

DRA72x EVM CPU Board User's Guide

Contents

1	Introduction	3
2	Overview	3
3	Hardware	
4	Signal Multiplex Logic	
5	USB3-Supported Configurations	
6	References	34
	List of Figures	
1	CPU Board	4
2	CPU Board – Front	7
3	CPU Board – Back	8
4	CPU Board Block Diagram	9
5	Power Distribution Block Diagram	10
6	Reset Structure	11
7	SoC Pinmux for GPMC and QSPI	
8	Mux Diagram for GPMC and QSPI	<mark>24</mark>
9	SoC Pinmux for GPMC/VIN1/VOUT3	25
10	Mux Diagram for GPMC/VIN1/VOUT3	26
11	SoC Pinmux for GPMC/EMMC	26
12	Mux Diagram for GPMC and EMMC	27
13	SoC Pinmux for VIN2A and EMU	27
14	Mux Diagram for VIN2A and EMU	28
15	SoC Pinmux for VIN2A and RGMII1	28
16	Mux Diagram for VIN2A and RGMII1	29
17	SoC Pinmux for RGMII0 and VIN1B	29
18	Mux Diagram for RGMII0 and VIN1B	30
19	SoC Pinmux for SPI2 and UART3	30
20	Mux Diagram for SPI2 and UART3	30
21	SoC Pinmux for DCAN2	31
22	Mux Diagram for DCAN2 and I2C	31
23	Option 1	32
24	Option 2	33
25	Option 3	34
	List of Tables	
1	EVM Wake-Up Board and Kits (Obsolete)	4
2	Production Boards (Obsolete)	
3	Production Kits (Obsolete)	
4	EVM Wake-Up Board and Kits (Production)	
5	Production Boards (Production)	

6	Production Kits (Production)	. 5
7	EVM Kit Truth Table	
8	EVM Supplies	11
9	Reset Signals Structure	
10	SoC Boot Mode Switch Settings	13
11	Board Controls for Memory Booting Options	14
12	Board Controls for Signaling and Operational Modes	14
13	User LEDs	17
14	Power Monitor Mapping	
15	I2C Device Address Chart	19
16	SoC GPIO Map	19
17	I/O Expander Map	
18	EEPROM Data Format	22
19	Onboard Mux Settings and Control	23

Trademarks

ARM, Cortex are registered trademarks of ARM Limited. Bluetooth is a registered trademark of Bluetooth SIG. POWERVR is a trademark of Imagination Technologies Limited. Wi-Fi is a trademark of Wi-Fi Alliance.

www.ti.com Introduction

1 Introduction

The DRA72x evaluation module (EVM) is an evaluation platform designed to speed up development efforts and reduce time to market for applications such as infotainment, reconfigurable digital cluster or integrated digital cockpit. To allow scalability and re-use across DRA72x Jacinto Infotainment SoCs, the EVM is based on the Jacinto 6 Eco DRA718 SoC that incorporates a heterogeneous, scalable architecture that includes a mix of an ARM® Cortex®-A15 core, two ARM Cortex-M4 processing subsystems, one C66x Digital Signal Processors (DSPs), 2D- and 3D-graphics processing units including Imagination Technologies POWERVR™ SGX544 and a high-definition image and video accelerator. It also integrates a host of peripherals including multi-camera interfaces (both parallel and serial) for LVDS-based surround view systems, displays, CAN and Gigabit Ethernet AVB.

The main CPU board integrates these key peripherals such as Ethernet or HDMI, while the infotainment application daughter board (JAMR3) and LCD/TS daughter board will complement the CPU board to deliver complete system to jump start your evaluation and application development.

2 Overview

An EVM system is comprised of a CPU board with one or more application boards. The CPU board (shown in Figure 1) can be used standalone for software debug and development. Each EVM system is designed to enable customers to evaluate the processor performance and flexibility in the following targeted markets:

- Automotive and infotainment applications
- Automotive and ADAS applications

The CPU board contains the DRA72x (Superset part) applications processor, a companion power solution (TPS65917), DDR3 DRAM, several types of flash memories (QSPI, eMMC, NAND, and NOR), and a multitude of interface ports and expansion connectors. The board provides additional support components that provide software debugging, signal routing, and configuration controls that are not needed in a final product. Different versions of the CPU boards will be built to support the development process that include:

- · Socketed processor for wakeup, early SW development, and quick and easy chip revision evaluation
- Soldered-down processor for high-performance use cases and evaluations

All other components on-board are soldered-down.

Overview www.ti.com

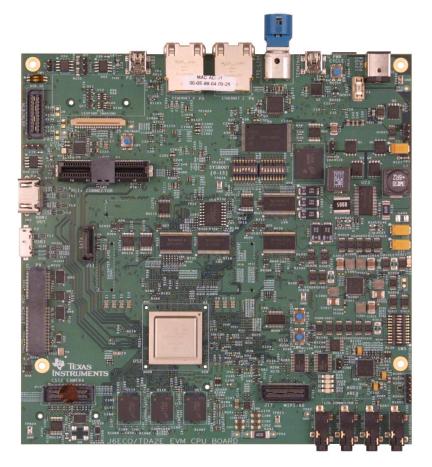


Figure 1. CPU Board

2.1 EVM System Configurations

2.1.1 Revisions

- ES1.0 is on CPU board through Rev B
- · ES2.0 is on CPU boards Rev C on
- Table 1 through Table 3 indicates the obsolete versions
- Table 4 through Table 6 indicates valid production versions

Table 1. EVM Wake-Up Board and Kits (Obsolete)

Wake-Up Platforms	Description	Model Number
J6Eco ES1.0 CPU Board	Socketed CPU Board, Power Supply, Limited Accessory Cables.	EVMDR72BG-01-00-S0
J6Eco ES1.0 EVM Kit	Socketed CPU Board, LCD/TS Daughter Bd, Power Supply, Limited Accessory Cables.	EVMDR72G-01-00-S0
J6Eco ES1.0 EVM Infotainment Kit	Socketed CPU Board, JAMR3 Apps Bd, LCD/TS Daughter Bd, Power Supply, Limited Accessory Cables.	EVMDR72G-01-20-S0

www.ti.com Overview

Table 2. Production Boards (Obsolete)

Production Boards	Description	Model Number
J6Eco CPU Bd ES1.0 GP	CPU Board, Power Supply, Limited Accessory Cables.	EVMDR72BG-01-00-00
J6Eco CPU Bd ES1.0 HS	CPU Board, Power Supply, Limited Accessory Cables.	EVMDR72BH-01-00-00

Table 3. Production Kits (Obsolete)

Production Kits	Description	Model Number
J6Eco ES1.0 GP EVM Kit	CPU Board, 10.1" LCD/TS Daughter Bd, Power Supply, Limited Accessory Cables.	EVMDR72G-01-01-00
J6Eco ES1.0 GP EVM Infotainment Kit	CPU Board, JAMR3 Apps Bd, 10.1" LCD/TS Daughter Bd, Power Supply, Limited Accessory Cables.	EVMDR72G-01-21-00

Table 4. EVM Wake-Up Board and Kits (Production)

Wake-Up Platforms	Description	Model Number
DRA72x/TDA2Ex ES2.0 CPU Bd	Socketed CPU Board, and Limited Accessory Cables.	EVMDR72BG-02-00-S0

Table 5. Production Boards (Production)

Production Boards	Description	Model Number
DRA72x/TDA2Ex CPU Bd ES2.0 GP	CPU Board, Power Supply, Limited Accessory Cables.	EVMDR72BG-02-00-00
DRA72x/TDA2Ex CPU Bd ES2.0 HS	CPU Board, Power Supply, Limited Accessory Cables.	EVMDR72BH-02-00-00
10.1" LCD/TS Daughter Board	10.1-inch 1920X1200 LCD (24-bit color) with projective and capacitive touch-screen	EVM5777LCDTS-V3-0
JAMR3 Application Board	Head-unit DIN form-factor Application Board with radio tuners, multiple audio I/Os, and video input extendibility	EVM5777JAMR3-V1-0
Vision Application Board	Support for multiple camera inputs for surround view, stereo vision, and proprietary camera board interfaces, AD7611 HDMI receiver	EVM5777VISION-V2-0

Table 6. Production Kits (Production)

Production Kits	Description	Model Number
DRA72x/TDA2Ex ES2.0 GP EVM Kit	CPU Board, 10.1" LCD/TS Daughter Bd, and Limited Accessory Cables.	EVMDR72G-02-00-00
DRA72x ES2.0 GP EVM Infotainment Kit	CPU Board, JAMR3 Apps Bd, 10.1" LCD/TS Daughter Bd, and Limited Accessory Cables.	EVMDR72G-02-20-00
TDA2Ex ES2.0 GP EVM Vision Kit	CPU Board, Vision Apps Bd, and Limited Accessory Cables.	EVMTDA2EG-02-40-00

Table 7. EVM Kit Truth Table

Kit Name	CPU Bd	JAMR3 App Bd	LCD/TS Daughter Bd	Vision App Bd	2.1-mm to 2.5-mm Power Supply Adapter
GP EVM	X		X		X
GP EVM Infotainment	X	X	X		X
GP EVM Vision	X			X	X

2.2 CPU Board Feature List

- Processor:
 - Superset SOC (23-mm × 23-mm package, 0.8-mm pitch with 28 × 28 via-channel array)
 - Support for corresponding socket

Overview www.ti.com

- Memory:
 - EMIF1 DDR3L-1333 (with ECC): 2-Gbyte (four 4-Gbit x 8 + one 4-Gbit x 8 ECC)
 - Quad SPI flash: 256 Mbit
 - eMMC flash: 8 Gbit (v.4.51 compliant)
 - NAND flash: 2 GbitNOR flash: 512 Mbit
 - I2C EEPROM, 256 Kbit
 - MicroSD card cage
- · Boot mode selection DIP switch
- Onboard temperature sensor
 - TMP102
- JTAG/Emulator:
 - 60-pin MIPI-60 JTAG/Trace connector
 - 20-pin CTI adapter: 10 x 2, 1.27-mm pitch
 - 14-pin adapter: 7 × 2, 2.54-mm pitch
- Audio input and output:
 - AIC3106 codec: Headphone OUT, Line OUT, Line IN, Microphone IN
- Supported interfaces and peripherals:
 - CAN interface 2-wire PHY on DCAN1
 - Two USB host receptacles:
 - USB3.0 (micro-USB)
 - USB2.0 (mini-USB)
 - PCle x1 (x2 support with component change)
 - Video one HDMI Out, one FPD-Link III, one LCD
 - Camera sensors support through Leopard Imaging Module interface, parallel and CSI2
 - CSI2 generic connector interface
 - MLB and MLBP on Mictor connector
 - RS232 through USB FTDI converter (mini-A/B USB)
 - COM8 module connector interface for Bluetooth® and WLAN support
 - Gigabit Ethernet PHY (RJ45) x 2 (DP83867)
 - SATA interface
 - I2C GPIO expander
 - LCD daughter board connector
- Expansion connectors to support specific applications
- Power supply:
 - 12-V DC input
 - Optimized power management IC (TPS65917)
 - Compliant with power-sequencing requirements
 - Integrated power measurement

www.ti.com Overview

- PCB:
 - Dimension (W x D) 170 mm x 170 mm
 - 100% PTH technology

2.2.1 CPU Board Component Identification

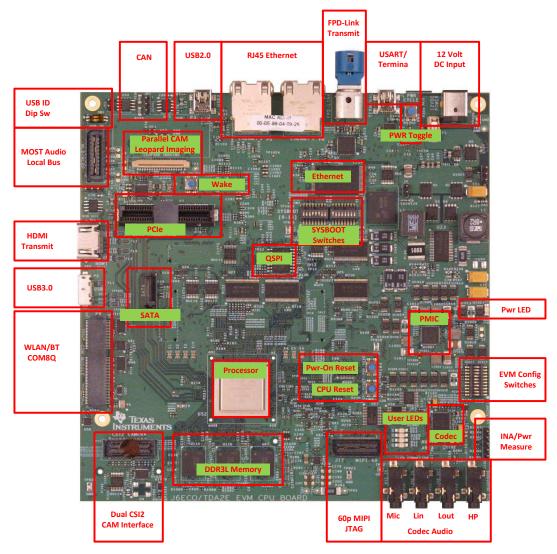


Figure 2. CPU Board – Front

Overview www.ti.com

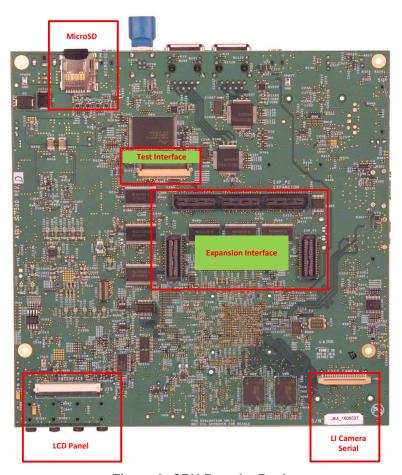


Figure 3. CPU Board – Back

www.ti.com Hardware

3 Hardware

3.1 Hardware Architecture

Figure 4 shows the functional block diagram.

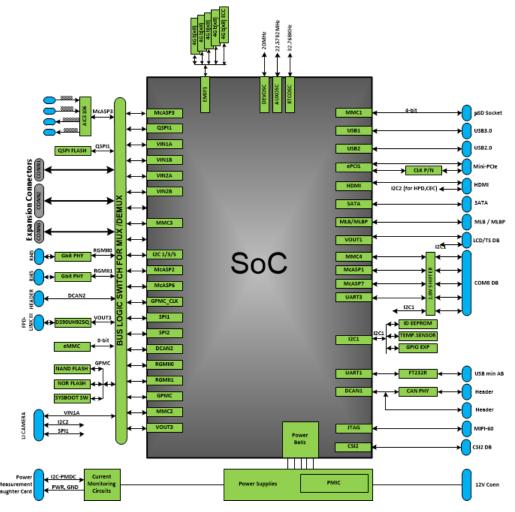


Figure 4. CPU Board Block Diagram

Hardware www.ti.com

3.2 Power Architecture

Figure 5 shows the complete power distribution system of the EVM. The companion power management IC (PMIC) for SoC is the TPS65917-Q1. A step-down 12-V to 3.3-V and 5-V converter is available to provide a 3.3-V and 5-V DC input to the PMIC, as well as 3.3-V and 5-V power rails at the board level.

Refer to the PMIC data sheet for the power on/off sequence.

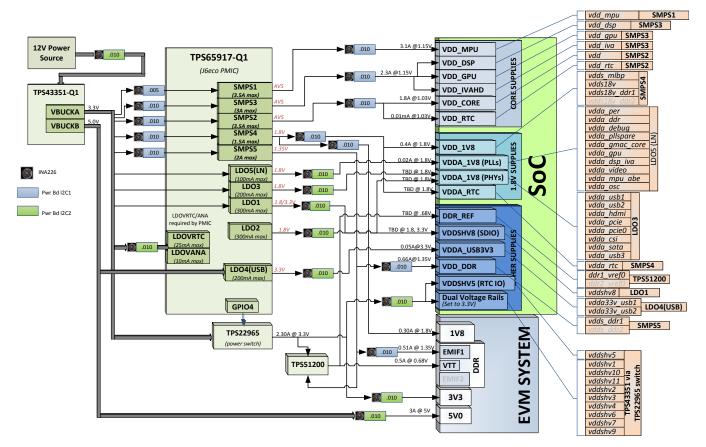


Figure 5. Power Distribution Block Diagram

An external power is required to power the EVM, but is not included as part of the EVM kit. The external power supply requirements are:

Power Jack: 2.5-mm ID, 5.5-mm OD

Nom voltage: 12 VDCMax Current: 5000 mAEfficiency Level V

www.ti.com Hardware

Table 8 includes recommended and tested supplies for use with the EVM.

Table 8.	EVM	Sup	plies
----------	-----	-----	-------

Digi-Key Part Number	Manufacturer Part Number	Manufacturer	Output Connector	Notes
102-3417-ND	SDI65-12-U-P5	CUI Inc	Barrel Plug, 2.1-mm I.D. x 5.5-mm O.D. x 9.5 mm	Required adapter, provided in EVM kit
62-1221-ND	KTPS65-1250DT-3P-VI-C- P1	Volgen America/Kaga Electronics USA	Barrel Plug, 2.1-mm I.D. x 5.5-mm O.D. x 9.5 mm	Required adapter, provided in EVM kit
102-3419-ND	SDI65-12-UD-P5	CUI Inc	Barrel Plug, 2.1-mm I.D. x 5.5-mm O.D. x 9.5 mm	Required adapter, provided in EVM kit
SDI65-12-U-P6-ND	SDI65-12-U-P6	CUI Inc	Barrel Plug, 2.1-mm I.D. x 5.5-mm O.D. x 9.5 mm	
SDI65-12-UD-P6-ND	SDI65-12-UD-P6	CUI Inc	Barrel Plug, 2.1-mm I.D. × 5.5-mm O.D. × 9.5 mm	

External Power Supply Regulatory Compliance Certifications: Recommended selection and use of an external power supply which meets TI's required minimum electrical ratings, in addition to complying with applicable regional product regulatory and safety certification requirements, such as UL, CSA, VDE, CCC, PSE, and so forth.

3.3 Reset Structure

The reset structure is shown in Figure 6. The power-on reset timing is controlled primarily from the system PMIC (TPS65917-Q1). There are two push buttons for user-controlled resets. One is the power-on reset (SW4) for a complete SoC reset. The other is for warm reset (SW5). The warm reset can also be sourced from the MIPI-60 JTAG/Trace connector.

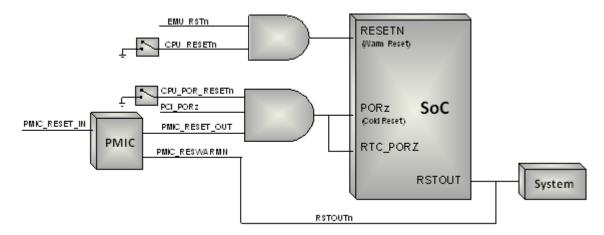


Figure 6. Reset Structure

Hardware www.ti.com

Table 9 summarizes the reset signals.

Table 9. Reset Signals Structure

Reset Type	Reset Signal Sources	Comments
Power-on reset (as whole system reset)	CPU_POR_RESETn	PORn push button reset
	PCI_PORz	PCIe inbound reset
	PMIC_RESET_OUT	Power on reset from PMIC
Warm reset	CPU_RESETn	Warm push button reset
	EMU_RSTn	Reset from emulator
PMIC power-on reset	PMIC_RESET_IN	PMIC reset input
Processor reset out	RSTOUTn	Reset output from processor to system, PMIC (warm reset input)

3.4 Clocks

The SoC supports three primary clock inputs. The device clock (OSC0) is provided by a 20-MHz crystal, and the auxiliary clock (OSC1) is provided by a 22.5792-MHz crystal. The RTC clock input is provided by a 32.768-KHz crystal.

In addition to the SoC clock inputs, the EVM includes other clock sources. A 25-MHz oscillator is provided to a CDCM9102 clock driver for sourcing the PCI 100-MHz reference clock. Each Ethernet PHY also includes a local 25-Mhz crystal to provide its network reference clock.

3.5 Memory

3.5.1 SDRAM Memory

The EVM includes 2 GBytes of DDR3L memory, and can operate at clock speeds up to 667 MHz (DDR3-1333). The memory is configured with four devices of 4 Gbit each (x8b devices). ECC is also supported.

DDR3L device used: Micron MT41K512M8RH-125-AA:E (4 x 8bit at 4 Gbit/ea) (or equivalent).

EEC device used: Micron MT41K512M8RH-125-AA:E (1 x 8bit at 4 Gbit) (or equivalent).

The DDR3L power is generated from the PMIC (TPS65917-Q1) and set to 1.35 V. It uses fly-by topology with VTT termination. VTT supply is generated using a sink and source termination regulator (TPS51200).

3.5.2 QSPI Flash Memory

As a primary non-volatile boot device, the EVM includes 256 Mbit of Quad-SPI flash memory. The device is supported on chip select zero of the QSPI interface. The interface can be configured to support either serial mode (1x) or quad mode (4x).

QSPI device used: Spansion S25FL256S

Booting from the QSPI flash memory is supported on the EVM. No EVM configuration is required, as the QSPI flash is connected by default. Ensure the correct SoC boot mode using the SYS_BOOT switches (SW2, SW3).

3.5.3 EMMC Flash Memory

As a primary non-volatile storage device, the EVM includes 8 GBytes of eMMC flash memory. The memory device is EMMC v4.51-compliant, and connects to MMC2 port of the SoC. The design can supports rates up to HS-200.

EMMC device used: Micron MTFC8GLWDM-3M AIT Z

Booting from the EMMC flash memory is supported on the EVM. The on-board mux must be set to enable EMMC by setting the SW5.p3 to ON. Ensure the correct SoC boot mode is set using the SYS_BOOT switches (SW2, SW3).

www.ti.com Hardware

3.5.4 MicroSD Card Cage

For non-volatile storage expansion, the EVM includes a microSD card cage. The cage is connected to the MMC1 port of the SoC. To support higher-speed cards that operate at lower voltages, the IO supply is changed from 3v3 to 1v8 through the PMIC LDO configuration (see the PMIC data manual for instructions on how to change the voltage level). The SD card power can be cycled using the IO expander (EXP2, PP5). For specific information regarding supported card types, densities, and speeds, see the device-specific data manual for SoC.

Booting from the microSD card cage is supported on the EVM. No configuration is required, as the SD card is selected by default. Ensure the correct SoC boot mode is set using the SYS_BOOT switches (SW2, SW3).

3.5.5 GPMC NOR Flash Memory

A 512-Mbit NOR flash memory (x16) is supported as a non-volatile memory option on the EVM. It is supported on chip select CS0, and thus can also be used as a boot device. To access, the onboard mux must be enabled by setting SW5.p2 to ON. For booting, ensure the correct SoC boot mode is selected using the SYS BOOT switches (SW2, SW3).

NOR device used: Spansion S29GL512S10TFI010

3.5.6 GPMC NAND Flash Memory

A 2-Gbit NAND flash memory (x16) is supported as a non-volatile memory option on the EVM. It is supported on chip select CS0, and thus can also be used as a boot device. To access, the onboard mux must be enabled by setting SW5.p1 to ON. For booting, ensure the correct SoC boot mode is selected using the SYS BOOT switches (SW2, SW3).

NAND device used: Micron MT29F2G16AADWP:D

3.6 Boot Modes

The SoC supports a variety of different boot modes, determined by the 16-bit system boot setting present on the shared specific I/O balls during the power-on sequence (see the TRM for details). Boot mode selection is accomplished by setting the DIP switches SW2 and SW3 as shown in Table 10, prior to cycling of power.

These SoC resources can be redeployed to support alternate interfaces after boot-up, by way of both SoC and EVM mux settings.

An ON setting selects a logic 1 for the signals, and an OFF setting selects a logic 0.

GPMC_D11

GPMC_D12

GPMC_D13

SoC Interface (Internal System DIP Switch Ref Des. Position # **Boot Input) CPU Bd Net** Connections **Factory Settings** GPMC_AD0 (sysboot0) SW2.P1 GPMC_D00 ON GPMC_AD1 (sysboot1) GPMC D01 OFF SW2.P2 GPMC_AD2 (sysboot2) GPMC_D02 SW2.P3 ON GPMC_AD3 (sysboot3) GPMC_D03 SW2.P4 OFF GPMC_AD4 (sysboot4) GPMC_D04 SW2.P5 ON GPMC_AD5 (sysboot5) OFF GPMC_D05 SW2.P6 GPMC_AD6 (sysboot6) GPMC_D06 SW2.P7 OFF GPMC_AD7 (sysboot7) GPMC_D07 SW2.P8 OFF GPMC_AD8 (sysboot8) GPMC_D08 SW3.P1 ON OFF GPMC_AD9 (sysboot9) GPMC_D09 SW3.P2 GPMC_AD10 (sysboot10) GPMC_D10 SW3.P3 OFF

Table 10. SoC Boot Mode Switch Settings

GPMC_AD11 (sysboot11)

GPMC_AD12 (sysboot12)

GPMC_AD13 (sysboot13)

OFF

OFF

OFF

SW3.P4

SW3.P5

SW3.P6

Hardware www.ti.com

SoC Interface (Internal System Boot Input)	CPU Bd Net	DIP Switch Ref Des. Position # Connections	Factory Settings
GPMC_AD14 (sysboot14)	GPMC_D14	SW3.P7	OFF
GPMC_AD15 (sysboot15)	GPMC_D15	SW3.P8	ON

In addition to the SoC boot settings, the EVM resources must also be set for the desired interface, as shown in Table 11. DIP switch SW5 is used to configure the various EVM memories for boot.

An ON setting selects a logic 0 for the signals, and an OFF setting selects a logic 1. This polarity is OPPOSITE the SYS_BOOT settings.

Table 11. Board Controls for Memory Booting Options

Signals	Description	DIP Switch	Factory Settings	I2C1 GPIO Expander
NAND_BOOTn ⁽¹⁾	Low = Enable GPMC_nCS0 for NAND flash boot	SW5.1	OFF	U57.P10
NOR_BOOTn ⁽¹⁾	Low = Enable GPMC_nCS0 for NOR flash boot	SW5.2	OFF	U57.P11
MMC2_BOOT	Low = Enable MMC2 Interface for eMMC flash boot	SW5.3	OFF	U57.P12
UART_SEL1_3	High = UART3 Interface for UART boot is enabled. Low = UART1 interface for terminal	SW5.5	ON	U57.P14

⁽¹⁾ Routing control for GPMC_nCS0 is shared between NOR and NAND flash memories. Ensure that only one DIP switch, SW5.P1 or SW5.P2, is ever set to the ON state at any one time, so that GMPC_nCS0 is only connected to one memory. Failure to adhere to this requirement will cause NOR and NAND memory data bus contention.

Table 12. Board Controls for Signaling and Operational Modes

Signals	Description	DIP Switch	Factory Settings	I2C1 GPIO Expander
MCASP1_ENn	Low = Enable COMx signal paths	SW5.6	OFF	U57.P15
NOR_ALT_ADDRn	High = Selects default pin location for GPMC ADDR	SW5.7	OFF	U57.P6
	Low – Selects alternate/new pin locations for GPMC			
PCI_RESET_SEL	High = PCle device may reset SoC Low = SoC may reset the PCle device	SW5.8	OFF	NA
GPMC_WPN	Low = Enable write protection of NAND Flash	SW5.9	OFF	NA
I2C_EEPROM_WP	High = Enable write protection of Board identification EEPROM	SW5.10	OFF	NA

3.7 JTAG and Emulator

The JTAG emulation interface is supported through the MIPI 60-pin interfaces. The EVM kit includes an adapter for supporting other JTAG interfaces, including TI's 20-pin cJTAG interface. Reset (warm reset) through the emulator is supported.

The EVM supports up to 20 trace bits. At the SoC and EVM level, the trace pins are muxed with VOUT1 (LCD panel) pins. Thus, these interfaces cannot be used simultaneously. TI recommends any LCD panel be removed from the system using debug or trace features.

www.ti.com Hardware

3.8 **UART Terminal**

The EVM supports a single UART connection for a user terminal. A FT232 device is used to transport the UART information over USB to a host PC. The EVM is designed to use UART1 as the primary terminal connection, but can also support an alternate configuration to use UART3 (required to support peripheral and UART booting). The USB-side of the FT232 device is powered from the USB port, and the connection stays active regardless of the power state of the EVM.

USART device to be used: FTD Chip FT232RQ

A USB mini-AB receptacle is used to support USB connection, and is included as part of the EVM kit.

3.9 DCAN and CAN Interfaces

The EVM supports access to two DCAN interfaces though pin headers. It supports a single 3-pin CAN interface, connecting DCAN1 through a CAN transceiver.

CAN device used: Texas Instruments SN65HVDA541

3.10 Universal Serial Bus (USB)

Two independent USB ports are supported on the EVM. USB3.0 Super-Speed bus (USB1) is supported using port USB1 to a mini-AB type connector. This interface supports rates up to 5 Gbps. USB2.0 interface is supported using port USB2 to a micro-AB type connector. It can support rates up to 480 Mbps. Both ports can operate either as host or device mode. VBUS can be supplied to a peripheral when in host mode by enabling the VBUS switch (controlled through the SoC). However, the EVM cannot be powered from VBUS when operating in device mode.

The EVM includes capabilities to set and read each connector ID pin. This is supported using the IO expander (EXP2 P1 for USB1, P2 for USB2). In addition, DIP switch SW1 provides the ability to manual set the individual ID value either high (OFF) or low (ON).

3.11 Wired Ethernet

Dual Gigabit Ethernet ports are supported on the EVM. RGMII ports 0 and 1 drive the Texas Instruments DP83867 Gigabit PHYs. The PHYs are configured through the Management Data Input/Output bus (MDIO), with address set to 0x2 (port 0) and 0x3 (port 1). PHYs are reset at power-on, but can also be independently reset using the IO expander. Both ports share a common interrupt signal (GPIO6 16).

IO Expander Control: EXP1, P10 (PHY 0 Reset), P11 (PHY 1 Reset)

NOTE: For PHY configuration, the user must configure the DP83867 RGMII Control register (RGMIICTL) for RGMII mode, and the RGMII Delay Control register (RGMIIDCTL) for 0-ns TX delay, and 2.25-ns RX delay. Set the IO Drive Strength register (IO_IMPEDANCE_CTRL) to maximum drive.

3.12 Video Output

The EVM supports three different options for supporting video output: HDMI, Display Panel, and FPD Link. Each can be supported independently, or all used simultaneously.

HDMI Display 3.12.1

The SoC includes a dedicated HDMI display interface, which is supported on to a type A HDMI connector. The interface will support 1080p with 24b color. A communication channel (DDC/CEC) is supported to the HDMI connector for communication with the HDMI panel. A monitor detect indication is also provided. The DDC/CED interface and monitor detect signals (HPD) are translated through the transceiver, and can be controlled using IO from the expander.

DDC Transceiver used: Texas Instruments TPD12S016

IO Expander Control: EXP3, P4 (Lvl Shift Reg Enable, HPD), P5 (DDC/CEC Enable)

Hardware www.ti.com

3.12.2 LCD Touch Panel

The EVM supports a LCD panel interface for supporting video output to a LCD panel. The SoC VOUT1 resource is used drive up to 24b RGB data to interface. The interface supports resource connections for interfacing with a touch panel for advanced user interfaces. These include a control bus (I2C1) and interrupt for touch indications (GPIO)

An LCD panel is not included with the CPU EVM, but can be ordered and included as part of an assembly kit

Connector used: Molex

3.12.3 FPD-Link III Output and Panel

The EVM includes a FPD-Link III parallel-to-serial interface on VOUT3. It supports up to 24bits of data and can operate at pixel rates up to 85 MHz. The interrupt is supported to enable back-channel communication, typically needed if supporting touch screen. The transceiver is configured using I2C (port 5, 0x1B).

Serializer device used: Texas Instruments DS90UH925Q

Connector used: Automotive HSD Connector, right-angle plug for PCB, Rosenberger D4S20D-40ML5-Z.

3.13 Video Input

3.13.1 Parallel Imaging

Parallel video input is supported through connections from external sensors and transceivers. The SoC port VIN2A is routed to a connector interface designed to mate with camera sensors from Leopard Imaging. This approach provides flexibility for customers to select from a variety of available modules, while also supporting connections of custom solutions. The attached module can be configured using either I2C (port 5) or SPI (port 1).

Connector used: FPC 36 position, 0.5 mm, Molex 052559-3679.

3.13.2 Serial Imaging

Serial video input is supported through connections from external sensors and transceivers. The SoC port CSI2-0 is routed to connector interfaced designed to mate with camera sensors from Leopard Imaging. This approach provides flexibility for customers to select from a variety of available modules. Both serial ports (CSI2-0 and CSI2-1) are routed to an expansion connector for supporting a variety of custom solutions. Both interfaces support additional signals for the control and configuration of the attached modules. These interfaces (I2C port 5, SPI port 1) are translated to 1.8-V IO (with resistor option to leave at 3.3-V IO).

LI Connector used: FPC 36 position, 0.5 mm, Molex 052559-3679

Connector used: Samtec QSH-020-01-L-D-DP-A

3.14 PCIe

The EVM supports a PCIe (single-lane) interface for connecting with a variety of external modules. A second lane is available with a component modification (FL2, FL3). An on-board clock generator CDCM9102 provides the 100-MHz reference clock to both the SoC and attached modules. The EVM support two different PCIe reset configurations, select using DIP switch SW5 position 8. The default setting of ON lets SoC reset the PCIe peripheral. The switch setting of OFFlets the PCIe peripheral reset the SoC.

www.ti.com Hardware

3.15 Media Local Bus (MLB)

The EVM supports a Media Local Bus interface for connecting to external hardware (such as SMSC OS81110/2+0 Physical Interface Board). The interface supports both 3-pin MediaLB and 6-pin MediaLB+ configurations.

Connector used: Samtec QSH-020-01-L-D-DP-A

3.16 Audio

The EVM supports onboard AIC3106 audio codec for analog audio conversions. Analog inputs are supported on two 3.5-mm audio jacks, including stereo line inputs (P12) and mono microphone (P11). Analog outputs are supported on two 3.5-mm audio jacks, providing stereo line outputs (P13) and stereo headset (P14). The digital audio is connected to the SoC using multi-channel serial port (McASP3). The codec requires a master clock (AHCLKX). The audio codec is configured using I2C1, and is accessed at address 0x19.

3.17 COM8 Module Interface

A connector is provided to facilitate the plugging in of TI COM8Q modules, which provide features such as Bluetooth and Wi-FiTM. The COM8Q interface requires a 3.6-V power supply; thus, a dedicated regulator is provided. All signals on the COM8Q interface are required to 1.8 volts, thus voltage translators are placed to convert from the standard IO levels of 3.3 V. UART interface (UART3) is used for BT-HCl port, I2S port (McASP7) is used for BT-audio, and MMC4 port is use for WiFi communication.

Connector used: Samtec MEC6-150-02-S-D-RA1

3.18 User Interface LEDs

The CPU board has four user interface LEDs for debug, status indication, and so forth. Table 13 details the user interface LED and its control.

LED	Controlled By
DS4	IO Expander EXP1, position P7
DS3	IO Expander EXP1, position P6
DS2	IO Expander EXP1, position P5
DS1	IO Expander EXP1, position P4

Table 13. User LEDs

3.19 Power Monitoring

The CPU board has provisions to monitor power for many of the systems core power rails. The measurement system is implemented using the TI INA226 I2C current shunt and power monitors. The INA226 device monitors both the power supply voltage and shunt current measurements. Information is connected from the INA226 devices using dedicated I2C buses. The INA226s can be controlled through an off-board module (FTDI USART, MSP430, or a similar device).

Hardware www.ti.com

Table 14 shows a mapping of the current monitoring system. INA226 are located at each shunt location.

Table 14. Power Monitor Mapping

	I2C BUS A						
I2C Addr	Power Net	Shunt / Resistor	Description				
0x40	SMPS1_IN	5m-Ω	TPS65917 SMPS1 power input (MPU)				
0x41	SMPS2_IN	10m-Ω	TPS65917 SMPS1 power input (GPU/DSP)				
0x42	SMPS3_IN	10m-Ω	TPS65917 SMPS1 power input (CORE)				
0x43	SMPS4_IN	10m-Ω	TPS65917 SMPS1 power input (1V8)				
0x44	SMPS5_IN	10m-Ω	TPS65917 SMPS1 power input (DDR)				
0x45	J6_VDD_MPU	10m-Ω	CPU MPU power rail (TPS65917 SMPS1)				
0x46	J6_VDD_GPU	10m-Ω	CPU GPU/DSP/IVA (TPS65917 SMPS2)				
0x47	J6_VDD_CORE	10m-Ω	CPU CORE power rail (TPS65917 SMPS3)				
0x48	J6_VDD_1V8	10m-Ω	CPU 1v8 power rail(s)				
0x49	EVM_VDD_1V8	10m-Ω	EVM 1v8 Peripheral Rail				
0x4A	J6_VDD_DDR	10m-Ω	CPU DDR Power Rail				
0x4B	EVM_VDD_DDR	10m-Ω	DDR Power Rail				
		I2C B	US B				
I2C Addr	Power Net	Shunt / Resistor	Description				
0x40	VDDSHV8	10m-Ω	CPU IO Rail for SD/MMC				
0x41	VDDSHV5	10m-Ω	CPU IO Rail for RTC				
0x42	VDDA_PHY	10m-Ω	CPU PHY LDO Rail				
0x43	VDDA_USB3v3	10m-Ω	CPU USB PHY LDO Rail				
0x44	VDDA_PLL	10m-Ω	CPU PLL LDO Rail				
0x45	EVM_5v0	10m-Ω	EVM 5v0 Peripheral Rail				
0x46	EVM_3v3	10m-Ω	EVM 3v3 Peripheral Rail				
0x47	VCCA_IN	10m-Ω	Total System power rail				
0x48	EVM_12V	10m-Ω	Total System 12v power rail				
0x49	1v8_PHY2	10m-Ω	CPU PHY LDO Rail				

Hardware www.ti.com

3.20 I2C Peripheral Map

Table 15 shows the list of I2C interfaces available on the EVM, with a list of device connected to each I2C interface and its corresponding device address.

Table 15. I2C Device Address Chart

CPU Board	Part No	I2C1	I2C3	I2C4	I2C5	Device Addr (7b)
EEPROM	24WC256	X				0x50
Digital Temperature Sensor	TMP102AIDRLT	X				0x48
GPIO Expander #1	PCF8575	X				0x20
GPIO Expander #2	PCF8575	Х				0x21
GPIO Expander #3	PCF8575				Х	0x26
MLB Connector	Connector	X				NA
LCD Interface	Connector	X				NA
COM8 Connector	Connector	Х				NA
Audio Codec	TLV320AIC3106	X				0X19
Expansion Connector	Connector	X	Х	Х		NA
PMIC	LP8733	X				0x60
	LP8732	X				0x61
FPD Link	DS90UH925Q				Х	0x1B
LI Camera	Connector				Х	NA
CSI2 Camera	Connector				Х	NA

3.21 GPIO List

Table 16 shows the list of SoC GPIOs. Signals used for GPIO on expansion boards are not included in this list, as they are dependent upon the application board used.

Table 16. SoC GPIO Map

Feature	Peripheral Device	EVM Bd Net	Function	SoC GPIO
Connectivity on Module	COM8 Connector	GP5[4]	BT_EN	GPIO5_4
Connectivity on Module	COM8 Connector	GP5[5]	GPS_PPS_OUT	GPIO5_5
Connectivity on Module	COM8 Connector	GP5[6]	GPS_TIME_STAMP	GPIO5_6
Connectivity on Module	COM8 Connector	GP5[7]	WLAN_IRQ	GPIO5_7
Connectivity on Module	COM8 Connector	GP5[8]	WL_EN	GPIO5_8
Media Local Bus(MLB)	MLB Connector	GP5[9]	NA	GPIO5_9
Media Local Bus(MLB)	MLB Connector	GP6_[28]	NA	GPIO6_28
IO Expander	PCF8575	PCF8575_INT	IOEXP_IRQ	GPIO3_30
Gig Ethernet	Ethernet PHY	ENET_INTSn	ENET_IRQ	GPIO6_16
LCD Touch Panel	Display Connector	GP1[15]	TS_LCD_IRQ	GPIO1_15
FPD-Link Panel	FPD-Link Txmt	VOUT2_INTB	FPDTX_IRQ	GPIO3_38
Power Mgmt	PMIC	WAKEUP3	PMIC_IRQ	GPIO1_3
SD Card	Micro-SD	MMC1_SDCD	CARD_DETECT	GPIO6_27
Test	Automated Test	GP5[0]	USER_DEFINED	GPIO5_0

NOTE: Functional signals of pinmux are not consider for this table. For more details, see the DRA72x_TDA2Ex CPU EVM Schematic Rev D (http://www.ti.com/lit/zip/sprr236).

Hardware www.ti.com

3.22 IO Expander List

Table 17. I/O Expander Map

Device	Slave Address	I2C I/F	Expander IO	Netname	Description
			INT#	PCF8575_INT	Interrupt output to SoC
			P0	TS_LCD_GPIO1	Press Button Switch 1
			P1	TS_LCD_GPIO2	Press Button Switch 2
			P2	TS_LCD_GPIO3	Press Button Switch 3
			P3	TS_LCD_GPIO4	Press Button Switch 4
			P4	USER_LED1	User LED 1
			P5	USER_LED2	User LED 2
			P6	USER_LED3	User LED 3
EXP1	0b0010 000 (0x20)	I2C1	P7	USER_LED4	User LED 4
	(07.20)		P10	EXP_ETH0_RSTn	RGMII0 Reset
			P11	EXP_ETH1_RSTn	RGMII1 Reset
			P12	USB1-VBUS_OCN	USB1 Over Current Indication
			P13	USB2-VBUS_OCN	USB2 Over Current Indication
			P14	PCI_SW_RESETn	PCI Interface SW Reset
			P15	CON_LCD_PWR_DN	LCD Board Master power enable
			P16		Open
			P17	TMP102_ALERT	Temperature Sensor Alarm
			INT#	PCF8575_INT	Interrupt output to SoC
			P0	SEL_GPMC_AD_VID_S0	MUX out control signal for GPMC Vs VOUT3B vs VIN1A
			P1	USB1_ID	USB1 ID PIN
			P2	USB2_ID	USB2 ID PIN
			P3	SEL_I2C3_CAN2	MUX out control signal for I2C3 Vs DCAN2
			P4	SEL_ENET_MUX_S0	MUX out control signal for RGMII0 Vs VIN
		1201	P5	MMC_PWR_ON	Power on regulator to MMC card
			P6	NOR_ALT_ADDRn	MUX out control signals for alternate location of GPMC control signals
EXP2	0b0010 001 (0x21)		P7	SEL_GPMC_AD_VID_S2	MUX out control signal for GPMC vs VOUT3B vs VIN1A
			P10	NAND_BOOTn	NAND boot Chip select enable signal
			P11	NOR_BOOTn	NOR boot Chip select enable signal
			P12	MMC2_BOOT	MUX out control signal for GPMC Vs MMC2
			P13	QSPI_SELn	Not used, as QSPI is enabled with resistor mux
			P14	UART_SEL1_3	MUX out control signal for UART1 vs UART for terminal access
			P15	MCASP1_ENn	COM8 interface level shifter enable signal
			P16	SEL_UART3_SPI2	MUX out control signal for UART3 Vs SPI2
			P17		Open

www.ti.com Hardware

Table 17. I/O Expander Map (continued)

Device	Slave Address	I2C I/F	Expander IO	Netname	Description																			
			P0	PM_OEn	Enable to connect PM Bus with I2C3																			
					P1	VIN6_SEL_S0	MUX out control signal for VIN6A and McASPx																	
			P2	VIN2_S0	MUX out control signal for EMAC1 & VIN2A Signals																			
			P3	PM_SEL	Selection to connect I2C3 to either PM bus 1 or 2																			
			P4	HDMI_CT_HPD	HDMI Hot Plug Detect																			
			P5	HDMI_LS_OE	HDMI Level Shifter Enable																			
	XP3 0b0010 010 (0x26) I2C5		P6	VIN2_S2	MUX out control signal for VIN2A vs expansion signals																			
EXP3		I2C5	P7		Open																			
			P10	SEL_CSI2n	MUX out control signal for CSI2 configuration																			
			P11	EXVIN2_S0	MUX out control signal for EMAC1 vs VIN2A vs expansion signals																			
																						P12	EXVIN2_S2	MUX out control signal for EMAC1 vs VIN2A vs expansion signals
			P13	MMC3_SEL	MUX out control signal for MMC3 vs VIN2B																			
				İ	P14	MMC2_BOOT_OVR_OEN	MMC2 DIP Switch Override Enable																	
			P15	MMC2_BOOT_OVR	MMC2 DIP Switch Override																			
																			P16	NOR_BOOT_OVR_OEN	NOR BOOT DIP Switch Override Enable			
								P17	NOR_BOOT_OVR	NOR BOOT DIP Switch Override														

Hardware www.ti.com

3.23 Configuration EEPROM

The CPU board contains a EEPROM memory device for storing and retrieving configuration information. The EEPROM provides 256Kb (or 32KBytes) of storage space, and is accessible through I2C. Device location information is located in the Table 15. The configuration ID information is programmed by the factory at the time of manufacturing, and should not be altered. Below is the configuration data format within the EEPROM.

EEPROM device used: Catalyst Semiconductor CAT24C256WI-G

I2C Bus/Addr: I2C1,0x50

Data format of the EEPROM is provided in Table 18.

Table 18. EEPROM Data Format

EEPROM Field	Byte Location	Value	Description
ID.HEADER	[3:0]	0xAA5533EE	Fixed value at start of header ID.
ID.BOARD_NAME	[19:4]	'DRA72x-TDA2Ex' (ascii)	Fixed value of 'J6ECOCPU' or 'DRA72x-TDA2Ex'
ID.VERSION_MAJOR	[21:20]	0x3	A = 0x1 B = 0x2 C = 0x3
ID.VERSION_MINOR	[23:22]	0x0	0x0 for major revision 0x1-0x15 for others
ID.CONFIG_OPTION	[27:24]	0x1E	Bit 6: 1 – EMIF2 ECC Supported, 0 – No Bit 5: 1 – EMIF2 Supported, 0 – No Bit 4: 1 – EMIF1 ECC Supported, 0 – No Bit 3: 1 – EMIF1 Supported, 0 – No Bit 2: 1 – Extended Memory EEPROM Cfg Support, 0 – No Bit 1: 1 – MAC addr in EEPROM (default) Bit 0: 0 - QSPI (default), 1 - NOR
EMIF1_SIZE_BYTES	[31:28]	0x8000 0000	Memory size for EMIF1 in bytes (unsigned long) ⁽²⁾
EMIF2_SIZE_BYTES	[35:32]	0x0000 0000	Memory size for EMIF2 in bytes (unsigned long) ⁽²⁾
RESERVED	[55:36]	0x0	Reserved ⁽²⁾
MAC_ADDR	0x7F00	00.0E.99.zz.yy.xx	Optional MAC address

⁽¹⁾ If Bit 2 set to 0, all EEPROM data beyond is set to 0 (not defined or used). If set to 1, the mapping is per the table.

For reference, a C-style coded structure is provided:

```
Struct EEPROM_ID_T
{
    Unsigned long header;    4
    Char board_name[16];    16
    Unsigned short version_major;    2
    Unsigned short version_minor;    2
    Unsigned long config_option;    4
    Unsigned long emif1_size_bytes;    4
    Unsigned long emif2_size_bytes;    4
    Char reserved[28];    20
} eeprom_id;
```

⁽²⁾ Prior to Rev C, Bytes [55:28] were reserved and set to 0x0.

www.ti.com Signal Multiplex Logic

4 Signal Multiplex Logic

Due to the high level of multiplexing on the SoC (16+ levels), multiplex control logic is required to use different signals on the same SoC pins with their various functionality. The information below provides description of the logic.

An I2C-based IO expander is used to control the onboard muxes. Table 19 shows the specific bits assigned to each mux, as well as the specific settings for the various selections.

Table 19. Onboard Mux Settings and Control

MUX	Control Bits	Value	Mux Setting	
A	n/a	n/a	QSPI Memory (default)	
		n/a	NOR Memory (Requires resistor change)	
C (RU21)	SW5.3	OFF	NOR Memory	
		ON	EMMC Memory	
	EXP3.P[12:11]	00	Reserved	
		01	NOR Memory selected (by SW5.2)	
		10	EMMC Memory selected (by SW5.3)	
		11	NOR Memory selected (default)	
B (RU88, RU94,	EXP2.P[7,0]	00	Reserved	
RU33)		01	VIN1A to Expansion	
		10	VOUT3 to LCD Panel	
		11	GPMC NOR/NAND (default)	
E (RU30)	EXP3.P[6,2]	00	Reserved	
		01	VIN2A to LI Camera	
		10	VIN2A to Expansion	
		11	Reserved (default)	
F (RU93)	EXP3.P[12,11]	00	Reserved	
		01	VIN2A to LI Camera	
		10	VIN2A to Expansion	
		11	RGMII1 to Ethernet Port 1 (default)	
K (RU111)	EXP2.P16	0	UART3 to COM8Q	
		1	Route to Expansion (SPI2) (default)	
L (RU113)	EXP2.P3	0	Route to Expansion (I2C3)	
		1	Route to DCAN2 Connector (default)	
J (RU95)	EXP2.P4	0	Route to Expansion (VIN1B)	
		1	RGMII0 to Ethernet Port 0 (default)	
M (RU117)	EXP3.P13	0	Route to Expansion (VIN2B)	
		1	Route to Expansion (MMC3/legacy)(default)	
G (RU96)	SW5.7	OFF	Use Default NOR Address (default)	
		ON	Use Alternate NOR Address (w/ EMMC)	
H (RU99)	EXP3.P1	0	Route to COM8Q (MASP3/7)	
		1	Route to Expansion (McASP3/7)(default)	

Signal Multiplex Logic www.ti.com

4.1 GPMC and QSPI Selection (Mux A)

Figure 7 is part of the SoC pinmux table for GPMC. The SoC device supports additional functions not shown in the table. The functions shown are intended to reflect those supported on the EVM. These include:

- Memory Bus (GPMC): A[18:13]
- Quad Serial Bus (QSPI): SCLK, D[3:0], CS[0], RTCLK

Pad Name	Fun	ction 1	Fun	ction 2
gpmc_a[13]	GPMC	gpmc_a[13]	QSPI1	qspi1_rtclk
gpmc_a[14]	GPMC	gpmc_a[14]	QSPI1	qspi1_d[3]
gpmc_a[15]	GPMC	gpmc_a[15]	QSPI1	qspi1_d[2]
gpmc_a[16]	GPMC	gpmc_a[16]	QSPI1	qspi1_d[0]
gpmc_a[17]	GPMC	gpmc_a[17]	QSPI1	qspi1_d[1]
gpmc_a[18]	GPMC	gpmc_a[18]	QSPI1	qspi1_sclk
gpmc_cs[2]	GPMC	gpmc_cs[2]	QSPI1	qspi1_cs[0]

Figure 7. SoC Pinmux for GPMC and QSPI

Mux A: Selects between NOR and QSPI memory support.

NOTE: The mux is implemented using resistors. This was due to the signal rate and routing restrictions of the QSPI device. To enable the GPMC signals to NOR (shown in RED in Figure 8), the board must be modified to move resistors.

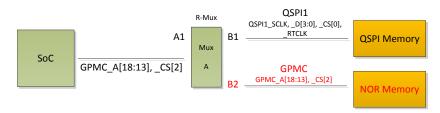


Figure 8. Mux Diagram for GPMC and QSPI

4.2 GPMC/VIN1/VOUT3 Selection (Mux B)

Figure 9 is part of the SoC pinmux table for GPMC. The SoC device supports additional functions not shown in the table. The functions shown are intended to reflect those supported on the EVM. These include:

- Memory Bus (GPMC): AD[15:0], A[12:0]
- Video Input Port (VIN1A): CLK, HSYNC, VSYNC, DE, D[23:0]
- Video Output Port (VOUT3): CLK, HSYNC, VSYNC, DE, D[23:0]
- Boot Mode Selection (SYSBOOT): SYSBOOT[15:0]

www.ti.com Signal Multiplex Logic

Pad Name	Fun	ction 1	Function 3		Function 4		Function 16	
gpmc_ad[0]	GPMC	gpmc_ad[0]	VIP1	vin1a_d[0]	DSS	vout3_d[0]	CHIPGLUE	sysboot0
gpmc_ad[1]	GPMC	gpmc_ad[1]	VIP1	vin1a_d[1]	DSS	vout3_d[1]	CHIPGLUE	sysboot1
gpmc_ad[2]	GPMC	gpmc_ad[2]	VIP1	vin1a_d[2]	DSS	vout3_d[2]	CHIPGLUE	sysboot2
gpmc_ad[3]	GPMC	gpmc_ad[3]	VIP1	vin1a_d[3]		vout3_d[3]	CHIPGLUE	sysboot3
gpmc_ad[4]	GPMC	gpmc_ad[4]	VIP1	vin1a_d[4]	DSS	vout3_d[4]	CHIPGLUE	sysboot4
gpmc_ad[5]	GPMC	gpmc_ad[5]	VIP1	vin1a_d[5]	DSS	vout3_d[5]	CHIPGLUE	sysboot5
gpmc_ad[6]	GPMC	gpmc_ad[6]	VIP1	vin1a_d[6]	DSS	vout3_d[6]	CHIPGLUE	sysboot6
gpmc_ad[7]	GPMC	gpmc_ad[7]	VIP1	vin1a_d[7]	DSS	vout3_d[7]	CHIPGLUE	sysboot7
gpmc_ad[8]	GPMC	gpmc_ad[8]	VIP1	vin1a_d[8]	DSS	vout3_d[8]	CHIPGLUE	sysboot8
gpmc_ad[9]	GPMC	gpmc_ad[9]	VIP1	vin1a_d[9]	DSS	vout3_d[9]	CHIPGLUE	sysboot9
gpmc_ad[10]	GPMC	gpmc_ad[10]	VIP1	vin1a_d[10	DSS	vout3_d[10]	CHIPGLUE	sysboot10
gpmc_ad[11]	GPMC	gpmc_ad[11]	VIP1	vin1a_d[11	DSS	vout3_d[11]	CHIPGLUE	sysboot11
gpmc_ad[12]	GPMC	gpmc_ad[12]	VIP1	vin1a_d[12	DSS	vout3_d[12]	CHIPGLUE	sysboot12
gpmc_ad[13]	GPMC	gpmc_ad[13]	VIP1	vin1a_d[13	DSS	vout3_d[13]	CHIPGLUE	sysboot13
gpmc_ad[14]	GPMC	gpmc_ad[14]	VIP1	vin1a_d[14	DSS	vout3_d[14]	CHIPGLUE	sysboot14
gpmc_ad[15]	GPMC	gpmc_ad[15]	VIP1	vin1a_d[19	DSS	vout3_d[15]	CHIPGLUE	sysboot15
gpmc_a[0]	GPMC	gpmc_a[0]	VIP1	vin1a_d[16	DSS	vout3_d[16]	1	
gpmc_a[1]	GPMC	gpmc_a[1]	VIP1	vin1a_d[17	DSS	vout3_d[17]		
gpmc_a[2]	GPMC	gpmc_a[2]	VIP1	vin1a_d[18	DSS	vout3_d[18]		
gpmc_a[3]	GPMC	gpmc_a[3]	VIP1	vin1a_d[19	DSS	vout3_d[19]		
gpmc_a[4]	GPMC	gpmc_a[4]	VIP1	vin1a_d[20	DSS	vout3_d[20]		
gpmc_a[5]	GPMC	gpmc_a[5]	VIP1	vin1a_d[21	DSS	vout3_d[21]		
gpmc_a[6]	GPMC	gpmc_a[6]	VIP1	vin1a_d[22	DSS	vout3_d[22]		
gpmc_a[7]	GPMC	gpmc_a[7]	VIP1	vin1a_d[23	DSS	vout3_d[23]		
gpmc_a[8]	GPMC	gpmc_a[8]	VIP1	vin1a_hsyr	DSS	vout3_hsync		
gpmc_a[9]	GPMC	gpmc_a[9]	VIP1	vin1a_vsyr	DSS	vout3_vsync		
gpmc_a[10]	GPMC	gpmc_a[10]	VIP1	vin1a_de0	DSS	vout3_de		
gpmc_a[11]	GPMC	gpmc_a[11]	VIP1	vin1a_fld0	DSS	vout3_fld		
gpmc_a[12]	GPMC	gpmc_a[12]						
gpmc_cs[3]	GPMC	gpmc_cs[3]	VIP1	vin1a_clk0	DSS	vout3_clk		

Figure 9. SoC Pinmux for GPMC/VIN1/VOUT3

Signal Multiplex Logic www.ti.com

Mux B: Selects between NOR/NAND memories, FPD Linkl for video, and expansion, as shown in Figure 10. The selection is made using the IO expander #2, and bits P7 and P0. The defaults are set to enable GPMC to NOR/NAND memories, required for SYSBOOT mode latching.

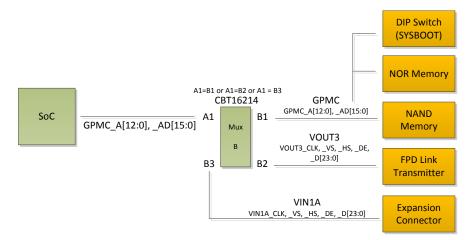


Figure 10. Mux Diagram for GPMC/VIN1/VOUT3

4.3 GPMC and EMMC Selection (Mux C)

Figure 11 is part of the SoC pinmux table for GPMC. The SoC device supports additional functions not shown in the table. The functions shown are intended to reflect those supported on the EVM. These include:

- Memory Bus (GPMC): A[27:19], CS1
- EMMC Memory (MMC2): CLK, CMD, D[7:0]

Pad Name	Function 1		Fun	ction 2
gpmc_a[19]	GPMC	gpmc_a[19]	ммс2	mmc2_dat[4]
gpmc_a[20]	GPMC	gpmc_a[20]	MMC2	mmc2_dat[5]
gpmc_a[21]	GPMC	gpmc_a[21]	MMC2	mmc2_dat[6]
gpmc_a[22]	GPMC	gpmc_a[22]	MMC2	mmc2_dat[7]
gpmc_a[23]	GPMC	gpmc_a[23]	MMC2	mmc2_clk
gpmc_a[24]	GPMC	gpmc_a[24]	MMC2	mmc2_dat[0]
gpmc_a[25]	GPMC	gpmc_a[25]	MMC2	mmc2_dat[1]
gpmc_a[26]	GPMC	gpmc_a[26]	MMC2	mmc2_dat[2]
gpmc_a[27]	GPMC	gpmc_a[27]	MMC2	mmc2_dat[3]
gpmc_cs[1]	GPMC	gpmc_cs[1]	MMC2	mmc2_cmd

Figure 11. SoC Pinmux for GPMC/EMMC

www.ti.com Signal Multiplex Logic

Mux C: Selects between NOR memory and EMMC memory, as shown in Figure 12. The selection is made using the IO expander #3, and bits P15 and P14. If booting from EMMC, the DIP Switch SW5 position 3 is used to select interface (by default).

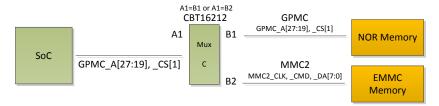


Figure 12. Mux Diagram for GPMC and EMMC

4.4 VIN2A Selection (Mux E)

Figure 13 is part of the SoC pinmux table for VIN2A. The SoC device supports additional functions not shown in the table. The functions shown are intended to reflect those supported on the EVM. These include:

Video Input Port (VIN2A): CLK, HSYNC, VSYNC, DE, D[9:0]

Pad Name	Fu	nction 1	Function 4		Function 5		Function 6	
vin2a_clk0	VIP1	vin2a_clk0			DSS	vout2_fld	DEBUGSS	emu5
vin2a_de0	VIP1	vin2a_de0	VIP1	vin2b_de1	DSS	vout2_de	DEBUGSS	emu6
vin2a_fld0	VIP1	vin2a_fld0			DSS	vout2_clk	DEBUGSS	emu7
vin2a_hsync0	VIP1	vin2a_hsync0	VIP1	vin2b_hsync1	DSS	vout2_hsync	DEBUGSS	emu8
vin2a_vsync0	VIP1	vin2a_vsync0	VIP1	vin2b_vsync1	DSS	vout2_vsync	DEBUGSS	emu9
vin2a_d[0]	VIP1	vin2a_d[0]			DSS	vout2_d[23]	DEBUGSS	emu10
vin2a_d[1]	VIP1	vin2a_d[1]			DSS	vout2_d[22]	DEBUGSS	emu11
vin2a_d[2]	VIP1	vin2a_d[2]			DSS	vout2_d[21]	DEBUGSS	emu12
vin2a_d[3]	VIP1	vin2a_d[3]			DSS	vout2_d[20]	DEBUGSS	emu13
vin2a_d[4]	VIP1	vin2a_d[4]			DSS	vout2_d[19]	DEBUGSS	emu14
vin2a_d[5]	VIP1	vin2a_d[5]			DSS	vout2_d[18]	DEBUGSS	emu15
vin2a_d[6]	VIP1	vin2a_d[6]			DSS	vout2_d[17]	DEBUGSS	emu16
vin2a_d[7]	VIP1	vin2a_d[7]			DSS	vout2_d[16]	DEBUGSS	emu17
vin2a_d[8]	VIP1	vin2a_d[8]			DSS	vout2_d[15]	DEBUGSS	emu18
vin2a_d[9]	VIP1	vin2a_d[9]			DSS	vout2_d[14]	DEBUGSS	emu19

Figure 13. SoC Pinmux for VIN2A and EMU

Signal Multiplex Logic www.ti.com

Mux E: Selects between LI camera and expansion, as shown in Figure 14. The selection is made using the IO expander #3, and bits P6 and P2. The default mode is set to expansion.

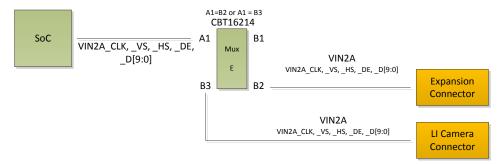


Figure 14. Mux Diagram for VIN2A and EMU

4.5 VIN2A and RGMII1 Selection (Mux F)

Figure 15 is part of the SoC pinmux table for VIN2A. The SoC device supports additional functions not shown in the table. The functions shown are intended to reflect those supported on the EVM. These include:

- Video Input Port (VIN2A): D[23:10]
- Gig Ethernet (RGMII1): TXC, TXCTL, TXD[3:0], RXC, RXCTL, RXD[3:0]
- Management Data I/O (MDIO): MCLK, D

Pad Name	Fun	ction 1	Function 4		Function 5	
vin2a_d[10]	VIP1	vin2a_d[10]	EMAC	mdio_mclk	DSS	vout2_d[13]
vin2a_d[11]	VIP1	vin2a_d[11]	EMAC	mdio_d	DSS	vout2_d[12]
vin2a_d[12]	VIP1	vin2a_d[12]	EMAC	rgmii1_txc	DSS	vout2_d[11]
vin2a_d[13]	VIP1	vin2a_d[13]	EMAC	rgmii1_txctl	DSS	vout2_d[10]
vin2a_d[14]	VIP1	vin2a_d[14]	EMAC	rgmii1_txd[3]	DSS	vout2_d[9]
vin2a_d[15]	VIP1	vin2a_d[15]	EMAC	rgmii1_txd[2]	DSS	vout2_d[8]
vin2a_d[16]	VIP1	vin2a_d[16]	EMAC	rgmii1_txd[1]	DSS	vout2_d[7]
vin2a_d[17]	VIP1	vin2a_d[17]	EMAC	rgmii1_txd[0]	DSS	vout2_d[6]
vin2a_d[18]	VIP1	vin2a_d[18]	EMAC	rgmii1_rxc	DSS	vout2_d[5]
vin2a_d[19]	VIP1	vin2a_d[19]	EMAC	rgmii1_rxctl	DSS	vout2_d[4]
vin2a_d[20]	VIP1	vin2a_d[20]	EMAC	rgmii1_rxd[3]	DSS	vout2_d[3]
vin2a_d[21]	VIP1	vin2a_d[21]	EMAC	rgmii1_rxd[2]	DSS	vout2_d[2]
vin2a_d[22]	VIP1	vin2a_d[22]	EMAC	rgmii1_rxd[1]	DSS	vout2_d[1]
vin2a_d[23]	VIP1	vin2a_d[23]	EMAC	rgmii1_rxd[0]	DSS	vout2_d[0]

Figure 15. SoC Pinmux for VIN2A and RGMII1

www.ti.com Signal Multiplex Logic

Mux F: Selects between Gig Ethernet, expansion, and combines with Mux E to support LI camera. The selection is made using the IO expander #3, and bits P12 and P11, with the default set to Gig Ethernet.

The MDIO mux setting (shown in RED in Figure 16) is only used if RGMII0 port is not selected. Otherwise, the MDIO function is provided by other pins. The mux selection for MDIO is automatic, based on the RGMII0 mux setting.

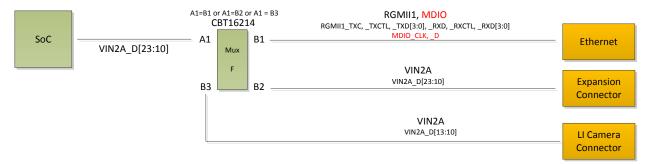


Figure 16. Mux Diagram for VIN2A and RGMII1

4.6 RGMII0 and VIN1B Selection (Mux J)

Figure 17 is part of the SoC pinmux table for RGMII0. The SoC device supports additional functions not shown in the table. The functions shown are intended to reflect those supported on the EVM. These include:

- Gig Ethernet (RGMII0): TXC, TXCTL, TXD[3:0], RXC, RXCTL, RXD[3:0]
- Management Data I/O (MDIO): MCLK, D
- Video Input Port (VIN1B): CLK, HSYNC, VSYNC, DE, [7:0]

Pad Name	Function 1		Fun	ection 6
mdio_mclk	EMAC	mdio_mclk	VIP1	vin1b_clk1
mdio_d	EMAC	mdio_d	VIP1	vin1b_d[0]
uart3_rxd	UART3	uart3_rxd	VIP1	vin1b_d[1]
uart3_txd	UART3	uart3_txd	VIP1	vin1b_d[2]
rgmii0_txc	EMAC	rgmii0_txc	VIP1	vin1b_d[3]
rgmii0_txctl	EMAC	rgmii0_txctl	VIP1	vin1b_d[4]
rgmii0_txd[3]	EMAC	rgmii0_txd[3]	VIP1	vin1b_de1
rgmii0_txd[2]	EMAC	rgmii0_txd[2]	VIP1	vin1b_hsync1
rgmii0_txd[1]	EMAC	rgmii0_txd[1]	VIP1	vin1b_vsync1
rgmii0_txd[0]	EMAC	rgmii0_txd[0]		
rgmii0_rxc	EMAC	rgmii0_rxc	VIP1	vin1b_d[5]
rgmii0_rxctl	EMAC	rgmii0_rxctl	VIP1	vin1b_d[6]
rgmii0_rxd[3]	EMAC	rgmii0_rxd[3]	VIP1	vin1b_d[7]
rgmii0_rxd[2]	EMAC	rgmii0_rxd[2]		
rgmii0_rxd[1]	EMAC	rgmii0_rxd[1]		
rgmii0_rxd[0]	EMAC	rgmii0_rxd[0]	VIP1	vin1b_fld1

Figure 17. SoC Pinmux for RGMII0 and VIN1B

Signal Multiplex Logic www.ti.com

Mux J: Selects between Gig Ethernet and expansion, as shown in Figure 18. The selection is made using the IO expander #2 and bit P4, defaulting to Gig Ethernet.

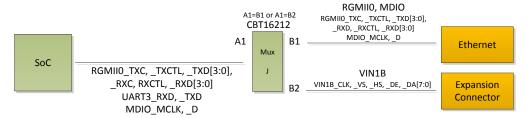


Figure 18. Mux Diagram for RGMII0 and VIN1B

4.7 SPI2 and UART3 Selection (Mux K)

Figure 19 is part of the SoC pinmux table for SPI2. The SoC device supports additional functions not shown in the table. The functions shown are intended to reflect those supported on the EVM. These include:

- SPI Serial Bus (SPI2): SCLK, D[1:0], CS[0]
- UART Serial Bus (UART3): TXD, RXD, CTSN, RTSN

Pad Name	Function 1		Fu	nction 2
spi2_sclk	SPI2	spi2_sclk	UART3	uart3_rxd
spi2_d[1]	SPI2	spi2_d[1]	UART3	uart3_txd
spi2_d[0]	SPI2	spi2_d[0]	UART3	uart3_ctsn
spi2_cs[0]	SPI2	spi2_cs[0]	UART3	uart3_rtsn

Figure 19. SoC Pinmux for SPI2 and UART3

Mux K: Selects between Bluetooth (COM8Q module) and expansion interface, as shown in Figure 20. The selection is made using the IO expander #2 and bits P16, defaulting to expansion.

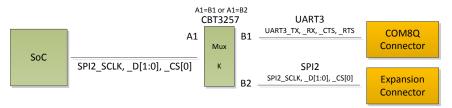


Figure 20. Mux Diagram for SPI2 and UART3

www.ti.com Signal Multiplex Logic

4.8 DCAN2 and I2C3 Selection (Mux L)

Figure 21 is part of the SoC pinmux table for DCAN2. The SoC device supports additional functions not shown in the table. The functions shown are intended to reflect those supported on the EVM. These include:

- Digital CAN Bus (DCAN2): TX, RX
- I2C Serial Bus (I2C3): SCL, SDA

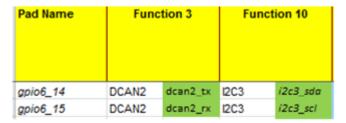


Figure 21. SoC Pinmux for DCAN2

Mux L: Selects between the DCAN2 header and expansion interface, as shown in Figure 22. The selection is made using the IO expander #2 and bits P3, defaulting to on-board DCAN header.

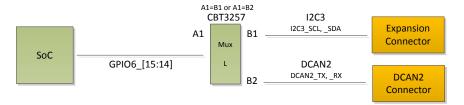
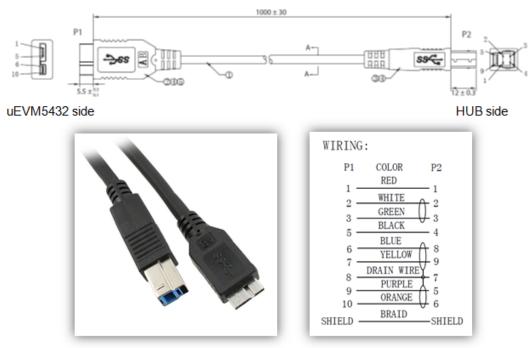


Figure 22. Mux Diagram for DCAN2 and I2C

5 USB3-Supported Configurations


The following USB3.x combinations are supportable:

- Micro-A plug to standard-b plug
 - Connect to hub or external drive or device that has a standard-B receptacle
- · Micro-A plug to micro-B plug
 - EVM connects to hub or external drive or device that has a micro-B receptacle
 - Host connects to the EVM acting as a device
- Standard-A plug to Micro-B plug
 - Host connects to the EVM acting as a device

5.1 Option 1: Micro-A Plug to Standard-B Plug

Use a USB3.0 micro-A to standard-B and USB3.0 hub, as the SIIG one shown in Figure 23.

3023009-01M USB 3.0 Micro-AB TO Standard-B 1m (3.28')

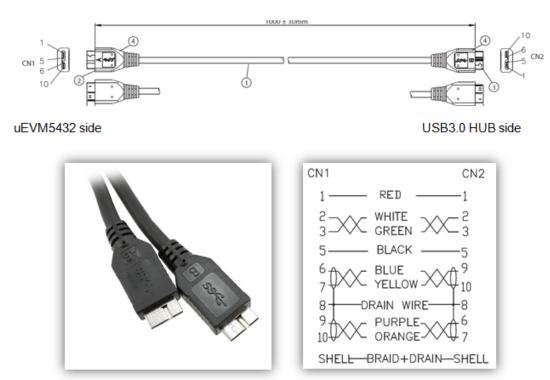

Qualtek SIIG JU-H40312-S14-port USB3.0 Super Speed USB Hub

Figure 23. Option 1

5.2 Option 2: Micro-A Plug to Micro-B Plug

Use a USB3.0 micro-A to micro-B and USB3.0 hub, as the IOGEAR one shown in Figure 24.

Qualtek 3023007-01M USB3.0 Micro-AB to Micro-B 1m (3.28')

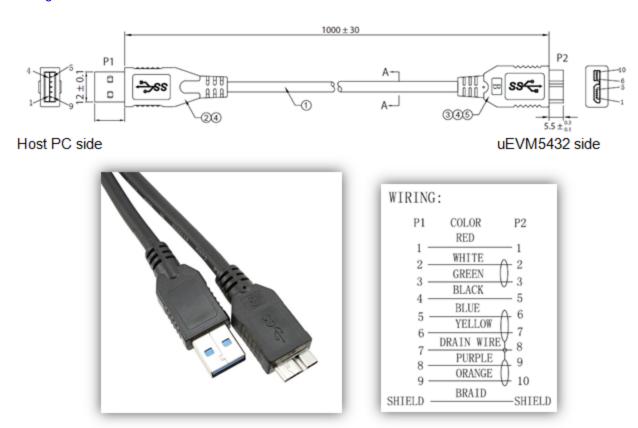

IOGEAR GUH374 4-port USB3.0 HUB

Figure 24. Option 2

5.3 Option 3: Standard-A Plug to Micro-B Plug

Use a USB3.0 micro-B to standard-A. Host PC connects to the EVM acting as a device, as shown in Figure 25.

Qualtek 3023005-01M USB3.0 Standard-A to Micro-B 1m (3.28')

Figure 25. Option 3

6 References

- DRA72x_TDA2Ex CPU EVM PCB Rev D
- DRA72x TDA2Ex CPU EVM Schematic Rev D
- DRA72x_TDA2Ex CPU EVM BOM Rev D
- DRA72x_TDA2Ex CPU EVM CPU Assembly Drawing Rev D
- DRA72x_TDA2Ex CPU EVM CPU PCB Drawing Rev D

STANDARD TERMS AND CONDITIONS FOR EVALUATION MODULES

- 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms and conditions set forth herein. Acceptance of the EVM is expressly subject to the following terms and conditions.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms and conditions that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms and conditions do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for any defects that are caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI. Moreover, TI shall not be liable for any defects that result from User's design, specifications or instructions for such EVMs. Testing and other quality control techniques are used to the extent TI deems necessary or as mandated by government requirements. TI does not test all parameters of each EVM.
 - 2.3 If any EVM fails to conform to the warranty set forth above, Tl's sole liability shall be at its option to repair or replace such EVM, or credit User's account for such EVM. Tl's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by Tl and that are determined by Tl not to conform to such warranty. If Tl elects to repair or replace such EVM, Tl shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.
- 3 Regulatory Notices:
 - 3.1 United States
 - 3.1.1 Notice applicable to EVMs not FCC-Approved:

This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC - FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

- 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page
- 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required by Radio Law of Japan to follow the instructions below with respect to EVMs:

- Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

ンスツルメンツ株式会社

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
- 4 EVM Use Restrictions and Warnings:
 - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
 - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
 - 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
 - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

- 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY WRITTEN DESIGN MATERIALS PROVIDED WITH THE EVM (AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
- 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS AND CONDITIONS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT MADE, CONCEIVED OR ACQUIRED PRIOR TO OR AFTER DELIVERY OF THE EVM
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS AND CONDITIONS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS ANDCONDITIONS OR THE USE OF THE EVMS PROVIDED HEREUNDER, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY WARRANTY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS AND CONDITIONS, OR ANY USE OF ANY TI EVM PROVIDED HEREUNDER, EXCEED THE TOTAL AMOUNT PAID TO TI FOR THE PARTICULAR UNITS SOLD UNDER THESE TERMS AND CONDITIONS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM AGAINST THE PARTICULAR UNITS SOLD TO USER UNDER THESE TERMS AND CONDITIONS SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity