InArgs

| Description

This structure defines the base runtime input parameters and any other implementation
specific runtime input parameters for the JPEG Decoder instance object. The base runtime
parameters are defined in the XDM data structure, IMGDECL1_| nAr gs.

| Fields
Field Datatype Input/ Description
Output
imgdecinArgs I'I MGDECL_I nAr gs Input Base input runtime
parameters. See
11 MGDECL1_I nAr gs data
structure for details
ringBufStart XDAS_UInt8 * Input Pointer to starting point of
bitstream ring buffer
ringBufSize XDAS_Uint32 Input Size of ring buffer in bytes

5.2.2.5 |IJPEGDEC_OutArgs

| Description

This structure defines the base runtime output parameters and any other implementation
specific runtime output parameters for the JPEG Decoder instance object. The base runtime
parameters are defined in the XDM data structure, | | MGDEC1_Qut Ar gs.

53

APl Reference

| Fields
Field Datatype Input/ Description
Output

imgdecOutArgs I 1 MGDEC1_Cut Ar gs Output Base input runtime
parameters. See
I'1 MGDECL_I| nAr gs
data structure for
details

curlnPtr XDAS_Uint8* Output Current input pointer,
pointing to bitstream

curOutPtr XDAS_Uint8* Output Current output pointer,
pointing to YUV display
data

5.3 Interface Functions

This section describes the Application Programming Interfaces (APIs) used in the JPEG
Decoder. The APIs are logically grouped into the following categories:

4 Creation - al gNumAl | oc(), al gAl'l oc(), dmaGet Channel Cnt (),
dmaCGet Channel s()

4 Initialization —al glnit(), dmalnit()
U Termination —al gFree()

You must call these APIs in the following sequence:
1) al gNunAl | oc()
2) al gAl'l oc()
3) alglnit()
4) control ()
5) al gActivate() - optional for single instance case
6) process()
7) al gDeactivate() - optional for single instance case

8) al gFree()

al gNumAl 1 oc(), algAlloc(), alglnit(), algActivate(), algDeactivate(),
and al gFree() are standard XDAI'S APlIs. This document includes only a
brief description for the standard XDAI S APl s. For more details, see TMS320
DSP Algorithm Standard APl Reference (SPRU360).

5.3.1 Creation APIs

Creation APIs create an instance of the component. The term creation could mean allocating
system resources, typically memory.

54

API Reference

NOTE: Please see the JPEG Decoder Data Sheet for External Data Memory
requirements

Name

al gNunAl | oc() — determine the number of buffers that an algorithm requires
Synopsis

XDAS_ | nt 32 al gNunmAl | oc(Voi d);
Arguments

Voi d
Return Value

XDAS I nt32; /* nunber of buffers required */
Description

al gNumAl | oc() returns the number of buffers that the al gAl | oc() method requires. This
operation allows you to allocate sufficient space to call the al gAl | oc() method.

al gNunAl | oc() may be called at any time and can be called repeatedly without any side
effects. It always returns the same result. The al gNumAl | oc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference (SPRU360).
See Also

al gAl | oc()

Name

al gAl | oc() — determine the attributes of all buffers that an algorithm requires
Synopsis

XDAS Int32 al gAlloc(const |ALG Parans *parans, |ALG Fxns **parentFxns,
| ALG_MenRec nenffab[]);
Arguments

| ALG Parans *parans; /* algorithmspecific attributes */
| ALG_Fxns **parent Fxns;/* out put parent al gorithmfunctions */

| ALG_MenRec nenifab[]; /* output array of nmenory records */
Return Value

XDAS I nt32 /* nunmber of buffers required */

Description

al gAl | oc() returns a table of memory records that describe the size, alignment, type, and
memory space of all buffers required by an algorithm. If successful, this function returns a
positive non-zero value indicating the number of records initialized.

55

APl Reference

The first argument to al gAl l oc() is a pointer to a structure that defines the creation
parameters. This pointer may be NULL; however, in this case, al gAl | oc() must assume
default creation parameters and must not fail.

The second argument to al gAl | oc() is an output parameter. al gAl | oc() may return a
pointer to its parent’s IALG functions. If an algorithm does not require a parent object to be
created, this pointer must be set to NULL.

The third argument is a pointer to a memory space of size
nbufs * sizeof (1 ALG MenRec) where, nbufs is the number of buffers returned by
al gNumAl | oc() and | ALG_MenRec is the buffer-descriptor structure defined in ialg.h.

After calling this function, nenTab[] is filled up with the memory requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard APl Reference (SPRU360).
See Also

al gNumAl | oc(), al gFree()

5.3.2 Initialization API

The Initialization API initializes an instance of the algorithm. The initialization parameters are
defined in the Par ans structure (see Data Structures section for details).

Name

al gl ni t () —initialize an algorithm instance
Synopsis

XDAS Int32 alglnit(lALG Handl e handle, 1ALG MenRec nenfTab[], |ALG Handle
parent, | ALG Parans *parans);
Arguments

| ALG Handl e handle; /* algorithminstance handl e*/
| ALG nenRec nenifab[]; /* array of allocated buffers */
| ALG Handl e parent; /* handle to the parent instance */

| ALG Parans *parans; /* algorithminitialization paraneters */
Return Value

| ALG ECK; /* status indicating success */

| ALG EFAIL; /* status indicating failure */
Description

al gl nit() performs all initialization necessary to complete the run time creation of an
algorithm instance object. After a successful return from al gl ni t (), the instance object is
ready to be used to process data.

The first argument to al gl ni t () is a handle to an algorithm instance. This value is initialized
to the base field of nenirab[0] .

The second argument is a table of memory records that describe the base address, size,
alignment, type, and memory space of all buffers allocated for an algorithm instance. The

56

API Reference

number of initialized records is identical to the number returned by a prior call to
al gAl l oc().

The third argument is a handle to the parent instance object. If there is no parent object, this
parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm initialization
parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference (SPRU360).

The following sample code is an example of initializing the Params structure and creating an
instance with base parameters.

I I MGDEC1_Par ans par ans;

/1l Set the create tinme base paraneters
paramns. si ze = si zeof (11 MGDEC1_Par ans) ;
par anms. maxHei ght = 480;

paranms. maxW dth = 720;

par ans. maxScans= XDM DEFAULT;

par ans. dat aEndi anness = XDM BYTE;

par ans. f or ceChr omaFor mat = XDM _YWV_422] LE;

handl e = (1 ALG Handl e) ALG create((I ALG Fxns *) & JPEGDEC Tl _| JPEGDEC,
(1 ALG Handl €) NULL,
(I ALG_Par ans *) &par ans)

The following sample code is an example of initializing the Params structure and creating an
instance with extended parameters.

I I MGDEC1_Par ans par ans;
| JPEGDEC Par ans ext Par ans;

/1l Set the create tinme base paraneters
par ans. si ze = si zeof (1 JPEGDEC_Par ans) ;
par ans. maxHei ght = 480;

parans. mexW dth = 720;

par ans. maxScans= XDM DEFAULT;

par anms. dat aEndi anness = XDM BYTE;

par amns. f or ceChr omaFor mat = XDM _YUWV_422] LE;

/1l Set the create tinme extended paraneters
ext Par arms. i ngdecPar ans = par ans;

ext Par ans. hal f Buf CB = NULL;

ext Par ans. hal f Buf CBar g = NULL;

57

APl Reference

handl e = (1 ALG Handl e) ALG create((lIALG Fxns *)& JPEGDEC Tl _I JPEGDEC,
(1 ALG Handl e) NULL,
(I ALG_Par ans *) &ext Parans)

See Also

al gAl l oc(), algMoved()

5.3.3 Control Processing API

The Control API is used before call to process() to enquire about the number and size of 1/0
buffers, or to set the dynamic params, or get status of decoding.
Name

control () — control call
Synopsis

XDAS | nt 32 (*control)(I 1| MGDEC1_Handl e handl e, I 1 MGDEC1_Cnd id,
I | MG@DEC1_Dynani cParans *parans, || MGEDECL_Status *status);
Arguments

I I MGDEC1_Handl e handle; /* algorithminstance handle */
ITMGDECL _Cmd id; /* id of command */
I | MGDEC1_Dynani cParans *parans; /* pointer to dynam c paraneters */

Il MGDECL_Status *status /* pointer to status structure */
Return Value

| ALG ECK; /* status indicating success */

| ALG EFAIL; /* status indicating failure */
Description

This function does the basic encoding/decoding. The first argument to control () is a handle
to an algorithm instance.

The second argument is the command id, which can be of these following values:
XDM_GETSTATUS: fill structure IMGDEC_Status whose pointer is passed as 4" argument.

XDM_SETPARAMS: set dynamic params contained in the structure whose pointer is passed
as 37 argument.

XDM_RESET: reset the decoder so next time process() is called, a new bitstream is
decoded.

XDM_SETDEFAULT: set the dynamic params to the following default values:
XDM_FLUSH: not supported in this version of JPEG decoder

58

API Reference

XDM_GETBUFINFO: get required number of 1/0O buffers and their sizes. Results are returned
in the bufInfo member of the structure IMGDEC1_Status whose pointer is passed as 4"
argument.

The third argument is a pointer to a dynamic params structure of type
IIMGDEC1_DynamicParams or IJPEGDEC1_DynamicParams (typecast to the previous one).
This argument is used whenever command ID is XDM_SETPARAMS.

The fourth argument is a pointer to a structure of type IIMGDEC1_Status or
IJPEGDEC1_Status (typecast to the previous one). This argument is used whenever
command ID is XDM_GETSTATUS or XDM_GETBUFINFO.

Preconditions

The following conditions must be true prior to calling this function; otherwise, its operation is
undefined.

control () can only be called after a successful return from alginit() and algActivate().

handle must be a valid handle for the algorithm’s instance object.
All parameter s of dynamic parameter s structure must be set before making control call to
XDM_SETPARAMS.

Postconditions

The following conditions are true immediately after returning from this function.

If the control call operation is successful, the return value from this operation is equal to
IALG_EOK; otherwise it is equal to either IALG_EFAIL or an algorithm specific return value.

The following code gives an example for initializing the base dynamic parameters for a 720x480
input.

I | MGDEC1_Dynani cPar ans dynPar ans;
I I MGDEC1_St at us st at us;

/1 Set the dynam c base paraneters

dynPar ans. si ze = si zeof (1 | MG@DEC1_Dynam cPar ans) ;
dynPar anms. numAU= XDM DEFAULT;

dynPar ans. decodeHeader = XDM DEFAULT,;

dynPar ans. di spl ayW dt h 720;

/* Set Dynamic Parans */

retVal = |1 MEECFxns->control ((I| M3DECL_Handl e) handl e, XDM _SETPARANMS,
(1l MGDEC1_Dynam cParanms *) & dynPar ans,
('l MGDECL1_St atus *) &st at us);

The following code gives an example for initializing the extended dynamic parameters for a
720x480 input.
{

59

APl Reference

I | MGDEC1_Dynani cPar ans dynPar ars;
I 1 MGDEC1_St at us st at us;
| JPEGDEC_Dynani cPar ans ext DynPar ans;

/1 Set the dynam c base paraneters

dynPar ans. si ze = si zeof (1 | MG@DEC1_Dynam cPar ans) ;
dynPar ams. numAU= XDM DEFAULT;

dynPar ans. decodeHeader = XDM DEFAULT,;

dynPar ans. di spl ayWdt h = 720;

/1l Set the extended dynam c paraneters
ext DynPar ans. i ngdecDynam cPar ans = dynPar ans;

ext DynPar ans. di sabl eEQ = 0;

ext DynPar ans. resi zeOpti on = O;

ext DynPar anms. subRegi onUpLeft X = XDM DEFAULT;
ext DynPar ans. subRegi onUpLeftY = XDM DEFAULT;
ext DynPar ans. subRegi onDownRi ght X= XDM_DEFAULT;
ext DynPar ans. subRegi onDownRi ght Y= XDM_DEFAULT;
ext DynPar ams. r ot ati on= O;

/* Control call to Set Dynam c Parans */

retVal = |1 M3DECFxns->control ((I| MSDECL_Handl e) handl e, XDM _SETPARAMS,
(1l MGDEC1_Dynani cParans *) & ext DynPar ans,
(1l MGDEC1_St atus *) &t at us);

alglnit(), al gDeactivate(), process()

5.3.4 Data Processing API

The Data processing API processes the input data.

Name

process() — basic encoding/decoding call
Synopsis

XDAS | nt 32 (*process) (I 1 MGDEC1_Handl e handl e, XDM _Buf Desc *i nBuf s,
XDM Buf Desc *out Bufs, |1 ME@ECL_InArgs *inargs, |IMEECL_Qut Args *outargs);

Arguments

I 1 MGDEC1_Handl e handle; /* algorithminstance handle */
XDM Buf Desc *i nBufs; /*al gorithminput buffer descriptor */

60

API Reference

XDM Buf Desc *out Bufs; /* al gorithmoutput buffer descriptor */
I | MGDECL_| nArgs *inargs /*al gorithmruntinme input argunents */

| | MGDECL_Qut Args *outargs /*al gorithmruntine output argunents */
Return Value

| ALG ECK; /* status indicating success */

| ALG EFAIL; /* status indicating failure */
Description

This function does the basic encoding/decoding. The first argument to pr ocess() is a handle
to an algorithm instance.

The second and third arguments are pointers to the input and output buffer descriptor data
structures respectively (see XDM Buf Desc data structure for details).

The fourth argument is a pointer to the | | MGDEC1_| nAr gs data structure that defines the run
time input arguments for an algorithm instance object.

The last argument is a pointer to the | | MGDEC1_CQut Ar gs data structure that defines the run
time output arguments for an algorithm instance object.

Note:

If you are using extended data structures, the fourth and fifth
arguments must be pointers to the extended | nAr gs and Qut Ar gs
data structures respectively. Also, ensure that the si ze field is set
to the size of the extended data structure. Depending on the value
set for the si ze field, the algorithm uses either basic or extended
parameters.

Preconditions

The following conditions must be true prior to calling this function; otherwise, its operation is
undefined.

process() can only be called after a successful return from alglnit() and algActivate().

If algorithm uses DMA resources, process() can only be called after a successful return from
DMANS_init().

handle must be a valid handle for the algorithm’s instance object.
Buffer descriptor for input and output buffers must be valid.

Input buffers must have valid input data.
Postconditions

The following conditions are true immediately after returning from this function.

61

APl Reference

If the process operation is successful, the return value from this operation is equal to
| ALG_ECK; otherwise it is equal to either | ALG_EFAI L or an algorithm specific return
value.
After successful return from process() function, algDeactivate() can be called.

Example

See test application file, jpgeTest355_filelO.c available in the \Client\Test\Src sub-directory.
See Also

alglnit(), al gDeactivate(), control ()

5.3.5 Termination API

The Termination API terminates the algorithm instance and frees up the memory space that it
uses.

Name

al gFree() — determine the addresses of all memory buffers used by the algorithm
Synopsis

XDAS I nt 32 al gFree(l ALG Handl e handl e, | ALG MenRec nenirab[]);
Arguments

| ALG Handl e handle; /* handle to the algorithminstance */

| ALG_MenRec nenifab[]; /* output array of nmenory records */
Return Value

XDAS I nt32; /* Nunber of buffers used by the algorithm*/
Description

al gFree() determines the addresses of all memory buffers used by the algorithm. The
primary aim of doing so is to free up these memory regions after closing an instance of the
algorithm.

The first argument to al gFr ee() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base address, size,
alignment, type, and memory space of all buffers previously allocated for the algorithm
instance.

For more details, see TMS320 DSP Algorithm Standard APl Reference (SPRU360).
See Also

al gAl | oc()

62

API Reference

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without
notice. Customers should obtain the latest relevant information before placing orders and should verify that such information
is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order
acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products
and applications using TI components. To minimize the risks associated with customer products and applications, customers
should provide adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright,
mask work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or
services are used. Information published by Tl regarding third-party products or services does not constitute a license from
Tl to use such products or services or a warranty or endorsement thereof. Use of such information may require a license
from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or
other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration
is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of
third parties may be subject to additional restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated T| product or service and is an unfair and deceptive
business practice. Tl is not responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product
would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an
agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and
regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal,
regulatory and safety-related requirements concerning their products and any use of Tl products in such safety-critical
applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers
must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-
critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl
products are specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as
military-grade meet military specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has
not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all
legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl
products are designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if
they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such
requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/Iprf Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303,
Dallas, Texas 75265

Copyright 2008, Texas Instruments Incorporated

63

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	
	User’s Guide
	I

