KeyStone II Architecture Network Coprocessor (NETCP) for K2E and K2L Devices

User's Guide

Literature Number: SPRUHZ0 August 2014

Contents

Prefac	ce		4
1	Introd	luction	5
	1.1	Purpose of the Peripheral	6
	1.2	Terminology Used in This Document	6
	1.3	Features	7
	1.4	Functional Block Diagram	8
	1.5	Industry Standard(s) Compliance Statement	8
2	Archit	tecture	9
	2.1	Clock Control	10
	2.2	Memory Map	10
	2.3	Packet Streaming Switch Architecture	11
	2.4	Packet DMA Architecture	12
	2.5	Local Queue Manager Architecture	12
	2.6	Reassembly Engine Architecture	12
	2.7	Distributed Interrupt Controller Architecture	13
	2.8	Reset Considerations	13
	2.9	Initialization	13
		2.9.1 Network Coprocessor Initialization Procedure	13
	2.10	Interrupt Support	13
		2.10.1 Interrupt Events and Requests	13
		2.10.2 Interrupt Multiplexing	14
	2.11	Power Management	14
3	Regis	ters	15
	3.1	GbE Thread Map Register	

w	w	w	2	ti.	С	ი	m	
**	**	**	٠		.0	0		Į

List of Figures

1-1.	KeyStone II Network Coprocessor Functional Block Diagram	8
3-1.	GbE Thread Map Register	16

List of Tables

2-1.	Keystone II Network Coprocessor Memory Map for K2E and K2L Devices	10
2-2.	Keystone II Packet Streaming Switch Module Connections for K2E and K2L Devices	11
3-1.	GBE Switch Thread Mapper Values	16
3-2.	GbE Thread Map Register Field Descriptions	16

About This Manual

The network coprocessor (NETCP) is a hardware accelerator that processes data packets with a main focus on processing Ethernet packets. NETCP has a gigabit Ethernet (GbE) module to send and receive packets from an IEEE 802.3-compliant network, a packet accelerator (PA) to perform packet classification operations such as header matching, and packet modification operations such as checksum generation, and a security accelerator (SA) to encrypt and decrypt data packets.

Notational Conventions

This document uses the following conventions:

- Commands and keywords are in **boldface** font.
- Arguments for which you supply values are in *italic* font.
- · Terminal sessions and information the system displays are in screen font.
- Information you must enter is in **boldface screen font**.
- Elements in square brackets ([]) are optional.

Notes use the following conventions:

NOTE: Means reader take note. Notes contain helpful suggestions or references to material not covered in the publication.

The information in a caution or a warning is provided for your protection. Please read each caution and warning carefully.

CAUTION

Indicates the possibility of service interruption if precautions are not taken.

WARNING

Indicates the possibility of damage to equipment if precautions are not taken.

Related Documentation from Texas Instruments

Gigabit Ethernet (GbE) Switch Subsystem for K2E and K2L Devices User's Guide					
Interrupt Controller (INTC) for KeyStone Devices User's Guide					
Multicore Navigator for KeyStone Devices User's Guide	SPRUGR9				
Packet Accelerator 2 (PA2) for K2E and K2L Devices User's Guide					
Security Accelerator 2 (SA2) for K2E and K2L Devices User's Guide	SPRUHZ1				

All trademarks are the property of their respective owners.

Introduction

Торіс

Page

1.1	Purpose of the Peripheral	6
1.2	Terminology Used in This Document	6
1.3	Features	7
1.4	Functional Block Diagram	8
1.5	Industry Standard(s) Compliance Statement	8

Purpose of the Peripheral

1.1 Purpose of the Peripheral

This document provides a functional description of the network co-processor (NETCP) for the TCI6630K2L, 66AK2Ex, and AM5K2Ex devices, herein called K2L and K2E devices. The NETCP for K2L and K2E devices is a hardware accelerator whose main focus is to process network-related packets. Protocols supported span layer 2 (MAC), layer 3 (IPV4/IPV6), and layer 4 (UDP/TCP/GTP-U).

The following modules are part of the NETCP:

- A gigabit Ethernet (GbE) switch. The GbE switch sends and receives packets from an IEEE 802.3compliant network and may have five or nine ports. See the device-specific data manual for specific details regarding port count.
- A packet accelerator version 2.0 (PA2). The PA2 performs packet classification operations such as header matching, and packet modification operations such as checksum generation.
- A security accelerator version 2.0 (SA2). The SA2 encrypts and decrypts data packets.

The NETCP can receive packets from the GbE switch modules, or packets can be delivered to the NETCP through a packet DMA engine from soft cores (i.e. DSP/ARM) or another supported peripheral. The NETCP has an additional packet DMA engine managed by a local instance of the queue manager sub system (QMSS) reserved for PA2-SA2 intercommunication.

1.2 Terminology Used in This Document

The following acronyms and abbreviations appear in this user's guide.

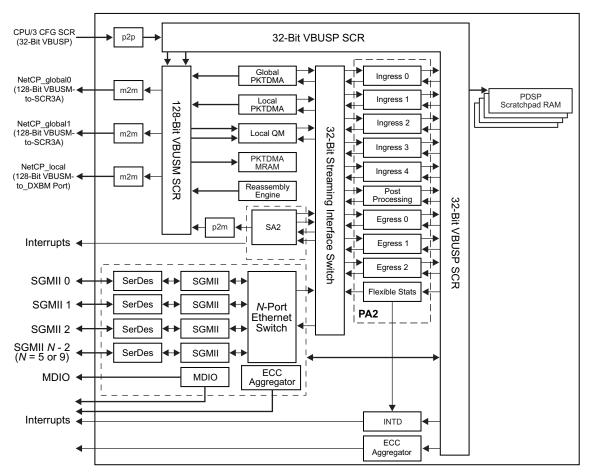
Term	Definition		
GbE Gigabit Ethernet			
MAC	Media Access Controller		
MDIO	Management Data Input/Output		
NETCP	Network Coprocessor for K2E and K2L devices		
PA2 Packet Accelerator version 2.0			
PKTDMA	Packet DMA		
PSI	Packet Streaming Interface		
QMSS	Queue Manager subsystem		
SA2	Security Accelerator version 2.0		
SerDes	Serializer/Deserializer		
SGMII	Serial Gigabit Media Independent Interface		
LQM	Local Queue Manager		

www.ti.com

1.3 Features

The NETCP has the following features:

- Packet DMA controller (global PKTDMA) for interfacing to the queue manager subsystem
 - 21 packet DMA transmit channels
 - 91 packet DMA receive channels
 - 96 receive flows
- Packet DMA controller (local PKTDMA) managed by local queue manager for inter PA2-SA2 communication.
 - 21 packet DMA transmit channels
 - 91 packet DMA receive channels
 - 96 receive flows
- Packet accelerator version 2.0 for packet header processing operations
 - Five ingress engines for L2-L4 processing
 - L3 reassembly
 - ACL processing
 - Multi-route capabilities
 - One post-process engine for CRC operations on ingress
 - Three egress engines for to-network L2-L3 operations
 - L2 Framing
 - IP fragmentation
 - L4 checksum
 - IPSEC ESP over IPSEC AH preparation
- Security accelerator version 2.0 for encryption and decryption operations
 - IPSEC protocol stack
 - SRTP protocol stack
 - 3GPP protocol stack, wireless air cipher standard
 - True random number generator
 - Public key accelerator
- Gigabit Ethernet switch subsystem for interfacing to an 802.3-compliant Ethernet network
 - Four or eight serial gigabit media independent interface (SGMII) modules
 - K2L (4)
 - K2E (8)
 - Five or nine-port gigabit Ethernet switch
 - K2L (5)
 - K2E (9)
 - Time Synchronization for compliance with IEEE 1588


Features

Functional Block Diagram

1.4 Functional Block Diagram

Figure 1-1 shows the network coprocessor (NETCP) functional block diagram. The NETCP has seven major modules that are connected through the packet streaming switch.

The seven major modules are:

- Global Packet DMA (PKTDMA) controller
- Local Packet DMA (PKTDMA) controller
- Packet accelerator version 2 (PA2)
- Security accelerator version 2 (SA2)
- Gigabit Ethernet (GbE) switch subsystem
- Reassembly engine (RA)
- Local queue manager (LQM)

1.5 Industry Standard(s) Compliance Statement

The modules in the NETCP support a variety of standards, which are covered in detail in the respective module user's guides. For more information about the standards supported by each module, see the following:

- Packet Accelerator 2 (PA2) for K2E and K2L Devices User's Guide (SPRUHZ2)
- Security Accelerator (SA2) for K2E and K2L Devices User's Guide (SPRUHZ1)
- Gigabit Ethernet (GbE) Switch Subsystem for K2E and K2L Devices User's Guide (SPRUHZ3)
- Multicore Navigator User Guide (for Packet DMA) (<u>SPRUGR9</u>)

Architecture

Торіс

Page

2.1	Clock Control	10
2.2	Memory Map	10
2.3	Packet Streaming Switch Architecture	11
2.4	Packet DMA Architecture	12
2.5	Local Queue Manager Architecture	12
2.6	Reassembly Engine Architecture	12
2.7	Distributed Interrupt Controller Architecture	13
2.8	Reset Considerations	13
2.9	Initialization	13
2.10	Interrupt Support	13
2.11	Power Management	14

www.ti.com

2.1 Clock Control

The network coprocessor (NETCP) has three primary clock domains:

- Packet Accelerator version 2.0 (PA2) + Reassembly Engine (RA)
- Security Accelerator version 2.0 (SA2)
- Gigabit Ethernet (GbE) Switch subsystem

Each of these three clock domains share a common source clock, which is expected to operate at 350 MHz. Before using the PA2 + RA, SA2, or GbE switch modules, their respective clock domains must be enabled. In some devices, this clock may be generated from a PLL. For more information about generating and enabling these clocks, as well as if a PLL is used, see the device-specific data manual.

The NETCP also has secondary clocks, which are used exclusively by the GbE switch subsystem for time synchronization, MDIO, and SGMII SerDes interfaces. For more information about selecting and configuring those clocks, see the *GbE Switch Subsystem User's Guide* (SPRUHZ3).

2.2 Memory Map

Table 2-1 shows the memory map of the network coprocessor (NETCP) for K2E and K2L devices.

Region	Address Offset ⁽¹⁾					
Packet accelerator v2.0	0000:0000h					
Reassembly engine	0000:0400h					
GbE thread mapper	0000:0500h					
Reserved	0000:05800h-0000:07FFh					
Reassembly engine (continued)	0000:0800h					
ECC aggregator	0000:0C00h					
Reserved	0000:1000h-0000:5FFFh					
Packet accelerator v2.0 (continued)	0000:6000h					
Reserved	0000:6100h-0000:6FFFh					
Packet accelerator v2.0 (continued)	0000:7000h					
Reserved	0002:8000h-0007:FFFFh					
Security accelerator v2.0	00008:0000h					
Reserved	0010:0000h-0018:1FFFh					
Local PKTDMA	0018:2000h					
Reserved	0018:2180h-0018:2FFFh					
Local PKTDMA TX channel configuration	0018:3000h					
Local PKTDMA RX channel configuration	0018:4000h					
Local PKTDMA RX flow config	0018:5000h					
Global PKTDMA	0018:6000h					
Reserved	0018:6180h-0018:6FFFh					
Global PKTDMA TX channel configuration	0018:7000h					
Global PKTDMA RX channel configuration	0018:8000h					
Global PKTDMA RX flow config	0018:9000h					
Reserved	0018:A000h-0019:FFFF					
Local queue manager	001A:0000h					
Reserved	001B:2000h-001B:7FFFh					
Local queue manager (continued)	001B:8000h					
Reserved	001B:8800h-001B:BFFF					
Local queue manager (continued)	001B:C000h					

Table 2-1. Keystone II Network Coprocessor Memory Map for K2E and K2L Devices

⁽¹⁾ These register address offsets are relative to the base of the NETCP module. See the device-specific data manual to determine the base of the NETCP module.

Region	Address Offset ⁽¹⁾
Reserved	001B:C800h-001F:FFFFh
Gigabit Ethernet switch subsystem	0020:0000h
Packet accelerator v2.0 (continued)	0040:0000h

Table 2-1. Keystone II Network Coprocessor Memory Map for K2E and K2L Devices (continued)

2.3 Packet Streaming Switch Architecture

This section gives an overview of the packet streaming switch (PSI) in the NETCP. The purpose of the PSI is to provide a means of transferring data between modules within the NETCP. Table 2-2 shows all connections between the modules provided by the packet streaming switch.

Transmit		Receive Ports													
Ports	pkt dma_g	pkt dma_l	gbe_ switch	ingress 0	ingress 1	ingress 2	ingress 3	post_ process	egress 0	egress 1	egress 2	RA	sa_ port1	sa_ port2	flexible_ stats
pktdma_g		1	1	1	1	1	1	1	1	1	1	1	1	1	1
pktdma_l			1	1	1	1	1	1	1	1	1	1	1	1	
gbe_switch*	1	1		1	1	1	1	1	1	1	1				
sa_port1	1	1													
sa_port2	1	1													
ingress0	1	1	1		1	1	1	1	1	1	1	1	1	1	
ingress1	1	1	1	1		1	1	1	1	1	1	1	1	1	
ingress2	1	1	1	1	1		1	1	1	1	1	1	1	1	
ingress3	1	1	1	1	1	1		1	1	1	1	1	1	1	
ingress4	1	1	1	1	1	1	1		1	1	1	1	1	1	
post_process	1	1	1	1	1	1	1	1		1	1	1	1	1	
egress0	1	1	1	1	1	1	1	1	1		1	1	1	1	
egress1	1	1	1	1	1	1	1	1	1	1		1	1	1	
egress2	1	1	1	1	1	1	1	1	1	1	1		1	1	
RA	1	1		1	1	1	1	1	1	1	1				
flexible_stats	1														

Table 2-2. Keystone II Packet Streaming Switch Module Connections for K2E and K2L Devices

NOTE: *GbE Switch has 64 threads, corresponding to each ingress port / priority combination (8ingress Ethernet ports * 8 priorities). Threads 0-7 are priorities 0-7 for Ethernet port 0. Threads 8-15 are priorities 0-7 for Ethernet port 1, and so on. The packet streaming switch thread mapper is used to map the 64 threads coming out of the GbE Switch (one per port/priority pair), and map them to assets within the NETCP. Each thread from the GbE switch can be mapped to one of the following 10 destinations based on the value programmed into its register field. If mapped to a PKTDMA (global or local), thread 0 from the switch will map to thread 0 of the PKTDMAs selected, thread 1 to thread 1 etc. For more on the packet streaming interface thread mapper register, see Section 3.1.

In general, the packet accelerator (PA2) and security accelerator (SA2) modules should communicate only through the local PKTDMA module. These modules should not communicate directly because the limited buffering in the system can degrade performance. Global PKTDMA should be reserved for Host-NetCP interaction.

2.4 Packet DMA Architecture

The global and local packet DMA controllers in the NETCP are responsible for transferring data between NETCP and the host (global) and between PA2-SA2 (local). Data transferred through global and local PKTDMA can be transmitted via the packet streaming switch to the receive ports of devices within the NETCP as listed in Table 2-2. For more information about packet DMA along with device specific TX queue ranges for Global and Local PKTDMA, see the *Multicore Navigator User's Guide* (SPRUGR9).

Below please find the TX thread allocation for both Local and Global PKTDMA. This relates to the queue range as in *Multicore Navigator User's Guide* (<u>SPRUGR9</u>).

PKTDMA TX Thread Allocation							
NetCP Component	Global and Local TX Thread						
GbE Switch Host Port Priority 0	0						
GbE Switch Host Port Priority 1	1						
GbE Switch Host Port Priority 2	2						
GbE Switch Host Port Priority 3	3						
GbE Switch Host Port Priority 4	4						
GbE Switch Host Port Priority 5	5						
GbE Switch Host Port Priority 6	6						
GbE Switch Host Port Priority 7	7						
Ingress 0	8						
Ingress 1	9						
Ingress 2	10						
Ingress 3	11						
Ingress 4	12						
Post-Processing	13						
Egress 0	14						
Egress 1	15						
Egress 2	16						
RA	17						
SA Input 1	18						
SA Input 2	19						
Flexible Stats	20						

2.5 Local Queue Manager Architecture

The local queue manager is an instance of the queue manager subsystem (QMSS) that manages the local PKTDMA. For more information about the local queue manager, see the *Multicore Navigator User's Guide* (<u>SPRUGR9</u>).

2.6 Reassembly Engine Architecture

The IP Reassembly Engine (RA) reassembles fragmented IPv4 and IPv6 packets. A packet or fragment is streamed in on the packet streaming interface (PSI) and buffered internally. Once the desired function is completed, the packet is forwarded out on the PSI streaming interface. The RA is designed to work in the context of the packet accelerator. It requires that packets be preclassified and that the metadata (i.e. information from the IPV4 or IPV6 header) is populated correctly. Specifically, the ingress0 block performs this operation. The RA then forwards the nonfragmented or fully reassembled packet to the ingress1 block for outer IP reassembly. RA also performs inner IP reassembly. This stage occurs after ingress3 processing which prepares the metadata for RA. Afterwards, RA will forward the reassembled packet to ingress4 for further processing. The RA supports 64 threads on ingress and 32 threads on egress. Configuration of the RA is performed via the PA firmware and drivers. Direct programming of the RA registers is not supported. See the MCSDK or PDK for programming information regarding the RA.

www.ti.com

2.7 Distributed Interrupt Controller Architecture

The distributed interrupt controller in the NETCP has the ability to aggregate interrupts from several sources and combine these interrupts into one interrupt to the host.

2.8 Reset Considerations

The gigabit Ethernet (GbE) switch subsystem supports reset isolation. For more information on this functionality, see the *GbE Switch Subsystem User's Guide* (<u>SPRUHZ3</u>).

2.9 Initialization

This section describes how to initialize the network coprocessor (NETCP).

The NETCP relies on the queue manager subsystem (QMSS) and the packet DMA to communicate with the host, which requires that these two systems be set up before setting up the network coprocessor. After setting up the QMSS and the packet DMA, the user can configure the NETCP. The user should take care to program the packet streaming switch thread mapper configuration register so that it directs packets from the gigabit Ethernet (GbE) switch subsystem to the desired module.

However, this does not preclude the use of drivers to perform this operation. If using the packet accelerator (PA2) and security accelerator (SA2) together, the PA2 must be initialized before initializing the SA2. Otherwise, the PA2, SA2, and GbE switch subsystem can be initialized in any order.

Section 2.9.1 shows the network coprocessor initialization procedure:

2.9.1 Network Coprocessor Initialization Procedure

- Step 1. Turn on the NETCP power domain.
- Step 2. Ungate the clocks for all modules used.
- Step 3. Configure the queue manager.
- Step 4. Configure the local queue manager
- Step 5. Configure the global and local packet DMA.
 - (a) Configure the linking RAM.
 - (b) Initialize descriptors.
 - (c) Configure receive flows.
 - (d) Enable transmit channels.
 - (e) Enable receive channels.
- Step 6. Configure the packet streaming switch thread mapper.
- Step 7. Configure the GbE switch subsystem.
- Step 8. Configure the PA2.
- Step 9. Configure the SA2.

2.10 Interrupt Support

2.10.1 Interrupt Events and Requests

The NETCP supports interrupts from the gigabit Ethernet (GbE) switch subsystem and the packet accelerator version 2.0 (PA2). For more information about the interrupts generated by the GbE switch subsystem, see the *GbE Switch Subsystem for KeyStone Devices User's Guide* (<u>SPRUHZ3</u>). For more information about the interrupts generated by the PA2, see the *Packet Accelerator 2 (PA2) for K2E and K2L Devices User's Guide* (<u>SPRUHZ3</u>).

).

2.10.2 Interrupt Multiplexing

Interrupt multiplexing is supported on the NETCP through the distributed interrupt controller. For more information, see the distributed interrupt controller section.

2.11 Power Management

The network coprocessor (NETCP) has power management capabilities for powering down the NETCP power domain. The power domain is powered on or powered off in its entirety. The NETCP power domain does not support the ability to power down the individual modules in the NETCP. By default, the NETCP power domain is powered off. To use the NETCP, the power domain must be powered on.

In addition to allowing the disabling of the NETCP power domain, NETCP also allows the clocks to the unused modules to be gated. The packet accelerator v2.0 (PA2), security accelerator v2.0 (SA2), and gigabit Ethernet (GbE) switch subsystem can each be clock-gated individually. This allows any unused modules in NETCP to be clock gated without affecting the other modules in the NETCP.

For more information, see the device-specific data manual.

NOTE: The local and global packet DMA controller and the packet streaming switch are included in the packet accelerator clock domain. This means that the packet accelerator clock domain must be enabled when using the security accelerator or the gigabit Ethernet switch subsystem.

This chapter describes the programmable register in the network coprocessor (NETCP).

Торіс		Page
3.1	GbE Thread Map Register	16

3.1 GbE Thread Map Register

This section details the GbE Thread Map Register as it relates to the connection of the GbE switch to the packet streaming interface (PSI). For an overview of its function, see Section Section 2.3. The offset is 0000:0500h.

Thread (Programmed Register Value)	Target
0	Global PKTDMA
1	Local PKTDMA
2	Ingress 0
3	Ingress 1
4	Ingress 2
5	Ingress 3
6	Ingress 4
7	Post processing
8	Egress 0
9	Egress 1
10	Egress 2

Table 3-1. GBE Switch Thread Mapper Values

Figure 3-1. GbE Thread Map Register

31		24	23		16	15		8	7		0
	Thread N*4+3			Thread N*4+2			Thread N*4+1			Thread N*4	
	R/W -0x0			R/W -0x0			R/W -0x0			R/W -0x0	

Legend: R/W = Read/Write; -n = value after reset

Table 3-2. GbE Thread Map Register Field Descriptions

Bit	Field	Description
31 - 24	Thread N*4+3	Thread <i>N</i> *4+3 from the gbe_switch TX will be mapped to this target based on Table 3-1. Only 0 through 10 are legal values. Attempting to write a value of 11 or greater will result in the field being unchanged.
23 - 16	Thread N*4+2	Thread <i>N</i> *4+2 from the gbe_switch TX will be mapped to this target based on Table 3-1. Only 0 through 10 are legal values. Attempting to write a value of 11 or greater will result in the field being unchanged.
15 - 8	Thread N*4+1	Thread <i>N</i> *4+1 from the gbe_switch TX will be mapped to this target based on Table 3-1. Only 0 through 10 are legal values. Attempting to write a value of 11 or greater will result in the field being unchanged.
7 - 0	Thread N*4	Thread <i>N</i> *4 from the gbe_switch TX will be mapped to this target based on Table 3-1. Only 0 through 10 are legal values. Attempting to write a value of 11 or greater will result in the field being unchanged.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated