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SPRUHX8A–July 2014–Revised April 2015

Introduction

1.1 Overview
The Digital Front End (DFE) is a programmable peripheral integrated into Texas Instruments Keystone II
SOCs to perform transmit and receive signal processing. The DFE provides a JESD204B SerDes
interface to connect with analog-to-digital and digital-to-analog convertors. The DFE provides for transmit
and receive digital signal processing, JESD204B transport, and includes digital down/up convertors
(DDUC), Transmit, Receive, and Capture buffer blocks. The DFE connects to the rest of the SOC through
the IQN2 module.

DFE signal processing is performed on the transmit path (TX) and the receive path (RX). The transmit
path includes channel-based and stream-based up conversion. Specific versions targeted towards
wireless base-station markets also include crest factor reduction (CFR) and digital pre-distortion (DPD).
The receive path includes functionality for wideband and narrowband automatic gain control (AGC),
complex equalization, decimation, filtering, and down conversion. The DFE also includes a feedback path
to capture samples from transmit side. This data is utilized for DPD to linearize the power amplifier output.
This path can also act as an additional receive path to add extra receive capacity (or for network listening
modes for 3GPP applications).

On the transmit side, DFE aggregates multiple real or complex digital data channels into signal streams.
On the receive side, DFE receives JESD204B-formatted signal streams containing time-division
multiplexed data for multiple ADC channels, and separates them into individual real or complex data
channels.

The DFE performs signal processing operations applicable to both individual channels, such as gain,
interpolation, decimation, and those which apply to the signal streams, such as filtering, frequency
translations, channel combining, crest factor reduction, and digital pre-distortion.

Figure 1-1. DFE Context Diagram
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1.2 Features
• 4 JESD SERDES lanes, each supporting up to 7.37 Gbps
• Support for up to 4TX, 4 RX, and 2 feedback RX streams.
• 4 DDUCs, each capable of being used as and up or down convertor.
• Each DDUC supports 1 to 12 channels for a total of up to 48 channels.
• Programmable FIR filters (PFIRs) inside the DDUCs allow for varying tap lengths and storage of

multiple filters.
• Transmit Functionality

– TX includes DUC, CFR, DPD, and Bulk up conversion.
– TX and RX power meters to support power monitoring
– PA protection logic built into the TX block to limit RMS or peak power
– Crest factor reduction to limit the signal peak to average power ratio
– Digital pre-distortion to improve system linearity by allowing PAs to operate more efficiently
– Provides post-DPD fractional resampling, mixing and summing options
– Programmable 55 tap filter to ease TX IF filtering requirements
– Fractional re-sampler to allow DPD and JESD sample rates to differ
– 48 bit mixer and NCO
– Switching, summing options
– Interfaces to the JESD module

• Receive Functionality
– Provides receiver functionality prior to digital down-conversion to baseband
– RX includes DC-offset cancellation, front-end and back-end AGC, decimation, bulk down

conversion, RX equalizer and I/Q imbalance correction.
– Provides 90-dB stops and 80% BW optional real to complex filtering and programmable decimation

(supported decimation rates: 1x, 2x, 4x, 8x, and 16x).
– 16 tap complex equalizer for linear distortion compensation or calibrated frequency-dependent IQ

imbalance correction
– Flexible mixing, switching, and summing options
– Interfaces to the JESD module

• Tuning and channel aggregation and distribution
• Supports bypass capability to deliver data from JESD straight to the baseband block for JESD attach

applications
• GPIOs to control external data convertors and transceivers
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Figure 1-2. DFE Block Diagram

1.3 Connectivity
The DFE block has the following interfaces:

IQNET2 (interface towards the SoC)
• A 128-bit wide AID bus for streaming channel IQ data between DFE and IQN2.
• A 128-bit control port for transferring DPD capture data and coefficients between the DFE and the

DSP/ARM cores (PktDMA-based).
• A 32-bit VBUSP slave interface for configuration
• Two interrupt strobes (all of the DFE interrupts get aggregared into 2 interrupts signals - Additional

register reads are needed to determine the source of DFE interrupts).

IOs (Data and control interfaces towards data convertors)
• SERDES: 4 lanes

(a) 2 lanes directly connected to JESD module in DFE
(b) 2 lanes connected through muxes to allow JESD or AIL usage.

• LVDS (3 inputs and 2 outputs)
(a) 2 JESD sync inputs and 2 sync outputs (supports connecting up to 2 devices)
(b) 1 SYSREF input (from clock generator)

• CMOS (18 GPIOs, most important ones listed below)
(a) 1 SYSREF request output per clock generator (from JESD)
(b) 2 JESD sync inputs and 2 sync outputs for interfacing to data converters which do not support

LVDS sync.
(c) Several other GPIOs used for control and interrupt signalling with the external data convertors.

1.4 System Overview and Use Cases
This section provides a system-level functional overview of the DFE and lists the typical use case
scenarios.
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Figure 1-3. DSP SoC to JESD Transceiver SoC Flow and Control Diagram

Figure 1-3 illustrates the connections between the TCI663xK2L SoC blocks and the external transceiver or
data convertor. Refer to the TCI663xK2L SoC data manual (SPRS893) for a general overview of the
various SoC Blocks shown above.

DFE interfaces with the SoC through the IQN2 module using the AID bus. DFE RX receives JESD-
formatted digital channel streams from ADCs over SERDES, and unpacks them into channel containers
which are sent to SoC through the IQN2 module. On the TX side, DSP sends digital channel data packed
into channel containers to the DFE through the IQN2 block. DFE processes these channel containers into
TX streams and after JESD formatting, sends them out to the DAC over SERDES.

DFE TX path provides additional signal processing for TX streams. JESD204B processing is used to
synchronize and transport the TX streams across the JESD204B serial data interface to the external
transmitter or DAC, which converts it into analog stream for RF up conversion or direct transmission.
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Figure 1-4. DFE TX Signal Processing

DFE RX receives RX streams containing digital (real or complex) RX channel data from ADC sources over
JESD204B transport. The received RX streams are processed and converted to the IQNet channel data
container format for DSP processing.

Figure 1-5. DFE RX Signal Processing

The JESD transceiver can provide additional RX signals for wideband monitoring or additional RX
capacity. DFE feedback path receives these additional RX streams, which can be used either for TX
signal capture for DPD processing, or for added RX capacity. The feedback signal is treated like a
JESD204B RX stream, but at the JESD204B TX stream sample rate.

1.5 Use Case Examples
The following sections present typical DFE use case scenarios.
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1.5.1 DFE with RF Transceiver (DAC+ADC with Integrated RF Front-End)

Figure 1-6. DFE with RF Transceiver

DFE can be interfaced directly with Analog Front-End (AFE) devices with integrated RF up/down
conversion, for example, in wireless small cell base-stations. In such applications, TX and RX channel
data is mapped to antenna streams and antenna carriers:
• Antenna Stream: An antenna stream represents a physical antenna and contains TX or RX sample

data for a physical antenna. Antenna streams are the equivalent of TX or RX streams referred to in this
document.

• Antenna carrier: An antenna carrier represents TX or RX sample data for a particular carrier
frequency. One or more antenna carriers can be transmitted or received over the same physical
antenna; in other words, an antenna stream can contain multiple antenna carriers. Antenna carriers are
the equivalent of channel containers referred to in this document.

In DFE TX processing, the antenna carriers are gain corrected, filtered, interpolated, frequency translated,
and combined with other antenna carriers into an antenna stream. There are additional DFE processes for
each TX antenna stream including CFR, DPD, IF frequency translation, and JESD204B data transport.

In RX side, the JESD transceiver down-converts, digitizes, and processes the RF signal, then formats and
outputs the JESD204B complex stream. DFE receives the RX stream (antenna stream) and applies
further signal processing, including digital block down conversion and channel down conversion. The
down conversion process includes frequency translation, switching, IQ rate reduction, filtering, and RX
complex equalization. The RX channel data is then sent to IQNet for conversion to an antenna container.
The RX processing rate for UL is the same as the TX rate, or ½ the JESD TX equivalent rate.

The DFE feedback RX path captures samples from the transmit side. This data is utilized for DPD to
linearize the power amplifier output. This path can also be used as an additional receive path to add extra
receive capacity (shown by a dotted line in Figure 1-6). More details about DFE TX and RX signal
processing are given in further sections.

1.5.2 Discrete DAC and ADC
DFE can connect to discrete JESD204B analog-to-digital and digital-to-analog data convertors which are
synchronized using the two sets of JESD sync signals provided by the DFE. The clock and SYSREF
solution provides phase-aligned system clock and SYSREF to the DFE (SoC), ADC, and DAC. Typically,
the feedback RX stream adds additional RX capacity in this case, so the feedback RX stream processing
output is sent to DDUC for RX channel processing as shown.

17SPRUHX8A–July 2014–Revised April 2015 Introduction
Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHX8A


TCI 663xK2L DFE

Clock and 

SYSREF 

Solution

Sync IN/Sync OUT

System Clk

SYSREF

SYSREF

System Clk

To IQN2

SPI, GPIO Control

JESD Rx

JESD Rx

JESD Rx

JESD Rx

Multichannel JESD ADC Device

Multichannel JESD ADC Device

Rx

ADC IQ DeMod

ADC IQ DeMod

JESD204B 

TransportDFE BB Block

2x JESD 204B Rx

SYSREF

System Clk

Sync IN/Sync OUT

SPI, GPIO Control

DFE RX Bypass

DFE RX and Feedback RX 

Signal Processing Blocks

(Bypassed)

Rx

2x JESD 204B Rx

TCI 663xK2L DFE

Clock and 

SYSREF 

Solution

Sync IN/Sync OUT

System Clk

SYSREF

SYSREF

System Clk

To IQN2

Tx1

SPI, GPIO Control

JESD Tx
JESD Tx

JESD Tx

JESD Tx

JESD Rx
JESD Rx
JESD Rx
JESD Rx

Multichannel JESD DAC Device

Multichannel JESD ADC Device

Rx

DAC IQ Mod

ADC IQ DeMod

From IQN

JESD204B 

TransportDFE BB Block

4x JESD 204B TX

4x JESD 204B Rx

Tx Channel 

Processing

Feedback 

Stream 

processing

(Used as 

additional RX 

Path)

Tx Stream 

processing

Rx Channel 

Processing

Rx Stream 

Processing

Capture 

Buffer

SYSREF

System Clk

Sync IN/Sync OUT

SPI, GPIO Control

Use Case Examples www.ti.com

Figure 1-7. DFE with Discrete DAC and ADC

1.5.3 Discrete ADC with DFE Bypass
The various signal processing blocks inside the DFE can be bypassed as shown in Figure 1-8. This allows
the DFE to interface with JESD204B-based data convertors in applications involving specialized signal
processing, which may be performed on DSP and other accelerators such as FFTC. These applications
usually include signal acquisition over a wide bandwidth, such as medical imaging (ultra sound probes)
and sonar. Two multichannel ADC devices can be connected using the two sets of JESD sync signals.

Figure 1-8. DFE RX Bypass

The ADC packs real or complex samples for multiple channels into JESD-formatted RX streams, which
are received by the DFE JESD transport block. The JESD transport block unpacks (de-interleaves and
decimates if needed) the samples into individual channel containers, which are sent straight to the DFE
BB (baseband) block which sends them to IQN2. IQN2 then copies the samples to internal (L2SRAM or
MSMCSRAM) or external (DDR3) memory for application processing.
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1.6 DFE TX Signal Processing and Frequency Translation
This section shows the DFE frequency translation and processing of antenna containers into antenna
streams. The antenna carriers are gain corrected, filtered, interpolated, frequency translated, and
combined with other carriers into an antenna stream.

There are additional DFE processes for each TX antenna stream CFR, DPD, IF frequency translation, and
JESD204B data transport.

The transmit side frequency translation can be divided into three stages.

1.6.1 TX Frequency Translation Based on a Channel or Carrier
DFE contains 4 DDUC (digital down/up conversion) blocks, each of which can be programmed for transmit
(up conversion) or receive (down-conversion) operations and one ratio for interpolation or decimation. In
TX operation, the BB block delivers time-interleaved IQ samples to the DUC block, which interpolates the
carriers and translates them to individual offset frequencies. The interpolated and frequency-translated
carriers are sent to the DFE sum chain, which combines the carriers into a TX stream.

Figure 1-9 shows the frequency translation and combining on a per-channel basis inside the DFE DUC
and sum chain blocks.
1. Individual carriers are received for DFE processing. Antenna containers from IQNet are converted to

antenna carriers.
2. The individual carriers are interpolated and frequency-translated to an offset frequency. The offset

frequency is zero for a single-carrier case.
3. The DFE sum chain combines the individual antenna carriers into an antenna stream.

Figure 1-9. DFE TX Channel Processing

The channel processing inside DUC consists of a programmable FIR filter, re-sampler, cascade integrator
comb filter (CIC), and a channel complex mixer. The processing has several ratio rules which are based
on the number of transmit or receive streams and the number of channels inside the DDUC. These ratio
rules are used to define the stream IQ rate.

Number of Transmit or Receive Streams IQ Rate
1 DFE Clk/2
2 DFE Clk/4
4 DFE Clk/8
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1.6.2 TX Frequency Translation Based on a Stream or Antenna
On specific versions targeted towards wireless infrastructure applications (such as small cell base-
stations), DFE supports additional stream-based functions such as CFR, TX stream bulk up conversion,
and DPD. Check the data sheet of your device to find out if these functions are supported.

Figure 1-10 shows the interpolation and frequency translation, as applied after the channel-based
frequency translation described in Section 1.5.1, and also shows at what stages CFR and DPD
functionality is applied (These modules are described in Chapter 2).
1. The output from DFE sum chain (combined frequency-translated channels) goes through the CFR

block, which applies crest factor reduction and then interpolates to the stream rate (post CFR
interpolation), as shown in Steps 4 and 5. CFR clips the peaks of the transmit signal to reduce the
peak-to-average ratio (PAR), and maintain the desired spectral emission mask (SEM) and adjacent
channel power ratio (ACPR).

2. The interpolated TX stream goes through the DPD block and IF frequency translation, then is
transported over JESD204B to the JESD transceiver. DPD pre-distorts the TX signal to reduce the
intermodulation distortion (IMD) from the power amplifier after the JESD transceiver.

NOTE: On versions that do not support CFR and DPD, the output from the SUM chain is directly
interpolated to the stream rate and transported over JESD204B.

Additionally, the DFE TX path also includes PA protection, which limits the peak power or RMS power of
each TX stream. The PA protection can also set back the TX gain or inhibit a TX stream output.

Figure 1-10. DFE TX Stream Processing

1.6.3 TX Frequency Translation after DFE (Inside the DAC/RF Front-End)
The last step in the TX chain is the digital-to-analog conversion and direct IQ modulation of the TX stream
to the local oscillator frequency. This process is performed in the external DAC or transceiver.
1. The TX stream is transported over JESD204B from DFE to the JESD transceiver.
2. The transceiver performs digital-to-analog conversion of the TX stream and mixes it with the local

oscillator frequency (direct IQ modulation).

NOTE: RF Transmit Frequency = Carrier Frequency + IF Frequency + Transmit Local Oscillator
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1.7 DFE RX Signal Processing and Frequency Translation
This section shows the DFE frequency translation and processing of antenna streams into antenna
carriers. The analog signal is received by the external JESD transceiver, which down-converts, digitizes,
and processes the RF signal, then outputs the JESD204B complex stream.

DFE receives the digital RX antenna stream over JESD204B and applies further signal processing,
including digital block down conversion and channel down conversion. The down conversion process
includes frequency translation, switching, IQ rate reduction, filtering, and RX complex equalization. The
RX channel data is then sent to IQNet for conversion to an antenna container.

Figure 1-11. DFE RX Processing

Figure 1-11 shows the steps in RX antenna stream processing and frequency translation.
1. RF analog input is received by the external JESD transceiver and frequency translated to low or zero

IF (intermediate frequency). The IF is digitized, signal processed, and transported over JESD204B to
the DFE.

2. The digital antenna RX stream is received by DFE over JESD204B.
3. DFE translates the intermediate frequency RX stream to zero IF and performs block down conversion.
4. The RX DDUC separates the carriers from the RX stream to individual offset frequencies, and

decimates the carriers to the channel baseband sampling rate.
5. The filtered and decimated antenna carriers are gain-normalized and converted to antenna container

format to be sent to IQN2, which delivers the RX channel data to the application.

NOTE: RF Receive Frequency = Carrier Frequency + IF Frequency + Receive Local Oscillator

There is an advanced feature in the DFE RX not discussed in the above sections: the JESD-decoded and
mapped RX streams are block down converted in the RX sub-block. The block down conversion includes
frequency translation, switching, IQ rate reduction and filtering, and RX complex equalization.
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1.7.1 Feedback RX Path
The DFE feedback RX path captures samples from the transmit side. This data is utilized for DPD
calculations to linearize the power amplifier output. This path can also add additional RX capacity.

Similar to the RX path, the feedback RX stream processing starts with the external JESD transceiver,
which down-converts, digitizes, and processes the RF signal, then outputs the JESD204B complex
stream. The feedback stream is received over JESD204B by the DFE, which performs block down-
conversion and frequency translation. The feedback data is then sent to the DFE capture buffer. However,
when used as an additional RX path, the output of the feedback RX path is sent to the RX DDUC instead
for channel down-conversion and decimation.

Figure 1-12. DFE Feedback RX Processing

Figure 1-12 shows the steps in feedback RX antenna stream processing and frequency translation.
1. RF analog input is received by the external JESD transceiver and frequency-translated to low or zero

IF (intermediate frequency). The IF is digitized, signal processed, and transported over JESD204B to
the DFE.

2. The digital antenna RX stream is received by DFE over JESD204B.
3. DFE translates the intermediate frequency RX stream to zero IF, and performs equalization and gain

correction. The processed output is captured in the capture buffer.

NOTE: RF Feedback Frequency = IF Frequency + Transmit Local Oscillator

The following additional steps apply when feedback RX is used as an additional RX Path.
1. The feedback RX output from step-3 is sent to RX DDUC, which performs channel down-conversion

and decimation.
2. The filtered and decimated antenna carriers are gain-normalized and converted to antenna container

format to be sent to IQN2, which delivers the RX channel data to the application.

NOTE: RF Receive Frequency = Carrier Frequency + IF Frequency + Feedback Local Oscillator
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1.8 DFE General Input and Output Description
Figure 1-1 shows the interfaces to DFE, and the interconnection to IQNet and SerDes blocks:
1. VBUSP register programming – 32-bit register and memory programming interface (see IQNet

Reference 2 - Chapter 3)
2. CTL 32/64-bit DMA data interface from IQNet to DFE, used to stream DFE status, and have a higher

BW interface rate to specific DFE registers and memories (see IQNet Reference 2 - Chapter 3)
3. 2 level Interrupt - 2 interrupt signals to IQNet to signal a selected DFE interrupt event (see IQNet

Reference 2 - Chapter 3)
4. AID Bus – The main baseband interface for TX and RX BB antenna carriers. The AID bus interfaces

between the DFE baseband block, and the IQNet. There are separate single direction flow TX and RX
synchronous buses. (see IQNet Reference 2 - Chapter 3)

5. DFE PLL Clock – The DFE and IQNet share a common PLL clock for synchronous operation.
6. SYSREF – A JESD204B frame clock input sourced external to Lamar. SYSREF is distributed from the

clock solution to all JESD 204B devices, to align the data frames. (see JESD204B Reference 1 -
Chapter 3)

7. SYNCIN – There are one or two JESD204B links in TCI663xK2L DFE. These inputs monitor the
JESD204B receiver status from the external JESD204B transceiver (see JESD 204B Reference 1 -
Chapter 3).

8. SYNCOUT – There are one or two JESD204B links in TCI663xK2L DFE. These outputs indicate the
status of the TCI663xK2L DFE JESD RX devices. (see JESD 204b Reference 1 - Chapter 3)

9. [4] DFE JESD TX Outputs – The DFE has up to 4 TX JESD204B outputs. These TX output buses go
to the SerDes for parallel to serial conversion. The 4 JESD204B lanes can be used for 1, 2, or 4 TX
antenna streams.

10. [4] DFE JESD RX Inputs – The DFE has up to 4 RX JESD204B inputs. These RX input buses come
from the SerDes after serial to parallel conversion. The four JESD204B lanes can be used for 1, 2, or 4
RX antenna streams. The RX antenna streams include the feedback signal.

1.9 TCI663xK2L DFE Boot Mode Considerations
There are two SerDes macros on the TCI663xK2L device, CSISC2_0 and CSISC2_1, and each macro
provides two SerDes lanes, making for a total of 4 lanes on the device. DFE shares SerDes resources
with IQNet AIL (antenna interface lanes). The SerDes lanes corresponding to CSISC2_0 are multiplexed
between IQN2 AIL (used for CPRI interface in wireless base-station applications) and DFE JESD lanes 0
and 1, as shown in Figure 1-13.

The multiplexing of these lanes between IQN2 AIL and DFE is controlled at using a Boot Mode control.

Additionally, TCI663xK2L DFE has two LVDS inputs normally associated with the JESD204B SYNCIN
signals. When IQN2 is configured for AIL usage (CPRI), these two LVDS signals can be repurposed to
IQN sync signals using pin mux Control.

The BOOT MODE multiplexers for DFE and IQNet are shown in Figure 1-13. The Boot Mode and pin mux
controls are discussed in the TCI663xK2L SoC Data Manual (SPRS893).
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Figure 1-13. Boot Mode Shared Data Multiplexers IQNet and DFE

1.10 SYSREF Logic outside DFE
In Figure 1-13 the SYSREF Logic is used to sample the external LVDS SYSREF signal with SYSCLK, and
provide this signal to DFE. The SYSREF logic can also generate a test SYSREF signal used for factory
tests.

The SYSREF logic register programming is discussed in the TCI663xK2L SoC Data Manual, Reference 4
(Chapter 20).

1.11 DFE Power Domains
The DFE has three power domains as shown in Table 1-1. The numbers shown in the table are for listing
purpose only; the actual power domain numbers are device-dependent. Check the device-specific data
manual.

Table 1-1. Power Domains in DFE

Power Domain DFE Sub-blocks Serviced
PD1 Baseband; (4) DDUC; SumChain; CFR; CDFR
PD2 DPD
PD3 TX; JESD; RX; Feedback

Normally all three power domains are powered up. If DPD is not used, PD2 can be turned off, in which
case the TX block is configured accordingly.

The power domain controllers are discussed in the device data manual.
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1.12 TCI663xK2L DFE JESD204B SerDes Lanes
The TCI663xK2L and JESD 204B transceivers can be used in two antenna or four antenna configurations.
Figure 1-14 shows the two antenna configuration, while Figure 1-15 shows the four antenna configuration
with multiple JESD 204B transceivers. Table 1-2 shows the number of SerDes lanes for a specific transfer
rate and the number of antennas supported for the rates.

The SYSREF and SYSCLK provide the frame synchronization and clocking. The JESD SyncIn and
SyncOut also are used for JESD204B synchronization and error notification. See Reference 1 in
Chapter 3 for the JESD204B requirements for SYSCLK, SYSREF, SYNCIN, and SYNCOUT functions.

The TCI663xK2L DFE processes parallel IQ data. The data is passed to the SoC SerDes modules for
serialization and other processing. The SoC SerDes has its own PLL and IQ transfer logic. The SerDes
configuration must match the intended DFE SerDes rates.

The two antenna configuration can use two or four SerDes lanes. The four antenna configuration uses
four SerDes lanes. The SerDes SoC blocks are discussed in the SerDes User Guide, Reference 3
(Chapter 3).

Table 1-2. Example Tx-Fdbk, Rx IQ Rates with JESD 204B Transport

Number Tx/Rx Antennas Number SerDes Lanes SerDes Rate Equiv. Tx/Fdbk IQ Rate Equiv. Rx IQ Rate
2 2,3(w/Fdbk) 2.4576G 61.44M 61.44M
2 2,3(w/Fdbk) 3.6864G 92.16M 92.16M
2 2 4.9152G 122.88M 61.44M
2 2,3(w/Fdbk) 4.9152G 122.88M 122.88M
2 2 7.3728G 184.32M 92.16M
2 4 3.6864G 184.32M 92.16M
2 4 4.9152G 245.76M 122.88M
2 4 7.3728G 368.64M 184.32M
4 4 4.9152G 122.88M 61.44M
4 4 7.3728G 184.32M 92.16M

Figure 1-14. TCI663xK2L DFE to Two Antenna JESD Transceiver Block Diagram
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Figure 1-15. TCI663xK2L DFE to Four Antenna JESD Transceiver Block Diagram

1.13 TCI663xK2L DFE and IQNet Clock
The DFE block operates synchronously with the IQNet block, and both blocks share the DFE PLL. The
DFE block must be programmed for the appropriate clock output. The PLL is operated at either 245.76
MHz or 368.64 MHz. The DFE and IQNet configurations must be compatible to the selected DFE PLL
value.

The DFE PLL for TCI663xK2L is described in the TCI663xK2L Data Manual (SPRS893).

1.14 TCI663xK2L DFE GPIO Shared with Other SoC Functions
The TCI663xK2L DFE GPIO signals are shared with other TCI663xK2L SoC GPIO signals. The selection
of GPIO controls is discussed in the TCI663xK2L Data Manual, Reference 4. The programming details of
the TCI663xK2L DFE GPIO signals are found in the MMR tables in . The TCI663xK2L GPIO pins are also
multifunctional within DFE. They are discussed later in Section 2.12.
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There are additional TCI663xK2L SoC counter timer and GPIO pins that can also be used for control. The
timer control and GPIO selection are discussed in Reference 4. The two general uses are:
• DFE_GPIO, SoC_GPIO – JESD transceiver hardware trigger signal
• SoC_Counter_Timer – JESD transceiver hardware real time trigger signal

1.15 TCI663xK2L DFE Sub-Blocks and Functions
Chapter 2 has sub block data flow (TX, RX, and feedback), and discussions of each DFE sub block. The
DFE block diagram is shown in Figure 1-16. Table 1-3 lists the DFE sub block abbreviation, name, and
function.

Table 1-3. DFE Sub-Block Functions

DFE Sub-Block
Abbrev. (xxxx – DFE
Main Flow
Tx,Rx,Fdbk) DFE Sub-Block Name DFE Sub-Block Function
BB (Tx,Rx) BaseBand Receives and transmits the AID bus, antenna container (Axc) data to/from

IQN. Formats the BB antenna carrier data for the DDUCs. Provides antenna
carrier fine gain control.

DDUC (Tx,Rx) Digital Down Up Converter Provides antenna carrier frequency translation; provides IQ filtering and rate
conversion from the baseband rate to the antenna stream rate; there are 4
DDUCs; 2 Tx and 2Rx

SC (Tx) SumChain Combines the Tx DDUC antenna carriers into an antenna stream; provides
6db step gain control of the Tx antenna stream

CFR (Tx) Crest Factor Reduction Provides peak clipping of each Tx antenna stream, interpolation, and circular
clipping (final limiter) from the SC to the CDFR rate. Provides for Tx antenna
stream fractional gain before CFR; provides for Tx antenna stream fractional
gain after CFR

CDFR (Tx) CFR DPD Fractional Resamples the CFR output to the DPD IQ rate of each Tx antenna stream
Resampler

DPD (Tx) Digital PreDistortion Applies per Tx antenna stream, a nonlinear feed forward correction to the Tx
Each Tx can have a unique set of DPD correction coefficients.

Tx (Tx) Transmit Provides Tx antenna stream IF frequency translation, provides a PA
protection function for each Tx antenna stream

JESD (Tx,Rx,Fdbk) JESD204B Tx, Rx transport Provides the multilane, multilink JESD 204B transport from digital IQ for Tx
and Rx/Fdbk, provides for local lane loopback for testing, provides separate
Rx block and Fdbk block outputs

Rx (Rx) Receive Receives Rx streams from JESD performs Rx block down conversion, IF
frequency translation, stream switching, decimation filtering, equalization and
formatting for Rx DDUC

Fdbk (Fdbk) Feedback The feedback block provides different parameters for a selected feedback
signal. The feedback block has signal selection, equalization, frequency
translation, and gain normalization for the capture buffer wideband output.
The Feedback block has an additional decimation filter and signal formatter
to send data to the Rx DDUC for Network Listening Mode.

CB (Fdbk,other) Capture Buffer Capture buffer collects 1 to 4 sets of signals based on timed delay, and
signal statistic information. The capture buffer can also source data to
specific DFE sub blocks.

MISC (other) Miscellaneous – GPIO, The CPP provides the DMA interface to and from the DFE. The VBUS2MPU
CPP, VBUSP2MPU provides the programmation interface to the DFE sub blocks. The GPIO

logic, and counter timers are used to provide control GPIO outputs
depending on user application. The DFE GPIO pins can also be used as
generic SoC GPIO pins.
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Figure 1-16. TCI663xK2L DFE Block Diagram

1.16 DFE Sub-Block Capacity Considerations
The DFE capacity can be divided into several sections (See Figure 1-9):
• Antenna capacity – The TCI663xK2L DFE supports one, two, or four TX and RX antennas. The

feedback can be one or two antenna inputs. The antenna data is transported over JESD204B lanes.
The number of SerDes lanes and the SerDes rate for each antenna can change the JESD204B
SerDes usage.

• The antenna data is transported over JESD204B TX and RX SerDes links. Table 1-2 lists the most
common SerDes data rates. The JESD transceiver and TCI663xK2L must be programmed for the
same data interleaving and SerDes rates. The most common IQ rate for TX is 122.88 or 245.76 Mhz.
The Fdbk IQ rate matches the TX IQ rate. The RX IQ rate either matches the TX IQ rate, or is ½ the
TX IQ rate.

• There are 4 DDUCs within the TCI663xK2L DFE. Typically, two are used for TX and two are used for
RX. Each DDUC can have from 1 to 12 carriers, but the TX output must conform to a common IQ rate,
and the RX input must have a common IQ rate. Typical DDUC configuration has 1 to 6 channels with a
DFE clock/4 IQ interface rate to the sum chain or RX block. Another typical configuration is a DDUC
with 8 or 12 channels, with a DFE clock/8 IQ interface rate to the sum chain or RX block. Each DDUC
for TX or RX must have a common interpolation (BB -> SumChain) or decimation (RX block out -> BB)
ratio. The DDUC output to the sum chain has individual carriers, frequency translated. The DDUC input
from the RX block has an RX, or Fdbk (NLM) has an RX stream of one or multiple carriers. The signal
bandwidth (BW) is usually limited to 80% of the IQ interface rates listed above.

• The DDUC contains a PFIR (Programmable FIR Filter), re-sampler, CIC filter, and channel mixer. The
PFIR has programmable coefficients. Each DDUC has a filter memory that can have one or more

28 Introduction SPRUHX8A–July 2014–Revised April 2015
Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHX8A


www.ti.com Example 2 and 4 Antenna Configurations

filters, and an index for each channel. There are limitations to the PFIR coefficient size, depending on
the number of filters stored, the number of channels in the DDUC, the IQ rate of the channel, and the
DFE PLL rate. This can limit the number of DDUC channels, if a specific number of PFIR taps are
desired.

• The BB to DDUC interface can support one or two signal IQ rates, where each DDUC has a common
IQ rate. The number of channels and the IQ rate per channel must satisfy the following:

(2 × Number of Channels × Channel IQ Rate) ≤ DFE PLL clock. (1)
• After the TX sumchain, the CFR block provides interpolation, peak clipping in multiple stages, and

post-CFR interpolation. After CFR interpolation, the IQ rate DFE Clock/2 for two antennas and DFE
Clock/4 for four antennas. A typical post CFR interpolation factor of 2 translates to up to 40%
bandwidth after post CFR interpolation.

• CFR clipping is normally based on four successive peak clipping stages. The amount of CFR clipping
is based on the introduced EVM in subtracting the in-band signal from the TX antenna stream. Once
the EVM target is determined and the EVM budget is assigned to the digital TX stream, the amount of
CFR clipping can be adjusted, during run time, by adjusting the sum shift gain, preCFR gain, and
monitoring the Tx power meter.

• The CDFR block fractionally interpolates the CFR output to the desired DPD rate. The desired DPD
rate is typically equal to DFE clock, DFE clock * 2/3, or DFE clock/2. Since the interpolation after CFR
and CDFR is done to provide the DPD IQ rate, the CDFR output rate is typically ≥ 3 × the signal BW. If
DPD is not used, the CDFR can operate the DPD block at a lower IQ rate. The DPD expansion ratio (≥
3) * signal BW must fit to the DFE clock ratios available. Operating the DFE PLL at 368.64 vs. 245.76
provides more DPD IQ rate (which is used for DPD with a higher signal BW).

• There are four discrete sections for DPD, so each TX stream can have a unique nonlinear correction.
Within DPD, the number of calculated solutions and memory taps can be optimized for specific system
usage. The most common setup is three calculated solutions (different functions at the same time) and
up to six memory taps for four antenna, or 12 memory taps for two antenna. Typically the hardware
configuration is for the maximum solution and memory size, while the software adaptation can choose
to update a smaller portion of the available resources.

• The TX block fractionally decimates or filters the DPD nonlinear processed signal to the desired JESD
rate. See Table 1-2 for the equivalent IQ rates for the JESD204B antenna streams.

• The TX block has a PA protection logic that must be set for the desired rms or peak limiting mode. The
block can be bypassed.

• The RX block takes the RX antenna streams, provides IF mixing, and provides decimation filtering to
match the RX DDUC interface rate (DFE Clk/4 for 2 antenna, DFE Clk/8 for 4 antenna). The signal BW
can be at most 80% BW after the decimation filtering. The RX block receives the JESD 204B
reformatted RX streams, at the TX IQ rate, or TX/2 IQ rate (when two RX streams are interleaved
within one JESD204B stream). The RX decimation matches the desired output format for the RX
DDUC to the JESD RX rate.

• The Fdbk block takes the Fdbk antenna stream from the JESD block, provides equalization, IF mixing,
and gain for the wideband capture in the capture buffer. The capture buffer length and the TX = Fdbk
IQ rate determine the amount of time that the software can sample the TX path for DPD adaption.
Typically, the capture buffer collects the DPD input and feedback, or DPD output and feedback, to
synchronously capture the DPD signal and the delayed in-time feedback.

1.17 Example 2 and 4 Antenna Configurations
The RFSDK user guide discusses the configuration selection and API modification of DFE variables.
Table 1-4 discusses some specific 2 and 4 antenna configurations based on wireless applications for
typical LTE channels and bandwidths. The carrier types listed are per antenna values.
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Table 1-4. Example TCI663xK2L JESD Transceiver IQ Rates, Num Antennas and Carriers/Antenna

Num Antenna
Tx/Rx BB Mode LTE20 LTE10 LTE5 WCDMA TxIQ Rate RxIQ Rate
2 Single 1 122.88 61.44
2 Single 2 122.88 61.44
2 Single 4-5 122.88 61.44
2 Single 4-5 122.88 61.44
2 Single 2 (1) 245.76 122.88

184.32 (1) 92.16 (1)

2 Single 4-5 245.76 122.88
184.32 (1) 92.16 (1)

2 Single 7-8 245.76 122.88
184.32 (1) 92.16 (1)

2 Single 7-8 245.76 122.88
184.32 (1) 92.16 (1)

2 Dual 1 (1) 1-2 122.88 61.44
2 Dual 1 2-3 122.88 61.44
2 Dual 1 2-3 122.88 61.44
2 Dual 1-2 2-3 122.88 61.44
2 Dual 1 2-3 245.76 122.88
2 Dual 1 2-3 245.76 122.88
2 Dual 1 2-3 245.76 122.88
2 Dual 2 2 -3 245.76 122.88
4 Single 1 122.88 61.44
4 Single 2-3 122.88 61.44
4 Single 3-4 122.88 61.44
4 Single 3-4 122.88 61.44
4 Dual 1(sp) (2) 1 122.88 61.44
4 Dual 1(sp) (2) 1-2 122.88 61.44
4 Dual 1(sp) (2) 1-2 122.88 61.44
4 Dual 1 1-2 122.88 61.44
4 Dual 2(sp) (2) 1-2 122.88 61.44
4 Dual 2(sp) (2) 1-2 122.88 61.44
4 Dual 4(sp) (2) 4(sp) (2) 122.88 61.44

(1) the DFE PLL is set to 368.64Mhz
(2) the PFIR number of taps may be limited, and/or Network Listening Mode (NLM) may not have enough DDUC capacity to have an

additional RxDDUC channel
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Chapter 2
SPRUHX8A–July 2014–Revised April 2015

DFE Flow and Sub-Block Descriptions

This chapter provides three color-coded versions of DFE block diagram: one for TX, one for feedback, and
one for RX. These figures and the first pages of this section include flow discussions between the DFE
sub-blocks.
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2.1 Signal Flow
The signal flow in Figure 2-1 for TX goes from IQNet through the AID interface to the baseband block. The
baseband reformats and deinterleaves the IQ data for the TX DDUCs. The DDUC converts antenna
containers to filtered, interpolated, and upconverted carriers. The sumchain combines one to several
DDUC channels into a digital IQ stream. The CFR block provides for peak clipping and usually post-CFR
interpolation. The CDFR interpolates the CFR output to the DPD processing rate. The DPD block provides
nonlinear correction for each TX antenna stream. The TX block resamples the TX antenna streams to the
JESD IQ rate. The JESD block formats the IQ data to the JESD 204B standard.

In Figure 2-1, the purple color indicates TX elements.

Figure 2-1. DFE Block Diagram – TX Flow

Refer to Figure 2-2 for RX channels. The receive antenna inputs come from the JESD transceiver and are
received in the JESD block. The JESD block format and mapping convert the JESD receive data into the
RX antenna streams. The RX sub-block provides a block down conversion and RX equalization of each
RX antenna stream. The RX stream outputs are sent to each RX DDUC, where the channel-down
conversion, filtering, and decimation or resampling are performed. The IQ data is passed from the RX
DDUC to the baseband block. In the RX direction, the baseband block converts the buffered IQ data to the
baseband block AID interface formats. The IQNet takes the RX AID data and forwards this for antenna-
carrier RX processing.
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In Figure 2-2, the purple color indicates RX and network listening elements.

Figure 2-2. DFE Block Diagram – RX Flow

The feedback block takes the JESD RX data received, and with the appropriate mapping, up to two
feedback IQ data sets are sent to the feedback sub-block (see Figure 2-3). The feedback block selects
one of the two feedback inputs for processing. The feedback sub-block has block down conversion
function, equalization, tuning, and decimation filtering for network listening mode, where the IQ data is
sent to the RX DDUC (see Figure 2-2). The feedback block equalization and tuning and gain then process
the wider band feedback signals for collection in the capture buffer.
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In Figure 2-3, the purple color indicates feedback elements.

Figure 2-3. DFE Block Diagram – Feedback Flow
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2.2 Baseband Block (BB) in DFE

Figure 2-4. BB Block Diagram

2.2.1 Function
Baseband (BB) logic block within DFE provides the IQ interface to the IQN2 block over the AID bus. The
AID bus TX receiver has a direct loopback-test to the AID bus RX transmitter (see Figure 2-4)

The BB block receives the TX AID Axc carrier data, provides a baseband complex gain for each Axc
channel, and utilizing the BBTx program sequence parses the TX Axc carriers to the DDUC TX input
buffers. The TX Axc carrier data is 16-bit IQ data. Each TX Axc channel has power meter monitoring.

The TX signal path can have a test signal substituted for the IQ input.

The BB block receives the RX DDUC buffer IQ data, and parses this data into the RX Axc carrier stream.
The BBRx section provides for fixed and adaptive gain. The pre- or post-gain RX Axc signals have power
meter monitoring. The RX Axc output is scaled to provide 16-bit, IQ-packed WCDMA or 16-bit IQ LTE
data.

The BB module has interrupt outputs for signaling events.

The BB module has signals to the CPP module to identify when the BB power meter is ready to be read.
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There are different sets of multiple channel power meters so that specific Axc channels can be processed
on a specific group.

2.2.2 Inputs and Output Buses

Table 2-1. BB Inputs and Outputs

Name I/O Basic description
AID TX input Bus I Axc TX carrier data from IQN2.
AID RX Output Bus O Axc RX carrier data to IQN2.
MPU Bus Both Parallel data/ address/ module address synchronous bus for programming registers /

memories.
DDUC TX inbus I BB output data for TX to DDUC[3.0] 18-bit interleaved IQ.
DDUC RX outbus O BB input data from DDUC[3.0] for BBRx output, 24-bit interleaved IQ.
Sync Bus Both A group of signals that indicate the time-event to perform an operation, the BB block can insert

the AID-DLSync, AID-ULSync signal as events.
Interrupt Bus O Signals to MISC module to indicate a BB event occurred.
Test Bus Both Signals to global capture buffer Test Bus data source for capture.
CPP Triggers O Event triggers for the CPP block to service the BB events that require CTL service.

2.2.3 Basic Description

2.2.3.1 BBTx
The TX AID interface takes the IQN parallel bus and converts this into the time division interleaved IQ bus
for the DDUC. The AID interface has four 16-bit IQ, Axc#, and sync information. The TX configuration
table has the specification for a specific Axc# to route the received data to the desired DDUC TX buffer.
The BBTx gain is adjusted for each channel of the received IQ data. The BBTx AID interface has DL sync
information that is extracted and sent to the sync bus within DFE.

The BBTx AID bus has a test loopback configuration. This test configuration is used with IQN2 for AID
loopback, and is a static test configuration (that is, loaded with the register programmation). The AID bus
loopback is used for single mode tests.

The BBTx programming has a dependency on the IQ sample rate, and each IQ sample rate is a specific
type-group. Table 2-2 shows examples of wireless applications. The BBTx programming table contains the
mapping from an Axc#, to the TX functions performed, to the DDUC# and channel buffer within the DDUC.
This BBTx programming table is fixed at register programmation time. The BBTx controller converts the
sample received in the packet through the selected functions, then sends the data to the proper DDUC
buffer and channel.

Table 2-2. BB Signal Groups

Signal Type TX IQ Rate (Mhz) TX Inbits RX IQ Rate (Mhz) RX Outbits
LTE20 30.72 16 30.72 16
LTE10 15.36 16 15.36 16
LTE5 7.68 16 7.68 16
LTE3 3.84 16 3.84 16
LTE1.4 1.92 16 1.92 16
WCDMA 3.84 16 7.68*(3.84) Dual(*) packed 8

BBTx_Gain is set as dbvalue_Inphase, quadrature value is –inf, for each Axc#. The BBTx gain is stored
for each Axc# in an active and shadow register. The BB gain scales the 16-bit input to an 18-bit IQ output.
The gain output is rounded and saturated. A sync signal transfers the new gain value for each Axc at a
selected sync bus time. The BBTx gain update is controlled through an API.
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NOTE: The BBTx power meter monitors the postgain value, and the Axc# power meter values
should be below fullscale. Normally the BBTx_Gain for each Axc# is < 0db.

The BBTx bus has a test generator that can insert an IQ constant, IQ ramp_delta, as a test signal. The
BBTx bus to the DDUCs has a test bus single Axc connection for troubleshooting. Each of the BBTx
DDUC buffers has a buffer loopback special test mode, DDUC0 TX -> DDUC3 RX, DDUC1 TX -> DDUC2
RX.

The DDUC buffer loopback is used for loopback to AID/IQN2 for dual-mode configurations. The DDUC
buffer loopback is a static test configuration (that is, loaded with the register programmation).

The BBTx bus can be monitored by a test bus with software API for a select single Axc#.

2.2.3.2 BBRx
The BBRx section takes 24-bit IQ data from the DDUC RX buffers and provides gain scaling (fixed and
beAGC adaptive beAGC), power meter measurement, and RX output formatting for use in AID-IQN2
interface.

The BBRx programming has a dependency on the IQ sample rate, and each IQ sample rate is a specific
type-group. The BBRx programming table contains the mapping from a DDUC# and channel within the
DDUC buffer, RX functions, the gain operations performed, the power meter usage, and the RX output
formatting for the AID interface. This BBRx programming table is fixed at register programmation time.
The BBRx controller converts the time offset, pulls the samples from the DDUC buffer and channel,
performs the desired signal processing, and routes this to the AID RX bus.

The BBRx Axc IQ values are processed with the BBRx gain block for fixed gain, or fixed gain + adaptive
gain. The fixed gain has an active and shadow set of channel values that are updated through an API.
The beAGC block applies adaptive gain for WCDMA applications.

The BBRx gain is controlled through the beAGC mode. The available gain modes are controlled through
software APIs. Most applications are initialed in fixed-gain mode.
• BBRx gain – Fixed mode – The MPU register is used for integer and fractional gain, gain range is -Inf

to 90 db. (This mode is used for LTE channels for TCI663xK2L.)
• BBRx gain – BBRx Power Mtr assisted mode – The MPU registers load a peak channel power value

and Axc backoff (PAR) value to develop an RMS target value. The BBRx power meter reading is
subtracted from the setpoint, and is converted to an Axc channel gain value. (This mode is not used for
TCI663xK2L.)

• Fixed gain + beAGC with adaptive error accumulation – The BBRx gain fixed mode is added to an Axc
channel-specific adaptive gain. The adaptive gain is based on the Axc group AGC threshold, gain shift,
and upper and lower adaptive gain limit. (This mode is used for WCDMA.)

• BBRx Power Mtr assisted mode + beAGC - In this mode, the fixed gain is based on the power meter
setpoint and measured value. Between the power meter updates, the beAGC adaptive gain changes
the adaptive gain. This mode requires special gating of the AGC. (This mode is not used for
TCI663xK2L.)

2.2.3.3 beAGC (Adaptive BBRx Gain)
The WCDMA carrier IQ data has a wide dynamic range. The goal is to provide the optimal dynamic range
of the signal, by adapting the BBRx gain to a target mean signal value. The magnitude of the IQ sample is
compared with the threshold, and an error value is generated. The error signal is scaled by a control
range multiplier (normal AGC, zero AGC, and saturate AGC) and this signal adds or subtracts from the
error accumulator. Each carrier channel has an independent error accumulator to develop channel-
independent adaptive gain. Each error accumulator is limit checked for a maximum and minimum gain, to
minimize reset-windup affects of the integral controller. See Figure 2-5.

The error signal scaling develops the integral controller dynamics for attack and decay times, and is
calibrated with specific basestation fading models. In most cases, a scaling is used that has slow acting,
above, below, zero, and saturate scaling typically, less than .5% current sample and 99.5% previous
samples.
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NOTE: Changing the scaling values to faster-acting decay and attack values also has overshoot and
undershoot affects, which change the AGC noise contribution to the RX output.

Figure 2-5. beAGC Block Diagram|

2.2.3.4 BBRx Formatter
The BB gain adjusted 48-bit IQ data is scaled to fit in the specific format of data for the AID interface. The
format conversion does scaling, rounding, and saturation.

The AID interface supports 16-bit IQ, and dual sample 8-bit IQ data. The 16-bit IQ format is for general
applications. The dual sample 8-bit IQ format is for WCDMA applications. Another component of the
formatting is the number of IQ samples placed on the AID bus for transfer to IQNet. In most cases, 4 LTE
16-bitI, 16-bitQ samples, or 8 WCDMA 8-bitI, 8-bitQ samples are transferred. In general applications, pack
four 16-bit I and Q 1xsample-rate into one RX AID output bus cycle. In WCDMA applications, pack eight
8-bit I and Q 2x sample-rate into one RX AID output bus cycle.
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2.2.3.5 Power Meter
Each BBTx Axc# and BBRx Axc# can be assigned to a power meter group. There are eight BBTx and
eight BBRx multi-channel power meter groups. The Axc# is assigned in the static configuration
programming to a specific power meter group. There is one signal type per power meter group. The power
meter can monitor before the gain block or after the gain block on a per group basis.

The power meters have several operational modes:
• Off – Idle state, power meter not used
• Single power measurement – Once triggered, updates registers from a single measurement
• Continuous power measurement – The sync event triggers the power meter, then the delay integrate-

interval and period counters are used to integrate and store the power meter measurement.

See Figure 2-6. The power meter has a synchronized start signal, then utilizes the three counter timers.
The sync delay is a count after the start signal, before starting to integrate the I^2+Q^2 signals. The
intergration period is the number of baseband samples to integrate. The interval is the number of IQ
samples from the sync delay that restart the continuous power meter measurement. A software API sets
up the BB power meters, and another API reads the power meter values. There is a separate power meter
value for each Axc# within a power meter group.

Figure 2-6. BB Power Meter Cycle

2.2.4 Synchronization Events
The DL sync signal from IQN2 is received with the TX AID data, and is sent to the DFE sync bus. The UL
sync is a BB register-controlled delayed version of a DFE sync bus signal, and is sent back to IQN2 as the
UL sync.

2.2.5 Software Application Interface (API) Functions

NOTE: API topics are covered in more than one section. See Reference 6 (Chapter 3) and for
additional information.

API_BB_TxGain – Adjusts the BBTx antenna carrier signal level

API_BB_TxPower_Setup – Configures and initializes the BBTx antenna carrier power meter by group
(signal type)

API_BB_TxPower_MeterRd – Reads the BBTx antenna carrier power, multiple antenna carriers in a group

API_BB_Tx_TestGen – (diagnostics) Substitutes a ramp, constant, or LFSR signal type for the antenna
carrier input

API_BB_RxGain – Adjusts the BBRx antenna carrier signal level

API_BB_RxGain_beAGC_setup – Adjusts the adaptive gain parameters by group for WCDMA carriers

API_BB_RxPower_MeterSetup - Configures and initializes the BBRx antenna carrier power meter by
group (signal type)

40 DFE Flow and Sub-Block Descriptions SPRUHX8A–July 2014–Revised April 2015
Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHX8A


SumChain

TDM Interleaved
IQ Bus (1,2,4 channels

each bus)

Rx

Block

TDM Interleaved

IQ Bus

(1,2,4 channels)

1 of 4 DDUC– DUC Mode

BB

Subblock

Tx
Bus

Multichannel

PFIR

Multichannel

Resampler

Multichannel

CIC Filter

Multichannel

CIC Filter

Multichannel

CIC Filter

Multichannel
NCO

Multichannel

NCO

Multichannel

NCO

Distributor

Feedback
Block

Interleaved

IQ Bus

BB

Subblock

Rx
Bus

Multichannel

PFIR

Multichannel

Resampler

Multichannel

CIC Filter

Multichannel

CIC Filter

Multichannel

CIC Filter

Multichannel

NCO

Multichannel

NCO

Multichannel

NCO

1 of 4 DDUC – DDC Mode

www.ti.com Baseband Block (BB) in DFE

API_BB_RxPower_MeterRd - Reads the BBRx antenna carrier power, multiple antenna carriers in a group

API_BB_RxPower_MeterRdCPP – Configures special BBRx power meter readings for CTL data transport
(must have compatible setup in CPP sub-block)

API_BB_TestBus – (diagnostics) Sends the BBTx or BBRx selected antenna carrier to the CB testbus

2.2.6 Important Programming Concepts (or Selection from Pre-Built Configurations)
The BBTx number of channels is fixed in the static configuration.

The carrier types are grouped by IQ rate, processing functions, RX gain mode. The group concepts also
apply to other BB functions such as baseband power meter.

In most cases, the BB TX and RX power meters are set up for post-gain monitoring.

2.3 Digital Downconverter/Upconverter (DDUC) in DFE

Figure 2-7. DDUC Block Diagram

2.3.1 Function
The digital downconverter/upconverter (DDUC) logic block within DFE provides the Axc channel
interpolation and decimation, filtering, and individual channel tune to carrier frequency functions (See
Figure 2-7). The digital upconverter shown in Figure 2-7 interpolates, filters, and frequency-translates the
channel signals. The digital downconverter (lower diagram) takes the complex receive signal, provides
frequency translation for each carrier (translates the stream to the 0 Hz for the desired carrier), then
provides filtering and decimation. The IQ structure within the DDUC block is interleaved IQ format.
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TCI663xK2L has four DDUCs. Typically, two DDUCs are used for TX, and two DDUCs are used for RX.
The TX flow path is shown in Figure 2-1. The RX flow path is shown in Figure 2-2.

The baseband TX bus BB to DDUC has an 18-bit data path. The individual upconverted carriers in the
digital upconverter that go to the summer have an 18-bit interleaved IQ data path. In Figure 2-8, each
DDUC has three CIC/Mixer outputs. Each CIC/Mixer output can be 1, 2, or 4 time-interleaved carriers.

The RX stream or feedback-sniffing stream from the RX block or feedback block has an 18-bit interleaved
IQ data path. The baseband RX bus from DDUC to BB has a 24-bit data path.

Figure 2-8. DDUC as a Digital Up Converter (1 Carrier Shown) Block Diagram
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Figure 2-9. DDUC as a Digital Down Converter (Multicarrier Shown) Block Diagram

In the TX mode (see Figure 2-8) antenna carriers create the upsampled and tuned carrier streams. In the
RX mode (see Figure 2-9) the RX or feedback sniffing streams are tuned to a specific carrier frequency,
and filtered or decimated for the Axc output rate.

The DDUC programmable finite impulse response (PFIR) filter provides the spectral shaping of each
channel. You can select different PFIR taps for specific DDUC channel numbers. The PFIR can have a
ratio of one or two.

The DDUC resampler provides for a Farrow-implemented interpolation and decimation fractional-rate filter.
The resampler has a fixed Farrow set of polynomial coefficients, and a fractional ‘D’ accumulator to
compute the coefficients used for each ‘D’ value by the filter. The resampler ratio is programmed to the
same value for all channels within a DDUC at initial register programming time.

The cascade integrator comb (CIC) filter provides for further interpolation or decimation, ratios 1, 2, or 3.
The number of DDUC channels in a specific use determines the ratio:
• 1 or 2 channels, ratio 1
• 4 or 8 channels, ratio 2
• 3, 6, 12 channels, ratio 3

The complex mixer has several blocks, the general function has a phase calculation per DDUC channel,
the phase value is converted to a cosine/sine mixer frequency, and the mixer frequency is multiplied by
the channel or stream complex value.

Phase offset and phase dither can be added to the calculated channel phase value. The mixer frequency
phase can be updated dynamically. This is controlled through an API.
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2.3.2 Inputs and Output Buses

Table 2-3. DDUC Inputs and Outputs

Name I/O Basic Description
MPU Bus Both Parallel data/address/module address synchronous bus for programming registers/memories.
DDUC TX Inbus I DDUC input data for TX from BB block, 18-bit interleaved IQ.
(3) CIC/Mixer O DDUC output data for TX from DDUC to Summer block, 18-bit time interleaved IQ, 1, 2, or 4
Output Buses interleaved channels in time.
DDUC RX Outbus O DDUC output data for RX to BB block, 24-bit interleaved IQ.
RX block RX Out I DDUC input stream (multiple channel) data from RX block, 18-bit time interleaved IQ, 1, 2, or 4
Bus interleaved streams in time.
Feedback Out I DDUC input stream (multiple channel) data from feedback block for Network Listening Mode, or
Bus Feedback sniffing, 18-bit time interleaved IQ, 1, interleaved streams in time, similar format to

RxOutbus.
Sync Bus I A group of signals that indicate the time-event to perform an operation.
Interrupt Bus O Signals to MISC module to indicate a DDUC event occurred.
Test Bus Both Signals to global capture buffer Test Bus data source for capture.

2.3.3 Basic Description

2.3.3.1 PFIR
The PFIR provides the spectral shaping for each baseband channel, first processing for TX and then
processing for RX. The PFIR can have an interpolation or decimation of one or two. The PFIR can store
multiple sets of FIR coefficients in memory. The PFIR can utilize different coefficient sets for different
DDUC channels, but usually has the same symmetry and same number of coefficients for all channels
within a DDUC.

The number of coefficients within the PFIR is based on the DFE clock rate, PFIR input IQ rate,
interpolation or decimation, ratio, number of active PFIR channels within this DDUC, and the number of
stored filters. The number of PFIR coefficients also may be limited by the allowed DDUC latency. The
selection of each DDUC channel, using a specific PFIR filter set, is selectable using an API. Applications
typically have the single natural sampling rate PFIR filter. Some applications can have multiple PFIR
filters, in which case the dynamic selection of PFIR filter set can be done at run time with an API.

In WCDMA applications, the user typically interpolates by 2, and has a root raised cosine (RRC) filter. In
WCDMA the decimation ratio is usually 1, and has a root raised cosine filter, with a 2x output rate.

In LTE applications, the user typically interpolates and decimates by 1, and has a low pass filter.

NOTE: The PFIR can be >50% of the channel latency for an application, so selecting a longer PFIR
set of coefficients can provide more close-in spectral rejection or shaping, but has longer
latency.

NOTE: If the CIC ratio for this DDUC channel is >1, the PFIR design is modified to add a high pass
filter for CIC droop correction. This flattens the passband of the DDUC channel response.
CIC correction is typically a five tap high pass filter, if the CIC ratio > 1. This results in an
RRC or low pass filter of number of coefficients – 4.

The PFIR has an internal scaling for all DDUC channels. The log2 (sum_of PFIR taps) is used for scaling.
Some applications use a maximum center tap of 131071 and have loss through the DDUC channel, to get
better close-in rejection. Most applications scale the PFIR coefficients so that the sum of coefficients is a
power of 2. The scaling must be the same for all sets of PFIR coefficients in DDUC use.
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The number of PFIR taps in the DDUC can be computed using the following equation:
((DFE_clock/(PFIR_input_rate × #channels)) × 20) - 1 (2)

Typical numbers of PFIR 18-bit signed coefficient taps used in wireless communications are shown in
Table 2-4.

Table 2-4. DDUC PFIR Number of Taps Estimate

Channel Signal Number Channels in DDUC DFE Clock - Mhz Number of Taps
LTE20 2 245.76 79
LTE20 2 368.64 119
LTE20 3 368.64 79
LTE10 4 245.76 79
LTE10 4 368.64 119
LTE10 6 368.64 79
LTE5/ WCDMA 8 245.76 79
LTE5/ WCDMA 8 368.64 119

Figure 2-10. Example 79 Tap – Low Pass Filter Used for LTE20 Application
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Figure 2-11. Example 79 Tap – Low Pass Filter Used for LTE10, with CIC Droop Compensation

NOTE: The PFIR filter establishes the close-in rejection for the transmit channel. The PFIR transition
band and stopband response, along with the IQ baseband signal response, determines the
final transition and stopband response. In Figure 2-10, only the FIR filter tap response is
shown. The PFIR affects the passband, transition (passband to stopband), and the stopband
up to the resampler input rate. The resampler is mostly an equivalent low pass filter for
normal applications. In wideband applications or if the CIC ratio is >1, some PFIR taps are
reserved for a high pass filter, convolved with the low pass filter, to correct for droop in the
passband. See Figure 2-11 as an example. Droop compensation changes the AC gain of the
filter, so the PFIR shift may need to attenuate the PFIR output more.

2.3.3.2 Resampler
The resampler block interpolates (TX) or decimates (RX) by an M/N ratio. If the M/N ratio is 1, the
resampler is set to bypass. All channels in the DDUC have the same M/N ratio. The resampler keeps
track of the fractional interpolation or decimation count for each clock cycle. The resampler applies the
appropriate filter coefficients to the PFIR out (TX) or CIC out (RX) for each channel in the DDUC.

The resampler ratio is based on the PFIR output rate and CIC input rate. The CIC input rate can be
calculated from the TX sumchain rate/CIC ratio, or from the RX or Fdbk output rate/CIC_ratio.
• These ratios are in the pre-built configurations. Once the DFE registers are loaded, the ratios are fixed

during operation.
• Each DDUC channel has a fractional count offset that can decorrelate peaks on the TX DDUC

channels that are combined in a common stream. The value must be known from the initial reg. file
programming to update the integer offset with the same value. Normally, TX and RX use of fractional
‘D’ programming is not used.

• The resampler has a gain adjustment for the RX direction, which is set with the initial register loading.
The gain adjustment applies to all channels within the RX DDUC.
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2.3.3.3 Cascade Integrator Comb (CIC)
The CIC filter has a ratio of 1, 2, or 3. There are three CIC filters within the DDUC: each one can process
1, 2, or 4 channels. The CIC has seven stages and a differential delay of 1. The CIC filter has a scaling,
integrator, and differentiator. In the DDC applications, there is an adjustable gain value, but it is set when
the registers are initially loaded.

Table 2-5. DDUC Number of Channels, Relationship to DFE Clock, and CIC Rate

Numch per DDUC Num CICs Used CIC Ratio DFE Clk Ratio CIC Input Rate (DFE Clk Ratio/CICRatio)
2 1 1 DFEclk/4 DFEclk/4
3 3 3 DFEclk/4 DFEclk/12
4 2 2 DFEclk/4 DFEclk/8
6 3 3 DFEclk/4 DFEclk/12
8 2 2 DFEclk/8 DFEclk/16
12 3 3 DFEclk/8 DFEclk/24

2.3.3.4 Complex Numerically Controlled Oscillator (NCO)
The complex NCO provides the per channel (TX) and signal (RX) frequency translation (see Figure 2-12).
The NCO is based on multiplying the signal or channel by an I and Q value. The I and Q value are the
current time value of the calculated complex frequency. The I (cosine), Q (sine) values are based on the
phase of the complex frequency for each channel. Each channel in the DDUC has a delta-phase value,
and an offset phase value. Each channel in the DDUC has a phase integrator, whose value is updated for
each channel-time in the DDUC.

DeltaPhase = (2^47) * TuningFreq / DDUC IQ SampleRate

Iout = Iin * cos(phaseNCO) – (Qin * sin(phaseNCO) )

Qout = Qin * cos(phaseNCO) + (Iin * sin(phaseNCO) )

NOTE: The tuning frequencies initially are programmed into the register values. Another API
calculates the delta phase, based on the tuning frequency and channel number of DDUC IQ
sample rate.

The delta phase and phase offset for each channel can be dynamically updated while the DFE is
operating. All channels in a DDUC are updated at a specific synchronization event. This is also API-
controlled. The complex NCO output is shifted, rounded, and saturated to an 18-bit output.

NOTE: The phase offset range is 0 to 2^16 counts, for 0 to 2*pi. This can be used to decorrelate
carrier peaks when more than one DDUC channel is summed together for a TX stream.

NOTE: In the DDUC, the multichannel delta phase (tuning frequency) is in a section called the
frequency hopper (hopping is not used for TCI663xK2L DFE), and the NCO phase offset
registers are MMR-located near the mixer. There is only one frequency hopper for all DDUC
NCO channels. There are three multichannel mixer sections for all DDUC NCO channels.
(See Figure 2-8, Figure 2-9.)
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Figure 2-12. Multichannel Complex Mixer (3 Sections Shown)

2.3.3.5 Distributor
The distributor is used in the DDUC for the DDC receive processing. It receives the RX block time
interleaved IQ stream data and the feedback block-sniffing RX time interleaved IQ stream data. The
distributor reformats this data into the three sets of Mixer/CIC buses of interleaved IQ data. (See Figure 2-
9.)

There is no TDM interleave reformatting in the distributor, so the RX output TDM format must match the
CIC/Mixer-programmed format.

NOTE: The distributor RX or feedback stream selected by CIC/Mixer number, and the signal within
the CIC/Mixer number, can be changed with an API.

2.3.4 Synchronization Events
The sync bus DL sync or MPU sync are selected as the sync select sources for the DDUC block. A sync
bus UL sync (delayed DL sync in BB block) is also available.

2.3.5 Software Application Interface (API) Functions

NOTE: API topics are covered in more than one section. See Reference 6 (Chapter 3) and for
additional information.

API_DDUC_PFIRFiltSel – If multiple PFIR filters are stored in PFIR memory, the index selects a specific
filter.

API_DDUC_NCOUpdate – Provides the frequency translation offset frequency for each channel in this
DDUC.

API_DDUC_Distributor – RX channel/ Fdbk NLM channel; provides the stream selection for RX
processing.
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2.3.6 Important Programming Concepts (or Selection from Prebuilt Configurations)
The number of DDUC channels and DDUC use as DUC/DDC are fixed at register programming time. In
the TX usage, the sumchain block can disable extra TX channels.

The PFIR ratio (DUC) interpolation, (DDC) decimation, resampler ratio, and CIC ratio are fixed for all
channels in a DDUC at the register programming time.

WCDMA uses a root raised cosine (RRC) PFIR filter; LTE channels use a low pass PFIR filter.

In cases where multiple PFIR filter sets are programmed, the index for the DDUC channels must be
consistent with the filter programmed. The dynamic filter select API can change the PFIR filter taps of a
specific channel, but does not change the interpolation or decimation ratio.

The PFIR coefficients are programmed at the register programming time. The coefficients must be
compiled in the application, as they are in a specific order.

2.4 Sum Chain

Figure 2-13. Sum Chain

2.4.1 Function
The sumchain provides a method to select which carriers are assigned to the four CFR buses. The
sumchain provides gain scaling, rounding, and saturation for the CFR buses.The sumchain reformats the
output buses, to the CFR block-interleaved IQ structure (two formats).
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2.4.2 Inputs/Outputs

Table 2-6. SumChain Inputs and Outputs
Name I/O Basic Description

MPU Bus Both Parallel data/ address/ module address synchronous bus for programming registers / memories

DDUC0_CIC_MixBus0 in I DDUC0 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC0_CIC_MixBus1 in I DDUC0 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC0_CIC_MixBus2 in I DDUC0 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC1_CIC_MixBus0 in I DDUC1 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC1_CIC_MixBus1 in I DDUC1 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC1_CIC_MixBus2 in I DDUC1 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC2_CIC_MixBus0 in I DDUC2 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC2_CIC_MixBus1 in I DDUC2 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC2_CIC_MixBus2 in I DDUC2 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC3_CIC_MixBus0 in I DDUC3 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC3_CIC_MixBus1 in I DDUC3 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

DDUC3_CIC_MixBus2 in I DDUC3 CIC Mix Bus with time interleaved I; 1,2, or 4 channels in time

CFR OutBus0 O Time interleaved output bus for 1 or 2 IQ interleaved streams

CFR OutBus1 O Time interleaved output bus for 1 or 2 IQ interleaved streams

Sync Bus I A group of signals that indicate the time-event to perform an operation.

Test Bus Both Signals to global capture buffer Test Bus data source for capture

2.4.3 Basic Description
The time-interleaved carriers from the DDUCs are combined onto the CFR-interleaved IQ buses based on
register programming. The Axc mapping from the baseband input are summed onto a specific output bus
through a specific DDUC channel CIC/Mix and time offset. There are up to four output buses. In most
cases, DDUC0 and DDUC1 are used for TX, and the DDUC2 and DDUC3 sum chain selections are 0.

When carriers are summed there is a change in scale (for example, if four carriers are added, it is similar
to scaling the data by a factor; the scale factor is not linear, and depends on the complex IQ peak
combining of multiple carriers tuned to different frequencies). The sumchain has more bits of resolution to
allow for many carriers to be summed from an 18-bit input. The sum is rounded, shifted, and saturated to
the 18-bit interleaved IQ output format.

The CIC/Mixer bus has a different number of clock cycles, depending on the number of interleaved IQ
carriers that are output:

Table 2-7. Example Number of Carriers per CIC/Mixer and Number DFE Clock Cycles

Number of Carriers on CIC/Mixer Bus Number of DFE Clock Cycles to Output the CIC/Mixer Carriers
1 2
2 4
4 8

The sumchain can interleave one or two buses for each CFR block; two clock cycles for one bus, four
clock cycles for two buses interleaved.

The sumchain combination and sum shift controls have APIs to allow for synchronized and dynamic
changes of the number of carriers summed onto a CFR output bus, and the sum scaling (shift).
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2.4.4 Synchronization Events
The synchronization events for the sum chain APIs are normally the DLSynchronization signal from the
BB block or the MPU sync (updated immediately).

2.4.5 Software Application Interfaces

NOTE: API topics are covered in more than one section. See Reference 6 (Chapter 3) and for
additional information.

API_Summer_Stream_CarrierSelect – User selects which TX DDUC channels are combined into a TX
antenna stream.

API_Summer_SumShiftGain – User adjusts the TX antenna stream gain in 6db increments.

2.4.6 Important Programming Concepts
The sumchain has no rate conversion capability, so the CIC/Mixer output rate must match the CFR sub-
block input rate.

The number of carriers within a TX stream has a scaling factor at the BBTx input, for < 6db steps. The
sum shift value is a 6db step. The typical starting value is 0 for two carriers, –6db for four carriers, –12 db
for six-eight carriers, and –18db to –24db for more than eight carriers.

The sum shift in some cases is adjusted to higher attenuation for determining the signal PAR, to remove
CFR clipping from the CFR output, and to not trigger the circular limiter. This is a temporary setting.

2.5 Crest Factor Reduction (CFR)

Figure 2-14. CFR Sub-Block Diagram
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2.5.1 Function
The CFR block has two or four stages that estimate the peak of a signal and determine the time and
amplitude of applying the cancellation pulse to reduce the peak of the signal. The two or four stages are
distributed within two physical CFR logic sections that support 1, 2, or 4 antennas.

Each stage can support cancelling multiple peaks at the same time. There is special logic to arbitrate
multiple peaks detected within the cancellation pulse time span, and cancel the highest magnitude peak.

CFR is important to operating TX chain and power amplifiers efficiently, as they reduce the power supply
and cooling requirements by reducing the peak signal level. Because CFR adds cancellation pulse noise
to the signal, there is an increase in the error vector magnitude for reducing the peaks. CFR can also
improve the digital predistortion processing by restricting the operating range of the power amplifier.

Figure 2-15 shows the complimentary cumulative distribution function (CCDF), which shows the signal
peak statistics. Also shown is a vector demodulation graph for the WCDMA waveform. The upper graphs
show the unCFRed signal, higher peak, and lower EVM. The lower graphs show the CFRed signal, lower
peak, and higher EVM. The cancellation pulse filter and settings for CFR balance the amount of clipping,
the inband error, and affect on the transmit signal ACP and SEM.

Note the peak reduction and the increase in the signal demodulation error. The amount of CFR applied is
measured for the signal type, and the gains are applied before CFR to cause a specific amount of
clipping, to and measure the TX stream power peak and RMS levels.

CFR is normally adjusted for the largest signal (such as number of users), and at times where the number
of users is less, there is less peak reduction.

Figure 2-15. Effect of CFR on TX Antenna Carrier Signal (Upper-Before CFR/ Below after CFR)

52 DFE Flow and Sub-Block Descriptions SPRUHX8A–July 2014–Revised April 2015
Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHX8A


www.ti.com Crest Factor Reduction (CFR)

PreCFR, CFR, and postCFR have specific relationships to the TX antenna stream IQ rate. They are set in
the programmation of CFR before it runs. The most common CFR operating modes in Table 2-8 have a
(*).

Table 2-8. CFR Operating Modes, Interpolation, and DFE Clock Rates

PreCFR Number Streams PostNumber of
DDUC IQrates Antennas Interp CFR per CFR Block CFRInter CDFR Input IQ Rate
DFE clock/4 2 1 4 stages of CFR for each 1 1 DFE clock/4

stream
DFE clock/4 2 1 4 stages of CFR for each 1 2-Int2m DFE clock/2(*)

stream
DFE clock/8 2 2-Int2m 4 stages of CFR for each 1 1 DFE clock/4

stream
DFE clock/8 2 2-Int2m 4 stages of CFR for each 1 2-Int2f DFE clock/2(*)

stream
DFE clock/8 4 1 4 stages of CFR for each 2 1 DFE clock/8

stream
DFE clock/8 4 1 4 stages of CFR for each 2 2-Int2m DFE clock/4(*)

stream

The preCFR interpolation is used to interpolate and filter the DDUC output to a higher IQ rate. The
interpolation 2 function can be bypassed. The preCFR interpolation filter uses the 107tap fixed coefficient
half band filter. The preCFR interpolation filter supports 80% BW and 90-db stopband rejection.

The preCFR gain and setback (reduced gain with PA protection) logic apply a stream-specific gain to the
antenna stream IQ data before CFR is applied. The gain value can be set by the user to adjust the
amount of CFR clipping. If the TX block detects an over-magnitude condition, a logic signal can select a
reduced gain value.

The postCFR gain changes antenna stream gain after CFR clipping. This gain adjustment is important to
the target TX peak output level.

The postCFR interpolation interpolates and filters the postCFR antenna stream signals. The postCFR
interpolation filter can use a 107tap fixed-coefficient half-band filter if the filter is not used in the preCFR
interpolation. In cases where preCFR interpolate by 2 is performed, the postCFR interpolation by 2 is
performed by a 19tap 45% BW filter.

The circular limiter provides a IQ sample-based magnitude limiter. The circular limiter limits the IQ sample
magnitude for follow on DPD processing (gain expansion) to minimize peak clipping after DPD.
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Figure 2-16. CFR Sub-Block Diagram
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Figure 2-16 shows CFR processing for a typical dual-carrier 3G test model signal. The complementary
cumulative distribution function (CCDF) plot shows the signal sample distribution before and after CFR.
The signal peak-to-average power ratio is reduced from over 12dB to under 8dB. CFR can reduce the
PAR based on the allowed increase in signal error vector magnitude. CFR peak cancellation is based on
having a complex cancellation pulse that has the same spectral shape as the input signal. The logic
estimates how much cancellation is applied to reduce the peak at input (blue) in left graph, to the peak at
output (red) in left graph.

The cancellation pulse scaled to the appropriate gain and phase is applied to the signal to reduce the
peak amplitude to below a set threshold. There are four successive peak estimation and cancellation
operations within the CFR stream. Some gain tuning, peak setpoint, target value, hysteresis tuning, and
CFR cancellation pulse filter tuning is also used to optimize CFR performance. The gain tuning and CFR
cancellation pulse filter tuning can be optimized while CFR is operating. The other items must be set when
loading the DFE registers.

2.5.2 Inputs/Outputs

Table 2-9. CFR Inputs and Outputs

Name I/O Basic Description
MPU Bus Both Parallel data/ address/ module address synchronous bus for programming registers /

memories.
CFR signal bus 0 in I Time interleaved IQ bus from Summer block, contains 1 or 2 antenna stream data.
CFR signal bus 1 in I Time interleaved IQ bus from Summer block, contains 1 or 2 antenna stream data.
TxOverPower signals I Each Tx antenna stream has a setback signal, this is used to select the Setback gain for

PreCFR , from Tx sub-block.
CFR signal bus 0 out O Time interleaved IQ bus from postCFR output to CDFR, contains 1 or 2 antenna stream

data.
CFR signal bus 1 out O Time interleaved IQ bus from postCFR output to CDFR, contains 1 or 2 antenna stream

data.
CaptureBufferCFR0 InBus I IQ bus to stream the preCFR IQ for specific antenna streams from CFR0.
CaptureBufferCFR0 OutBus O IQ bus to stream the postCFR IQ for specific antenna streams from CFR0.
CaptureBufferCFR1 InBus I IQ bus to stream the preCFR IQ for specific antenna streams from CFR1.
CaptureBufferCFR1 OutBus O IQ bus to stream the postCFR IQ for specific antenna streams from CFR1.
Sync Bus I A group of signals that indicate the time-event to perform an operation.
Interrupt Bus O Signals to MISC module to indicate a CFR event occurred.
Test Bus Both Signals to global capture buffer Test Bus data source for capture.

2.5.3 CFR Basic Description
The CFR block functions are divided into three sections:
• PreCFR processing
• CFR processing
• PostCFR processing

The DFE programming has general CFR parameters specific to static configuration. The CFR mode
connects the CFR block functions with specific signal processing modes. In these modes, the CFR blocks
are used as a single stream/block or two streams/block.

2.5.3.1 PreCFR Processing
PreCFR Interpolation is based onTable 2-9. The DDUC interface is clock/8 interpolated to the clock/4
mode for two antenna mode usage.

PreCFR gain is the primary CFR clipping control, in that the user changes the PreCFR gain to drive the
antenna stream signal to the desired amount of CFR clipping. The preCFR gain goes from –Inf to 6db.
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For example, the peak signal level for an antenna stream is –4dbc (preCFG gain 0db). The clipping peak
thresholds are -3.5, -4.5, -5.5, and -6.5dbc. The PreCFR gain of 0dbm would result in the first clipping
stage not detecting peaks. The clipping peak thresholds are not normally adjusted in DFE, the preCFR
gain is adjusted.

2.5.3.2 CFR Processing
CFR processing is done as two or four cancellation stages for each TX antenna stream. Based on
Table 2-9, the CFR blocks process the antenna stream signals from the sumchain. In certain modes, each
of the two CFR sub-blocks processes two antenna streams (DFEPLL clk/8). If the CFR sub-block
processes one antenna stream, the IQ rate is higher (DFEPLLclk/4).

Each CFR stream has magnitude cancellation thresholds and targets. There can be different values for
each of the four peak cancellation stages. These are programmed in the fixed register configuration.
When the TX antenna stream signal is greater than the threshold, and the multiple peak detection block
indicates this is the highest peak, a cancellation event occurs. The peak value and the stored cancellation
target determine the cancellation pulse gain. The stored cancellation coefficients scaled to the desired
gain are subtracted from the peak signal.

Each peak cancellation stage can cancel multiple peak events (depending on the CFR mode). Figure 2-17
shows a peak cancellation stage. Figure 2-18 shows a single cancellation event, based on peak detection,
multiple peak logic, scaling the cancellation pulse CPGE, and delaying the CPGE to the aligned peak to
cancel.

Figure 2-17. Cancellation Logic Diagram for CFR

Referring to Figure 2-14, there are two cancellation stages with reused logic, effectively making four
cancellation stages for each TX antenna stream. This is the most common configuration, but there are
other modes. Since there are multiple (two or four) cancellation stages, the user can reduce the peaks
from stage 1 to stage 4, by reducing the peak in each stage. Figure 2-17 shows one stage with a
representative cancellation pulse generator engine (CPGE). The CPGE has a complex cancellation pulse
to subtract the center peak-aligned signal. Figure 2-15 shows a system perspective of CFR clipping, and
Figure 2-18 illustrates a cancellation event. The complex cancellation filter has a zero delay and ½ delay
version, which is selected by the peak detection logic.

As an example in the below peak detection setpoints, for the first of four peak cancellation stages, if the
peak detected is greater than -4dbc, then a peak is checked for hysteresis (Figure 2-19), and the
difference between the peak detected and the target value is used to scale the complex cancellation
coefficients to subtract from the signal see Figure 2-18.

Example Peak detection threshold by stage -4, -5, -6, -6

Example Peak target by stage -6, -6, -6, -6

NOTE: The peak detection thresholds are adjusted with the PreCFR gain to achieve a specific
amount of peak clipping, which can be tolerated by the LTE or WCDMA TX carrier within the
TX antenna signal. This example has 2db of peak clipping.
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Figure 2-18. Example TimeSeries, Spectrum of Peak Clipping

The complex FIR filter base cancellation pulse can be single carrier or multiple carrier type.

NOTE: In certain multicarrier examples (adjacent carriers), a signal cancellation pulse can be
designed to cover the multiple antenna carriers. This has added benefits of CFR distortion
between the antenna carriers. The carrier magnitude, frequency, and carrier BW are
designed into the cancellation pulse. The base filter is provided for the LTE and WCDMA
carriers. This is designed with an API, and sample CFR prototype cancellation base filters.

Another component of the CFR clipping and detecting peaks is the hysteresis control. The hysteresis
control limits over-cancellation of peaks that are closely spaced in the time series. This is adjusted in the
fixed configurations. The hysteresis control is adjusted to a higher number to limit the number of CPGEs
triggered in a stage when the magnitude is above the detection threshold. See Figure 2-19 for an
example.
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Figure 2-19. Example Hysterisis Control Related to Multiple Peak Cancellation

2.5.3.3 PostCFR Processing
In Figure 2-14, the postCFR processing is the peak signal gain adjustment, with the interpolation by 2 and
the circular limiter.

PostCFR gain – After CFR has clipped the signal, the peak antenna stream output is adjusted for both
proper DPD range of operation and peak TX signal power (this is the last fractional db gain adjustment in
DFE). The postCFR gain has a range of -inf to 6db, and an operating and updating setpoint for each
antenna stream. The postCFR gain is updated with an API.

PostCFR interpolate by 2 – The CFR mode of operation (see Table 2-9) uses the postCFR interpolate by
2 function to increate the IQ rate after CFR clipping. This is done in preparation for DPD, which needs
expansion bandwidth. If the preCFR interpolate by 2 is not used, the Int2m 109 tap half band filter is used.
If postCFR interpolation is done and preCFR interpolation is done, the postCFR interpolation uses the
19tap halfband filter.

Circular limiter – The circular limiter limits the antenna stream signal to a fixed IQ magnitude. This limiter
is a single-sample gain correction based on the lookup table (LUT) gain (see Figure 2-20). The LUT table
is loaded with the fixed register writes for CFR. Normally, the user operates the CFR block and postCFR
gain to have a peak IQ output < -6dbc. The circular limiter is not intended to clip the signal: when it
activates, the TX output spectrum will not meet the desired TX spectrum quality. The magnitude and
inverse gain programmed in the LUT limit the IQ magnitude to (-6dbc/sqrt2). The LUT has 128 sample
elements and interpolation between points for the inverse gain calculations.

58 DFE Flow and Sub-Block Descriptions SPRUHX8A–July 2014–Revised April 2015
Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHX8A


www.ti.com Crest Factor Reduction (CFR)

Figure 2-20. Circular Limiter Diagram

2.5.4 Synchronization Events
The synchronization events for the CFR block APIs are normally the DL synchronization signal from the
BB block, or the MPU sync (updated immediately).

2.5.5 Software Application Interfaces

NOTE: See Reference 6 (Chapter 3) and for additional details.

API_PreCFR_Gain – The gain before CFR is adjusted per TX antenna, with a PA protection setback gain
adjust. This gain is adjusted in consideration of the sumchain shift gain.

API_PostCFR_Gain – The gain after CFR, normally adjusted for peak level to DPD

API_CFR_CoefUpdate – The calculated CFR clipping coefficients are updated into a CFR stream

API_CFR_CalcCoef – The user provides the TX antenna stream carrier frequency, base filter, and carrier
gain to calculate the CFR clipping filter.

2.5.6 Important Programming Concepts
CFR Table 2-8 indicates the sumchain-interleaved IQ stream formats, and the desired number of CFR
processing streams. Table 2-9 helps select the fixed configuration.

PreCFR interpolation and postCFR interpolations are important for the final DPD block sampling rate.
These are set in the fixed configuration and the CFR mode tables. In most applications, use the postCFR
interpolation of 2.

The amount of CFR that can be applied to an antenna stream is based on the peak detection, target fix
values, and the antenna stream, which typically for LTE clips 2db of peaks. In WCDMA, the standard
tolerates more EVM per carrier, so more clipping can be done. The TX block has power meters to monitor
antenna stream peak and RMS power during adjustment. The preCFR gain and sumshift in the summer
set the TX antenna stream IQ value for CFR.

The cancellation pulse complex filter must be computed and updated for the carrier type, carrier frequency
(DDUC NCO), and weighting factor; there is an API for the calculation and update of the CFR filter. The
cancellation pulse is generated in a zero delay and half-delayed format. These two filters must be loaded
for proper CFR operation.

PostCFR gain sets the transmit stream peak gain for the antenna stream.
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2.6 CDFR

Figure 2-21. CDFR Block Diagram

2.6.1 CDFR Function
The CDFR block interpolates the CFR block output streams to the DPD input rate. The CDFR block has
two different interpolation blocks that are utilized based on the operating mode. Each of the two CFR
buses has one or two interleaved IQ data buses. Each of the DPD output streams has a unique parallel IQ
bus.
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2.6.2 CDFR Inputs/Outputs

Table 2-10. CDFR Inputs and Outputs

Name I/O Basic Description
MPU Bus Both Parallel data/ address/ module address synchronous bus for programming registers /

memories
CFR signal bus 0 in I Time interleaved IQ bus from Summer block, contains 1 or 2 antenna stream data
CFR signal bus 1 in I Time interleaved IQ bus from Summer block, contains 1 or 2 antenna stream data
TxOverPower signals I Each TX antenna stream has a setback signal, this is used to select the Setback gain for

PreCFR , from TX sub-block
CFR signal bus 0 out O Time interleaved IQ bus from postCFR output to CDFR, contains 1 or 2 antenna stream

data
CFR signal bus 1 out O Time interleaved IQ bus from postCFR output to CDFR, contains 1 or 2 antenna stream

data
CaptureBufferCFR0 InBus I IQ bus to stream the preCFR IQ for specific antenna streams from CFR0
CaptureBufferCFR0 OutBus O IQ bus to stream the postCFR IQ for specific antenna streams from CFR0
CaptureBufferCFR1 InBus I IQ bus to stream the preCFR IQ for specific antenna streams from CFR1
CaptureBufferCFR1 OutBus O IQ bus to stream the postCFR IQ for specific antenna streams from CFR1
Sync Bus I A group of signals that indicate the time-event to perform an operation.
Interrupt Bus O Signals to MISC module to indicate a CFR event occurred
Test Bus Both Signals to global capture buffer Test Bus data source for capture

2.6.3 CDFR Basic Description
The CDFR provides filtering and interpolation from the CFR output bus rate to the desired DPD or TX (if
DPD is not used) sample rate. The CFR output buses are time-division-multiplexed buses that operate at
DFEPLL clock/2 (one antenna per bus) or DFEPLL clock/4 (two antennas per bus). The CDFR bus can
control clock gating for a effective slower IQ rate to the DPD block. The CDFR interpolation ratio and
gating factors are selected during initial register programming, and cannot be changed after the block is
initialized.

Table 2-11. CDFR Common Operating Modes

CDFR Operating Mode Total Interpolation Interp2 – Fixed Filter Resampler CDFR Eng Modes
Bypass 1 Bypass – 1 Bypass - 1 b1
Interp2 2 Interp2 Bypass - 1 d1/d2/d3
Fract Resample 3/2 Bypass - 1 3int/2dec b1 or b2

The CDFR mode configures the fixed interpolate by two, and the resampler into the signal path. The same
CDFR interpolation ratio is applied to all antenna streams. The desired DPD oversample rate and special
clocking controls provide the output buses to the DPD block. In some cases, the fixed interpolate by two,
and the fractional interpolation are used together.

The DPD processing operates at the CDFR output rate. The CDFR output rate is a combination of the
DFE PLL rate and clock gate controls, set in the programming file.

In most cases, interpolating by two means the fixed filter mode is used. If there is a different interpolation
ratio, the resampler or fixed interpolation by two and resampler can be used. It is important to set the IQ
rate of the DPD block, or the TX input, if the DPD block is not used.

The CDFR fixed interpolation filter is a 95 tap fixed filter. The CDFR filter has 40% BW. The CDFR
resampler coefficients are programmed at initial register programming. The number of taps is based on
the interpolation/decimation ratio (8 * interpolation ratio).
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2.6.4 CDFR Synchronization Events
The CDFR is synchronized to the DL sync event or MPU (software) sync event.

2.6.5 CDFR Software Application Interfaces
There are no software API dynamic adjustments for the CDFR block.

2.6.6 CDFR Important Programming Concepts
The CFR operates with at least 1.1× the signal bandwidth, typically 1.25× the signal bandwidth. CFR
normally interpolates by two after CFR, and this is coupled with the CDFR interpolation to develop the
DPD bandwidth. If DPD is not used, the CDFR ratio can be one. CDFR is programmed during the DFE
fixed configuration.

CDFR Interpolation = DPD IQ rate/CFR Output IQ rate

The CDFR interpolation, CFR output IQ rate, DPD desired IQ rate, and DFEPLL must be considered for
the register programming file.

For an example without DPD, the CFR input rate is 61.44 Mhz, the CFR output rate is 122.88 Mhz, and
CDFR can have a ratio of one, so that the CFR output rate matches the JESD TX equivalent IQ rate.

For an example with DPD, the CFR input rate is 61.44 Mhz, the CFR output rate is 122.88 Mhz, and the
CDFR is programmed to a 3/2 interpolation. The CDFR parallel output occurs at the 245.76-Mhz IQ rate,
and every four clock cycles there are three valid outputs. Special clock controls are used, and the DPD
rate is 184.32 Mhz. The TX block also resamples the DPD output back to the JESD TX equivalent rate.

2.7 Digital Pre-Distortion (DPD)

Figure 2-22. DPD (1 of 4 streams) Block Diagram

2.7.1 DPD Function
Each of the four TX streams from the CDFR block is an input to the DPD block. The DPD block provides a
non-linear correction function for each TX stream independently. The nonlinear correction has both a
number of correction solutions (one to four) available, and a number of memory solution look up tables
(LUT) utilized for each TX antenna stream.

The nonlinear correction is indexed based on the magnitude, or magnitude squared, of the incoming TX
signal. This signal is determined with a hardware register setup, and software configuration and software
update of the LUT entries. The LUT is designed like the circular limiter discussed in Section 2.4. Each
magnitude or magnitude squared sample creates an index to the memory. The correction coefficients for
DPD are generated from the sampled signal, and the delay, using an example, has a magnitude or
magnitude squared index to the LUT. There are several LUTs which provide the nonlinear coefficients for
a specific TX antenna stream. The LUT and delays for the LUT index generate a specific solution set for
DPD. The numbers of LUTs utilized are equal to the number of memory terms for this DPD solution. In the
initial configuration, the LUT contents provide a linear gain of one and no nonlinear solution. As the DPD
cycle updates the coefficients, the nonlinear LUT content is updated, and then the FIR-like structure
convolved with the TX antenna stream provides the nonlinear correction.
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All of the LUT memories have a dual set of coefficients; one that is currently in the signal path, and one
that can be updated by the MPU bus to the DPD TX antenna selected.

2.7.2 DPD Inputs and Outputs

Table 2-12. DPD Inputs and Outputs

Name I/O Basic Description
MPU Bus Parallel data/ address/ module address synchronous bus for programming registers /both memories
DPD Bus0 in I Interpolated IQ parallel bus from CDFR
DPD Bus1 in I Interpolated IQ parallel bus from CDFR
DPD Bus2 in I Interpolated IQ parallel bus from CDFR
DPD Bus3 in I Interpolated IQ parallel bus from CDFR
DPD Bus0 out O Interpolated IQ parallel bus with nonlinear distortion for TX stream0
DPD Bus1 out O Interpolated IQ parallel bus with nonlinear distortion for TX stream1
DPD Bus2 out O Interpolated IQ parallel bus with nonlinear distortion for TX stream2
DPD Bus3 out O Interpolated IQ parallel bus with nonlinear distortion for TX stream3
Sync Bus I A group of signals that indicate the time-event to perform an operation.
Interrupt Bus O Signals to MISC module to indicate a DPD event occurred
Test Bus both Signals to global capture buffer Test Bus data source for capture

2.7.3 DPD Basic Description
The interpolating LUT first described in the circular limiter (see CFR description) is the basis for the
memory nonlinear function solution set (see Figure 2-22). The CDFR antenna stream signal is processed
for magnitude squared or magnitude, then quantized to create the LUT index for the memory nonlinear
function solution set.

The quantized LUT index can be magnitude squared or magnitude format. This must be selected in the
DPD register programming before initialization, and by the DPD software.

The interpolating LUT generates a memory coefficient for the specific memory element of the solution set.
The DPD hardware and processor software must be programmed for the proper number of terms for each
solution set. There are two general DPD operating modes, two TX antennas, and four TX antennas. The
numbers of solution sets and memory taps per solution set are based on the DPD mode and the number
of TX antennas. The hardware is typically programmed for maximum utilization. The software can zero the
unused LUTs for the unused memory or unused solution sets. A solution set is a LUT programmed with a
nonlinear set of coefficients for a specific TX antenna. The DPD hardware must be programmed for the
same number of solution sets and memory taps as the software, to ensure that the delay-indexing and
LUT contents are applied correctly.

Table 2-13. DPD Memory Taps Based on Number of TX Antennas/Number LUT-Solution Sets

Number 1x 1 Solution Set 2 Solution Set 3 Solution Set
Tx Antennas Number Memory Taps Number Memory Taps Number Memory Taps
2 36 18 12
4 18 9 6

As an example, if the user has two TX antennas and three solution sets, they can have up to 12 memory
taps. Each solution set has one LUT index, and a set of LUT index delays to index the memory tap LUTs.
The nonlinear coefficients for this solution are generated from LUT magnitude indexed coefficients (each
LUT has a specific magnitude to coefficient function). The memory tap LUT coefficients are multiplied by
the I and Q stream signal with appropriate IQ signal delays, such as a FIR filter. The memory tap sum of
products is for each solution set. The multiple solution set sum is then output to the TX block for the
current IQ sample of this antenna stream. The nonlinear functions are DPD TX antenna-independent.
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For example, if the user had a single LUT, they could correct for the gain expansion term only. Having
multiple memory taps allows a magnitude or magnitude squared real correction to be applied to the IQ
data.

In Figure 2-23 for AM-AM correction, the LUT is programmed for the software-corrected typical PA
response, by measuring the feedback path, computing an error condition to an initial power amplifier
desired response (model), and creating the inverse gain, so the system response matches the red line
ideal response. The 3db headroom provides a limitation so that the PA system operates below the P1db
point.

Figure 2-23. DPD Correction for AM-AM Distortion

The DPD system applied after using CFR to reduce the dynamic range of the signal allows the PA to be
operated above the first region in Figure 2-23. The TX spectral emission mask and transmit error vector
magnitude are typically improved in 3 DPD cycles for most power amplifiers. Figure 2-24 shows the
nonlinear correction used to cascade the DPD nonlinear distortion, with the PA nonlinear distortion, to
create a linear system. Figure 2-25 shows the transmit signal, and odd-order intermodulation harmonic
distortion (IMD).
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Figure 2-24. DPD Correction Showing TX Before Correction, Predistortion, and Post PA Response
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Figure 2-25. Transmit Bandwidth and DPD Expansion Bandwidth Example.
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Figure 2-26. DPD Correction Showing Spectral Emission Mask Improvement

2.7.4 DPD Synchronization Events
The DPD is synchronized to the DL sync event or MPU (software) sync event.

2.7.5 DPD Software Application Interface

NOTE: See Reference 6 (Chapter 3) and for additional details.

The DPD sub-blocks require hardware (register programming) and software configuration to manage the
number of nonlinear solution sets (1 to 4), and the number of memory terms (depends on mode and the
number of solution sets).

The DPD sub-block solution sets and memory terms are programmed by the DPD antenna stream over
the MPU bus. After programming one or more DPD antenna streams, the memory data is transferred for
signal processing with a synchronization signal.

API_DPDCoefUpdate indicates that the DPD coefficients for a specific TX stream can be updated. This is
normally controlled from the DPD adaption process and not loaded separately.

2.7.6 DPD Important Programming Concepts
DPD hardware must be programmed for the desired number of solutions (1-4), and number of memory
terms (depends on solution and mode).

DPD hardware must be programmed for signal quantization index for LUTs, based on magnitude or
magnitude squared.
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Because the signal processing is applying gain expansion for most power amplifiers and nonlinear gain,
–6dbfs peak at the DPD input is desired, to allow for dynamic range expansion by at least 3 db. This must
be co-ordinated with the setup of the TX PA limiter (range to trigger setback / trip), and the follow on
JESD-TX processing gain.

The DPD coefficient has a double buffer that is synchronized when new coefficients are loaded. The initial
hardware coefficients used in programmation are a single tap slope 1 as a DPD bypass. The software
calculates the new coefficients, updated for a specific DPD stream, then the software applies a hardware-
timed (DL sync) or MPU sync (software MPU update).

When DPD is in the initial register programming setup, the DPD input and DPD output capture buffer
should have the same spectral component, where the DPD output is delayed by the effective memory tap
and hardware delay.

When software is updating the DPD coefficients, the nonlinear gain expansion raises the gain at the DPD
output. The amount of gain expansion must be factored into the settings for the TX PA protection, and the
peak TX power. The JESD transceiver power monitors and JESD transceiver input gain can help set the
final TX peak power level.

2.8 TX Sub-Block

Figure 2-27. TX Sub-Block Block Diagram
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2.8.1 TX-Sub-Block Function
The TX block provides 5 important functions for the TX signal processing:
1. The TX block selects the signal path from the DPD block, or from the CDFR block if the DPD block is

powered down.
2. The TX block interpolates or decimates the DPD signal rate to the JESD TX output rate. The TX

interpolation or decimation mode is programmed during initial TX programmation.
3. The TX block has numerically controlled oscillators (NCO) to provide a frequency translation for low IF

systems. If the NCO is not utilized, this is a zero IF complex transmit output.
4. Each TX antenna has a power monitor and protection logic function. The power monitor provides the

RMS and peak power of each TX stream. The protection logic provides a setback or transmit-inhibit
function if the RMS power exceeds a programmed setpoint. The protection logic has a limiter that can
reduce the signal peak magnitude.

5. The TX sub-block reformats the data for the JESD TX input.

2.8.2 TX Sub-Block Inputs and Outputs

Table 2-14. TX Sub-Block Inputs and Outputs

Name I/O Basic Description
MPU Bus both parallel data/ address/ module address synchronous bus for

programming registers / memories
DPD Bus0 out I DPD output bus TX stream 0
DPD Bus1 out I DPD output bus TX stream 1
DPD Bus2 out I DPD output bus TX stream 2
DPD Bus3 out I DPD output bus TX stream 3
CDFR Bus0 out I CDFR interpolated output bus to DPD input stream 0
CDFR Bus1 out I CDFR interpolated output bus to DPD input stream 1
CDFR Bus2 out I CDFR interpolated output bus to DPD input stream 2
CDFR Bus3 out I CDFR interpolated output bus to DPD input stream 3
TX stream Protection bus output O TX PA Protection output has a setback control for each preCFR gain

selection, and a inhibit status indication for the DPD block
TX stream output bus0 O TX antenna stream 0, 1 are output as a TDM parallel IQ bus
TX stream output bus1 O TX antenna stream 2, 3 are output as a TDM parallel IQ bus
Sync Bus I A group of signals that indicate the time-event to perform an operation.
Interrupt Bus O signals to MISC module to indicate a DPD event occurred
Test Bus both signals to global capture buffer Test Bus data source for capture

2.8.3 TX Sub-Block Basic Description
See Figure 2-27 for the TX sub-block diagram. The selection of the DPD output, or CDFR output for the
TX input bus, is controlled through programmation at initialization.

The interpolation or decimation of the selected TX stream output data is common for all TX antennas. The
TX sub-block mode and the desired TX input/output ratio are programmed when loading the initial
registers. The TX stream output IQ rate must match the JESD TX IQ rate. The TX sub-block mode
determines which filter or set of filters to use. The resampling filter has a set of user-configurable
coefficients, so the filtering and rate can be designed to interpolate/decimate, resample, bypass, or filter
the TX stream signal. The rate ½ filter can have programmable coefficients used for the image
attenuation, and for DPD correction filtering.
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In the TX Table 2-15, the programmable taps, ratio 1 or 2 filter, can decimate or interpolate by 2, or just be
a filter. The ratio 2 filter is programmed with 55 tap odd symmetric half band taps. In the ratio 1, this filter
has 27 odd symmetric taps. In the 27-tap case, the FIR filter passband and stopband can be designed for
DPD-desired transmit bandwidth. In the ratio 1-bypass cases, the center tap impulse is programmed. The
resampler is programmed given the M (interpolate) / N (decimate) ratio, where M*8 is the number of
resampler coefficients. Although the resampler coefficients can be reprogrammed, to provide fractional
timing offsets the initial programming is based on the fractional bandwidth and image attenuation. TI
recommends leaving the resampler coefficients with the default programmation.

Table 2-15. TX Sub-Block Common Operating Modes

TX Sub-Block TX Interpolation (I) Ratio 1 or 2 Interpolation(I) or
Operating Mode or Decimation (D) Decimation(D) Filter Resampler TX Eng Mode
bypass 1 1 – 27 tap odd symmetric filter, Special Int2/Dec2 – Mode 8 or 10 or 14

with Impulse center tap special impulse filter
Decimate by 2 Dec 2 2 – Decimation – 55 tap half band Resampler coefficients Mode 2-9. Prig

filter is programmed for 40% BW and ratio set for bypass Resampler
coefficients for
bypass

Dec 3/2 Dec 1.5 1 – 27 tap odd symmetric filter, Int2/Dec3 – typically Mode 2-9
with Impulse center tap programmed for 60%

of the resampled BW

If the DPD IQ rate is at a higher rate than the JESD TX IQ rate, the DPD signal can be filtered and
decimated to the JESD transmit rate. Typically, the DPD output is not interpolated to the JESD TX IQ rate.

The NCO provides frequency translation of the TX antenna stream signal. The NCO is similar in
description to the one found in the digital downconverter/upconverter (DDUC) (Section 2.3). The NCO can
be dynamically changed while the TX block is processing signals, using a software API. The NCO
converts the zero IF transmit to low IF transmit.

The route/sum/scale block scales or rounds the transmit stream that is applied to a specific JESD TX
stream. The sum is used when multiple TX streams are combined. The scale applies power of 2 gain or
attenuation to the TX output stream signals.

There is one PA protection block for every two TX antenna streams. The PA protection block has peak
and RMS power limiting functions, based on each TX antenna stream magnitude squared value, and user-
programmable thresholds (see Figure 2-28).
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Figure 2-28. TX Sub-Block PA Protection (1 of 2) Diagram

Control functions output the A1 preCFR gain setback, and A2 inhibit TX stream output.

The square clipper appears to limit the I and Q input to a peak value. A counter counts for an interval, and
a peak alarm is generated if there are more than C1 clipping events. The logic signal for the peak clip is
called A5.

The IQ signal is converted to magnitude squared for peak and rms processing for gain setback, control
functions, and for the TX power meter.

There are two IIR (infinite impulse response) filters to generate an average magnitude squared signal.

The IIR filter (upper IIR in Figure 2-28) computes an average of the magnitude squared signal. LUTP
applies a transfer function from the filtered magnitude squared to the power setback function for the peak
IQ signal. The LUTp table provides a transfer function for the peak power setback, based on the average
power.

The A7 status signal is a peak alarm output, if magnitude squared peaks are higher than Th0 (threshold)
for more than C0 counts.

LUTt provides a circular limiter function, in that the magnitude squared signal of the IQ sample is used to
develop a peak gain setback. The LUT is programmed with inverse gain so the gain is 1 for signals below
the limiter threshold and are programmed to < 1, and a peak over the LUT table-threshold occurs.

The A4 status signal indicates that peak clipping has occurred for C2 counts within a sample count. The
A4 signal is a peak limiter status signal.

At the output of the LUTt, if the gain is 1, there is no limiting action for peaks. A low comparator at the
LUTt output checks to see if there are peak clipping events (cc2). If the number of cc2 events is > C2,
then A4 is active. A4 is a status indicator that peak clipping is occurring.

The IIR filter (lower IIR in Figure 2-28) computes an average of the magnitude squared signal. The
arithmetic average and peak are used for the TX power meter output for this antenna stream. The
arithmetic average is also used for the alarm and control functions:
• If the average magnitude squared value is above a setpoint TH4, the A6 output activates an interrupt

indicating filtered magnitude squared (power) is too high.
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• If the average magnitude squared value is above a setpoint TH1, the A1 output activates, and the
preCFR gain setback function occurs.

• If the average magnitude squared value is above a setpoint TH2, the A2 output activates, and the TX
stream output is inhibited.

The IIR average magnitude squared value is also input to another LUT (LUTq), which develops an
average power setback function. This function is not normally used in TCI663xK2L applications.

The peak and average magnitude squared setback multiplier is then applied to the IQ stream of the signal.
The IQ stream is then sent through the TX inhibit to gate the TX output to the JESD block.

2.8.4 TX Sub-Block Synchronization Events
The TX sub-block is synchronized to the DL sync event or MPU (software) sync event.

2.8.5 TX Sub-Block Software Application Interface

NOTE: See Reference 6 (Chapter 3) and for additional details.

API_Tx_ NCOUpdate – Frequency-translates the TX antenna stream

API_Tx_PAProtectConfig – Configures registers and initializes the PA protect logic

API_Tx_PAProtectStatus – Gets PA protection status by TX antenna stream

API_Tx_PAProtectControlUpdate - Modifies the PA protection state after an event

API_Tx_PAProtectPowerMeterConfig – Configures the IIR power meter (part of PAprotect configuration)

API_Tx_PAProtectReadPowerMtr – Reads the IIR power meter for TX antenna streams

2.8.6 TX Sub-Block Important Programming Concepts
The TX sub-block must be programmed to select the DPD output or CDFR output.

The TX sub-block mode determines the TX FIR filter and TX resample ratio. The TX FIR filter has
programmable coefficients. The TX resampler interp/decimation ratio has preprogrammed coefficients.
These coefficients are loaded at programmation time only. The TX sub-block interpolation and decimation
adapts the DPD IQ rate to the JESD TX IQ rate.

The TX sub-block for zero IF (default) or low IF can be programmed using the TX NCO mixer. The
feedback mixer must be programmed in a complimentary fashion for low IF mode. The TX and feedback
mixer can be programmed after initial register programming, using APIs.

The Tx_PA protection can have custom thresholds and count values for the protection alarms, CFR
setback, and TX antenna inhibit functions. The PA protection LUTs are not dynamically updateable; they
must be initially programmed to the desired function.

Special software is needed to control the PA protection logic for alarm, power setback, clipping, and trip
conditions.
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2.9 JESD Block

Figure 2-29. JESD Block Diagram

2.9.1 JESD Block Functions
The JESD block implements a JESD 204B subclass 0 or 1 multi-SerDes lane, and multi-link interface. The
JESD block has four TX lanes, and four RX lanes that can be combined or separately used to support 1,
2, or 4 antenna streams. The JESD 204 interface can support one or two links in each direction to
synchronize the TCI663xK2L DFE with an external JESD 204B transceiver.

The JESD block implements the mapping loopback for internal TX to RX, or TX to feedback digital
loopback.

The JESD block formatter can route IQ signals, multiple IQ signals, or split I and Q signals to a JESD204
TX lane.

The JESD block provides JESD 204B scrambling, encoding, alignment, and test pattern generation for the
TX lanes.

The JESD block implementation has a lane loopback used for testing.

The JESD block implements the RX sync output, and TX sync input JESD204B subclass 1 signals used
for synchronization and error notification. The controllers also implement the JESD 204B SYSREF local
multiframe clock (LFMC).
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The JESD block implements the JESD 204B receive logic, decoding, synchronization, alignment,
descrambler, and buffering.

The JESD formatter/mapper selects the map loopback or received JESD signals, and reformats them for
the TDM parallel IQ RX block, and parallel IQ feedback blocks.

2.9.2 JESD Block Inputs and Outputs

Table 2-16. JESD Block Inputs and Outputs

Name I/O Basic Description
MPU Bus Both Parallel data/ address/ module address synchronous bus for programming registers /

memories
TX stream input bus0 I TX antenna stream 0 (2 antenna stream) 0, 1(4 antenna stream) are output as a TDM

parallel IQ bus
TX stream input bus1 I TX antenna stream 1(2 antenna stream) 2, 3(4 antenna stream) are output as a TDM

parallel IQ bus
Rx0 parallel input bus from I 20-bit 8b-10b encoded bus from SerDes
SerDes
Rx1 parallel input bus from I 20-bit 8b-10b encoded bus from SerDes
SerDes
Rx2 parallel input bus from I 20-bit 8b-10b encoded bus from SerDes
SerDes
Rx3 parallel input bus from I 20-bit 8b-10b encoded bus from SerDes
SerDes
SYSREF I The SYSREF signal is used for LMFC alignment in JESD204B subclass 1 mode. The

SYSREF can be generated external to TCI663xK2L for multi-device synchronization, or
internal to TCI663xK2L from the SYSREF logic section.

SYNCIN0,1 I JESD204B Sync transmitter input, from the external JESD204B receiver through LVDS
DFE signals, or DFE GPIO

Tx0 parallel output bus to O 20-bit 8b-10b encoded bus to SerDes
SerDes
Tx1 parallel output bus to O 20-bit 8b-10b encoded bus to SerDes
SerDes
Tx2 parallel output bus to O 20-bit 8b-10b encoded bus to SerDes
SerDes
Tx3 parallel output bus to O 20-bit 8b-10b encoded bus to SerDes
SerDes
SYSREFREQ (output) O SYSREF enable signal to external Clock solution through DFE GPIO
SYNCOUT0,1 (output) O JESD204B Sync receiver synchronization status, error to external JESD device through

LVDS DFE signals, or DFE GPIO
Sync Bus Both A group of signals that indicate the time-event to perform an operation.
Interrupt Bus O Signals to MISC module to indicate a JESD event occurred
Test Bus both Signals to global capture buffer Test Bus data source for capture

2.9.3 JESD Block Basic Description
The JESD block within DFE has TX block to JESD 204 logic, TX JESD 204B single and multilane logic,
parallel connections to SerDes, parallel connections from SerDes, RX JESD 204B single and multilane
logic, JESD 204 logic to RX block, and feedback block outputs.

2.9.3.1 Link Synchronization and Error Handling of Link Errors
The SYSREF aligns the JESD 204B TX frame and multiframe clocks. The SYSREF also aligns the
JESD204B RX frame and multiframe clocks. This alignment is discussed in section 4.8, 4.11 of the
JESD204B standard (see reference 1 in Chapter 3). See Figure 2-30.
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Figure 2-30. JESD Clock, Synchronization, and SerDes Data Diagram

2.9.3.2 Synchronization
Synchronization between the transmitter and receiver is done in several sections (see Figure 2-30). While
the figure shows a SYNCOUT and SYNCIN pair, there are two SYNCOUT and two SYNCIN link controls
in TCI663xK2L. Normally, link 0 is used for two-stream applications. Link 1 is used when there is a second
JESD transceiver. Figure 2-30 is a simplified example, using one JESD Transceiver.

The initial synchronization is sampled by the common clock (SYSCLK) to align both devices to the frame
or multiframe using the SYSREF. The transmitter initially sends synchronization characters over the serial
links, while the receiver asserts the SYNCOUT (active low). When the receiver has detected the
synchronization characters in the received stream, the received de-asserts SYNCOUT (logical high). The
transmitter samples the SYNCIN, and determines that this link has been synchronized. The initial link
operation alignment is discussed in section 5.3.3, 6.3 of JESD204B specification (ref 1 in Chapter 3) In
Figure 2-29, the SYNCIN is used to control the SerDes lane synchronization by sampling the SYNCOUT
from the other device JESD RX. In Figure 2-30, there is an individual lane check for the receiver. If a
JESD receive lane detects that it is out of alignment, the SYNC_REQUEST controls the SYNCOUT(0,1) in
programming to indicate the need to resynchronize a lane.
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NOTE: The SYNCOUT link status signals can also indicate JESD lane errors received in the RX
sections. The JESD error statistics are available in registers to determine the number of
errors.

The JESD logic and software perform the initial powerup and device alignment.

2.9.3.3 Link SYNCOut, SYNCIn
There are two links for synchronization status. The link to JESD lane is done in programmation. Typically,
a two antenna configuration uses SYNCIN0, SYNCOUT0. A four antenna configuration uses (ant0/1)
SYNCIN0, SYNCOUT0 and (ant2/3) SYNCIN1, SYNCOUT1.

2.9.3.4 Signal Mapping
The TX formatter and mapper converts the TX stream signals from the TX block into four TX streams. The
conversion process depends on the JESD TX mode (which is programmed during register writes). The
JESD signal mapping block must support a parallel implementation of the desired IQ-interleaved, TDM IQ-
interleaved, I-only, or Q-only interface. The mapping mode for loopback is discussed separately below.
Table 2-17 shows some examples of JESD transceiver modes (there are other supported modes).

Table 2-17. JESD Signal Mapping Based on JESD Transceiver Mode

JESD
Transceiver Number of
Mode Antennas Map0T Map1T Map2T Map3T Map0R Map1R Map2R Map3R
1 2 I-T0 Q-T0 I-T1 Q-T1 IQ-R0 IQ-R1 I-Fdbk Q-Fdbk
3b 2 IQ-T0 IQ-T1 IQ-R01 IQFdbk
3b3b 4 IQ-T0 IQ-T1 IQ-T2 IQ-T3 IQ-R01 IQ-R23 IQFdbk01 IQFdbk23
6b 2 IQ-T0 IQ-T1 IQ-R0 IQ-R1 IQFdbk

The JESD signal transfer to and from the SerDes must conform to the desired data format and transfer
rates.

Table 2-18. JESD Signal Transfer and Number of Clocks

TX to SerDes Interface Mode Number of DFEPLL Clocks for IQ Transfer
Split (or individual) I,Q 1
1 antenna stream interleaved IQ 2
2 antenna stream interleaved IQ 4

NOTE: Other JESD transceiver IQ mappings are possible; these are programmed at the initial
register load.

2.9.3.5 Internal Signal Loopback
In Figure 2-29, the TX mapped signals can be looped back to the RX (RX and feedback) at the mapping
loopback. The signal is still in the initial IQ format, so no JESD processing has been performed. This is
useful for internal testing; a configuration file sets up this internal loopback. Some of the mapping
loopback is done through register programmation (special reg file configuration). Some of the mapping
loopback and lane mapping are done through an API after the register files are loaded.

2.9.3.6 Scrambler (TX), Descrambler (RX or Feedback)
The scrambler and descrambler encode the IQ data in a method to reduce spectral distortions and EMI;
this can be disabled. The programming of the DFE JESD and the JESD transceiver must be compatible to
the scrambler and descrambler usage. See section 5.2 of the JESD 204B specification.
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In Figure 2-29, the JESD TX alignment, encode, and test generator are the link layer, as referred to in
section 5.2 of the JESD 204B specification.

2.9.3.7 TX Alignment Block
The TX data is inserted with a synchronization character for initial alignment. When the other JESD device
has synchronized with these synchronization characters, we continue to output synchronization characters
until the next frame boundary. This follows the replacement of IQ data with link configuration
programmation at initial alignment. After initial alignment and during normal operation, IQ data is
periodically replaced with alignment characters in a manner that allows for the recovery of replaced data in
the JESD receiver. See section 5.3 of the JESD204B specification.

2.9.3.8 TX Encode
The TX encode block in Figure 2-29 is the conversion from the octet 8-bit data into a 10-bit
implementation. The parallel connection from the JESD block is a 20-bit interface, so two octets are
processed. The 8B/10B processing is described in 5.3.1 of the JESD204B specification.

2.9.3.9 Test Generator
The TX test generator replaces the 8B/10B encoded signal with a specific set of synchronization or bit-
error-rate test generation. These are described in section 5.3.3.8 of the JESD204B specification.

2.9.3.10 Lane loopback
Lane loopback, a mulitiplexer at the JESD receive interface from the SerDes parallel data, can accept the
TX lane 20-bit loopback or the SerDes 20-bit parallel data. This is used in testing, and must be
programmed in the register file for the device (it is not API controlled).

2.9.3.11 Decoder
The JESD receiver has a 10B/8B decoder to convert the parallel data back to the 16-bit data field. The 16-
bit data can contain synchronization characters, IQ data, or other data. The decoder helps with
synchronization, clock recovery, and single-bit error detection. See JESD 204B specification section 5.3.

2.9.3.12 RX Lane Align
Each of the four RX SerDes lanes performs the initial lane alignment and sends the alignment request
status to the SYNCOUT link controller. The lane alignment symbols are shown in section 5.3.3 of the
JESD 204B specification (Reference 1 in Chapter 3). Each lane contains an elastic buffer that realigns the
data across all lanes assigned to the same link.

2.9.3.13 RX Frame Align
After lane alignment, this logic monitors the location of the frame alignment and requests a re-
synchronization if the lane detects that it is out of alignment. See Figure 2-29 and section 5.3.3 of the
JESD204B specification (Reference 1 in Chapter 3).

2.9.3.14 Frame Buffer
Each lane frame buffer holds a frame of IQ data at a time. If a frame contains one or more 8b/10b
decoding errors, it is replaced with the last frame that did not contain any errors.

2.9.3.15 RX/Fdbk Formatter – Loopback Selector
The frame buffers output contains the JESD transceiver-interleaved IQ, I or Q, or multiple TDM stream IQ
data. The JESDRx mode converts these frames of IQ data back to the RX interface-parallel IQ TDM or
feedback-parallel IQ format. The mapping loopback can select the test loopback generated earlier in
Figure 2-29 for TX, or the frame buffer signals. The mapping loopback API controls both the TX and RX
portions of the mapper for TX and RX signals.
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2.9.4 JESD Block Synchronization Events
The SYSREF signal aligns the JESD clock and LFMC frame clocks. This synchronization event is internal
to the JESD block, but can be selected.

The syncbus DL sync from the baseband interface can be selected.

The syncbus MPU sync can be selected as a software sync.

2.9.5 JESD Block Software Application Interface

NOTE: See Reference 6 (Chapter 3) and for additional details.

JESD_API_LaneMapping – This API allows the TX and RX JESD lanes to be remapped after initialization
(it does not change their format, only the data source or destination).

JESD_API_Resync – This API is used with the specific JESD 204B link (0 or 1) to reinitialize a bad
SerDes link or multiple errors, which have not recovered automatically.

JESD_API_ReadStatus – This API provides the JESD204B controller status of the TX and RX logic.

2.9.6 JESD Block Important Programming Concepts
The JESD block receives the TX block IQ data, and sends this to the SerDes. The SerDes equivalent I or
Q rate must match the SerDes programmation, including the interface rate.

The JESD formatting in the JESD block must match the JESD transceiver format for interleaved IQ, I and
Q separately, or TDM-interleaved IQ. All lanes in JESD must be the same serial bit rate.

The register programming of the JESD lanes and modes is done at register programmation. The lane
selection for modes or loopback can be overwritten with the mapping API.

The error status of JESD 204B link errors may need to be monitored to determine that SerDes
programmation and SerDes equalization must be adjusted.

The JESD block transmits IQ data from the RX input to the RX block and feedback block. The SerDes
equivalent I or Q rate must match the SerDes programmation, including the interface rate.
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2.10 RX Sub-Block

Figure 2-31. DFE Block Diagram for RX

The RX sub-block, shown in Figure 2-31, is a front-end automatic gain control (feAGC) and block down
converter. The RX sub-block output is forwarded to the RX DDUCs for individual RX carrier processing. In
the TCI663xK2L and JESD transceiver configuration, the feAGC and block down converter- IQ imbalance
correction are performed in the JESD transceiver.

Figure 2-32 shows the RX block with the feAGC and DVGA controller hidden, as the TCI663xK2L DFE
application does not use these sections. The multichannel power meter is used to measure the magnitude
squared complex integrated power for the RX input streams from the feAGC output.

NOTE: There is a similar RX formatted output from the feedback block. It is a decimated output at
the same rate as the RX block output, and is used for network listening mode (NLM).
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Figure 2-32. RX Sub-Block Diagram

The JESD block outputs a TDM IQ parallel bus that contains the formatted RX streams. The RX input can
have 1, 2, or 4 RX streams. The RX stream IQ rate must match the JESD RX IQ rate. In Figure 2-32, the
empty box is the connection of the feAGC and DC canceller, which is not used for TCI663xK2L. The DC
canceller output is routed to the RX sub-block and power meter input.

The RX sub-block transfers 1, 2, or 4 RX streams to the RX DDUCs. The JESD to RX sub-block transfers
are listed in Table 2-19.

Table 2-19. JESD RX Number of RX Input Antenna Streams and Number of Clocks

JESD RX Number of Output Streams Number of Clocks for TDM IQ Transfer
1 1
2 2
4 4

The RX DDUC have specific interface requirements for the RX output transfers, based on the number of
channels in the DDUC. These are listed in Table 2-20.

Table 2-20. JESD RX Number of RX Output Antenna Streams and Number of Clocks

RX Block Number of Output Number of Clocks for TDM IQ
Streams Transfer DDUC Number of Antenna Channels
1 2 1,2
2 4 2,3,4,6
4 8 4(special),8,12
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2.10.1 RX Sub-Block Functions
The RX sub-block performs four functions, some of which are not used in the TCI663xK2L application due
to the function being performed in the JESD transceiver (see Figure 2-32, Figure 2-33):
1. RX stream DC removal – Each JESD RX stream is processed to low pass filter, and subtract the filter

from the RX stream signal. This function is not used in the TCI663xK2L.
2. RX stream front end automatic gain control (feAGC) – Each JESD RX stream is processed for

automatic gain control (AGC), based on a predetermined integrated power to gain error, or signal
above peak statistic gain error, or a signal below setpoint statistic gain error. This function is not used
in the TCI663xK2L.

3. RX stream block down conversion – Each RX stream is processed for indexing to JESD input,
frequency translation, decimation filtering, (II,IQ,QI,QQ) equalization, and bias subtraction.

4. RX stream IQ imbalance correction – A blind or directed adaption engine, to provide IQ gain and
IQbias correction for I and Q for each stream. This function is not used in the TCI663xK2L.

2.10.2 RX Sub-Block Inputs and Outputs

Table 2-21. RX Sub-Block Inputs and Outputs

Name I/O Basic Description
MPU Bus Both Parallel data/ address/ module address synchronous bus for programming registers /

memories
JESD Rx Output Bus I 1,2,4 TDM parallel IQ bus with the RX streams
RX Output Bus O 1,2,4 TDM interleaved IQ bus with the processed RX streams
DVGA Controller O 1,2, or 4 sets of DVGA controlled sets of bits these are connected to the DFE GPIO pin
output bus multiplexer logic (not used on TCI663xK2L)
Sync Bus I A group of signals that indicate the time-event to perform an operation.
Interrupt Bus O Signals to MISC module to indicate an RX Power meter update is available
Test Bus Both Signals to global capture buffer Test Bus data source for capture

2.10.3 RX Sub-Block Basic Description
The RX sub-block has specific input and output formats. In the initial register programming, the input
format, output format, R2C, and decimation filters must be in a compatible arrangement to use this sub-
block.

Table 2-22. RX Sub-Block Decimation Input and Output RX Streams

RX Dec. F1 Filter F2 Filter Port Number /Rate Input RX Number /Rate Output RX
Ratio R2C (25% Band) (50% Band) Replication Streams Streams
1 no byp byp no 2 complex streams 2 complex streams

4 gated DFE clocks for all 4 gated DFE clocks for all
streams streams

2 no byp Dec2 no 2 complex streams 2 complex streams
2 gated DFE clocks for all 4 gated DFE clocks for all
streams streams

2 no byp Dec2 yes 2 complex streams 4 complex streams
4 gated DFE clocks for all 8 gated DFE clocks for all
streams streams

2 no byp Dec2 no 4 complex streams 4 complex streams
4 gated DFE clocks for all 8 gated DFE clocks for all
streams streams
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2.10.3.1 RX-R2C
The RX sub-block Figure 2-32 shows the R2C as the first RX sub-block. The RX block has two operating
modes; one for real inputs, and one for complex inputs. The real input would be processed by an Fs/4
(odd Nyquist zone) or 3Fs/4 (2nd Nyquist zone) mixer, followed by one decimate-by-two fixed filter, to
provide a complex output. The complex input bypasses this function. This is programmed during initial
register loading. The initial use case for the TCI663xK2L uses complex inputs, so the R2C mixing and
decimation filter is not used.

2.10.3.2 RX-Switch
The RX switch is a time-space switch that allows the RX complex stream processing to select any input
from the JESD RX stream input. The RX sub-block processes the RX streams in a time-interleaved
format. The RX switch stores and then allows selection of any input stream to any switch output channel.
The RX switch is configured initially, and can be updated dynamically through an API. The 1, 2, or 4 RX
streams are indexed as 0, 0/1, or 0/1/2/3.

Another feature of the RX switch is in applications requiring four RX output streams from two RX input
streams. In this case, the RX switch replicates the RX input antenna stream IQ data. Later, in
Section 2.10.3.4, the number of RX input and output streams must have the proper number of clocks to
support the number of streams. At the RX-switch, one clock per RX output stream is needed at the switch
output.

2.10.3.3 RX NCO
The complex streams can be translated in frequency. This mixer frequency translates the IF frequency to
zero, for low IF configurations. In zero IF systems, this NCO is set to zero. The NCO is functionally the
same as the DDUC NCO (see Section 2.2 for a detailed description). The 1, 2, or 4 Rx streams are
indexed as 0, 0/1, or 0/1/2/3.

NOTE: In frequency planning for low IF complex input to RX sub-block, this RX NCO can be used
for the frequency translation to zero IF for the RX stream. In frequency planning for real IF,
or real inputs to RX sub-block, the RX NCO AND the R2C are used for frequency translation
to zero IF for the RX stream.

2.10.3.4 RX Decimating Filter
There are two decimating filters, F1 and F2, which filter and decimate the RX stream signals. All streams
must have the same decimation ratio, and all streams have the same RX output IQ rate.

Table 2-23. RX Sub-Block Decimation F1 and F2 Filter Ratios

RX Dec. Filter Ratio F1 Dec. Ratio F2 Dec. Ratio (With Recirculation)
1 Bypass Bypass
2 Bypass 2
4(not used TCI663xK2L) 2 2
8(not used TCI663xK2L) 2 4
16(not used TCI663xK2L) 2 8
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These filters provide 80% passband of the available decimated IQ rate. The decimate-by-two filter
response is shown in Figure 2-33, The RX sub-block filtering can provide 55 Mhz of passband and 70 db
of rejection at 68 Mhz.

Figure 2-33. Example F2 Filter Decimate-by-Two Response, Sampled at 122.88 Mhz

NOTE: In the TCI663xK2L application table, shown in Section 2.10.3, only the first two decimation
filter ratios, 1 and 2, are currently used. If the RX sub-block decimation filter and R2C filters
are not used, the RX stream is only filtered by the JESD transceiver. Further channel filtering
is provided in the RX DDUC.

The gain of the decimation filters is optimized through the fixed coefficients and scaling, and is nominally 0
db.

2.10.3.5 RX Equalizer
The RX sub-block equalizer is a 16-tap full-complex FIR filter with additional features. The equalizer
coefficients are 16 bits. The initial register configuration uses an impulse filter or an RX equalizer bypass
configuration. If the hardware is programmed for bypass, the coefficients cannot be utilized while the RX
equalizer is operating. There is a programmable power-of-two scaling applied to the complex FIR filter
output. The initial configuration is programmed for a unity gain impulse, II[8]=1, QQ[8]=1 and 0 db gain.

The RX sub-block equalizer coefficients can be updated while running, using an API.

The RX sub-block equalizer also has an additional I bias and Q bias DC correction that can be summed
with the signal at the block output.

2.10.3.6 RX IQ Imbalance Correction

NOTE: In the current TCI663xK2L implementation, this block is bypassed as the JESD transceiver
provides this function.
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The RX IQ Imbalance correction provides for complex gain and DC bias correction of a zero IF RX stream
input. The hardware has a single-tap blind estimation algorithm that operates autonomously. This block is
utilized when a zero IF complex stream is input to the RX sub-block and the JESD transceiver is not
providing the complex gain imbalance correction.

This block has unique settings and adaptions for each RX stream. The complex gain can be updated by
an API when this block is used, for software-directed IQ imbalance correction. In this case, the software
also utilizes the capture buffer of the RX output to aid in determining the complex gain and bias correction
values.

2.10.3.7 RX Output Formatter
The RX sub-block output formatter provides a frame signal, and time division multiplexed (TDM) IQ data
for the RX sub-block RX stream outputs. The RX sub-block can output 1, 2, or 4 RX streams to the RX
DDUCs. See Figure 2-31, and Figure 2-32. Section 2.10.3 lists the output formats by mode. The frame
signal identifies the start of the TDM IQ format:
• 1 antenna Frame(I0), (Q0)
• 2 antenna Frame(I0), (Q0), (I1), (Q1)
• 4 antenna Frame(I0), (Q0), (I1), (Q1), (I2), (Q2), (I3), (Q3)

2.10.3.8 RX Power Meter
The RX stream has a multichannel power meter. The power meter is identical to the type discussed in
Section 2.1 for the BBTx. The power meter has a synchronization signal (typically DL sync), a predelay
count, an integration time (the number of samples to be integrated), and a period to indicate the number of
clock cycles before the process repeats. There is an API for power meter setup, and power meter reading.

Figure 2-34 shows the timing sequence for the magnitude squared integrated-power meter. The power
meter also captures the signal peak value for the cycles since the meter was last read. The software APIs
for reading the integrated power use the number of integrated samples and a TDD on percentage to scale
the integrated value.

Figure 2-34. RX Sub-Block Power Meter Diagram

2.10.4 RX Sub-Block Synchronization Events
The RX sub-block can be synchronized to one of several sources:
• DownLink sync from DFE-baseband block
• One of two DFE counter timers if used to create a downlink to uplink delay sync
• The MPU software sync for an immediate update

2.10.5 Rx Sub-Block Software Application Interface

NOTE: See Reference 6 (Chapter 3) and for additional details.
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API_Rx_switch_select – This API provides a switch control change of the RX JESD stream to RX sub-
block stream (normally programmed in linear order 0-1-2-3).

API_Rx_NCO – This API allows the RX sub-block stream to be frequency-translated. There are unique
values for each RX sub-block stream.

API_Rx_Equalizer – This API controls the 8-tap complex equalizer and gain-shift for each of the 4 RX
antenna streams.

API_Rx_Equalizer_bias – This API controls the bias correction for I and Q after the equalizer, for each of
the four RX antenna streams.

2.10.6 RX Sub-Block Important Programming Concepts

NOTE: There are special clock controls required to gate the IQ data transfer from SerDes to JESD
sub-block, and JESD to RX sub-block. These are set up in the fixed configurations and are
not changed dynamically, so they are not described in the user guide.

The RX block input and the JESD RX output must have compatible configurations.

The RX block real or complex input programming is set to complex for TCI663xK2L and JESD transceiver.

The RX block switch settings 0-3 correspond to the JESD RX block order. This can be adjusted after initial
register programming with an API.

The RX block NCO setting should correspond to the low IF complex, or zero IF complex architecture.

The RX block decimation F1-F2 is based on supporting the RX block output rate and the corresponding
DDUC RX input rate.

The RX block equalizer gain shift can be used for 16-tap equalization at 0 IF. The RX block equalizer and
gain shift adjust the RX stream gain, based on the NCO-tuned, filtered, and decimated RX stream. The
initial value is programmed for a unity gain impulse II[8], QQ[8]; normalized gain.

The RX block gain should be set remembering that the RX block power meter is at the RX input, not the
filtered and decimated value.

The RX block output mode, 1, 2, or 4 antenna has a corresponding RX DDUC mode; check this for
compatibility.

The RX block output to the RX DDUC can only be monitored using the RX output test bus available as an
API.

2.11 Feedback Block
The feedback signal path is shown in Figure 2-35. The JESD receives, decodes, and routes the JESD RX
inputs between the RX sub-block and the feedback sub-block. The JESD transceiver application currently
has one feedback for every two TX antennas. The JESD block outputs up to two feedback signals.
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Figure 2-35. DFE Block Diagram for Feedback

The feedback block has two signals paths; one high bandwidth path is used for the DPD captured in the
capture buffer (See Figure 2-36), and another decimated output is processed like an RX Stream (see
Figure 2-31), discussed in Section 2.10, for network listening mode (NLM).

Figure 2-36. Feedback Sub-Block Diagram
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2.11.1 Feedback Block Functions
The feedback block in DFE performs the following functions:
• Registers feedback parameter index, selects one of five sets of loaded values and coefficients for

current processing.
• Selects one of two JESD feedback signals for processing
• DC removal signal processing block to subtract the mean signal
• Real to complex conversion for a real feedback signal, frequency translation, filtering, and decimation
• Full complex equalization and gain shift, with eight sets of coefficients

NOTE: Equalizer is at the pre-NCO frequency
• NCO translates low complex IF to zero IF
• Gain block for the capture buffer output
• Decimation filter, to filter and decimate the feedback signal to the RX DDUC input rate.

2.11.2 Feedback Block Inputs and Outputs

Table 2-24. Feedback Block Inputs and Outputs

Name I/O Basic Description
MPU Bus Both Parallel data/ address/ module address synchronous bus for programming registers / memories
JESD Feedback I Two parallel IQ signal buses for the Feedback input from JESD
Output buses
Feedback output bus O Parallel IQ Feedback output (high BW) to the capture buffer
to Capture buffer
Feedback output bus O Interleaved IQ bus and Frame signal for the RX DDUC for the network listening stream (like an
to RX DDUC Rx sub-block output)
Sync Bus I A group of signals that indicate the time-event to perform an operation.
Test Bus Both Signals to global capture buffer Test Bus data source for capture

2.11.3 Feedback Block Basic Description
Even though the feedback signal processing path has five sets of configuration parameters, there is only
one signal pipeline. When the signal source changes, the signal pipeline will have invalid results for a
period of time. This period of time when using the capture buffer is the internal DFE feedback latency (DC
removal, real to complex conversion, feedback equalizer). The latency for feedback in the network
listening mode (RX DDUC output) is longer if the decimation filter has a ratio other than one. See
Figure 2-36 for the feedback block diagram.

Indexing feedback parameters – There are five sets of parameters and equalizer taps that can be selected
and applied to the five multichannel streams. The feedback select registers select one of the five sets of
parameters. The initial register programming does not have the five unique sets of feedback parameters
and taps, so a feedback setup API is required to initialize the parameters. Another API indexes the
parameters during operation.

Feedback select 1 of 2 – One of the two JESD feedback parallel IQ buses is selected for processing.

DC removal – The DC removal block (not used for the TCI663xK2L) subtracts a mean signal from the
selected JESD feedback stream. A low pass-filtered signal has a mean value. The mean value is scaled
and subtracted from the I and Q input values. The second filter accumulator can be set with a software
controlled bias value.

NOTE: The setup parameters for all streams can be the same, unless manual I-bias and Q-bias are
used.
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Real-to-complex conversion – The real-to-complex conversion (R2C) is not used in TCI663xK2L. The real-
to-complex conversion has an Fas/4, 3Fs/4 selectable frequency translation, and decimate-by-two filter.
(See Section 2.10.3.) The feedback real-to-complex conversion is described in the RX sub-block. The
setup parameters for all streams can be the same. This block is not used in the TCI663xK2L application,
as the JESD transceiver provides a complex feedback stream.

Full-complex equalizer – An eight-tap, full-complex equalizer and gain shift are provided in the feedback
sub-block. There are five sets of coefficients: II, QI, IQ, QQ, and sum of taps gain shift. The initial values
are programmed for a unity gain impulse II[4]=1, QQ[4]=1; for 0 db gain. The complex equalizer
coefficients and gain shift value can be updated while the feedback block is operated using an API.

NCO frequency translation – The NCO frequency translation is based on the JESD transceiver frequency
plan and the TX sub-block NCO setting (see Section 2.8.3). The transmit and feedback NCOs should be
considered locked in frequency for DPD applications. The NCO is similar to the DDUC NCO in signal
processing function. There are frequency (delta phase) and phase offset terms. The NCO phase
accumulator has special synchronization for zeroing the phase accumulator, and updating the delta phase
computation. The delta phase (frequency translation) and phase offset can be updated during operation
using a software API.

Gain adjust for capture buffer input – The signal to the capture buffer can have gain or attenuation based
on fractional db resolution. The initial programming is unity gain. The gain can be adjusted for each of the
five parameters sets while the gain block is operating with an API.

Decimation filters and output formatting for RX DDUC - The decimation filter performs filtering and
decimation to match the RX DDUC input format. The decimation filter is identical in function to the RX
sub-block decimation filter (see Section 2.10.3), but the decimation value programmed may be different
than the RX block (Table 2-25). The feedback sub-block decimation must be programmed during the intial
register setup. Because the JESD transceiver feedback rate can be the same or twice the JESD
transceiver RX rate, the decimation filter value must be adjusted for different modes. Table 2-25 shows
the desired feedback decimation for different JESD and RX DDUC conditions.

Table 2-25. RX Sub-Block and Feedback Block Decimation for RX DDUC Usage (Continued)

Number of DDUC
ChannelsJESD Transceiver JESD Feedback JESD RX Number of RX Rx Feedback

Mode Rate Rate Antenna Streams Rx Out Clock Rate Dec. Dec.
1 DFEPLL DFEPLL/2 2 <=6 2 4

DFEPLL/4
1 DFEPLL DFEPLL/2 2 or 4 with 4(spec),8,12 4 8

replication DFEPLL/8
3b DFEPLL/2 DFEPLL/4 2 <=6 1 2

DFEPLL/4
3b DFEPLL/2 DFEPLL/4 2 or 4 with 4(spec),8,12 2 4

replication DFEPLL/8
3b,3b DFEPLL/2 DFEPLL/4 4 antenna stream 4(spec),8,12 2 4

DFEPLL/8
6b DFEPLL/4 DFEPLL/4 2 <=6 1 1

DFEPLL/4
6b DFEPLL/4 DFEPLL/4 2 4(spec),8,12 2 2

DFEPLL/8

The feedback sub-block output formatter provides a frame signal, and interleaved IQ data for the RX
DDUCs. The feedback output format must conform to the 1, 2, or 4 antenna TDM-interleaved IQ
discussed in Section 2.10.3. However, the feedback block only utilizes the first IQ carrier time slot. The
frame signal identifies the start of the IQ frame:
• 1 antenna Frame(I0), (Q0) (every 2 DFEPLL clocks)
• 2 antenna Frame(I0), (Q0) (every 4 DFEPLL clocks)
• 4 antenna Frame(I0), (Q0) (every 8 DFEPLL clocks)
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2.11.4 Feedback Block Synchronization Events
The feedback block can be synchronized to one of several sources:
• DownLink sync from DFE-baseband block
• One of two DFE counter timers if used to create a downlink delay sync
• The MPU software sync for an immediate update

2.11.5 Feedback Block Software Application Interface

NOTE: See Reference 6 (Chapter 3) and for additional details.

NOTE: The feedback block has five sets of configurations elements; the below description is based
on individual setup functions with an index.

API_Fdbk_index_select – This API selects the one of five sets of parameters for the feedback
programming.

API_Fdbk_JESD_select(0-1) – This API updates the one of two JESD selections for the one of five
programming sets of registers.

API_Fdbk_Equalizer – This API updates the equalizer coefficients for the one of five programming set of
registers.

API_Fdbk_IQBias – This API updates the I and Q bias for the one of five programming sets of registers.

API_Fdbk_NCO – This API updates the frequency translation for the one of five programming sets of
registers.

API_Fdbk_Gain – This API updates the capture buffer gain for the one of five programming sets of
registers.

2.11.6 Feedback Block Important Programming Concepts
The feedback block has several sub-blocks with configurable signal-processing parameters. The five
indexed sets of parameters must be initialized before use.

The decimation table used for network listening and DDUC modes is loaded statically with the register
programming. There is no API to change this decimation dynamically.

There can be up to two JESD feedback inputs for selection. In a two-antenna mode, there is one feedback
input. In four-antenna mode, or for special processing, there is more than one feedback JESD input.

The NCO value programmed needs to compensate for low IF or zero IF for feedback for the TX path. In
network listening mode, the NCO also has additional tuning requirements. The NCO value is stored in the
indexed parameters during selection, or updated by API.

The feedback equalizer precedes the NCO in the signal processing chain. The design of the equalizer
coefficients must be applied at the IF or NLM frequency.

The feedback gain for capture buffer usage is done in the feedback equalizer coefficients and scaling, or
the gain block. The feedback gain in network listening mode can only be done in the feedback equalizer
coefficients and scaling.
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2.12 Capture Buffer Sub-Block

Figure 2-37. Capture Buffer Block Diagram

2.12.1 Capture Buffer Block Functions
The capture buffer block is primarily used for signal collection. The signal collection can occur from the
fixed buses, or from a variety of special collection points in the test bus.

The capture buffer can be used in special conditions to source data to the CFR input or DPD input fixed
nodes.

The capture buffer can be triggered to start looking for an event, or to count a delay and collect a specific
amount of data. The MPU bus control register starts the sequence for the data collection, and the capture
event is based on a multipurpose trigger block. The count delay is based on a sync bus event or MPU
start.

The capture buffer collection can be several nodes at a common time, with certain programming
restrictions. The capture buffer collection is a circular buffer, so that when initialized, information collecting
is started. Information collecting stops after the trigger condition occurs and the appropriate number of
samples have been collected. The trigger conditions are based on a number of samples > threshold.
There are two different threshold levels, number of threshold event counters, and number of sample
counters. Once armed, the capture buffer is continuously collecting for the designated (there are 1, 2, or 4
capture buffers controlled) buffers. After the delay counter, the size of the capture buffer controls when to
stop collecting data.
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The capture buffer has both a 32-bit and 64-bit memory access depending on the address used. See the
register map for the capture buffer, and the software API details for reading and writing the capture buffer.

2.12.2 Capture Buffer Block Inputs and Outputs

Table 2-26. Capture Buffer Inputs and Outputs

Name I/O Basic Description
MPU Bus Both Parallel data/ address/ module address synchronous bus for programming registers /

memories
IQ stream from Feedback I Output of Feedback before decimation filter, parallel IQ with frame
input
IQ stream from Feedback I Output of Feedback for Network Listening Mode to Rx-DDUC, interleaved IQ with Frame
output
IQ stream from CFR input I PreCFR signal after antenna combining, TDM IQ for 1 or 2 antennas, after sumchain and

format conversion (1 of 2)
IQ stream from CFR I PostCFR signal TDM IQ for 1 or 2 antennas (1 of 2)
output
IQ stream to CFR input O The two inputs to the CFR sub-blocks can be sourced from the capture buffer.
IQ stream to DPD input I The CDFR output to the DPD block is collected in parallel IQ format, (1 of 4)
IQ stream from DPD I The DPD output from the DPD block is collected in parallel IQ format, (1 of 4)
output
IQ stream to DPD input O The two inputs to the CFR sub-blocks can be sourced from the capture buffer.
Test Bus Both Signals to global capture buffer Test Bus data source for capture
Sync Bus I A group of signals that indicate the time-event to perform an operation.
Interrupt Bus O Signals to MISC module to indicate a capture buffer is finished
CaptureComplete to CPP O Signals to CPP module to indicate a capture buffer is finished

2.12.3 Capture Buffer Block Basic Description
The capture buffer can operate with the four 8K memories operated as individual capture memories, in
pairs of memories (16K), or as a single 32K memory (see Figure 2-37). Normally, the capture buffer
collects data from the IQ fixed buses or the test bus; however, with special programming the capture
buffer can be used for testing to source data to a specific node. In the test environment, two capture
buffers can be data sources, while two capture buffers can be data sinks.

The number of capture buffer memories is based on different software operations:
(a) During the DPD time alignment functions, the DPD output and feedback input nodes are monitored.

The setup parameters have a delay from start for DPD output. The software adjusts the delay from
start for the feedback input to get the aligned time samples. This process uses two capture buffers of
8K samples, or all capture buffers for two captures of 16K samples.

(b) During the DPD adaption functions, the input to DPD and the feedback after equalization, tuning, and
gain are monitored. The time alignment delay above (a), and fixed known delays of the internal data
path delay the feedback-processed output to the DPD input. This process uses two capture buffers of
8K samples, or all capture buffers for two captures of 16K samples.

The capture buffer has a specific format programmed with a software API for CB_Setup. The different
signal buses can be operated with a frame (start of IQ data), valid (this clock cycle has valid data for
capture), and IQ data. Typically the top 16 of 18 bits of the 18-bit databus for I and Q, the frame, and the
valid signal are captured. The capture buffer setup parameters are:
• Capture buffer mode – The capture buffer can collect data in delay-start or smart mode. The capture

buffer can also source data under certain conditions. The capture buffer mode must be in MPU mode
to access the memory from the MPU bus.

• Capture buffer bus select – A fixed bus or the test bus is mapped to this capture buffer (1 of 4). The I
memory and Q memory of each capture buffer can be selected to the same bus for interleaved IQ bus
type, or each half can be selected to the upper or lower fixed bus selection for parallel IQ bus types.

• Capture buffer frame, and valid – The buses have timing synchronization signals used with the capture
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buffer logic. The frame-start identifies the start of a time-interleaved IQ bus cycle. The valid identifies a
valid data signal in cases where clock gating is used. These can be programmed to select all samples,
and the software can decode the captured frame and valid bits. The fsf is a frame-strobe-format bit
field, the fsfm is a frame-strobe-format-and-data-mask field.

• Idelay, Qdelay – The signal buses can be parallel IQ, TDM parallel IQ, interleaved IQ, and TDM-
interleaved IQ formats. Using the frame and valid bit controls above, once the valid frame is located,
counters internal to each capture buffer capture the specific I or Q, or IQ sample. When the TDM or
interleaved bus formats are input to the capture buffer, the Idelay and Qdelay select the specific data in
the frame to collect.

• Cb_delay – Number of capture buffer clocks, after a Cb_start synchronization event where the capture
will stop, in fixed capture mode.

• Cb_trigger_conditions – There are threshold comparators and count event integrators for each capture
buffer. Each of two thresholds can be selected for magnitude squared, or magnitude. In the smart-
trigger of the capture buffer, typically setpoint 2 is for peak event monitoring and setpoint 1 for power
event monitoring. When the capture buffer has been started, the integrators are zeroed; after the
cb_delay, if the trigger condition is met, the capture buffer is stopped.

The capture buffer uses the concept of pre-triggering. In this case, the capture buffer collects data until a
synchronization event and the delay has occurred. The CB logic has an end counter which indicates the
address where the CB stopped collecting. The software uses this address, and the number of CB sections
to correctly orient the CB data for analysis.

In normal operation, the user has a API_CBSetup, response to CB Interrupt, or loop timeout, and an
API_CBRead. The static delay capture buffer operation is illustrated in Figure 2-39.

Figure 2-38. Capture Buffer Static Collection with Delay
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The smart capture is different from the static collection in that if the cb trigger conditions do not occur, the
smart capture does not complete. Typically, the software has a secondary loop counter to check if the
capture has not completed (to indicate the capture parameters were not met). Figure 2-39 shows a valid
capture found, and the CB interrupt occurs.

Figure 2-39. Capture Buffer Qualified Collection with Delay

2.12.4 Capture Buffer Block Synchronization Events
The capture buffer block can be synchronized to one of several sources:
• DownLink sync from DFE-baseband block
• One of two DFE counter timers if used to create a downlink delay sync
• The MPU software sync for an immediate update

2.12.5 Capture Buffer Block Software Application Interface

NOTE: See Reference 6 (Chapter 3) and for additional details.
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The capture buffer has both a software API, a response to interrupt, and a software timer to detect if a
capture buffer interrupt should have occurred.

API_CB_Setup – This API controls the setup of a section or all of the capture buffer. Depending on the
parameters described above and in the API document, the amount of data captured can be 8K, 16K, or
32K for 4, 2, or 1 selected nodes. When multiple capture buffers are synchronized, the synchronization
source must be applied after all sections of the capture buffer setup are done.

API_CB_Arm – This is shown as a separate API but may be part of CB_Setup. When the capture buffer is
capturing data, this API looks for the trigger to stop collecting the data and sends a capture buffer
interrupt.

CB_Response to Interrupt – The software has a timer indicating an expected CB interrupt. If the timer
times out before the CB interrupt is received, the CB process did not collect data. If the interrupt occurred
and the timer is still running, this is a valid CB process and the user continues to get the CB data.

API_CB_Read – This API controls the setup after collection of the capture buffer. Depending on the
CB_Setup parameters, the CB_Read may need to be done in several sections to concantenate the buffers
collected into a larger structure of data. The CB_Read sets the CB into MPU mode for the desired capture
buffer sections, to allow collection of the data and end address.

API_CB_Write – This API writes data into the capture buffer memory for data sourcing mode. It is used in
diagnostic testing, not for normal TCI663xK2L operations.

2.12.6 Capture Buffer Block Important Programming Concepts
The capture buffer has four sections. In some cases, the user may want to combine the sections to make
a larger 16K or 32K capture, by selecting the same input node and adjusting the cb_delay to collect 8K
samples in one CB section, and more in other sections.

When the CB is used with multiple sections, program both sections’ register functions, and then arm over
a short period of time.

Some cases for the test bus indicate that the capture buffer parameters may need some experimentation
to get the desired results. The test bus does not have the same formats as the other fixed buses. The
capture buffer use for the test bus can capture the 18 databits, or can capture the top 16 bits and the flag
and valid status.

The smart capture mode, used with a low-power threshold and > 80% of the samples greater than this
threshold, can be used as a power enable.

In the smart capture mode, the capture buffer may not be collected. In the static capture mode, a capture
buffer is always collected.

There are signal-processing magnitude-squared mean power and peak signal within a capture buffer that
can be used for signal monitoring.

TI recommends using the API setup for the DPD alignment and DPD adaption process.

The capture buffer has both a 32-bit and 64-bit memory access, depending on the address used. See the
register map for the capture buffer, and the software API details for reading and writing the capture buffer.
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2.13 MISC (CPP, GPIO) Block

Figure 2-40. DFE GPIO Block Diagram

2.13.1 MISC GPIO Block Functions
The DFE GPIO controller provides for multifunction 1.8v CMOS control and status signals. The 18 DFE
GPIO pins can be software-controlled or multiplexed to specific DFE hardware signals (see Table 2-28).

2.13.2 MISC GPIO Block Inputs and Outputs

Table 2-27. MISC GPIO Inputs and Outputs

Name I/O Basic Description
feAGC Control I DVGA controller sets of bits, for RX feAGC (function not used on TCI663xK2L)
MPU Bus Both GPIO read and write control for DFE GPIO
JESD LvCMOS SYNCIN, Both Signals to/from JESD module for SYNCIN and SYNCOUT functions with 1.8v CMOS
SYNCOUT (2 sets) JESD Sync controls
JESD SYSREFREQ O Signal from JESD module for requesting SYSREF clock solution function to 1.8v GPIO

output
DFE GPIO Both Bidirectional 1.8v LvCMOS signals for DFE, can also be TCI663xK2L GPIO, or other

functions

2.13.3 MISC GPIO Block Basic Description
The DFE GPIO uses bidirectional muxed signals (they can be overridden outside of DFE based on
TCI663xK2L SoC programming). Each DFE GPIO pin has a unique 5-bit mux field in the MISC register
map, and unique 1-bit write bit (*):

Table 2-28. GPIO Mux Controls

Value Usage
0,5,6,7 Input
1 GPIO _sync_in[0], input to SyncBus external input0
2 GPIO _sync_in[1], input to SyncBus external input1
3 JESD_SYNCIn[0] – affects JESD sub-block, input link0
4 JESD_SYNCIn[1] – affects JESD sub-block, input link1
8 GPIO _sync_out[0] – SyncBus sync0 to output
9 GPIO _sync_out[1] – SyncBus sync1 to output
10 JESD_SYNCOut[0] – from JESD sub-block, output link0
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Table 2-28. GPIO Mux Controls (continued)
Value Usage
11 JESD_SYNCOut[1] – from JESD sub-block, output link1
17:12 Arbiter(not used for TCI663xK2L) control fb_mux_cntl[5:0] output
25:18 DVGA Controller-Rx sub-block DVGACntl[7:0]
26 SYSREFREQ – from JESD sub-block output
27 MPU GPIO drive – see MISC register map for each DFE GPIO bit (*)
31:28 Output zero

The GPIO mux can be initialized in the DFE initial registers. There is no planned API to write or read the
registers. In the MISC registers, there are bit fields to read the value for inputs. When these GPIO are
used for control inputs, other DFE sub-block programming may need to change from other LVDS program
signals (such as JESD SYNCIN0,1).

NOTE: When the GPIO address is read back over the MPU access, the value written to an output or
read from an input is returned.

2.13.4 MISC GPIO Block Synchronization Events
The GPIO can input or output signals, but does not normally synchronize. The DFE_GPIO can input an
external sync signal and drive this to the sync bus (see Section 2.2.4).

2.13.5 MISC GPIO Block Software Application Interface

NOTE: See Reference 6 (Chapter 3) and for additional details.

2.13.6 MISC GPIO Block Important Programming Concepts
The GPIO currently does not have an API. The register map in the MISC section (see ) has a direct
register multiplexer and bit write function.

The GPIO can be repurposed outside of DFE to a TCI663xK2L GPIO, check Reference 4 (Chapter 3) for
SoC GPIO versus DFE GPIO selection.

If the GPIO are used instead of the LVDS sync signals for JESD or other features, this requires
programming in the miscellaneous GPIO and the other DFE sections.
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2.14 MISC CPP Block

Figure 2-41. VBUSP2MPU CPP Sub-Block Diagram

2.14.1 MISC CPP Block Functions
The CTL DMA bus can be utilized for the MPU bus when the VBusP is not accessing the bus.

The CPP sub-block can provide a local DMA control for at least 16 events in the DFE to support data
forwarding to the CTL and MPU bus. The CPP sub-block allows for DMA structures of start MPU
addresses, and number of transfers to implement the DMA structure on the DFE MPU bus.

The CTL and CPP can DMA access any addresses in the entire DFE. The DMA can have multiple blocks
to chain accesses to multiple DFE address sections.

2.14.2 MISC CPP Block Inputs and Outputs

Table 2-29. MISC CPP Inputs and Outputs

Name I/O Basic Description
VBusP Both 32-bit blocking mpu-bus, programmation bus from/to IQNet
MPU Bus Both DFE programmation and DMA bus (not baseband data)
CTL Bus Both DMA transfer bus non- blocking to/from IQNet
Sync Bus I A group of signals that indicate the time-event to perform an operation.
Event Trigger Bus I 12 signals from DFE logic that can initiate the DMA-CTL transfer
Event Complete Bus O Eight signals to DFE indicating the DMA transfer is complete
Interrupt Bus O Signals to MISC module to indicate bad DMA transaction occurred
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2.14.3 MISC CPP Block Basic Description
The VBUSP2 MPU arbitrates MPU access from VBusP and internal DMA. VBusP has priority.

The CPP DMA has two modes of operation: fixed and embedded.

The fixed mode has programming information for the descriptor, starting address, destination address, and
number of data transfers. In the fixed mode, there are 16 DMA events. The events can be single DMA, or
can be chained to multiple operations (where the end of the first event points to the start of the second
event).

The embedded mode, which is writing data to DFE from IQNet, has an embedded destination address and
number of transfers. This mode does not require setup; the logic automatically decodes the destination
and number of transfers.

The fixed DMA modes are numbered from the highest priority 0 to the lowest 15. The DMA events are
triggered by specific synchronization signals:
• Sync bus – All 16 sync bus signals can be used to trigger a DMA event
• CTL channel – CTL event can trigger a DMA
• Hardware triggers 12 signals, from DFE events

2.14.4 MISC CPP Block Synchronization Events
The CPP synchronization events are discussed in Section 2.14.3. The standard sync bus, DL sync, MPU
sync, and additional CTL events and internal hardware events trigger CPP DMA events. The DMA event
number is selected by the specific hardware trigger or software-triggered event.

2.14.5 MISC (CPP ) Block Software Application Interface

NOTE: See Reference 6 (Chapter 3) and for additional details.

The initial register programmation for DFE does not include preprogrammed CPP DMA setup.

The RFSDK software after initialization can program the CPP DMA channel, source address, destination
address, and number of transfers.

2.14.6 MISC (CPP ) Block Important Programming Concepts
See Reference 6 (Chapter 3) for further discussion of CPP DMA channel setup. Typical uses are:
• Capture buffer DFE -> memory
• (WCDMA only) BBRx channel power meter

2.15 Sync Bus and Sync Counter

2.15.1 Sync Bus Functions
The sync bus is a signal bus used to communicate signal events within the DFE blocks. The ssel selection
for sub-blocks connects the sync for that sub-block functions with the signal in the following list. There are
two dl (TX from IQNet), and two ul (delayed TX from IQNet to BB counter) syncs for dual mode access
(two different IQ signal groups in one configuration). See Table 2-30.
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2.15.2 Sync Bus Input and Outputs

Table 2-30. Sync Bus

ssel Value Basic Description
0: never sync Normal ssel setting for no resynchronization
1: mpu_sync Manual MPU cycle sync (used for software sync)
2:ul_iq0_frame_strobe_sync0 BBRx axc group0 sync
3:ul_iq0_frame_strobe_sync1 BBRx axc group1 sync
4: dl_iq0_frame_start_sync0 BBTx axc group0 sync (used to resync blocks to Tx frame)
5: dl_iq0_frame_start_sync1 BBTx axc group1 sync
6: gpio_sync_in0 DFE GPIO pin is an input and muxed to this bus ‘0>1’ is a sync
7: gpio_sync_in1 DFE GPIO pin is an input and muxed to this bus ‘0>1’ is a sync
8: jesd_sync_in0 JESD SYNCIN 0 – JESD Transceiver is ready to release from sync, or has errors
9: jesd_sync_in1 JESD SYNCIN 1 – JESD Transceiver is ready to release from sync, or has errors
10: master_intr0 Internal interrupts mapped in DFE sub-blocks to MISC have an interrupt
11: master_intr1 Internal interrupts mapped in DFE sub-blocks to MISC have an interrupt
12: sync generator counter 0 See below section syncgen_counter output 0
13: sync generator counter 1 See below section syncgen_counter output 1
14: sync generator counter 2 See below section syncgen_counter output 2
15: always sync Used to force sync to on, used to continuously set registers, override accumulators – can be a

normal initialization sync value

NOTE: The counter timer inputs are usually selected from the sync bus. The counter timer outputs
can drive the sync bus, or can be selected in DFE GPIO multiplexers to output timers 0 and
1 to DRGE GPIO pins.

2.15.3 Basic Description
The sync bus is a signaling bus within DFE. The DL_IQ0 syncs come from IQNet and synchronize to the
downlink start signal. The MPU_Sync is also important, in that a software-triggered event can cause a
sync event.

There are three sync counters within the DFE. The counters are named syncgen_cntr[0,1,and 2].

The sync counters are programmed to start from a sync bus event, through the ssel register programming.
The sync counter outputs can be events on the sync bus, or routed to specific DFE GPIO controls. The
sync counters count the DFE PLL clock.

The sync counter has an ssel selection for starting the counter based on a sync bus event. Once the
event occurs, the counter delays and outputs the invert control bit level for ‘delay’ number of clocks. After
the delay count, the output changes to the inverse of the invert control for ‘pulse’ number of clocks. The
repeat control and the period counter can repeat the timed event. Depending on the ssel sync input, the
process can repeat on another sync event. The sync counters are in the MISC register map section.
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Figure 2-42. Sync Counter Operation

2.15.4 Synchronization Events
The internal counter timers can be synchronized or free-running. See Section 2.13 for sync bus
synchronization sources.

2.15.5 Software API
There are currently no APIs for the sync counters. Sync counter 0 is currently used for the initialization
function in software, and can be re-used after initialization.

2.15.6 Important Programming Considerations
The counter timers normally need to be synchronized initially. After the initial synchronization it is
important to consider the repeat cycle and timer period. If the initial synchronization occurs before the
timer period completes, the timer starts over.

The counter timers can drive signals to the sync bus, so that multiple counter timers can be chained
together for sequences.

Counter timer 0 is used during DFE initialization. Any value programmed into the register programmation
will be overwritten by the initialization software.

Counter timer 0 and counter timer 1 can have pulse outputs that for use on the DFE GPIO pins.

2.16 2-Level Interrupt Description

2.16.1 Interrupt Function
The different DFE interrupt status bits are generated in the DFE sub-blocks. There are approximately 180
status elements. Each sub-block sends the status to an interrupt logic module, which has mask, hold,
clear, and force-on functions.

2.16.2 Interrupt Inputs and Outputs

NOTE: This section is found in under the MMR registers with “interrupt” in the description

2.16.3 Basic Description
The hold and clear functions are provided in each DFE sub-block. The interrupt force ON and register
status are provided in the MISC interrupt registers.
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The two interrupt signals go from the MISC sub-block to IQNet as a critical DFE interrupt, and a non-
critical DFE interrupt.

The software responder to the DFE interrupts must poll the MISC registers to determine which interrupts
are active and have a service routine to report, clear, and change operational state.

The selection of critical and non-critical interrupts is covered in the RFSDK.

2.16.4 Synchronization
There is no special synchronization for the interrupts.

2.16.5 API Interface
There are no special APIs for the Interrupts.

2.16.6 Special Programming Concerns
There are no APIs currently for the interrupt control registers.
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