

H.264 HD Baseline Profile Encoder on
DM6446

User’s Guide

Literature Number: SPRUFQ6
 November 2008

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without
notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is
current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products
and applications using TI components. To minimize the risks associated with customer products and applications, customers
should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright,
mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or
services are used. Information published by TI regarding third-party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration
is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third
parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product
would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an
agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and
regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal,
regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical
applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must
fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical
applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products
are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet
military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as
military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory
requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI
products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use
any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright 2008, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://dsp.ti.com/
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/military
http://power.ti.com/
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com/
http://www.ti.com/security
http://www.ti-rfid.com/
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) H.264 HD Baseline Profile Encoder implementation on the DM6446
platform. It also provides a detailed Application Programming Interface
(API) reference and information on the sample application that
accompanies this component.

TI’s codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate
TI’s codecs with other software to build a multimedia system based on
the DM6446 platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital
signal processors, and DSP applications. Good knowledge of
eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP
Digital Media (XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

� Chapter 1 - Introduction, provides a brief introduction to the XDAIS
and XDM standards. It also provides an overview of the codec and
lists its supported features.

� Chapter 2 - Installation Overview, describes how to install, build,
and run the codec.

� Chapter 3 - Sample Usage, describes the sample usage of the
codec.

� Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

� Appendix A - Motion Vector Access API, describes the Motion
Vector Access API used by the application to encode a frame.

iii

Read This First

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these TI documents,
visit the Texas Instruments website at www.ti.com.

� TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

� TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320
DSP Algorithm Interface Standard (also known as XDAIS)
specification.

� Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm
Standard which is part of TI’s eXpressDSP technology initiative.

� Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-
compliant algorithm may be used effectively in a static system with
limited memory.

� DMA Guide for eXpressDSP-Compliant Algorithm Producers and
Consumers (literature number SPRA445) describes the DMA
architecture specified by the TMS320 DSP Algorithm Standard
(XDAIS). It also describes two sets of APIs used for accessing DMA
resources: the IDMA2 abstract interface and the ACPY2 library.

� eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUEC8)

The following documents describe TMS320 devices and related support
tools:

� Design and Implementation of an eXpressDSP-Compliant DMA
Manager for C6X1X (literature number SPRA789) describes a
C6x1x-optimized (C6211, C6711) ACPY2 library implementation and
DMA Resource Manager.

� TMS320c64x+ Megamodule (literature number SPRAA68) describes
the enhancements made to the internal memory and describes the
new features which have been added to support the internal memory
architecture's performance and protection.

� TMS320C64x+ DSP Megamodule Reference Guide (literature
number SPRU871) describes the C64x+ megamodule peripherals.

� TMS320C64x to TMS320C64x+ CPU Migration Guide (literature
number SPRAA84) describes migration from the Texas Instruments
TMS320C64x™ digital signal processor (DSP) to the
TMS320C64x+™ DSP.

iv

http://www.ti.com/

Read This First

� TMS320C6000 Optimizing Compiler v 6.0 Beta User's Guide
(literature number SPRU187N) explains how to use compiler tools
such as compiler, assembly optimizer, standalone simulator, library-
build utility, and C++ name demangler.

� TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide
(literature number SPRU732) describes the CPU architecture,
pipeline, instruction set, and interrupts of the C64x and C64x+ DSPs.

� TMS320DM6446 Digital Media System-on-Chip (literature number
SPRS283)

� TMS320DM6446 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ241) describes the known
exceptions to the functional specifications for the TMS320DM6446
Digital Media System-on-Chip (DMSoC).

� TMS320DM6443 Digital Media System-on-Chip (literature number
SPRS282)

� TMS320DM6443 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ240) describes the known
exceptions to the functional specifications for the TMS320DM6443
Digital Media System-on-Chip (DMSoC).

� TMS320DM644x DMSoC DSP Subsystem Reference Guide
(literature number SPRUE15) describes the digital signal processor
(DSP) subsystem in the TMS320DM644x Digital Media System-on-
Chip (DMSoC).

� TMS320DM644x DMSoC ARM Subsystem Reference Guide
(literature number SPRUE14) describes the ARM subsystem in the
TMS320DM644x Digital Media System on a Chip (DMSoC).

� DaVinci Technology - Digital Video Innovation Product Bulletin (Rev.
A) (literature number SPRT378A)

� The DaVinci Effect: Achieving Digital Video Without Complexity
White Paper (literature number SPRY079)

� DaVinci Benchmarks Product Bulletin (literature number SPRT379)

� DaVinci Technology for Digital Video White Paper (literature number
SPRY067)

� The Future of Digital Video White Paper (literature number
SPRY066)

v

Read This First

Related Documentation

You can use the following documents to supplement this user guide:

� ISO/IEC 11172-2 Information Technology -- Coding of moving
pictures and associated audio for digital storage media at up to about
1.5Mbits/s -- Part 2: Video (MPEG-1 video standard)

� ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC - Draft ITU-T
Recommendation and Final Draft International Standard of Joint
Video Specification

Abbreviations

The following abbreviations are used in this document.

Table 1-1. List of Abbreviations
Abbreviation Description

API Application Programming Interface

AVC Advanced Video Coding

BP Base Profile

CAVLC Context Adaptive Variable Length Coding

CIF Common Intermediate Format

COFF Common Object File Format

DMA Direct Memory Access

DMAN3 DMA Manager

DSP Digital Signal Processing

EVM Evaluation Module

GOP Group Of Pictures

HEC Header Extension Code

HPI Half Pixel Interpolation

IDR Instantaneous Decoding Refresh

MIR Mandatory Intra Fresh

QCIF Quarter Common Intermediate Format

QP Quantization Parameter

QPI Quarter Pixel Interpolation

vi

Read This First

Abbreviation Description

QVGA Quarter Video Graphics Array

SQCIF Sub Quarter Common Intermediate
Format

VGA Video Graphics Array

XDAIS eXpressDSP Algorithm Interface Standard

XDM eXpressDSP Digital Media

Text Conventions

The following conventions are used in this document:

� Text inside back-quotes (‘‘) represents pseudo-code.

� Program source code, function and macro names, parameters, and
command line commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, quote the product name
(H.264 HD Baseline Profile Encoder on DM6446) and version number.
The version number of the codec is included in the Title of the Release
Notes that accompanies this codec.

Trademarks

Code Composer Studio, the DAVINCI Logo, DAVINCI, DSP/BIOS,
eXpressDSP, TMS320, TMS320C64x, TMS320C6000, TMS320DM644x,
and TMS320C64x+ are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

vii

Read This First

This page is intentionally left blank

viii

Contents

Read This First .. iii

About This Manual ...iii
Intended Audience ...iii
How to Use This Manual ..iii
Related Documentation From Texas Instruments... iv
Related Documentation... vi
Abbreviations .. vi
Text Conventions ..vii
Product Support ..vii
Trademarks ...vii

Contents... ix
Figures ... xi
Tables... xiii
Introduction ...1-1

1.1 Overview of XDAIS and XDM..1-2
1.1.1 XDAIS Overview ..1-2
1.1.2 XDM Overview ...1-3

1.2 Overview of H.264 Baseline Profile Encoder ..1-4
1.3 Supported Services and Features...1-5

Installation Overview ..2-1
2.1 System Requirements ...2-2

2.1.1 Hardware..2-2
2.1.2 Software ...2-2

2.2 Installing the Component...2-2
2.3 Before Building the Sample Test Application ..2-4

2.3.1 Installing DSP/BIOS ...2-4
2.3.2 Installing Framework Component (FC) ..2-4

2.4 Building and Running the Sample Test Application ..2-5
2.5 Configuration Files ..2-5

2.5.1 Generic Configuration File ...2-5
2.5.2 Encoder Configuration File...2-6

2.6 Standards Conformance and User-Defined Inputs ...2-7
2.7 Uninstalling the Component ..2-7
2.8 Evaluation Version ..2-7

Sample Usage..3-1
3.1 Overview of the Test Application...3-2

3.1.1 Parameter Setup ..3-3
3.1.2 Algorithm Instance Creation and Initialization..3-3
3.1.3 Process Call ...3-4
3.1.4 Algorithm Instance Deletion ...3-5

API Reference..4-1
4.1 Symbolic Constants and Enumerated Data Types..4-2
4.2 Data Structures ...4-9

4.2.1 Common XDM Data Structures..4-9

ix

4.2.2 H.264 Encoder Data Structures ...4-21
4.3 Interface Functions..4-29

4.3.1 Creation APIs ...4-30
4.3.2 Initialization API..4-32
4.3.3 Control API ...4-33
4.3.4 Data Processing API ..4-35
4.3.5 Termination API ...4-39

Motion Vector Access API... A-1
A.1 Description ... A-1

x

Figures

Figure 1-1. Working of H.264 Video Encoder ...1-4
Figure 2-1. Component Directory Structure ...2-2
Figure 3-1. Test Application Sample Implementation..3-2
Figure A-1. Motion Vector and SAD Buffer Organization... A-2

xi

This page is intentionally left blank

xii

Tables

Table 1-1. List of Abbreviations... vi
Table 2-1. Component Directories...2-3
Table 4-1. List of Enumerated Data Types..4-2
Table 4-2. H.264 Encoder Error Statuses..4-7
Table 4-3. Default Values Used in IH264VENC_Params. ...4-23
Table 4-4. Default Values Used in H264VENC_TI_DynamicParams.4-26

xiii

This page is intentionally left blank

xiv

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS and XDM. It also
provides an overview of TI’s implementation of the H.264 HD Baseline
Profile Encoder on the DM6446 platform and its supported features.

Topic Page

1.1 Overview of XDAIS and XDM 1-2

1.2 Overview of H.264 Baseline Profile Encoder 1-4

1.3 Supported Services and Features 1-5

1-1

Introduction

1.1 Overview of XDAIS and XDM

TI’s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS).

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to
be moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

� algAlloc()

� algInit()

� algActivate()

� algDeactivate()

� algFree()

The algAlloc() API allows the algorithm to communicate its memory
requirements to the client application. The algInit() API allows the
algorithm to initialize the memory allocated by the client application. The
algFree() API allows the algorithm to communicate the memory to be
freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process
data in real-time. The algActivate() API provides a notification to the
algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods
have been run, the client application calls the algDeactivate() API prior
to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(),
algNumAlloc(), and algMoved(). For more details on these APIs, see
TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

1-2

Introduction

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video decoder system, you can use any of the available video decoders
(such as MPEG4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codecs with
similar functionality use similar APIs. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codecs
(for example audio, video, image, and speech). The XDM standard defines
the following two APIs:

� control()

� process()

The control() API provides a standard way to control an algorithm
instance and receive status information from the algorithm in real-time. The
control() API replaces the algControl() API defined as part of the
IALG interface. The process() API does the basic processing
(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI’s
multimedia algorithms are XDM-compliant, it provides you with the
flexibility to use any TI algorithm without changing the client application
code. For example, if you have developed a client application using an
XDM-compliant MPEG4 video decoder, then you can easily replace
MPEG4 with another XDM-compliant video decoder, say H.263, with
minimal changes to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

1-3

Introduction

1.2 Overview of H.264 Baseline Profile Encoder

H.264 is the latest video compression standard from the ITU-T Video
Coding Experts Group and the ISO/IEC Moving Picture Experts Group.
H.264 provides greater compression ratios at a very low bit rate. The new
advancements and greater compression ratios available at a very low bit
rate has made devices ranging from mobile and consumer electronics to
set-top boxes and digital terrestrial broadcasting to use the H.264
standard.

Figure 1-1 depicts the working of the H.264 HD Encoder algorithm.

Figure 1-1. Working of H.264 Video Encoder

In H.264 HD Encoder, the operations are performed on a set of specific N
macro blocks. The selection of N depends on the availability of internal
memory. The operations such as Motion Compensation, Transform and
Quantization, Run Length Encoding and Inverse Quantization, and Inverse
Transform Blocks are called once, for all the inter macro blocks in the set
of N.

The encoder is designed such that, it always tries to maximize the
throughput of each unit by allowing it to perform on maximum possible
number of macro blocks.

In motion estimation, the encoder searches for the best match in the
available reference frame(s). After quantization, contents of some blocks
become zero. The H.264 HD Encoder tracks this information and passes
the information of coded 4x4 blocks to inverse transform, so that it can skip
computation for those blocks that contains all zero co-efficients and are not
coded.

The H.264 HD Encoder defines in-loop filtering to avoid blocks across the
4x4 block boundaries. It is the second most computational task of H.264
encoding process after motion estimation. In-loop filtering is applied on all
4x4 edges as a post-process and the operations depend on the edge
strength of the particular edge.

1-4

Introduction

The H.264 HD Encoder applies entropy coding methods to use context
based adaptivity, which improves the coding performance. All the macro
blocks, which belong to a slice, must be encoded in a raster scan order.
Baseline profile uses Context Adaptive Variable Length Coding (CAVLC).
CAVLC is the stage where transformed and quantized co-efficients are
entropy coded using context adaptive table switching across different
symbols. The syntax defined by the H.264 HD Encoder stores the
information at 4x4 block level.

From this point onwards, all references to H.264 Encoder means H.264 HD
Baseline Profile Encoder only.

1.3 Supported Services and Features

This user guide accompanies TI’s implementation of H.264 Encoder on the
DM6446 platform.

This version of the codec has the following supported features of the
standard:

� Supports H.264 baseline profile up to level 4.1

� Supports quarter-pel interpolation for motion estimation

� Supports in-loop filtering which can be switched off for whole picture as
well for slice boundaries

� Supports user controllable multiple slices per picture

� Supports error-robustness features like intra slice insertion in inter
frames, adaptive intra refresh, constrained intra prediction and
forcefully encoding any frame as I-frame

� Supports user controllable quantization parameter range

� Supports unrestricted motion vector search which allows motion
vectors to be outside the frame boundary

� Supports image width and height that are non-multiple of 16 (multiples
of 4 and 8 supported, non-multiples of 4 not supported)

� Controls the balance between encoder speed and quality by using the
user definable motion estimation settings

The other explicit features that TI’s H.264 Encoder provides are:

� Supports TI proprietary rate control algorithms

� Supports HD resolutions of 1920x1080, 1280x720 and arbitrary
resolutions up to PAL D1 (720x576), including standard image sizes
such as SQCIF, QCIF, CIF, QVGA, and VGA

� Supports user configurable Group of Pictures (GOP) length

� Supports user configurable parameters like pic_order_cnt_type,
log2_max_frame_num_minus4, and chroma_qp_index_offset

� Supports YUV422 interleaved and YUV420 planar color sub-sampling
formats

1-5

Introduction

� eXpressDSP Digital Media (XDM 1.0 IVIDENC1) compliant

This version of the codec does not support the following features of the
standard:

� No constraint to encode a macro block within 3200 bits as per the
standard

1-6

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page

2.1 System Requirements 2-2

2.2 Installing the Component 2-2

2.3 Before Building the Sample Test Application 2-4

2.4 Building and Running the Sample Test Application 2-5

2.5 Configuration Files 2-5

2.6 Standards Conformance and User-Defined Inputs 2-7

2.7 Uninstalling the Component 2-7

2.8 Evaluation Version 2-7

2-1

Installation Overview

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec has been built and tested on the DM6446 EVM with XDS560
JTAG emulator.

2.1.2 Software

The following are the software requirements for the normal functioning of
the codec:

� Development Environment: This project is developed using Code
Composer Studio version 3.2.37.12.

� Code Generation Tools: This project is compiled, assembled,
archived, and linked using the code generation tools version 6.1.2.

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a top-level directory called
100_V_H264AVC_E_2_00, under which another directory named
DM6446_BP_001 is created.

Figure 2-1 shows the sub-directories created in the DM6446_BP_001
directory.

Figure 2-1. Component Directory Structure

2-2

Installation Overview

Note:

If you are installing an evaluation version of this codec, the directory
name will be 100E_V_H264AVC_E_2_00.

Table 2-1 provides a description of the sub-directories created in the
DM6446_BP_001 directory.

Table 2-1. Component Directories
Sub-Directory Description

\Inc Contains XDM related header files which allow interface to the
codec library

\Lib Contains the codec library file

\Docs Contains user guide and datasheet

\Client\Build Contains the sample test application project (.pjt) file

\Client\Build\Map Contains the memory map generated on compilation of the
code

\Client\Build\Obj Contains the intermediate .asm and/or .obj file generated on
compilation of the code

\Client\Build\Out Contains the final application executable (.out) file generated
by the sample test application

\Client\Test\Src Contains application C files

\Client\Test\Inc Contains header files needed for the application code

\Client\Test\TestVecs\Input Contains input test vectors

\Client\Test\TestVecs\Output Contains output generated by the codec

\Client\Test\TestVecs\Reference Contains read-only reference output to be used for cross-
checking against codec output

\Client\Test\TestVecs\Config Contains configuration parameter files

2-3

Installation Overview

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need DSP/BIOS and TI Framework Components (FC).

This version of the codec has been validated with DSP/BIOS version
5.32.02 and Framework Component (FC) version 2.20.00.15.

2.3.1 Installing DSP/BIOS

You can download DSP/BIOS from the TI external website:

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

Install DSP/BIOS at the same location where you have installed Code
Composer Studio. For example:

<install directory>\CCStudio_v3.2

The sample test application uses the following DSP/BIOS files:

� Header file, bcache.h available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages
\ti\bios\include directory.

� Library file, biosDM420.a64P available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages
\ti\bios\lib directory.

2.3.2 Installing Framework Component (FC)

You can download FC from the TI external website:

https://www-a.ti.com/downloads/sds_support/targetcontent/FC/index.html

Extract the FC zip file to the same location where you have installed Code
Composer Studio. For example:

<install directory>\CCStudio_v3.2

The test application uses the following DMAN3 files:

� Library file, dman3.a64P available in the
<install directory>\CCStudio_v3.2\<fc_directory>\packages
\ti\sdo\fc\dman3 directory.

� Header file, dman3.h available in the
<install directory>\CCStudio_v3.2\<fc_directory>\packages
\ti\sdo\fc\dman3 directory.

� Header file, idma3.h available in the
<install directory>\CCStudio_v3.2\<fc_directory>\fctools\packages
\ti\xdais directory.

2-4

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html
https://www-a.ti.com/downloads/sds_support/targetcontent/FC/index.html

Installation Overview

2.4 Building and Running the Sample Test Application

The sample test application that accompanies this codec component will
run in TI’s Code Composer Studio development environment. To build and
run the sample test application in Code Composer Studio, follow these
steps:

1) Verify that you have an installation of TI’s Code Composer Studio
version 3.2.37.12 and code generation tools version 6.1.2.

2) Verify that the codec object library, h264venc_ti.l64P exists in the \Lib
sub-directory.

3) Open the test application project file, TestAppEncoder.pjt in Code
Composer Studio. This file is available in the \Client\Build sub-
directory.

4) Select Project > Build to build the sample test application. This
creates an executable file, TestAppEncoder.out in the \Client\Build\Out
sub-directory.

5) Select File > Load, browse to the \Client\Build\Out sub-directory,
select the codec executable created in step 4, and load it into Code
Composer Studio in preparation for execution.

6) Select Debug > Run to execute the sample test application.

The sample test application takes the input files stored in the
\Client\Test\TestVecs\Input sub-directory, runs the codec, and uses the
reference files stored in the \Client\Test\TestVecs\Reference sub-
directory to verify that the codec is functioning as expected.

7) On successful completion, the application displays one of the following
messages for each frame:

o “Encoder compliance test passed/failed” (for compliance check
mode)

o “Encoder output dump completed” (for output dump mode)

2.5 Configuration Files

This codec is shipped along with:

� Generic configuration file (Testvecs.cfg) – specifies input and reference
files for the sample test application.

� Encoder configuration file (Testparams.cfg) – specifies the
configuration parameters used by the test application to configure the
Encoder.

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and reference files
for running the codec and checking for compliance. The Testvecs.cfg file is
available in the \Client\Test\TestVecs\Config sub-directory.

2-5

Installation Overview

The format of the Testvecs.cfg file is:

X
Config
Input
Output/Reference

where:

� X may be set as:

o 1 - for compliance checking, no output file is created

o 0 - for writing the output to the output file

� Config is the Encoder configuration file. For details, see Section 2.5.2.

� Input is the input file name (use complete path).

� Output/Reference is the output file name (if X is 0) or reference file
name (if X is 1) with complete path.

A sample Testvecs.cfg file is as shown:

1
..\..\Test\TestVecs\Config\Testparams.cfg
..\..\Test\TestVecs\Input\test.yuv
..\..\Test\TestVecs\Reference\ref.264
0
..\..\Test\TestVecs\Config\Testparams.cfg
..\..\Test\TestVecs\Input\test.yuv
..\..\Test\TestVecs\Output\test.264

2.5.2 Encoder Configuration File

The encoder configuration file, Testparams.cfg contains the configuration
parameters required for the encoder. The Testparams.cfg file is available in
the \Client\Test\TestVecs\Config sub-directory.

A sample Testparams.cfg file is as shown:

Input File Format is as follows
<ParameterName> = <ParameterValue> # Comment

Parameters
###

ImageWidth = 640 # Image width in Pels
ImageHeight = 480 # Image height in Pels
FrameRate = 30000 # Frame Rate per second*1000 (1-
 100)
Bitrate = 2048000 # Bitrate(bps) #if ZERO=>> RC
 is OFF
ChromaFormat = 1 # 1 => XDM_YUV_420P,
 3 => XDM_YUV_422IBE,
 4 => XDM_YUV_422ILE
IntraPeriod = 30 # Period of I-Frames
FramesToEncode = 5 # Number of frames to be coded

2-6

Installation Overview

Any field in the IVIDENC1_Params structure (see Section 4.2.1.9) can be
set in the Testparams.cfg file using the syntax shown above. If you specify
additional fields in the Testparams.cfg file, modify the test application
appropriately to handle these fields.

2.6 Standards Conformance and User-Defined Inputs

To check the conformance of the codec for the default input file shipped
along with the codec, follow the steps as described in Section 2.4.

To check the conformance of the codec for other input files of your choice,
follow these steps:

1) Copy the input files to the \Client\Test\TestVecs\Inputs sub-directory.

2) Copy the reference files to the \Client\Test\TestVecs\Reference sub-
directory.

3) Edit the configuration file, Testvecs.cfg available in the
\Client\Test\TestVecs\Config sub-directory. For details on the format of
the Testvecs.cfg file, see Section 2.5.1.

4) Execute the sample test application. On successful completion, the
application displays one of the following messages for each frame:

o “Encoder compliance test passed/failed” (if X is 1)

o “Encoder output dump completed” (if X is 0)

If you have chosen the option to write to an output file (X is 0), you can use
any standard file comparison utility to compare the codec output with the
reference output and check for conformance.

2.7 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

2.8 Evaluation Version

If you are using an evaluation version of this codec a Texas Instruments
logo will be visible in the output.

Note:

No compliance test for the evaluation build.

2-7

Installation Overview

This page is intentionally left blank

2-8

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

3-1

Sample Usage

3.1 Overview of the Test Application

The test application exercises the IVIDENC1 base class of the H.264
Encoder library. The main test application files are TestAppEncoder.c and
TestAppEncoder.h. These files are available in the \Client\Test\Src and
\Client\Test\Inc sub-directories respectively.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application.

XDAIS-XDM Interface Codec Library

Al
go

rit
hm

In

st
an

ce

De
let

io
n

Al
go

rit
hm

In

st
an

ce
 C

re
at

io
n

an
d

In
iti

ali
za

tio
n

Pa
ra

m
et

er

Se
tu

p

DMAN3_init()

 algInit()
algAlloc()

algNumAlloc()

DMAN3_grantDmaChannels()

Pr
oc

es
s

Ca
ll

algActivate
control()
process()
control()

algDeactivate()

DMAN3_releaseDmaChannels()

DMAN3_exit()
algNumAlloc()
 algFree()

Test Application

Figure 3-1. Test Application Sample Implementation

3-2

Sample Usage

The test application is divided into four logical blocks:

� Parameter setup

� Algorithm instance creation and initialization

� Process call

� Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, and so on. The test application obtains
the required parameters from the Encoder configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, Testvecs.cfg and reads the
compliance checking parameter, Encoder configuration file name
(Testparams.cfg), input file name, and output/reference file name.

2) Opens the Encoder configuration file, (Testparams.cfg) and reads the
various configuration parameters required for the algorithm.

For more details on the configuration files, see Section 2.5.

3) Sets the IVIDENC1_Params structure based on the values it reads
from the Testparams.cfg file.

4) Initializes the various DMAN3 parameters.

5) Reads the input bit stream into the application input buffer.

After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in sequence:

1) algNumAlloc() - To query the algorithm about the number of memory
records it requires.

2) algAlloc() - To query the algorithm about the memory requirement
to be filled in the memory records.

3) algInit() - To initialize the algorithm with the memory structures
provided by the application.

A sample implementation of the create function that calls algNumAlloc(),
algAlloc(), and algInit() in sequence is provided in the
ALG_create() function implemented in the alg_create.c file.

3-3

Sample Usage

After successful creation of the algorithm instance, the test application
does DMA resource allocation for the algorithm. This requires initialization
of DMA Manager Module and grant of DMA resources. This is
implemented by calling DMAN3 interface functions in the following
sequence:

1) DMAN3_init() - To initialize the DMAN module.

2) DMAN3_grantDmaChannels() - To grant the DMA resources to the
algorithm instance.

Note:

DMAN3 function implementations are provided in dman3.a64P library.

3.1.3 Process Call

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the dynamic parameters (if they change during run-time) by
calling the control() function with the XDM_SETPARAMS command.

2) Sets the input and output buffer descriptors required for the
process() function call. The input and output buffer descriptors are
obtained by calling the control() function with the XDM_GETBUFINFO
command.

3) Calls the process() function to encode/decode a single frame of data.
The behavior of the algorithm can be controlled using various dynamic
parameters (see Section 4.2.1.10). The inputs to the process function
are input and output buffer descriptors, pointer to the
IVIDENC1_InArgs and IVIDENC1_OutArgs structures.

The control() and process() functions should be called only within the
scope of the algActivate() and algDeactivate() XDAIS functions,
which activate and deactivate the algorithm instance respectively. Once an
algorithm is activated, there could be any ordering of control() and
process() functions. The following APIs are called in sequence:

1) algActivate() - To activate the algorithm instance.

2) control() (optional) - To query the algorithm on status or setting of
dynamic parameters and so on, using the six available control
commands.

3) process() - To call the Encoder with appropriate input/output buffer
and arguments information.

4) control() (optional) - To query the algorithm on status or setting of
dynamic parameters and so on., using the six available control
commands.

5) algDeactivate() - To deactivate the algorithm instance.

The do-while loop encapsulates frame level process() call and updates
the input buffer pointer every time before the next call. The do-while loop

3-4

Sample Usage

breaks off either when an error condition occurs or when the input buffer
exhausts. It also protects the process() call from file operations by
placing appropriate calls for cache operations as well. The test application
does a cache invalidate for the valid input buffers before process() and a
cache write back invalidate for output buffers after process().

In the sample test application, after calling algDeactivate(), the output
data is either dumped to a file or compared with a reference file.

3.1.4 Algorithm Instance Deletion

Once encoding/decoding is complete, the test application must release the
DMA channels granted by the DMA Manager interface and delete the
current algorithm instance. The following APIs are called in sequence:

1) DMAN3_releaseDmaChannels() - To remove logical channel
resources from an algorithm instance.

2) DMAN3_exit() - To free DMAN3 memory resources.

3) algNumAlloc() - To query the algorithm about the number of memory
records it used.

4) algFree() - To query the algorithm to get the memory record
information.

A sample implementation of the delete function that calls algNumAlloc()
and algFree() in sequence is provided in the ALG_delete() function
implemented in the alg_create.c file.

3-5

Sample Usage

This page is intentionally left blank

3-6

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-9

4.3 Interface Functions 4-29

4-1

API Reference

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. For each symbolic
constant, the semantics or interpretation of the same is also provided.

Table 4-1. List of Enumerated Data Types
Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_NA_FRAME Frame type not available.

IVIDEO_I_FRAME Intra coded frame

IVIDEO_P_FRAME Forward inter coded frame

IVIDEO_B_FRAME Bi-directional inter coded frame

IVIDEO_IDR_FRAME Intra coded frame that can be used
for refreshing video content

IVIDEO_II_FRAME Interlaced Frame, both fields are I
frames

IVIDEO_IP_FRAME Interlaced Frame, first field is an I
frame, second field is a P frame.

IVIDEO_IB_FRAME Interlaced Frame, first field is an I
frame, second field is a B frame.

IVIDEO_PI_FRAME Interlaced Frame, first field is a P
frame, second field is an I frame.

IVIDEO_PP_FRAME Interlaced Frame, both fields are P
frames

IVIDEO_PB_FRAME Interlaced Frame, first field is a P
frame, second field is a B frame.

IVIDEO_BI_FRAME Interlaced Frame, first field is a B
frame, second field is an I frame.

IVIDEO_BP_FRAME Interlaced Frame, first field is a B
frame, second field is a P frame

IVIDEO_BB_FRAME Interlaced Frame, both fields are B
frames

IVIDEO_MBAFF_I_FRAME Intra coded MBAFF frame

IVIDEO_MBAFF_P_FRAME Forward inter coded MBAFF frame

IVIDEO_MBAFF_B_FRAME Bi-directional inter coded MBAFF
frame

IVIDEO_FrameType

IVIDEO_MBAFF_IDR_FRAME Intra coded MBAFF frame that can
be used for refreshing video content.

4-2

API Reference

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_FRAMETYPE_DEFAU
LT

Default value is set to
IVIDEO_I_FRAME

IVIDEO_CONTENTTYPE_NA -1, Frame type is not available

IVIDEO_PROGRESSIVE 0, Progressive frame

IVIDEO_PROGRESSIVE_FRA
ME

Is equal to
IVIDEO_PROGRESSIVE

IVIDEO_INTERLACED 1, Interlaced frame

IVIDEO_INTERLACED_FRAM
E

IVIDEO_INTERLACED

IVIDEO_INTERLACED_TOPF
IELD

2, Interlaced picture, top field

IVIDEO_INTERLACED_BOTT
OMFIELD

3, Interlaced picture, bottom field

IVIDEO_CONTENTTYPE_DEF
AULT

IVIDEO_PROGRESSIVE

IVIDEO_PROGRESSIVE Progressive video content (default
value)

IVIDEO_ContentType

IVIDEO_INTERLACED Interlaced video content.
Not supported in this version of
H264 Encoder.

IVIDEO_NONE No rate control is used

IVIDEO_LOW_DELAY Constant Bit-Rate (CBR) control for
video conferencing (default value)

IVIDEO_STORAGE Variable Bit-Rate (VBR) control for
local storage (DVD) recording

IVIDEO_TWOPASS Two pass rate control for non-real
time applications.
Not supported in this version of
H264 Encoder.

IVIDEO_USER_DEFINED User defined configuration using
advanced parameters

IVIDEO_RateControlPreset

IVIDEO_RATECONTROLPRES
ET_DEFAULT

IVIDEO_LOW_DELAY is the default
value

IVIDEO_FRAME_ENCODED Input content encoded

IVIDEO_FRAME_SKIPPED Input content skipped, that is, not
encoded

IVIDEO_SkipMode

IVIDEO_SKIPMODE_DEFAUL
T

IVIDEO_FRAME_ENCODED is the
default value

4-3

API Reference

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_BYTE Big endian stream (default value)

XDM_LE_16 16-bit little endian stream.
Not supported in this version of
H264 Encoder.

XDM_LE_32 32-bit little endian stream.
Not supported in this version of
H264 Encoder.

XDM_LE_64 64-bit little endian stream.
Not supported in this version of
H264 Encoder.

XDM_BE_16 16-bit big endian stream.
Not supported in this version of
H264 Encoder.

XDM_BE_32 32-bit big endian stream.
Not supported in this version of
H264 Encoder.

XDM_DataFormat

XDM_BE_64 64-bit big endian stream.
Not supported in this version of
H264 Encoder.

XDM_CHROMA_NA Chroma format not applicable

XDM_YUV_420P YUV 4:2:0 planar

XDM_YUV_422P YUV 4:2:2 planar.
Not supported in this version of
H264 Encoder.

XDM_YUV_422IBE YUV 4:2:2 interleaved (big endian)

XDM_YUV_422ILE YUV 4:2:2 interleaved (little endian)
(default value)

XDM_YUV_444P YUV 4:4:4 planar.
Not supported in this version of
H264 Encoder.

XDM_YUV_411P YUV 4:1:1 planar. Not supported in
this version of H264 Encoder.

XDM_GRAY Gray format.
Not supported in this version of
H264 Encoder.

XDM_RGB RGB color format.
Not supported in this version of
H264 Encoder.

XDM_ChromaFormat

XDM_CHROMAFORMAT_DEFAU
LT

Default value is set to
XDM_YUV_422ILE

4-4

API Reference

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_GETSTATUS Query algorithm instance to fill
Status structure

XDM_SETPARAMS Set run-time dynamic parameters
via the DynamicParams structure

XDM_RESET Reset the algorithm

XDM_SETDEFAULT Initialize all fields in Params
structure to default values specified
in the library

XDM_FLUSH Handle end of stream conditions.
This command forces algorithm
instance to output data without
additional input.

XDM_GETBUFINFO Query algorithm instance regarding
the properties of input and output
buffers

XDM_CmdId

XDM_GETVERSION Query the algorithm's version. The
result will be returned in the @c
data field of the respective
_Status structure.

XDM_DEFAULT Default setting of the algorithm
specific creation time parameters

XDM_HIGH_QUALITY Set algorithm specific creation time
parameters for high quality (default
setting)

XDM_HIGH_SPEED Set algorithm specific creation time
parameters for high speed:
� Reduced computation for skip

motion vectors
� No loop filter

XDM_EncodingPreset

XDM_USER_DEFINED User defined configuration using
advanced parameters

XDM_ENCODE_AU Encode entire access unit (default
value)

XDM_EncMode

XDM_GENERATE_HEADER Encode only header

FILTER_ALL_EDGES Enable filtering of all the edges

DISABLE_FILTER_ALL_EDG
ES

Disable filtering of all the edges

IH264VENC_LoopFilterPara
ms

DISABLE_FILTER_SLICE_E
DGES

Disable filtering of slice edges

IH264VENC_Level IH264_LEVEL_10 H.264 Level 1.0

4-5

API Reference

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IH264_LEVEL_1b H.264 Level 1.b

IH264_LEVEL_11 H.264 Level 1.1

IH264_LEVEL_12 H.264 Level 1.2

IH264_LEVEL_13 H.264 Level 1.3

IH264_LEVEL_20 H.264 Level 2.0

IH264_LEVEL_21 H.264 Level 2.1

IH264_LEVEL_22 H.264 Level 2.2

IH264_LEVEL_30 H.264 Level 3.0

IH264_LEVEL_31 H.264 Level 3.1

IH264_LEVEL_32 H.264 Level 3.2

IH264_LEVEL_40 H.264 Level 4.0

IH264_LEVEL_41 H.264 Level 4.1

IH264_LEVEL_42 H.264 Level 4.2

IH264_LEVEL_50 H.264 Level 5

IH264_POC_TYPE_0 POC Type 0 IH264VENC_PicOrderCountT
ype

IH264_POC_TYPE_2 POC Type 2

IH264_BYTE_STREAM Generates bit-stream in byte stream
format

IH264VENC_StreamFormat

IH264_NALU_STREAM Generates bit-stream in NAL unit
format

XDM_PARAMSCHANGE Bit 8
� 1 - Sequence Parameters

Change
� 0 - Ignore

XDM_APPLIEDCONCEALMENT Bit 9
� 1 - Applied concealment
� 0 - Ignore

XDM_INSUFFICIENTDATA Bit 10
� 1 - Insufficient data
� 0 - Ignore

XDM_ErrorBit

XDM_CORRUPTEDDATA Bit 11
� 1 - Data problem/corruption
� 0 - Ignore

4-6

API Reference

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_CORRUPTEDHEADER Bit 12
� 1 - Header problem/corruption
� 0 - Ignore

XDM_UNSUPPORTEDINPUT Bit 13
� 1 - Unsupported

 feature/parameter in input
� 0 - Ignore

XDM_UNSUPPORTEDPARAM Bit 14
� 1 - Unsupported input

 parameter or configuration
� 0 - Ignore

XDM_FATALERROR Bit 15
� 1 - Fatal error (stop encoding)
� 0 - Recoverable error

Note:

The remaining bits that are not mentioned in XDM_ErrorBit are
interpreted as:

� Bit 16-32: Reserved

� Bit 0-7: Codec and implementation specific (see Table 4-2)

The algorithm can set multiple bits to 1 depending on the error condition.

The H.264 Encoder specific error status messages are listed in Table 4-2.

Table 4-2. H.264 Encoder Error Statuses
Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IH264VENC_SEQPARAMERR Bit 0
� 1 - Error during sequence

 parameter set generation
� 0 - Ignore

IH264VENC_PICPARAMERR Bit 1
� 1 - Error during picture

 parameter set generation
� 0 - Ignore

IH264VENC_COMPRESSEDSIZEOVE
RFLOW

Bit 2
� 1 - Compressed data

 exceeds the maximum
 compressed size limit

� 0 - Ignore

IH264VENC_ErrorBit

IH264VENC_INVALIDQPPARAMETE
R

Bit 3
� 1 - Out of range initial

 quantization parameter
� 0 - Ignore

4-7

API Reference

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IH264VENC_INVALIDPROFILELEV
EL

Bit 4
� 1 - Invalid profile or level
� 0 - Ignore

IH264VENC_INVALIDRCALGO Bit 5
� 1 - Invalid rate control algorithm
� 0 - Ignore

IH264VENC_SLICEEXCEEDSMAXBY
TES

Bit 6
� 1 - Slice exceeds the maximum

 allowed bytes
� 0 - Ignore

IH264VENC_DEVICENOTREADY Bit 7
� 1 - Device is not ready
� 0 - Ignore

IH264VENC_ERROR_NULLPOINTER Bit 8
� 1 - Indicates the invalid pointers

been passed to the algorithm
� 0 - Ignore

IH264VENC_ERROR_INVALIDSTRU
CTSIZE

Bit 9
� 1 - Indicates the invalid structure

size been passed to the
algorithm

� 0 - Ignore

4-8

API Reference

4.2 Data Structures

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

� XDM_BufDesc

� XDM1_BufDesc

� XDM_SingleBufDesc

� XDM1_SIngleBufDesc

� XDM_AlgBufInfo

� IVIDEO1_BufDesc

� IVIDEO1_BufDescIn

� IVIDENC1_Fxns

� IVIDENC1_Params

� IVIDENC1_DynamicParams

� IVIDENC1_InArgs

� IVIDENC1_Status

� IVIDENC1_OutArgs

4-9

API Reference

4.2.1.1 XDM_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Datatype Input/
Output

Description

**bufs XDAS_Int8 Input Pointer to the vector containing buffer addresses

numBufs XDAS_Int32 Input Number of buffers

*bufSizes XDAS_Int32 Input Size of each buffer in bytes

4.2.1.2 XDM1_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Datatype Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

descs[XDM_MAX
_IO_BUFFERS}

XDM1_Singl
eBufDesc

Input Array of buffer descriptor

4.2.1.3 XDM_SingleBufDesc

║ Description

This structure defines the buffer descriptor for single input and output
buffers.

║ Fields

Field Datatype Input/
Output

Description

*buf XDAS_Int8 Input Pointer to the buffer

bufSize XDAS_Int32 Input Size of buffer in bytes

4-10

API Reference

4.2.1.4 XDM1_SingleBufDesc

║ Description

This structure defines the buffer descriptor for single input and output
buffers.

║ Fields

Field Datatype Input/
Output

Description

*buf XDAS_Int8 Input Pointer to the buffer

bufSize XDAS_Int32 Input Size of buffer in bytes

accessMask

XDAS_Int32 Output If the buffer was not accessed by the algorithm
processor (example, it was filled by DMA or other
hardware accelerator that does not write through the
algorithm's CPU), then no bits in this mask should be
set

4.2.1.5 XDM_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output
buffers. This structure is filled when you invoke the control() function
with the XDM_GETBUFINFO command.

║ Fields

Field Datatype Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_
MAX_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each input buffer

minOutBufSize[XDM
_MAX_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each output buffer

4-11

API Reference

Note:

For H.264 Encoder, the buffer details are:

� Number of input buffer required is 1 for YUV 422ILE and 3 for
YUV420P

� Number of output buffer required is:

� 1, if mvDataEnable = 0

� 2, if mvDataEnable = 1

� The input buffer sizes (in bytes) for worst case PAL-D1 format are:

� For YUV 420P:
Y buffer = 720 * 576
U buffer = 360 * 288
V buffer = 360 * 288

� For YUV 422ILE:
Buffer = 720 * 576 * 2

� There is no restriction on output buffer size except that it should
contain atleast one frame of encoded data. The actual requirement
of the output buffer size depends on target bit-rate and the content
of the video input. The output buffer sizes (in bytes) for typical cases
are: 405k (for PAL D1), 900k (for 1280x720p), and 2025k (for
1920x1080p). (Output buffer size = image_width * image_height).

4.2.1.6 IVIDEO1_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Datatype Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

frameWidth XDAS_Int32 Input Width of the video frame

frameHeight XDAS_Int32 Input Height of the video frame

framePitch XDAS_Int32 Input Frame pitch use to store the frame

bufDesc[IVIDEO_MAX_YUV_BUFFE
RS]

XDM1_Singl
eBufDesc

Input Pointer to the vector containing
buffer addresses

extendedError XDAS_Int32 Input Extended error field

frameType XDAS_Int32 Input Indicates the decoded frame type as
IVIDEO_FrameType enumerator
type

4-12

API Reference

Field Datatype Input/
Output

Description

topFieldFirstFlag XDAS_Int32 Input Flag to indicate when the application
should display the top field first

repeatFirstFieldFlag XDAS_Int32 Input Flag to indicate when the first field
should be repeated

frameStatus XDAS_Int32 Input Frame status of IVIDEO_Output

repeatFrame XDAS_Int32 Input Number of times the display process
needs to repeat the display
progressive frame

contentType XDAS_Int32 Input Content type of the buffer

chromaFormat XDAS_Int32 Input XDM_Chroma buffer

4.2.1.7 IVIDEO1_BufDescIn

║ Description

Buffer descriptor for input video buffers.
║ Fields

Field Datatype Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers in bufDesc[]

frameWidth XDAS_Int32 Input Width of the video frame

frameHeight XDAS_Int32 Input Height of the video frame

framePitch XDAS_Int32 Input Frame pitch used to store the frame.

bufDesc[XDM_MAX_
IO_BUFFERS]

XDM1_SingleBu
fDesc

Input Picture buffers

4-13

API Reference

4.2.1.8 IVIDENC1_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

Field Datatype Input/
Output

Description

ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function.

*control XDAS_Int32 Input Pointer to the control() function.

4.2.1.9 IVIDENC1_Params

║ Description

This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
be specified for these parameters.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

encodingPreset XDAS_Int32 Input Encoding preset. See
XDM_EncodingPreset enumeration for
details.

rateControlPreset XDAS_Int32 Input Rate control preset: See
IVIDEO_RateControlPreset
enumeration for details.

maxHeight XDAS_Int32 Input Maximum video height to be supported in
pixels.

maxWidth XDAS_Int32 Input Maximum video width to be supported in
pixels.

maxFrameRate XDAS_Int32 Input Maximum frame rate in fps * 1000 to be
supported.

4-14

API Reference

Field Datatype Input/
Output

Description

maxBitRate XDAS_Int32 Input Maximum bit-rate to be supported in bits per
second.

dataEndianness XDAS_Int32 Input Endianness of input data. See
XDM_DataFormat enumeration for details.
Only values of XDM_BYTE is supported in
this release.

maxInterFrameInterval XDAS_Int32 Input Distance from I-frame to P-frame:
� 0 or 1 - If no B-frames
� 2 - To insert one B-frame. Not supported

in this version of H264 Encoder

inputChromaFormat XDAS_Int32 Input Input chroma format. See
XDM_ChromaFormat enumeration for
details.
Only the following values are supported in
this release:
� XDM_YUV_420P
� XDM_YUV_422IBE
� XDM_YUV_422ILE

inputContentType XDAS_Int32 Input Input content type. See
IVIDEO_ContentType enumeration for
details. Only IVIDEO_PROGRESSIVE is
supported in this release.

reconChromaFormat XDAS_Int32 Input Chroma formats for the reconstruction
buffers. See XDM_ChromaFormat.
Valid value is XDM_CHROMA_NA.

Note:

For the supported maxBitRate values, see Table A.1 – Level Limits in
ISO/IEC 14496-10.

The following fields of IVIDENC1_Params data structure are level
dependent:
� maxHeight
� maxWidth
� maxFrameRate
� maxBitRate

To check the values supported for maxHeight and maxWidth use the
following expression:

maxFrameSizeinMbs >= (maxHeight*maxWidth) / 256;

See Table A.1 – Level Limits in ISO/IEC 14496-10 for the supported
maxFrameSizeinMbs values.

For example, consider you have to check if the following values are
supported for level 2.0:

4-15

API Reference

� maxHeight = 480

� maxWidth = 720

The supported maxFrameSizeinMbs value for level 2.0 as per Table A.1
– Level Limits is 396.

Compute the expression as:

maxFrameSizeinMbs >= (480*720) / 256

The value of maxFrameSizeinMbs is 1350 and hence the condition is
not true. Therefore, the above values of maxHeight and maxWidth are
not supported for level 2.0.

Use the following expression to check the supported maxFrameRate
values for each level:

maxFrameRate <= maxMbsPerSecond / FrameSizeinMbs;

See Table A.1 – Level Limits in ISO/IEC 14496-10 for the supported
values of maxMbsPerSecond.

Use the following expression to calculate FrameSizeinMbs:

FrameSizeinMbs = (inputWidth * inputHeight) / 256;

Reconstruction frame format will always be 4:2:0 planar.

For level 4.0 and above:

� The check for maxFrameSizeinMbs is not present

� Level is adjusted as per bit-rate and framesize. Psuedocode is as
shown.

if(params->levelIdc >=40){
 if(paramsBase->maxBitRate >20000000)
 levelIdc = 41;
 if(paramsBase->maxBitRate >50000000)
 levelIdc = 50;
 if(((paramsBase->maxWidth*paramsBase-
 >maxHeight)>>8)>8192)
 levelIdc = 50; }

4-16

API Reference

4.2.1.10 IVIDENC1_DynamicParams

║ Description

This structure defines the run-time parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
be specified for these parameters.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

inputHeight XDAS_Int32 Input Height of input frame in pixels.

inputWidth XDAS_Int32 Input Width of input frame in pixels.

refFrameRate XDAS_Int32 Input Reference or input frame rate in fps * 1000. For
example, if the frame rate is 30, set this field to
30000.

targetFrameRate XDAS_Int32 Input Target frame rate in fps * 1000. For example, if
the frame rate is 30, set this field to 30000.
Frame rate with accuracy of 0.125 frames per
second are supported in this version.

targetBitRate XDAS_Int32 Input Target bit-rate in bits per second. For example, if
the bit-rate is 2 Mbps, set this field to 2097152.

intraFrameInterval XDAS_Int32 Input Interval between two consecutive intra frames.
For example:
� 0 - Only first frame to be intra coded
� 1 - No inter frames (all intra frames)
� N - One intra frame and N-1 inter frames,

where N > 1.

 generateHeader XDAS_Int32 Input Encode entire access unit or only header. See
XDM_EncMode enumeration for details.

captureWidth XDAS_Int32 Input If the field is set to:
� 0 - Encoded image width is used as pitch.
� Any non-zero value, capture width is used

as pitch (if capture width is greater than
image width).

forceFrame XDAS_Int32 Input Force the current (immediate) frame to be
encoded as a specific frame type.
See IVIDEO_FrameType.
Default value: IVIDEO_NA_FRAME

interFrameInterval XDAS_Int32 Input Number of B frames between two reference
frames.
Not supported in this release. Valid value is 1.

4-17

API Reference

Field Datatype Input/
Output

Description

mbDataFlag XDAS_Int32 Input Flag to indicate that the algorithm should use MB
data supplied in additional buffer within inBufs.
Not supported in this release. Hence, should be
set to 0.

Note:

The following are the limitations on the parameters of
IVIDENC1_DynamicParams data structure:

� inputHeight <= maxHeight

� inputWidth <= maxWidth

� refFrameRate <= maxFrameRate
� targetFrameRate <= maxFrameRate

� targetBitRate <= maxBitRate

The rate control used in H.264 Encoder can work for a target bit-rate of a
minimum of 32 kbps and a maximum of 50 mbps up to level 4.1.
However, the recommended range varies with the format.

For example, for NTSC D1, the recommended range is 1.5 mbps to 6.0
mbps.

Although the supported max bit-rate is 50 mbps, it is expected that the
real time encoding frame rate will drop with respect to frame rate
mentioned in the encoder specification, for high bit-rates above 20
mbps.

Encoder does not support different value of refFrameRate and
TargetFrameRate and the application skips these frames. After finding
the frames to be skipped , the application ensures that refFrameRate
and Target FrameRate are same.

Capturewidth parameter is not supported in this release

Encoder does not support encoding frame rate lower than 1 fps, that is,
taqrgetFrameRate must be set to at least 1000.

4-18

API Reference

4.2.1.11 IVIDENC1_InArgs

║ Description

This structure defines the run-time input arguments for an algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

inputID XDAS_Int32 Input Identifier to attach with the corresponding encoded
bit-stream frames.
Not supported in this release

topFieldFirs
tFlag

XDAS_Int32 Input Flag to indicate the field order in interlaced content.
Not supported in this release

4.2.1.12 IVIDENC1_Status

║ Description

This structure defines parameters that describe the status of an algorithm
instance object.

║ Fields

Field Datatype Input/

Output
Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.

bufInfo XDM_AlgBufInfo Output Input and output buffer information. See
XDM_AlgBufInfo data structure for
details.

data XDM1_SingleBuf
Desc

Input Buffer descriptor for data passing.

4-19

API Reference

4.2.1.13 IVIDENC1_OutArgs

║ Description

This structure defines the run-time output arguments for an algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.

bytesGenerated XDAS_Int32 Output The number of bytes generated.

encodedFrameType XDAS_Int32 Output Frame types for video. See
IVIDEO_FrameType enumeration for details.

inputFrameSkip XDAS_Int32 Output Frame skipping modes for video. See
IVIDEO_SkipMode enumeration for details.

reconBufs IVIDEO_BufDesc Output Pointer to reconstruction buffer descriptor.

outputID XDAS_Int32 Output Output ID corresponding with the encoded
buffer. This is also used to free up the
corresponding image buffer for further use by
client application code.
Not supported in this release.

encodedBuf XDM1_SingleBuf
Desc

Output The encoder fills the buffer with the encoded bit-
stream. In case of sequences having I and P
frames only, these values are identical to
outBufs passed in
IVIDENC1_Fxns::process().

4-20

API Reference

4.2.2 H.264 Encoder Data Structures

This section includes the following H.264 HD Encoder specific extended
data structures:

� IH264VENC_Params

� IH264VENC_DynamicParams

� IH264VENC_InArgs

� IH264VENC_Status

� IH264VENC_OutArgs

4-21

API Reference

4.2.2.1 IH264VENC_Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for a H.264 Encoder instance object.
The creation parameters are defined in the XDM data structure,
IVIDENC1_Params.

║ Fields

Field Datatype Input/
Output

Description

videncParams IVIDENC1_Params Input See IVIDENC1_Params data structure for
details.

profileIdc XDAS_Int32 Input Profile identification for the encoder. The
only allowed value for Base Profile is 66.

levelIdc IH264VENC_Level Input Level identification for the encoder. See
IH264VENC_Level enumeration for
details.

rcAlgo XDAS_Int32 Input Algorithm to be used by Rate Control
Scheme. Valid values are 0 (DCES_TM5).
1(PLR3) and 2 (PLR4).
It is useful only when
rateControlPreset of
IVIDENC1_Params is equal to
IVIDEO_USER_DEFINED.

searchRange XDAS_Int32 Input Integer pel search around 16x16 blocks.
The center of search window is the
predicted vector. Values greater than 64
and less than 0 are not valid in this release.

Note:

RateControlMethod = PLR4 (rcAlgo=2) is a version of PLR3,
which does not skip frames. This rate control is recommended for
storage applications. This rate control is chosen when
rateCotrlPreset is set to IVIDEO_STORAGE. Rate control method = 1
(PLR3) is chosen when rateCotrlPreset is set to
IVIDEO_LOW_DELAY and about other rate control preset.

4-22

API Reference

Table 4-3. Default Values Used in IH264VENC_Params.
Field Default Value/s

encodingPreset XDM_DEFAULT

rateControlPreset IVIDEO_LOW_DELAY

maxHeight 720

maxWidth 1280

maxFrameRate 10000

maxBitRate 20000000

dataEndianness XDM_BYTE

maxInterFrameInterval 1

inputChromaFormat XDM_YUV_422ILE

inputContentType IVIDEO_PROGRESSIVE

profileIdc 66

levelIdc 0x00000025

rcAlgo 0x2

searchRange 0x00000040

4-23

API Reference

4.2.2.2 IH264VENC_DynamicParams

║ Description

This structure defines the run-time parameters and all other
implementation specific parameters for a H.264 Encoder instance object.
The run-time parameters are defined in the XDM data structure,
IVIDENC1_DynamicParams.

║ Fields

Field Datatype Input/

Output
Description

videncDynamicPara
ms

IVIDENC1_DynamicParam
s

Input See IVIDENC1_DynamicParams
data structure for details.

qpIntra XDAS_Int32 Input Initial Quantization Parameter (QP)
of I-frames. Valid value is 0 to 51. It
is useful only when
rateControlPreset of
IVIDENC1_Params is equal to
IVIDEO_NONE.

qpInter XDAS_Int32 Input Initial Quantization Parameter (QP)
of P-frames. Valid value is 0 to 51. It
is useful only when
rateControlPreset of
IVIDENC1_Params is equal to
IVIDEO_NONE.

qpMax XDAS_Int32 Input Maximum Quantization Parameter
(QP) to be used. Valid value is 0 to
51.

qpMin XDAS_Int32 Input Minimum Quantization Parameter
(QP) to be used. Valid value is 0 to
51.

LfDisableIdc XDAS_Int32 Input See
IH264VENC_LoopFilterParam
s enumeration for details.
Value of
DISABLE_FILTER_SLICE_EDGE
S is not supported in this release

quartPelDisable XDAS_Int32 Input � 1 - Disable quarter pel
 interpolation

� 0 - Enable quarter pel
 interpolation

AirMbPeriod XDAS_Int32 Input Periodicity of intra macro block.
Encoder should forcefully insert intra
macro block at the period specified
for airMbPeriod (any non-zero
value).

4-24

API Reference

Field Datatype Input/
Output

Description

maxMBsPerSlice XDAS_Int32 Input � 0-7 - No effect
� >7 - Maximum number of

macro blocks in a slice

maxBytesPerSlice XDAS_Int32 Input � 0 - No effect
� >0 - Maximum number of bytes

in a slice

sliceRefreshRowSt
artNumber

XDAS_Int32 Input Row number from which the slice
need to be intra coded.
For example, 1 indicates first row.

sliceRefreshRowNu
mber

XDAS_Int32 Input Number of rows to be coded as intra
slice

filterOffsetA XDAS_Int32 Input Alpha offset for loop filter. Valid
value is an even number between -
12 and 12, both inclusive.

filterOffsetB XDAS_Int32 Input Beta offset for loop filter. Valid value
is an even number between -12 and
12, both inclusive.

log2MaxFNumMinus4 XDAS_Int32 Input Limits the maximum frame number
in the bit-stream to 1<<
(log2MaxFNumMinus4 + 4). Valid
value is 0 to 12, both inclusive

chromaQPIndexOffs
et

XDAS_Int32 Input Specifies the offset that shall be
added to luma QP for addressing
the table of QPC values for the
chroma components. Valid value is
between -12 and 12, both inclusive

constrainedIntraP
redEnable

XDAS_Int32 Input Controls the intra macro block
coding in P slices
� 1 - Inter pixels cannot be used

for intra macro block prediction
� 0 - Inter pixels can be used for

intra macro block prediction

picOrderCountType XDAS_Int32 Input See
IH264VENC_PicOrderCountTy
pe enumeration for details.

mvDataEnable XDAS_Int32 Input Controls the motion vector and SAD
information exposure to the user.
� 1 - Enable
� 0 - Disable
See Appendix A for details.

4-25

API Reference

Note:

Any field from the IH264VENC_DynamicParams structure is useful only
when the encodingPreset field of IVIDENC1_Params data structure is
equal to XDM_USER_DEFINED.

Table 4-4. Default Values Used in H264VENC_TI_DynamicParams.
Field Default value/s

inputHeight 720

inputWidth 1280

refFrameRate 30000

targetFrameRate 10000

targetBitRate 20000000

intraFrameInterval 10

generateHeader XDM_ENCODE_AU

captureWidth 0

forceFrame -1

qpIntra 28

qpInter 28

qpMax 51

qpMin 0

lfDisableIdc 0

quartPelDisable 0

airMbPeriod 0

maxMBsPerSlice 0

maxBytesPerSlice 0

sliceRefreshRowStartNumber 0

sliceRefreshRowNumber 0

filterOffsetA 0

filterOffsetB 0

log2MaxFNumMinus4 0

4-26

API Reference

Field Default value/s

chromaQPIndexOffset 0

constrainedIntraPredEnable 0

picOrderCountType 2

mvDataEnable 0

Note:

Target frame rate and bit-rate should be provided appropriately for real-
time performance.

4.2.2.3 IH264VENC_InArgs

║ Description

This structure defines the run-time input arguments for H.264 Encoder
instance object.

║ Fields

Field Datatype Input/
Output

Description

videncInArgs IVIDENC1_InArgs Input See IVIDENC1_InArgs data
structure for details.

4.2.2.4 IH264VENC_Status

║ Description

This structure defines parameters that describe the status of the H.264
Encoder and any other implementation specific parameters. The status
parameters are defined in the XDM data structure, IVIDENC1_Status.

║ Fields

Field Datatype Input/

Output
Description

videncStatus IVIDENC1_Status Output See IVIDENC1_Status data structure for
details.

mvDataSize XDAS_Int32 Output Size of the mvData provided back per
frame (only useful when
IH264VENC_DynamicParams-
>mvDataEnable is set).

4-27

API Reference

4.2.2.5 IH264VENC_OutArgs

║ Description

This structure defines the run-time output arguments for the H.264H.264
HD Encoder instance object.

║ Fields

Field Datatype Input/
Output

Description

videncOutArgs IVIDENC1_OutArg
s

Output See IVIDENC1_OutArgs data structure for
details.

4-28

API Reference

4.3 Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the H.264H.264 HD Encoder. The APIs are logically grouped into the
following categories:

� Creation – algNumAlloc(), algAlloc()

� Initialization – algInit()

� Control – control()

� Data processing – algActivate(), process(), algDeactivate()

� Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate()

7) algFree()

control() can be called any time after calling the algInit() API.

algNumAlloc(), algAlloc(), algInit(), algActivate(),
algDeactivate(), and algFree() are standard XDAIS APIs. This
document includes only a brief description for the standard XDAIS APIs.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

4-29

API Reference

4.3.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm
requires

║ Synopsis

XDAS_Int32 algNumAlloc(Void);
║ Arguments

Void
║ Return Value

XDAS_Int32; /* number of buffers required */
║ Description

algNumAlloc() returns the number of buffers that the algAlloc()
method requires. This operation allows you to allocate sufficient space to
call the algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly
without any side effects. It always returns the same result. The
algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

4-30

API Reference

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm
requires

║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns
**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm
functions */

IALG_MemRec memTab[]; /* output array of memory records */
║ Return Value

XDAS_Int32 /* number of buffers required */
║ Description

algAlloc() returns a table of memory records that describe the size,
alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines
the creation parameters. This pointer may be NULL; however, in this case,
algAlloc() must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter.
algAlloc() may return a pointer to its parent’s IALG functions. If an
algorithm does not require a parent object to be created, this pointer must
be set to NULL.

The third argument is a pointer to a memory space of size
nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers
returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor
structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory
requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algNumAlloc(), algFree()

4-31

API Reference

4.3.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The
initialization parameters are defined in the IVIDENC1_Params structure
(see Data Structures section for details).

║ Name

algInit() – initialize an algorithm instance
║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec
memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* algorithm instance handle*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

algInit() performs all initialization necessary to complete the run-time
creation of an algorithm instance object. After a successful return from
algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This
value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to
the number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no
parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc(), algMoved()

4-32

API Reference

4.3.3 Control API

Control API is used for controlling the functioning of the algorithm instance
during run-time. This is done by changing the status of the controllable
parameters of the algorithm during run-time. These controllable parameters
are defined in the Status data structure (see Data Structures section for
details).

║ Name

control() – change run-time parameters and query the status
║ Synopsis

XDAS_Int32 (*control) (IVIDENC1_Handle handle,
IVIDENC1_Cmd id, IVIDENC1_DynamicParams *params,
IVIDENC1_Status *status);

║ Arguments

IVIDENC1_Handle handle; /* algorithm instance handle */

IVIDENC1_Cmd id; /* algorithm specific control commands*/

IVIDENC1_DynamicParams *params /* algorithm run-time
parameters */

IVIDENC1_Status *status /* algorithm instance status
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

This function changes the run-time parameters of an algorithm instance
and queries the algorithm’s status. control() must only be called after a
successful call to algInit() and must never be called after a call to
algFree().

The first argument to control() is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See
XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the
IVIDENC1_DynamicParams and IVIDENC1_Status data structures
respectively.

Note:

If you are using extended data structures, the third and fourth arguments
must be pointers to the extended DynamicParams and Status data
structures respectively. Also, ensure that the size field is set to the size
of the extended data structure. Depending on the value set for the size
field, the algorithm uses either basic or extended parameters.

4-33

API Reference

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

� control() can only be called after a successful return from
algInit() and algActivate().

� If algorithm uses DMA resources, control() can only be called after
a successful return from DMAN3_init().

� handle must be a valid handle for the algorithm’s instance object.
║ Postconditions

The following conditions are true immediately after returning from this
function.

� If the control operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either
IALG_EFAIL or an algorithm specific return value.

� If the control command is not recognized, the return value from this
operation is not equal to IALG_EOK.

║ Example

See test application file, TestAppEncoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algActivate(), process()

4-34

API Reference

4.3.4 Data Processing API

Data processing API is used for processing the input data.
║ Name

algActivate() – initialize scratch memory buffers prior to processing.
║ Synopsis

Void algActivate(IALG_Handle handle);
║ Arguments

IALG_Handle handle; /* algorithm instance handle */
║ Return Value

Void
║ Description

algActivate() initializes any of the instance’s scratch buffers using the
persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate() is an algorithm instance
handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm’s processing
methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

║ See Also

algDeactivate()

4-35

API Reference

║ Name

process() – basic encoding/decoding call
║ Synopsis

XDAS_Int32 (*process)(IVIDENC1_Handle handle,
IVIDEO1_BufDescIn*inBufs, XDM_BufDesc *outBufs,
IVIDENC1_InArgs *inargs, IVIDENC1_OutArgs *outargs);

║ Arguments

IVIDENC1_Handle handle; /* algorithm instance handle */

IVIDEO1_BufDescIn*inBufs; /* algorithm input buffer
descriptor */

XDM_BufDesc *outBufs; /* algorithm output buffer
descriptor */

IVIDENC1_InArgs *inargs /* algorithm runtime input
arguments */

IVIDENC1_OutArgs *outargs /* algorithm runtime output
arguments */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

This function does the basic encoding/decoding. The first argument to
process() is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer
descriptor data structures respectively (see XDM_BufDesc data structure
for details).

The fourth argument is a pointer to the IVIDENC1_InArgs data structure
that defines the run-time input arguments for an algorithm instance object.

The last argument is a pointer to the IVIDENC1_OutArgs data structure
that defines the run-time output arguments for an algorithm instance object.

Note:

If you are using extended data structures, the fourth and fifth arguments
must be pointers to the extended InArgs and OutArgs data structures
respectively. Also, ensure that the size field is set to the size of the
extended data structure. Depending on the value set for the size field,
the algorithm uses either basic or extended parameters.

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

� process() can only be called after a successful return from
algInit() and algActivate().

4-36

API Reference

� If algorithm uses DMA resources, process() can only be called after
a successful return from DMAN3_init().

� handle must be a valid handle for the algorithm’s instance object.

� Buffer descriptor for input and output buffers must be valid.

� Input buffers must have valid input data.
║ Postconditions

The following conditions are true immediately after returning from this
function.

� If the process operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either
IALG_EFAIL or an algorithm specific return value.

� After successful return from process() function, algDeactivate()
can be called.

║ Example

See test application file, TestAppEncoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algDeactivate(), control()

Note:

� A video encoder or decoder cannot be pre-empted by any other
video encoder or decoder instance. That is, you cannot perform task
switching while encode/decode of a particular frame is in progress.
Pre-emption can happen only at frame boundaries and after
algDeactivate() is called.

� The input data is an uncompressed video frame in one of the format
defined by inputChromaFormat of IVIDENC1_Params structure.
The encoder outputs H.264 compressed bit stream in the little-
endian format.

4-37

API Reference

║ Name

algDeactivate() – save all persistent data to non-scratch memory
║ Synopsis

Void algDeactivate(IALG_Handle handle);
║ Arguments

IALG_Handle handle; /* algorithm instance handle */
║ Return Value

Void
║ Description

algDeactivate() saves any persistent information to non-scratch buffers
using the persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algDeactivate() is an algorithm
instance handle. This handle is used by the algorithm to identify various
buffers that must be saved prior to next cycle of algActivate() and
processing.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algActivate()

4-38

API Reference

4.3.5 Termination API

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

║ Name

algFree() – determine the addresses of all memory buffers used by the
algorithm

║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec
memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */
║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */
║ Description

algFree() determines the addresses of all memory buffers used by the
algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

4-39

API Reference

This page is intentionally left blank

4-40

Appendix A

Motion Vector Access API

A.1 Description

Motion Vector Access API is part of the XDM process() call, used by the
application to encode a frame. A run-time parameter mVDataEnable is
provided as a part of dynamic parameters, which can be set or reset at a
frame level at run-time. Setting this flag to 1 indicates that the motion
vectors access is needed. When this parameter is set to 1, the process()
call returns the motion vector data in the buffer provided by the application.

For every macro block, the data returned is 8 bytes, a signed horizontal
displacement component (signed 16-bit integer) and a vertical
displacement component (signed 16-bit integer) and signed SAD, as
shown.

Motion Vector Horizontal
displacement (HD)

Signed 16 - bit integer

Motion Vector Vertical
displacement (VD)

Signed 16 - bit integer

SAD Signed 32 - bit integer

A-1

Motion Vector Access API

The API returns the motion vector data in a single buffer with these three
values interleaved in contiguous memory as shown in the figure.

 HD

 VD

 SAD

 HD

 VD

 SAD

 HD

 VD

 SAD

 HD

 VD

 SAD

MB (0,0)

MB (0,1)

MB (0, num_mb_cols -1)

MB (1,0)

 HD

 VD

 SAD

 HD

 VD

 SAD

MB (num_mb_rows -1 , num_mb_cols -1)

MB (num_mb_rows -1 , num_mb_cols -2)

Figure A-1. Motion Vector and SAD Buffer Organization.

A-2

Motion Vector Access API

The following sequence must be followed for motion vector access:

1) In the dynamic parameters, set the flag to access MV data.

/* This structure defines the run time parameters for
H264VEnc object */
IH264VENC_DynamicParams ext_dynamicParams;

/* Enable MV access */
ext_dynamicParams.mvDataEnable = 1;

/* Control call to set the dynamic parameters */

control(.., XDM_SETPARAMS,..)

2) Allocate output buffers and define the output buffer descriptors.

/* Output Buffer Descriptor variables */
XDM_BufDesc outputBufDesc;

/* Get the input and output buffer requirements for the
codec */

control(.., XDM_GETBUFINFO, extn_dynamicParams, ..);

If MV access is enabled in step1, this call will return the output buffer info
as numBufs =2, along with the minimal buffer sizes.

/* Initialize the output buffer descriptor */
outputBufDesc.numBufs = status.bufInfo.minNumOutBufs;
/* Stream Buffer */
outputBufDesc.bufs[0] = streamDataPtr; //pointer to H264
 bit stream
outputBufDesc.bufSizes[0] = status.bufInfo.minOutBufSize[0];

/* MV Buffer */
outputBufDesc.bufs[1] = mvDtataPtr; //pointer to MV data
outputBufDesc.bufSizes[1] = status.bufInfo.minOutBufSize[1];
minOutBufSize[1] is calculated as ((No.of MBs in frame) * 8)
bytes

3) Call frame encode API.

/* Process call to encode 1 frame */

process(.. ,.. , outputBufDesc, ..);

After this call, the buffer outputBufDesc.bufs[1] will have the motion
vector data. This API will return the size of the MV array in
status.mvDataSize.

As shown in Figure A-1, the API uses a single buffer to store the motion
vector data. The buffer will have the three values (HD, VD, SAD)
interleaved in contiguous memory.

A-3

Motion Vector Access API

Define a structure:

struct motion_mbdata
{
 short MVx;
 short MVy;
 int SAD;
} ;

motion_mbdata *mbMV_data = outputBufDesc.bufs[1]; int kk,
mbNumber = 0 ;
 for(kk=0; kk< status.mvDataSize ; kk +=8)
 {
 mbMV_data.MVx --> MVx
 mbMV_data.MVy --> MVy
 mbMV_data.MVy --> SAD
 mbMV_data ++;
 mbNumber++
 }

Note:

� The motion vectors are with quarter pel / half pel resolution.

� SAD = (Ref(i,j) – Src(i,j)) 2 where, Ref is the macro block
of the reference region and Src is the macro block of the source
image.

� The motion vectors seen in the encoded stream are based on the
best coding decision which is a combination of motion estimation
and mode decision. The MV buffer returns the results of the motion
estimation in fullpel resolution (lowest SAD) and this maybe different
from the motion vectors seen in the bit stream. More details are
given below :

� Some macro blocks in a P-frame may be coded as Intra macro
blocks based on the post motion estimation decisions. In this
case, the motion vectors computed in the motion estimation
stage (assuming that this macro block is inter) is provided.

� Due to the post motion estimation decisions for some macro
blocks, the actual motion vector encoded might be forced to
(0,0). In this case, the non-zero motion vector available after the
motion estimation is provided.

� Some inter macroblocks may not be coded due to zero residual.
In this case, the full pel motion vectors computed in the motion
estimation stage are provided.

� For I-frames, motion vectors are not returned and
status.mvDataSize = 0.

A-4

	H.264 HD Baseline Profile Encoder on DM6446
	Read This First
	Contents
	Figures
	Tables
	Introduction
	1.1 Overview of XDAIS and XDM
	1.1.1 XDAIS Overview
	1.1.2 XDM Overview

	1.2 Overview of H.264 Baseline Profile Encoder
	1.3 Supported Services and Features

	Installation Overview
	2.1 System Requirements
	2.1.1 Hardware
	2.1.2 Software

	2.2 Installing the Component
	2.3 Before Building the Sample Test Application
	2.3.1 Installing DSP/BIOS
	2.3.2 Installing Framework Component (FC)

	2.4 Building and Running the Sample Test Application
	2.5 Configuration Files
	2.5.1 Generic Configuration File
	2.5.2 Encoder Configuration File

	2.6 Standards Conformance and User-Defined Inputs
	2.7 Uninstalling the Component
	2.8 Evaluation Version

	Sample Usage
	3.1 Overview of the Test Application
	3.1.1 Parameter Setup
	3.1.2 Algorithm Instance Creation and Initialization
	3.1.3 Process Call
	3.1.4 Algorithm Instance Deletion

	API Reference
	4.1 Symbolic Constants and Enumerated Data Types
	4.2 Data Structures
	4.2.1 Common XDM Data Structures
	4.2.2 H.264 Encoder Data Structures

	4.3 Interface Functions
	4.3.1 Creation APIs
	4.3.2 Initialization API
	4.3.3 Control API
	4.3.4 Data Processing API
	4.3.5 Termination API

	Motion Vector Access API
	A.1 Description

