

Sequential JPEG Decoder Codec
 on DM355

User’s Guide

Literature Number: SPRUFE6B
February 2008

ii�

I

Revision History

31 July 2006 Created v. 0.1
04 Sep 2006 Updated v 0.2
03 Oct 2006 Updated with scaling v 0.3
15 Feb 2007 Minimum image width supported is 64 pixels for yuv422/420 v 0.4

 17 July 2007
Updated with XDMv1.0 specific API changes and LINUX specific
changes

 v 0.5

11 Sep 2007 Added documentation on area decode and rotation v 0.6
03 October Updated with review comments from TI v 1.0

18 Dec 2007 Updated API support and codec’s extended error details v1.1
08 Jan 2008 Updated parameter structure in API section v1.2
06 Feb 2008 Added the sample code for algCreate and control call v1.3

Read This First

iii�

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’ (TI) JPEG
Decoder implementation on the DM355 platform. It also provides a detailed Application
Programming Interface (API) reference and information on the sample application that
accompanies this component.

TI’s codec implementations are based on the eXpressDSP Digital Media (XDM) v1.0
standard. XDM is an extension of the eXpressDSP Algorithm Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate TI’s codecs with
other software to build a multimedia system based on the DM355 platform.

This document assumes that you are fluent in the C language, having working knowledge of
Digital Signal Processing (DSP), digital signal processors, and DSP applications. Good
knowledge of eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP Digital
Media (XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, introduces the XDAIS and XDM standards. It also provides an
overview of the codec and lists its supported features.

 Chapter 2 - Installation Overview, describes how to install, build, and run the codec.

 Chapter 3 - Sample Usage, describes the sample usage of the codec.

 Chapter 4 – Features Supported, describes the additional features supported in jpeg
decoder.

 Chapter 5 - API Reference, describes the data structures and interface functions used
in the codec.

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such as, XDAIS and XDM.
To obtain a copy of any of these TI documents, visit the Texas Instruments website at
www.ti.com.

 TMS320 DSP Algorithm Standard API Reference (SPRU360) describes all the APIs that
are defined by the TMS320 DSP Algorithm Interface Standard (also known as XDAIS)
specification.

http://www.ti.com/

Read This First

iv�

 Technical Overview of eXpressDSP - Compliant Algorithms for DSP Software Producers
(SPRA579) describes how to make algorithms compliant with the TMS320 DSP
Algorithm Standard which is part of TI’s eXpressDSP technology initiative.

 xDAIS-DM (Digital Media) User Guide (SPRUEC8)

 Using DMA with Framework Components for C64x+ (SPRAAG1).

Related Documentation

You can use the following documents to supplement this user guide:

 CCITT Recommendation T.81, specifying the JPEG standard. Available at
http://www.w3.org/Graphics/JPEG/itu-t81.pdf

Abbreviations

The following abbreviations are used in this document.

Table 1-1. List of Abbreviations

Abbreviation Description

CIF Common Intermediate Format

DCT Discrete Cosine Transform

DMA Direct Memory Access

DMAN3 DMA Resource Manager

EVM Evaluation Module

IDMA3 DMA Resource specification and
negotiation protocol

JPEG Joint Photographic Experts
Group

MCU Minimum Coded Unit

XDAIS eXpressDSP Algorithm Interface
Standard

XDM eXpressDSP Digital Media

YUV Raw Image format
Y: Luminance Component
U,V : Chrominance components

Exif Exchangeable image file format

JFIF JPEG File Interchange Format

Read This First

v�

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and command line
commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, please quote the product name (JPEG
Decoder on DM355) and version number. The version number of the codec is included in
the Title of the Release Notes that accompanies this codec.

Trademarks

Code Composer Studio and eXpressDSP are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

Software Copyright

Software Copyright © 2008 Texas Instruments Inc.

vi�

Contents

Chapter 1 ..10

1.1 Overview of XDAIS, XDM and IDMA3...11
1.1.1 XDAIS Overview ...11
1.1.2 XDM Overview ..11
1.1.3 IDMA3 Overview ...12

1.2 Overview of JPEG Decoder ..13
1.3 Supported Services and Features...13
1.4 Limitations ..14

Chapter 2 ..15
2.1 System Requirements...16

2.1.1 Hardware...16
2.1.2 Software ..16

2.2 Installing the Component ..16
2.3 Building the Sample Test Application on Linux..17
2.4 Configuration Files..17

2.4.1 Generic Configuration File ..18
2.4.2 Decoder Parameter File ..18

Chapter 3 ..20
3.1 JPEG Decoder Client interfacing constraints...21
3.2 Overview of the Test Application – Usage in single instance scenario22

3.2.1 Parameter Setup ...23
3.2.2 Algorithm Instance Creation and Initialization...23
3.2.3 Process Call with algActivate and algDeactivate ..24
3.2.4 Algorithm Instance Deletion ..24

3.3 Usage in multiple instance scenario..24
3.3.1 Process Call with algActivate and algDeactivate ..25

Chapter 4 ..26
4.1 Bitstream ring buffer in DDR ...27

4.1.1 Mode of operation ...28
4.1.2 Constraint ..28
4.1.3 Guidelines for using ring buffer with JPEG decoder ...29

4.2 Slice-mode processing..30
4.2.1 Slice mode processing constraints ..31
4.2.2 Slice mode processing overhead...31
4.2.3 How to operate slice-mode processing using JPEG APIs31
4.2.4 Example of application code that operates slice-mode decoding.......................32

4.3 Resizing..33
4.4 Rotation ..34
4.5 Area Decode...34

Chapter 5 ..36
5.1 Symbolic Constants and Enumerated Data Types ..37
5.2 Data Structures...40

5.2.1 Common XDM Data Structures...41
5.2.1.1 XDM1_BufDesc ... 42

7�

5.2.1.2 XDM1_SingleBufDesc ... 42
5.2.1.3 XDM1_AlgBufInfo... 42
5.2.1.4 IIMGDEC1_Fxns.. 43
5.2.1.5 IIMGDEC1_Params.. 44
5.2.1.6 IIMGDEC1_DynamicParams ... 45
5.2.1.7 IIMGDEC1_InArgs .. 45
5.2.1.8 IIMGDEC1_Status.. 46
5.2.1.9 IIMGDEC1_OutArgs.. 47
5.2.1.10 IDMA3_Handle .. 47
5.2.1.11 IDMA3_ChannelRec .. 49

5.2.2 JPEG Decoder Data Structures ..50
5.2.2.1 IJPEGDEC_Params .. 50
5.2.2.2 IJPEGDEC_DynamicParams.. 51
5.2.2.3 IJPEGDEC_Status .. 52
5.2.2.4 IJPEGDEC_InArgs ... 53
5.2.2.5 IJPEGDEC_OutArgs .. 53

5.3 Interface Functions ...54
5.3.1 Creation APIs ..54
5.3.2 Initialization API...56
5.3.3 Control Processing API ...58
5.3.4 Data Processing API ...60
5.3.5 Termination API...62

viii�

Figures

Figure 1-1. XDM interface to the client application ...12
Figure 2-1. Component Directory Structure ...16
Figure 3-1. Test Application Sample Implementation..22
Figure 4-1. Ring buffer before JPEG decoder starts ...27
Figure 4-2. Ring buffer shortly after JPEG decoder starts27
Figure 4-3. Ring buffer once JPEG decoder fills lower half.................................27
Figure 4-4. Ring buffer once application starts filling first half and JPEG decode

starts processing second half. ...28
Figure 4-5. Area Decode Example..35

ix�

Tables

Table 1-1. List of Abbreviations ... iv
Table 2-1. Component Directories ..17
Table 5-1. List of Enumerated Data Types ...37
Table 5-2. IJPEGDEC_ErrorStatus List ...39

10�

Chapter 1

Introduction

This chapter introduces XDAIS, XDM, and IDMA3. It also provides an overview of TI’s
implementation of the JPEG Decoder on the DM355 platform and its supported features.

Sequential JPEG Decoder User Guide

11�

1.1 Overview of XDAIS, XDM and IDMA3

TI’s multimedia codec implementations are based on the eXpressDSP Digital Media (XDM)
1.0 standard. XDM is an extension of the eXpressDSP Algorithm Interface Standard (XDAIS).
IDMA3 is the standard interface to algorithms for DMA resource specification and negotiation
protocols. This interface allows the client application to query and provide the algorithm its
requested DMA resources.

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the abstract interface IALG.
The IALG API takes the memory management function away from the algorithm and places it
in the hosting framework. Thus, an interaction occurs between the algorithm and the
framework. This interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to be moved around
while an algorithm is operating in the system. In order to facilitate these functionalities, the
IALG interface defines the following APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory requirements to the
client application. The algInit() API allows the algorithm to initialize the memory allocated
by the client application. The algFree() API allows the algorithm to communicate the
memory to be freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process data in real-time. The
algActivate() API provides a notification to the algorithm instance that one or more
algorithm processing methods is about to be run zero or more times in succession. After the
processing methods have been run, the client application calls the algDeactivate() API
prior to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(), algNumAlloc(),
and algMoved(). For more details on these APIs, see TMS320 DSP Algorithm Standard API
Reference (SPRU360).

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any codec into your
multimedia system. For example, if you are building an imaging decoder system, you can use
any of the available image decoders (such as Sequential JPEG, Progressive JPEG Decoder)
in your system. To enable easy integration with the client application, it is important that all
codecs with similar functionality use similar APIs. XDM was primarily defined as an extension
to XDAIS to ensure uniformity across different classes of codecs (for example audio, video,
image, and speech). The XDM standard defines the following two APIs:

 control()

 process()

Sequential JPEG Decoder User Guide

12�

The control() API provides a standard way to control an algorithm instance and receive
status information from the algorithm in real-time. The control() API replaces the
algControl() API defined as part of the IALG interface. The process() API does the
basic processing (encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also standardizes the
generic parameters that the client application must pass to these APIs. The client application
can define additional implementation specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

 Figure 1-1. XDM interface to the client application

As depicted in the figure, XDM is an extension to XDAIS and forms an interface between the
client application and the codec component. XDM insulates the client application from
component-level changes. Since TI’s multimedia algorithms are XDM compliant, it provides
you with the flexibility to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-compliant JPEG still image
decoder, then you can easily replace JPEG with another XDM-compliant image decoder with
minimal changes to the client application.

For more details, see xDAIS-DM (Digital Media) User Guide (SPRUEC8b [XDM v1.0 is
employed]).

1.1.3 IDMA3 Overview

Client applications use the algorithm’s IDMA3 interface to query the algorithm’s DMA resource
requirements and grant the algorithm logical DMA resources via handles. Figure 1-1 shows a
typical IDMA3 interface implemented by the algorithm module, which is used by the client
applications to query the algorithm’s DMA needs. The algorithm specifies the number of
separate EDMA/QDMA channels and PaRamSets it requires, through memRecs. The IDMA3
standard defines following APIs:

 dmaChangeChannels()

 dmaGetChannelCnt()

 dmaGetChannels()

 dmaInit()

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

Sequential JPEG Decoder User Guide

13�

dmaChangeChannels() is called by an application whenever logical channels are moved at
run-time. This allows for the application to re-initialize the channel properties whenever allocated
resources are not available. dmaGetChannelCnt() is called by an application to query an
algorithm about its number of logical DMA channel requests. dmaGetChannels() is called by
an application to query an algorithm about its DMA channel requests at initialization time, or to get
the current channel holdings. Through this API, the algorithm specifies the number of TCCs and
PaRamSets it requires and the properties of these resources when called during initialization time.
dmaInit() is called by an application to grant DMA handle(s) to the algorithm at initialization.

For more details, see Using DMA with Framework Components for C64x+ (SPRAAG1).

1.2 Overview of JPEG Decoder

JPEG is the ISO/IEC recommended standard for image compression.

See the CCITT Recommendation T.81, specifying the JPEG standard document at
http://www.w3.org/Graphics/JPEG/itu-t81.pdf for details on the JPEG encoding/decoding
process.

1.3 Supported Services and Features

This user guide accompanies TI’s implementation of JPEG Decoder on the DM355 platform.

This version of the codec has the following supported features of the standard:

 eXpressDSP™ Algorithm Interface Standard (XDAIS) compliant

 eXpressDSP Digital Media (xDM) v1.0 interface and IDMA3 compliant

 Support baseline sequential process with the following limitations:

 Cannot support non-interleaved scans

 Only supports 1 and 3 components

 Huffman tables and quantization tables for U and V components must be the same

 Supports a maximum of four (two tables each) for AC and DC DCT coefficients

 Supports YUV 422 interleaved output format only [Planar output is not supported]

 Supports yuv420, yuv422, yuv444, gray level with 8x8 pixels MCU

 Supports 8-bit quantization tables

 Supports frame level decoding of images

 Images with resolutions up to 700 Mpixels can be decoded. This is the theoretical
maximum; however, only images up to 64 Mpixels have been tested. If the codec memory
and I/O buffer requirements exceed the DDR memory availability for frame based
decoding, use ring buffer and slice mode decoding to decode higher resolution images.

 JPEG File Interchange Format (JFIF) header is skipped

http://www.w3.org/Graphics/JPEG/itu-t81.pdf

Sequential JPEG Decoder User Guide

14�

 Supports frame level re-entrancy for multiple instance support

 Supports resizing by various factors from 1/8 to 7/8

 Supports frame pitch greater than picture width, specified as display width parameter

 Supports Rotation and Decode area individually, but does not support both together

 Supports limited IDMA3 interface with user-configurable additional PaRamSet
requirements

 Supports ring buffer configuration of bitstream buffer for reducing buffer size requirement

 Supports Rotation of 90, 180 and 270 degree

 Validated on DM355 EVM (MV 4.0)

1.4 Limitations
The limitations will not be removed in future releases. These limitations are not defects, but
intentional or known deficiencies.

 Does not support Extended DCT-based process

 Does not support Lossless process

 Does not support Hierarchical process

 Does not support progressive scan

 Supports YUV 422 interleaved output format only. Planar output is not supported.

 Does not support yuv411, gray level with 16x16 pixels MCU

 Does not support image width less than 64 pixels for yuv420/422 and 32 pixels for yuv444

 Does not support source images of 12-bits per sample

 Ring buffer size should be multiple of 4096 Bytes

 Only limited support of IDMA3 interface. See Sec 3.1 for details.

Sequential JPEG Decoder User Guide

15�

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and instructions for
installing the codec component. It also provides information on building and running the
sample test application.

Sequential JPEG Decoder User Guide

16�

2.1 System Requirements

This section describes the hardware and software requirements for the normal functioning of
the codec component.

2.1.1 Hardware

This codec has been tested as an executable on DM355 board.

2.1.2 Software

The following are the software requirements for the normal functioning of the codec:

 Linux: MV Linux Pro 4.0 (kernel 2.6.10)

 Code Generation Tools: This project is compiled, assembled, and linked using the
arm_v5t_le-gcc compiler.

2.2 Installing the Component

The codec component is released as tar-zipped file. To install the codec, follow the
instructions in the Release notes. The code location is as follows:

JPEG Decoder algorithm code is in a directory jpegdec placed in DM355Codecs/release.

Figure 2-1 shows the sub-directories structure of jpegdec directory.

.

Figure 2-1. Component Directory Structure

Table 2-1 provides a description of the sub-directories created in the jpegdec directory.

Sequential JPEG Decoder User Guide

17�

Table 2-1. Component Directories

Sub-Directory Description

jpegdec /Docs Contains user guide, datasheet, and release notes

jpegdec /Client/Test/Src Contains application C files

jpegdec /Client/Test/Inc Contains header files needed for the application code

jpegdec /Client/Test/TestVecs Contains test vectors and configuration files

/Include Contains the include files needed by application and
codec.

/lib Contains JPEG Decoder and other support libraries

/bin Contains JPEG Decoder executable “jpgdec”

The DM355 JPEG Decoder library is put into the DM355Codecs/release/lib directory and the
xdm headers are put in DM355Codecs/release/include directory.

2.3 Building the Sample Test Application on Linux

The sample test application that accompanies this codec component will take jpeg input files
and dumps output YUV files as specified in the configuration file. To build and run the sample
test application, follow these steps:

1) Verify that libjpegdec.a library is present in DM355Codecs/release/lib directory.

2) Verify that support libraries (libimx.a, libimcop.a, libcosl.a, libdm355.a, libcmem.a) are
present in DM355Codecs/release/lib directory.

3) Change directory to DM355Codecs/release/jpegdec/Client/Test/Src and type “make clean”
followed by a “make” command. This will use the makefile in that directory to build the test
executable jpgdec into the DM355Codecs/release/bin directory.

4) To run the jpgdec executable on your DM355 EVM board, see the following instructions.

 Set up the DM355 environment.

For information about setting up the DM355 environment, see the DVEVM Hardware Setup
and the DVEVM Software Setup chapters in the DVEVM Getting Started Guide.

 Copy the binary jpgdec and the entire TestVecs directory into target directory.

 Run following commands from prompt
$./jpgdec

2.4 Configuration Files

This codec is shipped along with:

Sequential JPEG Decoder User Guide

18�

 A generic configuration file (Testvecs.cfg) – specifies input .jpg file, output yuv file and
parameter file for each test case.

 A Decoder parameter file (Testparams.cfg) – specifies the configuration parameters used
by the test application to configure the Decoder for a particular test case.

2.4.1 Generic Configuration File

The sample test application shipped along with the codec uses the configuration file,
Testvecs.cfg, for determining the parameter file for each test case. The Testvecs.cfg file is
available in the DM355Codecs/release/jpegdec/Client/Test/TestVecs/Config sub-directory.

The format of the Testvecs.cfg file is:

X
Config
Input
Output/Reference

where:

 X:

0 - for random pattern comparison, no input file read, no output file is created.
Compliance checking is done by comparing checksum.

1 - for compliance checking with reference output file. Input YUV file read, no output file is
created

2 - for writing the output to the output file

Please note that in the current test app file provided only X=2 is supported and other
values of X is ignored.

 Config is the Decoder parameter file.

 Input is the input JPEG file name (use complete path).

 Output/Reference is the output YUV file name.

A sample Testvecs.cfg file is as shown:

2
./TestVecs/Config/Testparams1.cfg
./TestVecs/Input/420/RST_01.jpg
./TestVecs/Output/420/RST_01.yuv
2
./TestVecs/Config/Testparams1.cfg
./Test/TestVecs/Input/420/RST_02.jpg
./Test/TestVecs/Output/420/RST_02.yuv

2.4.2 Decoder Parameter File

The decoder configuration file, Testparams.cfg, contains the configuration parameters
required for the decoder. The Testparams.cfg file is available in the
/Client/Test/TestVecs/Config sub-directory.

Sequential JPEG Decoder User Guide

19�

A sample Testparams.cfg file is as shown:

New Input File Format is as follows
<ParameterName> = <ParameterValue> # Comment

##
##########
Parameters
##
##########
Resize = 0 # 0: No resizing, 1: resize by 1/2, resize by 1/4, resize
by 1/8
DisplayWidth = 0 # 0: display width = image output width
rotation = 0 # 0: No Rotation, 90, 180, 270
maxWidth = 720
maxHeight = 480
forceChromaFormat = 4 # 0: XDM_DEFAULT, 4: 422_ILE
dataEndianness = 1
subRegionUpLeftX = 0
subRegionUpLeftY = 0
subRegionDownRightX = 0
subRegionDownRightY = 0

Any field in the IIMGDEC1_Params structure (see Section 5.2.1.5) can be set in the
Testparams.cfg file using the syntax shown above. If you specify additional fields in the
Testparams.cfg file, you must appropriately modify the array sTokenMap in the test
application to handle these fields.

Sequential JPEG Decoder User Guide

20�

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application that accompanies
this codec component.

Sequential JPEG Decoder User Guide

21�

3.1 JPEG Decoder Client interfacing constraints

The following constraints should be taken into account when implementing the client for
the JPEG decoder library in this release:

1) DMA requirements of JPEG Decoder: Current implementation of the JPEG decoder uses the
following TCCs for its DMA resource requirements along with its associated PaRamSets:

Channel Number Associated PaRamSet Numbers

33 to 47, 52 to 55 33 to 47, 52 to 55 (PaRamSet number
= channel number)

 Apart from these 19 TCCs requirements, it also needs 8 more PaRamSets that are
allocated through the IDMA3 interface.

2) The client application shall map all the DMA channels used by JPEG decoder to the same
queue. This is required for the codec to function normally. Codec shall not map channels to
queue.

3) If there are multiple instances of a codec and/or different codec combinations, the application
can use the same group of channels and PaRAM entries across multiple codecs. AlgActivate
and AlgDeactivate calls, implemented by the codec and made by the client application
perform context save/restore to allow multiple instances of the same codec and/or different
codec combinations.

4) As all codecs use the same hardware resources, only one process call per codec should be
invoked at a time (frame level reentrancy). The process call needs to be wrapped within
activate and deactivate calls for context switch. Refer to XDM specification on
activate/deactivate.

5) If multiple codecs are running with frame level reentrancy, the client application has to
perform time multiplexing of process calls of different codecs to meet desired timing
requirements between video/image frames.

6) The ARM and DDR clock to be set to required frequency for running single or multiple
codecs.

7) The codec combinations feasibility is limited by processing time (computational hardware
cycles) and DDR bandwidth.

8) Codec atomicity is supported at frame level processing only. The process call has to run until
completion before another process call can be invoked.

Sequential JPEG Decoder User Guide

22�

3.2 Overview of the Test Application – Usage in single instance scenario

The test application exercises the IIMGDEC1_Params extended class of the JPEG Decoder
library. The main test application files are jpgdTest355.c and testFramework.h. These files are
available in the /Client/Test/Src and /Client/Test/Inc sub-directories respectively.

The following figure illustrates the sequence of APIs exercised in the sample test application.

Integration Layer XDM-XDIAS-IDMA3 Interface Codec Library

Param Setup

Algorithm
Instance creation
and initialization

DMA channels
request and

granting

Process call

Algorithm
instance deletion

Figure 3-1. Test Application Sample Implementation

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

algNumAlloc ()

algAlloc ()

algInit ()

dmaChannelCnt ()

dmaGetChannels ()

dmaInit ()

process ()

algActivate ()

algDeactivate ()

algFree ()

algNumAlloc ()

Sequential JPEG Decoder User Guide

23�

3.2.1 Parameter Setup

Each codec component requires various codec configuration parameters to be set at
initialization. The test application obtains the required parameters from the Decoder
configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, Testvecs.cfg and reads the compliance checking
parameter Decoder configuration file name (Testparams.cfg), and, if applicable, the input
file name, and output/reference file name.

2) Opens the Decoder configuration file, (Testparams.cfg) and reads the various configuration
parameters required for the algorithm. For more details on the configuration files, see
Section 

3) Sets the IIMGDEC1_Params structure based on the values it reads from the Testparams.cfg
file.

4) Reads the input bit stream into the application input buffer.

After successful completion of the above steps, the test application does the algorithm
instance creation and initialization.

3.2.2 Algorithm Instance Creation and Initialization

In this logical block, ALG_create() is called by the test application and accepts the various
initialization parameters and returns an algorithm instance pointer. The following APIs
implemented by the codec are called in sequence by ALG_create():

1) algNumAlloc() - To query the algorithm about the number of memory
records it requires.

2) algAlloc() - To query the algorithm about the memory requirement to be filled in the
memory records.

3) algInit() - To initialize the algorithm with the memory structures provided by the
application.

A sample implementation of the create function that calls algNumAlloc(), algAlloc(),
and algInit() in sequence is provided in the ALG_create() function implemented in the
alg_create.c file.

In addition, ALG_create() use some APIs that deal with memory allocation, such as:
_ALG_allocMemory(), _ALG_freeMemory(). They are provided in file alg_malloc.c .

Apart from algorithm memory allocation, the application needs to call the IDMA3_Create()
function. This function uses the algorithm instance created in the previous call of ALG_create
and provides the algorithm with the requisite DMA resources. The following APIs implemented
by the algorithm are called in the following sequence:

1) dmaGetChannelCnt() - To query the algorithm about the number of memory records it
requires. In the present implementation, it always defaults to 1.

2) dmaGetChannels() - To query the algorithm about the number of additional PaRamSets
it requires in the channel records. In the current implementation, the algorithm uses hard-
coded channels and its associated TCCs and PaRamSets internally. The client using the
algorithm’s IDMA3 interface allocates additional PaRamSets requirements.

Sequential JPEG Decoder User Guide

24�

3) dmaInit() - To initialize the algorithm with continuous PaRamSet addresses allocated
to the algorithm during this instance. A sample implementation of this function is included
in the idma3_create.c file.

3.2.3 Process Call with algActivate and algDeactivate

After algorithm instance creation and initialization, the test application does the following:

1) Calls algActivate(), which initializes the decoder state and some hardware memories
and registers.

2) Sets the input and output buffer descriptors required for the process() function call.

3) Calls the process() function to encode a single frame of data. The inputs to the process
function are input and output buffer descriptors, pointer to the IIMGDEC1_InArgs and
IIMGDEC1_OutArgs structures. process() function should be called multiple times to
decode multiple images.

4) Call algDeactivate(), which performs releasing of hardware resources and saving of
decoder instance values.

5) process() is made a blocking call, but an internal OS specific layer enables the process
to be pending on a semaphore while hardware performs complete JPEG decode.

6) Other specific details of the process() function remains same as the described in section
3.1.3 and constraints describe in sec 3.1.1 are applicable.

NOTE: algActivate () is a mandatory call before process(), as it does hardware
initialization.

3.2.4 Algorithm Instance Deletion

Once encoding is complete, the test application must delete the current algorithm instance.
The following APIs are called in sequence:

1) algNumAlloc() - To query the algorithm about the number of memory records it used

2) algFree() - To query the algorithm to get the memory record information and then free
them up for the application

A sample implementation of the delete function that calls algNumAlloc() and algFree()
in sequence is provided in the ALG_delete() function implemented in the alg_create.c file.

3.3 Usage in multiple instance scenario

If the client application supports multiple instances of the JPEG decoder, initialization and
process calls are altered. One of the main issues in converting a single instance decoder to a
multiple instance decoder is resource arbitration and data integrity of shared resources
between various codec instances. Resources that are shared between instances and need to
be protected include:

1) DMA channels and PaRamSets

2) JPEG Hardware Co-Processors and their memory areas

To protect one instance of the JPEG decoder from overwriting into these shared resources
when the other instance is actually using them, the application needs to implement mutexes in

Sequential JPEG Decoder User Guide

25�

the test-applications. The application developer can implement custom resource sharing
mutex and call the algorithm APIs after acquiring the corresponding mutex. Since all codecs
(JPEG encoder/decoder and MPEG-4 encoder/decoder) use the same hardware
resources, only one codec instance can run at a time.

Here are some of the API combinations that need to be protected with single mutex.

 dmaInit() of one instance initializes DMA resources when the other instance is actually
active in its process() function.

 control() call of one instance sets post-processing function properties by setting the
command length, etc. when the other instance is active or has already set its post
processing properties.

 process() call of one instance tries to use the same hardware resources [co-processor
and DMA] when the other instance is active in its process() call.

If multiple instances of the JPEG decoder are used in parallel, the hardware must be reset
between every process call and algorithm memory to be restored. This is achieved by calling
algActivate() and algDeactivate() before and after process() calls.

Thus, the Process call section as explained in the above section would change to include both
algActivate() and algDeactivate() as mandatory calls of the algorithm.

3.3.1 Process Call with algActivate and algDeactivate

After algorithm instance creation and initialization, the test application does the following:

1) Sets the input and output buffer descriptors required for the process() function call.

2) Calls algActivate(), which initializes the decoder state and some hardware
memories and registers.

3) Calls the process() function to encode a single frame of data. The inputs to the
process function are input and output buffer descriptors, pointer to the IIMGENC1_InArgs
and IIMGENC1_OutArgs structures.

4) Calls algDeactivate(), which performs releasing of hardware resources and saving
of decoder instance values.

5) Other specific details of the process() function remains same as the described in section
3.1.3 and constraints describe in sec 3.1.1 are applicable.

NOTE: In the multiple instance scenario, algActivate() and algDeactivate() are
mandatory function calls before and after process()respectively.

Sequential JPEG Decoder User Guide

26�

Chapter 4

Feature Descriptions

This chapter provides some description on special features not commonly found in a standard
JPEG decoder such as:

 Ring-buffer configuration of input bit stream buffer.

 Slice-mode processing.

 Resizing

 Area decode

 Rotation

Sequential JPEG Decoder User Guide

27�

4.1 Bitstream ring buffer in DDR

To minimize the memory requirement, the JPEG decoder reads the JPEG bitstream from a
circular or ring buffer residing in DDR, which acts as an intermediary storage area between
the originating storage media (SD card, HD, memory stick, etc.) and the decoder. Therefore,
the size of the ring buffer can be much smaller than the final bitstream’s size, effectively
reducing the amount of physical DDR memory allocated for storing the bitstream. The
complete bitstream is processed eventually because as JPEG decodes one half of the ring
buffer, the application fills the other half from the media. The JPEG decoder and the
application operate in parallel and on a different half, thus sustaining the maximum JPEG
processing throughput.

The figure below depicts the state of the ring buffer at different states of JPEG processing:

Lower half full Upper half full

Figure 4-1. Ring buffer before JPEG decoder starts

 Upper half full

Figure 4-2. Ring buffer shortly after JPEG decoder starts

 Upper half full

Figure 4-3. Ring buffer once JPEG decoder fills lower half

JPEG decoder

Lower half partially decoded

JPEG reads and decodes data from ring buffer

JPEG decoder

Lower half empty

JPEG stops reading data from ring buffer and
calls application callback function

Application callback

Sequential JPEG Decoder User Guide

28�

Figure 4-4. Ring buffer once application starts filling first half and JPEG decode starts
processing second half.

4.1.1 Mode of operation

The address and size of the ring buffer are passed to the JPEG decoder as runtime input
arguments of the process function. The JPEG decoder manages this output ring buffer as
follows.

As MCUs are decoded, the application fills the ring buffer with the bitstream. Each time half of
the buffer is decoded, the decoder will call a user-defined callback function. That callback
function of type XDAS_Void (*halfBufCB)(Uint32 curBufPtr, XDAS_Void*arg)is
passed to the decoder as creation parameter during ALG_create() function call.

The input argument curBufPtr is passed by the decoder and its value is the pointer to the
first free byte in the ring buffer. All the bytes located before curBufPtr are bytes already
decoded by the decoder and can be overwritten by new bitstream data. The callback function
must save curBufPtr so next time it is called, it knows where to overwrite the data from.
However, the first time it is called is a particular case, as the starting point of the valid data is
the starting address of the ring buffer.

Note that successive values of curBufPtr are not necessarily in increasing order due to the
circular nature of the ring buffer. The application must implement the case where curBufPtr
rolls back to the beginning of the ring buffer.

The second argument XDAS_Void*arg is a generic pointer that can be typecast to a pointer
to a user-defined data structure and can be used by the application to pass extra information
needed during the execution of the callback function. The example in section 4.1.3 uses that
feature to pass a structure that keeps track of the transfers between the ring buffer and the
media storage.

4.1.2 Constraint

The ring buffer size must be multiple of 4096 bytes.

JPEG decoder Media storage

Lower half getting filled by application Upper half processed by JPEG

Sequential JPEG Decoder User Guide

29�

4.1.3 Guidelines for using ring buffer with JPEG decoder

This section introduces few guidelines and tips to help the programmer to implement ring
buffer into an application using JPEG decoder. It doesn’t provide all the steps required to
initialize/run the JPEG decoder but only those related to ring buffer handling.

The following structure Media2Ring can be used to keep track of the state of the transfers
between the ring buffer and the storage media.

typedef struct Media2Ring{
 Int8* mediaPtr; // Pointer to first free location in the media buffer
 Int8* ringCurPtr; // Pointer to the first free location in the ring buffer
 Int8* ringStartPtr; // Pointer to the start of the ring buffer
 Int8* ringEndPtr; // Pointer to the end of the ring buffer
} Media2Ring;

The members mediaPtr and ringCurPtr will be updated by the half-buffer callback function
each time they are called.

Assuming that there is a ring buffer array and media array defined as global:
Uint8 ringbuf[RINGBUFSIZE];
Uint8 media[MAX_IMG_WIDTH*MAX_IMG_HEIGHT*2];

The application creates and initializes an instance of Media2Ring as follows:
Media2Ring media2ring={media, ringbuf, ringbuf, ringbuf + RINGBUFSIZE};

Note that the callback function that handles half-buffer can accept a second argument in
addition to curBufPtr . Use this feature by passing the pointer to media2ring to the callback
function each time the decoder calls it.

The pointer to callback function and its second argument are passed to the decoder during
creation time in the specific extended JPEG creation parameters structure extn_params of type
IJPEGDEC_Params.

extn_params.halfBufCB = (XDAS_Int32 (*)())JPEGDEC_TI_DM355_HalfBufCB;
extn_params.halfBufCBarg= (void*)&media2ring;

Before calling the process() function, starting address of ring buffer and its size are
communicated to the decoder as run-time input parameters to the process function.
inArgs.ringBufStart= (XDAS_UInt8*)ringbuf;
inArgs.ringBufSize= RINGBUFSIZE;

The members ringCurPtr and mediaPtr of media2ring must be reinitialized to their initial values
before each call to process() since the callback function updates them.
ing2media.mediaPtr= media;
media2ring.ringCurPtr= ringbuf;

Also, the ring buffer must be filled by the application prior to the first call of the JPEG
decoder’s process function:
memcpy(media2ring.ringCurPtr, media2ring.mediaPtr, RINGBUF_SIZE);
media2ring.mediaPtr+= RINGBUF_SIZE;

The process() function is normally called. During JPEG execution, the half-buffer callback
function is called by the codec each time half-buffer boundary is crossed. The responsibility of
the callback function is to refresh the portion of data in the ring buffer delimited by

Sequential JPEG Decoder User Guide

30�

media2ring.ringCurPtr and curBufPtr, the latter parameter being the first input argument of the
callback function.

The following is an example of half-buffer callback implementation using memcpy function for
transfers. A more efficient implementation might use EDMA for memory transfers. The
callback function should not wait for the EDMA transfers to complete before returning to JPEG
to allow parallel processing with JPEG.

XDAS_Void JPEGDEC_TI_DM355_HalfBufCB(XDAS_Int32 bufPtr, void *arg)
{
 Uint32 i, x, y, numToXfer;
 Media2Ring *media2ring= arg;

/*
Detect if a pointer rollback occurred due the circular nature of the ring
buffer
If it didn’t occur then transfer is normal.
*/
 if ((XDAS_Int8*)bufPtr > media2ring->ringCurPtr){
 numToXfer= (XDAS_Int8*)bufPtr-media2ring->ringCurPtr;
 memcpy(media2ring->ringCurPtr, media2ring->mediaPtr, numToXfer);
 media2ring->mediaPtr+= numToXfer;
 media2ring->ringCurPtr+= numToXfer;
 }
 /*
If pointer rollback occurred then copy first end of the ring buffer into
the storage media and then copy the portion at the beginning of the ring
buffer.
*/
 else {
 numToXfer=(XDAS_Int8*)media2ring->ringEndPtr-

media2ring->ringCurPtr;
 memcpy(media2ring->ringCurPtr, media2ring->mediaPtr, numToXfer);
 media2ring->mediaPtr+= numToXfer;
 media2ring->ringCurPtr= media2ring->ringStartPtr;
 numToXfer= (XDAS_Int8*)bufPtr-media2ring->ringStartPtr;
 memcpy(media2ring->ringCurPtr, media2ring->mediaPtr, numToXfer);
 media2ring->mediaPtr+= numToXfer;
 media2ring->ringCurPtr+= numToXfer;
 }

 return;
}

Note how the members mediaPtr and ringCurPtr of the structure Media2Ring are updated. At
the exit of the callback function, media2ring->ringCurPtr should be the same value as bufPtr.

4.2 Slice-mode processing

Instead of processing an entire frame in one shot, JPEG can be configured so a call to
process only decodes a slice of the frame.

To decode an entire frame, several calls to process function are needed. Between calls, it is
possible to change the output pointer to YUV data. However, contrary to the JPEG decoder,
the output pointer cannot be changed.

Sequential JPEG Decoder User Guide

31�

This feature is useful for a system that doesn’t have enough memory to store the YUV output
data of the entire frame dumped by the decoder. The slice based decode feature allows a
smaller memory footprint to be used.

4.2.1 Slice mode processing constraints

A slice size is expressed in number of MCUs and must be a multiple of the number of MCUs
along the image’s width, x 2. For instance, if the image width is W pixels and its color format is
yuv422, then a slice size must be multiple of (W/16) x 2.

The slice size must remain constant in the processing of a frame; it is not possible to mix
different slice sizes within the processing of the same frame. Only the last slice can be of
different size, as it ends with EOI marker.

4.2.2 Slice mode processing overhead

Because there is control overhead each time JPEG is started/stopped, you should try to
process as few slices as possible per frame. For instance, a 1.2 Mpix frame partitioned in 20
slices would incur 15% overhead versus 11% overhead for a frame partitioned in 10 slices.

Also the larger the frame is, the less impact the overhead has on the overall processing time.
For instance, given a 4.4 Mpix frame, the overhead would be only 4% for a 20 slices frame
and 2% for a 10 slices frame.

4.2.3 How to operate slice-mode processing using JPEG APIs

Slice-mode processing is controlled by the run-time parameter numAU of the structure
IIMGDEC1_DynamicParams. Run time parameters are set when calling the control API. If
numAU is set to XDM_DEFAULT then entire frame will be decoded when the process API is
called. Otherwise, it must be set to the number of MCUs contained in a slice.

The parameter numAU should be set such that it is multiple of (W/w) x 2, where W is the width
of the image and w is the width of a MCU.

If that constraint is not respected, the decoder automatically rounds up numAU to the next valid
value and returns it in the structure IIMGDEC1_Status. It is then the responsibility of the
application to use this corrected numAU as the effective slice’s size.

The process API is then called as many times as there are slices in the image. Note that the
process API returns the current position of the input and output pointers in the member
curInPtr and curOutPtr of the IJPEGDEC_OutArgs structure. The curOutPtr value
can be used to initialize correctly the output buffer pointers next time the process API is
called. If the output buffer pointer is equal to the currOutPtr value returned by the previous
call to process API, then slices are stitched together as non-slice processing of a whole
frame would do.

Note that JPEG decoder slice based decoding is simpler to operate than JPEG decoder’s
because there is no need to update a sliceNum parameter each time process function is
called and last slice does not require special parameter settings.

Slice-mode decoding seamlessly operates with the input bitstream’s ring-buffer configuration
so both are automatically enabled.

Sequential JPEG Decoder User Guide

32�

4.2.4 Example of application code that operates slice-mode decoding

The following example implements the different steps described in the previous section. Note
that some initialization sections are skipped, see the file jpgdTest355.c for the full example.

inArgs.ringBufStart= ringbuf;

inArgs.ringBufSize= RINGBUF_SIZE;

/* Basic Algorithm process() call, to parse header */

retVal = IIMGDECFxns->process(

(IIMGDEC1_Handle)handle,

(XDM1_BufDesc *)&inputBufDesc,

 (XDM1_BufDesc *)&outputBufDesc,

 (IIMGDEC1_InArgs *)&inArgs,

 (IIMGDEC1_OutArgs *)&outArgs);

bytesConsumed += outArgs.imgdecOutArgs.bytesconsumed;

/* Call get status to get number of total MCUs */

 IIMGDECFxns->control((IIMGDEC1_Handle)handle, XDM_GETSTATUS,

 (IIMGDEC1_DynamicParams *)&extn_dynamicParams,

 (IIMGDEC1_Status *)&status);

totalAU= status.imgdecStatus.totalAU;

/* Set run-time parameters such as: no header decoding and size of
slice */

extn_dynamicParams.imgdecDynamicParams.decodeHeader = XDM_DECODE_AU;

extn_dynamicParams.imgdecDynamicParams.numAU= totalAU/20;

/* Set Run time parameters in the Algorithm via control() */

IIMGDECFxns->control((IIMGDEC1_Handle)handle, XDM_SETPARAMS,

 (IIMGDEC1_DynamicParams *)&extn_dynamicParams,

 (IIMGDEC1_Status *)&status);

numAU= status.numAU;

inputBufDesc.descs[0].buf = outArgs.curInPtr;

/*Basic Algorithm process() call */

Sequential JPEG Decoder User Guide

33�

// Repeat JPEG encoding as many times as necessary until last slice

for (i=0;i<totalAU;i+= numAU){

if (retVal = IIMGDECFxns->process((IIMGDEC1_Handle)handle,

 (XDM1_BufDesc *)&inputBufDesc,

 (XDM1_BufDesc *)&outputBufDesc,

 (IIMGDEC1_InArgs *)&inArgs,

 (IIMGDEC1_OutArgs *)&outArgs)){

 printf("!!!! Error during JPEG decode !!!!\n");
 break; // break on error.

/*Error code is in outArgs.imgdecOutArgs.extendedError*/

}

// we just stitch the slices one after the other.

 outputBufDesc.descs[0].buf = outArgs.curOutPtr; sequentially

 bytesConsumed += outArgs.imgdecOutArgs.bytesconsumed;

} /* End of For loop */

4.3 Resizing

The JPEG decoder possesses some simple resizing capabilities; it can downsize the output
along each dimension by a factor of 1/8, ¼, 3/8, ½, 5/8, 3/4, or 7/8.

The application sets the resize ratio by setting resizeOption of IJPEGDEC_DynamicParams.
The interpretation of resizeOption value is as follows:

0: No resize

1: 1/2 resize factor applied to horizontal and vertical dimension.

2: 1/4 resize factor applied to horizontal and vertical dimension.

3: 1/8 resize factor applied to horizontal and vertical dimension.

4: 3/8 resize factor applied to horizontal and vertical dimension.

5: 5/8 resize factor applied to horizontal and vertical dimension.

6: 6/8 resize factor applied to horizontal and vertical dimension.

7: 7/8 resize factor applied to horizontal and vertical dimension.

This feature can be used to save memory for the output buffer. For instance, if the display is
VGA size (640x480) and the decoded bitstream is 3296x2480, then the application can set the
resize option to ¼, so the output is reduced to an 824 x 620 image That image can be further
resized using the preview engine to exactly fit the display size. The output buffer must be
large enough to contain an 824 x 620 image.

Finally, if resizing is enabled (resizeOption not 0), and if post-processing is enabled, the
post-processing input format is forced to block format.

Sequential JPEG Decoder User Guide

34�

If resizing is disabled, then the application can choose either yuv422 interleaved or block
format for the post-processing input format.

4.4 Rotation

On-the fly rotation can be performed by the decoder during image decoding. Choices of
rotation are 90, 270, and 180 degrees rotation. Use the parameter rotation in the structure
IJPEGDEC_DynamicParams to set the appropriate rotation. If no rotation is desired, the
parameter must be set to 0.

When the rotation is 90 and slice mode is enabled, then the outputBufDesc.descs[0].buf has
to be updated.

The following example implements the update,

cformat= status.imgdecStatus.outputChromaFormat;

 if (extn_dynamicParams.rotation== 90) {

 Uint16 sliceWidth;

sliceWidth=numAU*mcuWidth[cformat]/status.imgdecStatus.imageWidth)*m
cuHeight[cformat];

 sliceWidth= (sliceWidth*resizeOption)/8;

 outputBufDesc.descs[0].buf+= 2*(status.imgdecStatus.outputWidth -
sliceWidth);

 }

Rotation, post-processing, and resizing features can be enabled at the same time. Rotation
and area decode features cannot be enabled at the same time.

4.5 Area Decode

With this feature, the application can choose to output a sub-area within the whole image. If
the original image is much larger than the display, then the end result will be equivalent to
zooming into a portion of the image.

The following figure illustrates the area decode feature:

Sequential JPEG Decoder User Guide

35�

Figure 4-5. Area Decode Example

The slightly dotted area is the area that the decoder will output. The upper left corner of the
dotted area will match the upper left corner of the display.

The application passes the coordinates of the upper left corner and lower right corner of the
decode area to the JPEG decoder interface by setting the parameters subRegionUpLeftX,
subRegionUpLeftY, subRegionDownRightX, subRegionDownRightY in the structure
IJPEGDEC_DynamicParams. These coordinates must be multiples of 16 or 8 (depending on
the color format) or the decoder will automatically internally round them down. If all
coordinates are 0s, the decoder decodes the entire image.

(subRegionUpLeftX, subRegionUpLeftY)

(subRegionDownRighttX, subRegionDownRightY)

Im
ag

e
to

ta
l h

ei
gh

t

Image total width

Sequential JPEG Decoder User Guide

36�

Chapter 5

API Reference

This chapter provides a detailed description of the data structures and interfaces functions
used in the codec component.

37

5.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either #define macros and/or
enumerated C data types. Described alongside the macro or enumeration is the semantics or
interpretation of the same in terms of what value it stands for and what it means.

Table 5-1. List of Enumerated Data Types

Group or
Enumeration
Class

Symbolic
Constant Name

Value Description or Evaluation

XDM_BYTE 1 Big endian stream. Not used in
this version of JPEG Decoder.

XDM_LE_16 2 16-bit little endian stream. Not
used in this version of JPEG
Decoder.

XDM_DataFormat

XDM_LE_32 3 32-bit little endian stream. . Not
used in this version of JPEG
Decoder.

XDM_ChromaFor
mat

XDM_CHROMA_
NA

-1 Not applicable

XDM_YUV_420
P

1 YUV 4:2:0 planar. Used to
specify output color format. Not
supported in this version of
JPEG Decoder.

XDM_YUV_422
P

2 YUV 4:2:2 planar. Used to
specify output color format. Not
supported in this version of
JPEG Decoder.

XDM_YUV_422
IBE

3 YUV 4:2:2 interleaved (big
endian). Used to specify output
color format. Not supported in
this version of JPEG Decoder.

XDM_YUV_422
ILE

4 YUV 4:2:2 interleaved (little
endian). Default choice for
output color format.

XDM_YUV_444
P

5 YUV 4:4:4 planar. Used to
specify output color format. Not
supported in this version of
JPEG Decoder.

API Reference

38�

Group or
Enumeration
Class

Symbolic
Constant Name

Value Description or Evaluation

XDM_YUV_411
P

6 YUV 4:1:1 planar. Used to
specify output color format. Not
supported in this version of
JPEG Decoder.

XDM_GRAY 7 Gray format. Used to specify
output color format. Not
supported in this version of
JPEG Decoder.

XDM_RGB 8 RGB color format. Used to
specify output color format. Not
supported in this version of
JPEG Decoder.

 XDM_CHROMAF
ORMAT_DEFAU
LT

4 Default chroma format value
set to XDM_YUV_422ILE

XDM_GETSTAT
US

0 Query algorithm instance to fill
Status structure

XDM_SETPARA
MS

1 Set run time dynamic
parameters via the
DynamicParams structure

XDM_RESET 2 Reset the algorithm

XDM_SETDEFA
ULT

3 Initialize all fields in Params
structure to default values
specified in the library

XDM_FLUSH 4 Handle end of stream
conditions. This command
forces algorithm instance to
output data without additional
input.

XDM_GETBUFI
NFO

5 Query algorithm instance
regarding the properties of
input and output buffers

XDM_CmdId

XDM_GETVERS
ION

6 Query the algorithm's version.
The result will be returned in
the @c data field of the
respective _Status structure.
This control command is
presently not supported.

API Reference

39�

Group or
Enumeration
Class

Symbolic
Constant Name

Value Description or Evaluation

XDM_DECODE_
AU

0 Decode entire access unit.
Default value.

XDM_DecMode

XDM_PARSE_H
EADER

1 Parse only header.

XDM_APPLIED
CONCEALMENT

9 Bit 9
 1 - Applied concealment
 0 – Ignore

XDM_INSUFFI
CIENTDATA

10 Bit 10
 1 - Insufficient data
 0 – Ignore

XDM_CORRUPT
EDDATA

11 Bit 11
 1 - Data problem/corruption
 0 – Ignore

XDM_CORRUPT
EDHEADER

12 Bit 12
 1 - Header problem/corruption
 0 – Ignore

XDM_UNSUPPO
RTEDINPUT

13 Bit 13
 1 - Unsupported

feature/parameter in input
 0 – Ignore

XDM_UNSUPPO
RTEDPARAM

14 Bit 14
 1 - Unsupported input parameter

or configuration
 0 – Ignore

XDM_ErrorBit

XDM_FATALER
ROR

15 Bit 15
 1 - Fatal error (stop encoding)
 0 - Recoverable error

Note:
The remaining bits that are not mentioned in XDM_ErrorBit are interpreted as per the
IJPEGDEC_ErrorStatus descriptions given below.

The algorithm can set multiple bits to 1, depending on the error condition.

Table 5-2. IJPEGDEC_ErrorStatus List

Group or
Enumeration
Class

Symbolic Constant Name Description or Evaluation

API Reference

40�

Group or
Enumeration
Class

Symbolic Constant Name Description or Evaluation

JPEGDEC_ERROR_INSUFFICIEN
T_DATA

Bit 0:
1 - Input buffer underflow
0 - Ignore

JPEGDEC_ERROR_DISPLAY_WID
TH

Bit 1:
1 - Invalid display width
0 - Ignore

IJPEGDEC_ErrorS
tatus

JPEGDEC_ERROR_INVALID_ROT
ATION_PARAM

Bit 2:
1 - Invalid rotation
0 - Ignore

 JPEGDEC_ERROR_INVALID_RES
IZE

Bit 3:
1 - Invalid resize
0 - Ignore

 JPEGDEC_ERROR_INVALID_num
AU

Bit 4:
1 - Invalid numAU
0 - Ignore

 JPEGDEC_ERROR_INVALID_Dec
odeHeader

Bit 5:
1 - When DecodeHeader is
other than 0 or 1
0 - Ignore

 JPEGDEC_ERROR_UNSUPPORTED
_ChromaFormat

Bit 6:
1 - Invalid force chroma
0 - Ignore

 JPEGDEC_ERROR_UNSUPPORTED
_dataEndianness

Bit 7:
1 - Invalid
dataEndianness
0 - Ignore

 JPEGDEC_ERROR_INVALID_SUB
WINDOW

Bit 8:
1 - Invalid decode area
0 - Ignore

5.2 Data Structures

This section describes the XDM defined data structures that are common across codec
classes. These XDM data structures can be extended to define any implementation specific
parameters for a codec component.

API Reference

41�

5.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM1_BufDesc

 XDM1_SingleBufDesc

 XDM_AlgBufInfo

 IIMGDEC1_Fxns

 IIMGDEC1_Params

 IIMGDEC1_DynamicParams

 IIMGDEC1_InArgs

 IIMGDEC1_Status

 IIMGDEC1_OutArgs

 IDMA3_Handle

 IDMA3_ChannelRec

API Reference

42�

5.2.1.1 XDM1_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Datatype Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers contained

descs XDM1_SingleBufDesc
(*)[XDM_MAX_IO_BUFFERS]

Input An array of single buffer
descriptor objects.
XDM_MAX_IO_BUFFERS is
defined to be 16.

5.2.1.2 XDM1_SingleBufDesc

║ Description

This structure contains elements required to hold one data buffer..
║ Fields

Field Datatype Input/
Output

Description

*buf XDAS_Int8 Input Pointer to the vector containing
buffer address

bufSize XDAS_Int32 Input Size of buffer in bytes

5.2.1.3 XDM1_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output buffers. This
structure is filled when you invoke the control() function with the XDM_GETBUFINFO
command.

║ Fields

Field Datatype Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XD XDAS_Int32 Output Size in bytes required for each

API Reference

43�

M_MAX_IO_BUFFER
S]

input buffer

minOutBufSize[X
DM_MAX_IO_BUFFE
RS]

XDAS_Int32 Output Size in bytes required for each
output buffer

Note:

For JPEG Decoder, the buffer details are:

 Number of input buffer required is 1 for the bitstream.

 The input buffer size is the size of the bitstream. Worst case input
size is (height * width * 3) bytes for YUV444

 Number of output buffer required is 1 for YUV 422ILE

 The output buffer sizes (in bytes) = (height * width * 2)

5.2.1.4 IIMGDEC1_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface functions.
║ Fields

Field Datatype Input/
Output

Description

ialg IALG_Fxns Input Structure
containing
pointers to all the
XDAIS interface
functions.

For more details,
see TMS320
DSP Algorithm
Standard API
Reference
(SPRU360).

*process XDAS_Int32
(*process)(IIMGDEC1_Handl
e handle, XDM1_BufDesc
*inBufs,
XDM1_BufDesc *outBufs,
IIMGDEC1_InArgs *inargs,
IIMGDEC1_OutArgs
*outargs)

Input Pointer to the
process()
function.

API Reference

44�

*control XDAS_Int32
(*control)(IIMGDEC1_Handl
e handle, IIMGDEC1_Cmd
id,
IIMGDEC1_DynamicParams
*params, IIMGDEC1_Status
*status)

Input Pointer to the
control()
function.

5.2.1.5 IIMGDEC1_Params

║ Description

This structure defines the creation parameters for an algorithm instance object. Set this data
structure to NULL, if you are unsure of the values to be specified for these parameters.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended
(if being used) data structure
in bytes.

maxHeight XDAS_Int32 Input Maximum image height to be
supported in pixels. Default is
1600.

maxWidth XDAS_Int32 Input Maximum image width to be
supported in pixels. Default is
2048.

maxScans XDAS_Int32 Input Not supported in this version
of the JPEG decoder.

dataEndianness XDAS_Int32 Input Endianness of output data.
This version of the JPEG
decoder supports only
XDM_BYTE (Default).

forceChromaFor
mat

XDAS_Int32 Input Force decoding in given
Chroma format. This version
of the JPEG decoder
supports only
XDM_YUV_422ILE (Default).

API Reference

45�

5.2.1.6 IIMGDEC1_DynamicParams

║ Description

This structure defines the run time parameters for an algorithm instance object. Set this data
structure to NULL, if you are unsure of the values to be specified for these parameters. Run
time parameters change the behavior of the JPEG processing and can be set before each call
to the process() function.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended
(if being used) data structure in
bytes.

numAU XDAS_Int32 Input Number of Access unit to
decode, must be set to
XDM_DEFAULT in case of
decoding entire frame.

decodeHeader XDAS_Int32 Input Decode entire access unit or
only header. See
XDM_DecMode enumeration
for details.

displayWidth XDAS_Int32 Input If the field is set to:
 0 - Use image width as pitch.
 Any non-zero value, display

width is used as pitch (if capture
width is greater than image
width).

5.2.1.7 IIMGDEC1_InArgs

║ Description

This structure defines the run time input arguments for an algorithm instance object.
║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being
used) data structure in bytes.

numB
ytes

XDAS_Int32 Input Number of valid input data in bytes in
input buffer

API Reference

46�

5.2.1.8 IIMGDEC1_Status

║ Description

This structure defines parameters that describe the status of an algorithm instance object.

║ Fields

Field Datatype Input/

Output
Description

size XDAS_Int32 Input Size of the basic or
extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See
XDM_ErrorBit
enumeration for details.

outputHeight XDAS_Int32 Output Output height

outputWidth XDAS_Int32 Output Output width (image width
rounded up to a multiple of
the MCU width)

imageWidth XDAS_Int32 Output image width

outChromatformat XDAS_Int32 Output Output chroma format:
XDM_ChromaFormat

totalAU XDAS_Int32 Output Total number of Access
Units (say MCU) in the
image.

totalScan XDAS_Int32 Output Total number of scans

bufInfo XDM_AlgBufInfo Output Input and output buffer
information. See
XDM_AlgBufInfo data
structure for details.

API Reference

47�

5.2.1.9 IIMGDEC1_OutArgs

║ Description

This structure defines the run time output arguments for an algorithm instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if
being used) data structure in
bytes.

extendedError XDAS_Int32 Output Extended error code. See
XDM_ErrorBit enumeration
for details.

currentAU XDAS_Int32 Output Current Access Unit (MCU)
Number

currentScan XDA_Int32 Output Current scan number

bytesConsumed XDAS_Int32 Output The number of bytes consumed.

5.2.1.10 IDMA3_Handle

║ Description

IDMA3_Handle is a pointer of type IDMA3_Obj holds the private state associated with each
logical DMA channel.

║ Fields

Field Datatype Input/
Output

Description

numTccs unsigned
short

Output The number of TCCs allocated to
this channel. In the present
implementation since TCCs are
fixed this value is set to zero.

numPaRams unsigned
short

Output The number of PaRam entries
allocated to this channel.

*tccTable unsigned
char

Output TCCs assigned to channel - set
to NULL.

paRamAddr Uns * Output PaRAMs assigned to channel

qdmaChan unsigned
short

Output Physical QDMA Channel
assigned to handle - set to zero

API Reference

48�

since no QDMA channels are
used in current implementation.

transferPending Bool Output Set to true when a new transfer
is started on this channel. Set to
false when a wait/sync operation
is performed on this channel..

env void * Output IDMA3_ProtocolHandle
('protocol') dependent private
channel memory The memory for
the 'env' is allocated and
reclaimed by the framework
when this IDMA3 channel has
been requested with a non-NULL
'protocol'. The size, type and
alignment of the allocated 'env'
memory is obtained by calling
the channel's 'protocol'-
>getEnvMemRec() function.
During channel creation, the 'env'
pointer must always be created
as a private and persistent
memory assigned to the IDMA3
channel object. However, the
framework/resource manager is
also allowed to allocate
requested internal 'env' memory
as 'scratch' memory which can
only be used when the channel is
in active state.
In the 'scratch' allocation case,
the framework/resource manager
must still allocate the 'env' as
'persistent', possibly in external
memory, and must pass the
address of the 'scratch' 'internal'
'env' memory in the first word of
the 'env' memory. If the channel
'env' memory is created as
'persistent' with no 'scratch'
shadow, then the first word of
the env memory must be set to
NULL.

protocol IDMA3_Proto
colHandle

Output The channel protocol functions
used by the DMA manager to
determine memory requirements
for the 'env'.

persistent Bool Output Indicates if the channel has been
allocated with persistent
property.

API Reference

49�

5.2.1.11 IDMA3_ChannelRec

║ Description

DMA Channel Descriptor to logical DMA channels.

║ Fields

Field Datatype Input/
Output

Description

handle IDMA3_Handle Input Handle to logical DMA channel

numTransfers Int Output Number of DMA transfers that
are submitted using this logical
channel handle. Single (==1)
or Linked (>= 2). In the current
implementation this is set to
number of PaRamSets
required by the application.

numWaits Int Output Number of individual transfers
that can be waited in a linked
start. (Always set to 1 - for
single transfers or for waiting
all)

priority IDMA3_Priority Output Relative priority
recommendation:
High, Medium, Low. - set to
IDMA3_PRIORITY_LOW
always

protocol IDMA3_ProtocolH
andle

Output When non-NULL, the protocol
object provides interface for
querying and initializing logical
DMA channel for use by the
given protocol. The protocol
can be
IDMA3_PROTOCOL_NULL in
this case no 'env' is allocated
In current implementation its
set to NULL always.

persistent Bool Output When persistent is set to
TRUE, the PaRAMs and TCCs
will be allocated exclusively for
this channel. They cannot be
shared with any other IDMA3
channel. In the current
implementation, this is always
set to TRUE.

API Reference

50�

5.2.2 JPEG Decoder Data Structures

This section includes the following JPEG Decoder specific extended data structures:

 IJPEGDEC_Params

 IJPEGDEC_DynamicParams

 IJPEGDEC_Status

 IJPEGDEC_InArgs

 IJPEGDEC_OutArgs

5.2.2.1 IJPEGDEC_Params

║ Description

This structure defines the base creation parameters and any other implementation specific
parameters for the JPEG Decoder instance object. The base creation parameters are defined
in the XDM data structure, IIMGDEC1_Params.

║ Fields

Field Datatype Input/
Output

Description

imgdecParams IIMGDEC1_Params Input Base creation parameters.
See IIMGDEC1_Params
data structure for details

halfBufCB XDAS_Void (*) (Uint32
curBufPtr,
XDAS_Void*arg)

Input Half buffer callback function
pointer

halfBufCBarg XDAS_Void * Input Half buffer callback
argument

API Reference

51�

5.2.2.2 IJPEGDEC_DynamicParams

║ Description

This structure defines the base runtime creation parameters and any other implementation
specific runtime parameters for the JPEG Decoder instance object. The base runtime
parameters are defined in the XDM data structure, IIMGDEC1_DynamicParams.

║ Fields

Field Datatype Input/
Output

Description

imgdecDynamicParams IIMGDEC1_Dynami
cParams

Input Base creation
parameters. See
IIMGDEC1_Params
data structure for
details

disableEOI XDAS_Int16 Input 0: EOI decoding
enabled (Default).
1: EOI decoding
disabled

resizeOption XDAS_Int32 Input Set the resize option:
0: no resizing
(Default)
1: resize 1/2
2: resize 1/4
3: resize 1/8
4: resize 3/8
5: resize 5/8
6: resize 6/8
7: resize 7/8

postProc IJPEGDECPostP Input Pointer to post-
processing object.
This version of the
JPEG decoder does
not support this field.
Please set this as
NULL.

subRegionUpLeftX XDAS_Int16 Input X coordinate of
upper left corner of
area decode. Must
be multiple of 16.

subRegionUpLeftY XDAS_Int16 Input Y coordinate of
upper left corner of
area decode. Must
be multiple of 8 for
yuv422, yuv444, 16
for yvu420.

subRegionDownRightX XDAS_Int16 Input X coordinate of lower
right corner of area
decode. Must be
multiple of 16.

API Reference

52�

Field Datatype Input/
Output

Description

subRegionDownRightY XDAS_Int16 Input Y coordinate of lower
right corner of area
decode. Must be
multiple of 8 for
yuv422, yuv444, 16
for yvu420.

rotation XDAS_Int16 Input Set the rotation
angle:
0: no rotation
(default)
180, 90, 270.

5.2.2.3 IJPEGDEC_Status

║ Description

This structure defines the base status parameters and any other implementation specific
status parameters for the JPEG Decoder instance object. The base status parameters are
defined in the XDM data structure, IIMGDEC1_Status. Status parameters are returned by
the JPEG decoder upon calling the control function with XDM_GETSTATUS as command.
Usually application gets status parameters after header is parsed.

║ Fields

Field Datatype Input/
Output

Description

imgdecStatus IIMGDEC1_Stat
us

Output Base status parameters.
See IIMGDEC1_Status
data structure for details

mode XDAS_Int32 Output 0: baseline sequential
1: progressive

imageHeight XDAS_Int32 Output Actual image height of the
image.

stride[3] XDAS_Int32 Output Stride values for Y,U and
V components. This
version does not support
this.

decImageSize XDAS_Int32 Output Size of the decoded image
in bytes

lastMCU XDAS_Int32 Output Last MCU in the frame
0: Not last

numAU XDAS_Int32 Output Number of MCUs in a slice
computed by the decoder

API Reference

53�

Field Datatype Input/
Output

Description

nextFreeCmdPtr XDAS_Uint16* Output Pointer to next free word in
co-processor command
memory – not used in
current implementation.

nextFreeImBufPtr XDAS_Uint8* Output Pointer to next free byte in
image buffer – not used in
current implementation.

nextFreeCoefBufPtr XDAS_Uint8* Output Pointer to next free byte in
co-processor coeff
memory – not used in
current implementation.

5.2.2.4 IJPEGDEC_InArgs

║ Description

This structure defines the base runtime input parameters and any other implementation
specific runtime input parameters for the JPEG Decoder instance object. The base runtime
parameters are defined in the XDM data structure, IIMGDEC1_InArgs.

║ Fields

Field Datatype Input/
Output

Description

imgdecInArgs IIMGDEC1_InArgs Input Base input runtime
parameters. See
IIMGDEC1_InArgs data
structure for details

ringBufStart XDAS_UInt8 * Input Pointer to starting point of
bitstream ring buffer

ringBufSize XDAS_Uint32 Input Size of ring buffer in bytes

5.2.2.5 IJPEGDEC_OutArgs

║ Description

This structure defines the base runtime output parameters and any other implementation
specific runtime output parameters for the JPEG Decoder instance object. The base runtime
parameters are defined in the XDM data structure, IIMGDEC1_OutArgs.

API Reference

54�

║ Fields

Field Datatype Input/
Output

Description

imgdecOutArgs IIMGDEC1_OutArgs Output Base input runtime
parameters. See
IIMGDEC1_InArgs
data structure for
details

curInPtr XDAS_Uint8* Output Current input pointer,
pointing to bitstream

curOutPtr XDAS_Uint8* Output Current output pointer,
pointing to YUV display
data

5.3 Interface Functions

This section describes the Application Programming Interfaces (APIs) used in the JPEG
Decoder. The APIs are logically grouped into the following categories:

 Creation – algNumAlloc(), algAlloc(), dmaGetChannelCnt(),
dmaGetChannels()

 Initialization – algInit(), dmaInit()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) control()

5) algActivate() – optional for single instance case
6) process()

7) algDeactivate() – optional for single instance case
8) algFree()

algNumAlloc(), algAlloc(), algInit(), algActivate(), algDeactivate(),
and algFree() are standard XDAIS APIs. This document includes only a
brief description for the standard XDAIS APIs. For more details, see TMS320
DSP Algorithm Standard API Reference (SPRU360).

5.3.1 Creation APIs

Creation APIs create an instance of the component. The term creation could mean allocating
system resources, typically memory.

API Reference

55�

NOTE: Please see the JPEG Decoder Data Sheet for External Data Memory
requirements

Name

algNumAlloc() – determine the number of buffers that an algorithm requires
Synopsis

XDAS_Int32 algNumAlloc(Void);
Arguments

Void
Return Value

XDAS_Int32; /* number of buffers required */
Description

algNumAlloc() returns the number of buffers that the algAlloc() method requires. This
operation allows you to allocate sufficient space to call the algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly without any side
effects. It always returns the same result. The algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference (SPRU360).
See Also

algAlloc()

Name

algAlloc() – determine the attributes of all buffers that an algorithm requires
Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns **parentFxns,
IALG_MemRec memTab[]);

Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm functions */

IALG_MemRec memTab[]; /* output array of memory records */
Return Value

XDAS_Int32 /* number of buffers required */

Description

algAlloc() returns a table of memory records that describe the size, alignment, type, and
memory space of all buffers required by an algorithm. If successful, this function returns a
positive non-zero value indicating the number of records initialized.

API Reference

56�

The first argument to algAlloc() is a pointer to a structure that defines the creation
parameters. This pointer may be NULL; however, in this case, algAlloc() must assume
default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter. algAlloc() may return a
pointer to its parent’s IALG functions. If an algorithm does not require a parent object to be
created, this pointer must be set to NULL.

The third argument is a pointer to a memory space of size
nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers returned by
algNumAlloc() and IALG_MemRec is the buffer-descriptor structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference (SPRU360).
See Also

algNumAlloc(), algFree()

5.3.2 Initialization API

The Initialization API initializes an instance of the algorithm. The initialization parameters are
defined in the Params structure (see Data Structures section for details).

Name

algInit() – initialize an algorithm instance
Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec memTab[], IALG_Handle
parent, IALG_Params *params);

Arguments

IALG_Handle handle; /* algorithm instance handle*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization parameters */
Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
Description

algInit() performs all initialization necessary to complete the run time creation of an
algorithm instance object. After a successful return from algInit(), the instance object is
ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This value is initialized
to the base field of memTab[0].

The second argument is a table of memory records that describe the base address, size,
alignment, type, and memory space of all buffers allocated for an algorithm instance. The

API Reference

57�

number of initialized records is identical to the number returned by a prior call to
algAlloc().

The third argument is a handle to the parent instance object. If there is no parent object, this
parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm initialization
parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference (SPRU360).

The following sample code is an example of initializing the Params structure and creating an
instance with base parameters.

{
…………………
…………………

 IIMGDEC1_Params params;

 // Set the create time base parameters
 params.size = sizeof(IIMGDEC1_Params);
 params.maxHeight = 480;
 params.maxWidth = 720;
 params.maxScans= XDM_DEFAULT;
 params.dataEndianness = XDM_BYTE;
 params.forceChromaFormat= XDM_YUV_422ILE;

 handle = (IALG_Handle) ALG_create((IALG_Fxns *)& JPEGDEC_TI_IJPEGDEC,
 (IALG_Handle) NULL,
 (IALG_Params *) ¶ms)
……………………
……………………
}

The following sample code is an example of initializing the Params structure and creating an
instance with extended parameters.

{
…………………
…………………

 IIMGDEC1_Params params;
 IJPEGDEC_Params extParams;

 // Set the create time base parameters
 params.size = sizeof(IJPEGDEC_Params);
 params.maxHeight = 480;
 params.maxWidth = 720;
 params.maxScans= XDM_DEFAULT;
 params.dataEndianness = XDM_BYTE;
 params.forceChromaFormat= XDM_YUV_422ILE;

 // Set the create time extended parameters
 extParams.imgdecParams = params;
 extParams.halfBufCB = NULL;
 extParams.halfBufCBarg = NULL;

API Reference

58�

handle = (IALG_Handle) ALG_create((IALG_Fxns *)& JPEGDEC_TI_IJPEGDEC,
 (IALG_Handle) NULL,
 (IALG_Params *) &extParams)
……………………
……………………
}

See Also

algAlloc(), algMoved()

5.3.3 Control Processing API

The Control API is used before call to process() to enquire about the number and size of I/O
buffers, or to set the dynamic params, or get status of decoding.

Name

control() – control call
Synopsis

XDAS_Int32 (*control)(IIMGDEC1_Handle handle, IIMGDEC1_Cmd id,
IIMGDEC1_DynamicParams *params, IIMGDEC1_Status *status);

Arguments

IIMGDEC1_Handle handle; /* algorithm instance handle */

IIMGDEC1_Cmd id; /* id of command */

IIMGDEC1_DynamicParams *params; /* pointer to dynamic parameters */

IIMGDEC1_Status *status /* pointer to status structure */
Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
Description

This function does the basic encoding/decoding. The first argument to control() is a handle
to an algorithm instance.

The second argument is the command id, which can be of these following values:

XDM_GETSTATUS: fill structure IIMGDEC_Status whose pointer is passed as 4th argument.

XDM_SETPARAMS: set dynamic params contained in the structure whose pointer is passed
as 3rd argument.

 XDM_RESET: reset the decoder so next time process() is called, a new bitstream is
decoded.

XDM_SETDEFAULT: set the dynamic params to the following default values:

XDM_FLUSH: not supported in this version of JPEG decoder

API Reference

59�

XDM_GETBUFINFO: get required number of I/O buffers and their sizes. Results are returned
in the bufInfo member of the structure IIMGDEC1_Status whose pointer is passed as 4th
argument.

The third argument is a pointer to a dynamic params structure of type
IIMGDEC1_DynamicParams or IJPEGDEC1_DynamicParams (typecast to the previous one).
This argument is used whenever command ID is XDM_SETPARAMS.

The fourth argument is a pointer to a structure of type IIMGDEC1_Status or
IJPEGDEC1_Status (typecast to the previous one). This argument is used whenever
command ID is XDM_GETSTATUS or XDM_GETBUFINFO.

Preconditions

The following conditions must be true prior to calling this function; otherwise, its operation is
undefined.

control() can only be called after a successful return from algInit() and algActivate().

handle must be a valid handle for the algorithm’s instance object.
All parameters of dynamic parameters structure must be set before making control call to

XDM_SETPARAMS.

Postconditions

The following conditions are true immediately after returning from this function.

If the control call operation is successful, the return value from this operation is equal to
IALG_EOK; otherwise it is equal to either IALG_EFAIL or an algorithm specific return value.

The following code gives an example for initializing the base dynamic parameters for a 720x480
input.
{
 IIMGDEC1_DynamicParams dynParams;
 IIMGDEC1_Status status;

……………………
……………………

 // Set the dynamic base parameters
 dynParams.size = sizeof(IIMGDEC1_DynamicParams);
 dynParams.numAU= XDM_DEFAULT;
 dynParams.decodeHeader = XDM_DEFAULT;
 dynParams.displayWidth = 720;

/* Set Dynamic Params */
retVal = IIMGDECFxns->control((IIMGDEC1_Handle)handle, XDM_SETPARAMS,
 (IIMGDEC1_DynamicParams *)& dynParams,
 (IIMGDEC1_Status *)&status);
……………………
……………………

}

The following code gives an example for initializing the extended dynamic parameters for a
720x480 input.

{

API Reference

60�

……………………
……………………
 IIMGDEC1_DynamicParams dynParams;
 IIMGDEC1_Status status;
 IJPEGDEC_DynamicParams extDynParams;
……………………
……………………
 // Set the dynamic base parameters
 dynParams.size = sizeof(IIMGDEC1_DynamicParams);
 dynParams.numAU= XDM_DEFAULT;
 dynParams.decodeHeader = XDM_DEFAULT;
 dynParams.displayWidth = 720;

 // Set the extended dynamic parameters
 extDynParams.imgdecDynamicParams = dynParams;

 extDynParams.disableEOI = 0;
 extDynParams.resizeOption = 0;
 extDynParams.subRegionUpLeftX = XDM_DEFAULT;
 extDynParams.subRegionUpLeftY = XDM_DEFAULT;
 extDynParams.subRegionDownRightX= XDM_DEFAULT;
 extDynParams.subRegionDownRightY= XDM_DEFAULT;
 extDynParams.rotation= 0;

/* Control call to Set Dynamic Params */
retVal = IIMGDECFxns->control((IIMGDEC1_Handle)handle, XDM_SETPARAMS,
 (IIMGDEC1_DynamicParams *)& extDynParams,
 (IIMGDEC1_Status *)&status);
……………………
……………………
}

See Also

algInit(), algDeactivate(), process()

5.3.4 Data Processing API

The Data processing API processes the input data.

Name

process() – basic encoding/decoding call
Synopsis

XDAS_Int32 (*process)(IIMGDEC1_Handle handle, XDM_BufDesc *inBufs,
XDM_BufDesc *outBufs, IIMGDEC1_InArgs *inargs, IIMGDEC1_OutArgs *outargs);
Arguments

IIMGDEC1_Handle handle; /* algorithm instance handle */

XDM_BufDesc *inBufs; /* algorithm input buffer descriptor */

API Reference

61�

XDM_BufDesc *outBufs; /* algorithm output buffer descriptor */

IIMGDEC1_InArgs *inargs /* algorithm runtime input arguments */

IIMGDEC1_OutArgs *outargs /* algorithm runtime output arguments */
Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
Description

This function does the basic encoding/decoding. The first argument to process() is a handle
to an algorithm instance.

The second and third arguments are pointers to the input and output buffer descriptor data
structures respectively (see XDM_BufDesc data structure for details).

The fourth argument is a pointer to the IIMGDEC1_InArgs data structure that defines the run
time input arguments for an algorithm instance object.

The last argument is a pointer to the IIMGDEC1_OutArgs data structure that defines the run
time output arguments for an algorithm instance object.

Note:

If you are using extended data structures, the fourth and fifth
arguments must be pointers to the extended InArgs and OutArgs
data structures respectively. Also, ensure that the size field is set
to the size of the extended data structure. Depending on the value
set for the size field, the algorithm uses either basic or extended
parameters.

Preconditions

The following conditions must be true prior to calling this function; otherwise, its operation is
undefined.

process() can only be called after a successful return from algInit() and algActivate().

If algorithm uses DMA resources, process() can only be called after a successful return from
DMAN3_init().

handle must be a valid handle for the algorithm’s instance object.
Buffer descriptor for input and output buffers must be valid.

Input buffers must have valid input data.

Postconditions

The following conditions are true immediately after returning from this function.

API Reference

62�

If the process operation is successful, the return value from this operation is equal to
IALG_EOK; otherwise it is equal to either IALG_EFAIL or an algorithm specific return
value.

After successful return from process() function, algDeactivate() can be called.

Example

See test application file, jpgeTest355_fileIO.c available in the \Client\Test\Src sub-directory.
See Also

algInit(), algDeactivate(), control()

5.3.5 Termination API

The Termination API terminates the algorithm instance and frees up the memory space that it
uses.

Name

algFree() – determine the addresses of all memory buffers used by the algorithm
Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec memTab[]);
Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */
Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */
Description

algFree() determines the addresses of all memory buffers used by the algorithm. The
primary aim of doing so is to free up these memory regions after closing an instance of the
algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base address, size,
alignment, type, and memory space of all buffers previously allocated for the algorithm
instance.

For more details, see TMS320 DSP Algorithm Standard API Reference (SPRU360).
See Also

algAlloc()

API Reference

63�

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without
notice. Customers should obtain the latest relevant information before placing orders and should verify that such information
is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products
and applications using TI components. To minimize the risks associated with customer products and applications, customers
should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright,
mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or
services are used. Information published by TI regarding third-party products or services does not constitute a license from
TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license
from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or
other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration
is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of
third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product
would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an
agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and
regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal,
regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical
applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers
must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-
critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI
products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as
military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has
not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all
legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI
products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if
they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such
requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303,

Dallas, Texas 75265

Copyright 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	
	User’s Guide
	I

