
TMS320DM6441
Digital Media System-on-Chip
Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Silicon Errata

Literature Number: SPRZ246J

September 2006–Revised August 2010



2 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



1 Introduction ........................................................................................................................ 5
1.1 Device and Development Support Tool Nomenclature ............................................................. 5

1.2 Revision Identification ................................................................................................... 6

2 Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional
Specifications ..................................................................................................................... 7

2.1 Usage Notes for Silicon Revision 2.3 ................................................................................. 7
2.1.1 EDMA Transfer Request (TR) Dequeue Priority Limitation ............................................ 7
2.1.2 Bus Priority Inversion Can Affect DDR2 Throughput ................................................... 7
2.1.3 Audio Serial Port (ASP) Transfers Should be Buffered in Internal Memory ......................... 8
2.1.4 DDR2 VTP I/O Calibration Must be Performed Following Device Power-up and Device Reset .. 8
2.1.5 ASP: Initialization Procedure When External Device is Frame-Sync Master ........................ 8
2.1.6 SPI Master Mode: CSHOLD Bit Must be Initialized Twice After Reset ............................... 9
2.1.7 ATA Postwrite and Pre-Fetch Do Not Provide Benefits ................................................ 9

2.2 Silicon Revision 2.3 Known Design Exceptions to Functional Specifications .................................. 10

3 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional
Specifications ................................................................................................................... 41

3.1 Usage Notes for Silicon Revision 2.1 ............................................................................... 41

3.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications .................................. 41

4 Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional
Specifications ................................................................................................................... 42

4.1 Usage Notes for Silicon Revision 1.3 ............................................................................... 42

4.2 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications .................................. 42

5 Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional
Specifications ................................................................................................................... 64

5.1 Usage Notes for Silicon Revision 1.2 ............................................................................... 64

5.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications .................................. 64

6 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional
Specifications ................................................................................................................... 65

6.1 Usage Notes for Silicon Revision 1.1 ............................................................................... 65

6.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications .................................. 65

Revision History ......................................................................................................................... 66

3SPRZ246J–September 2006–Revised August 2010 Table of Contents

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com

List of Figures

1 Example, Device Revision Codes for TMX320DM6441 (ZWT) and TMS320DM6441 (ZWT) .................... 6

2 Expected CSHOLD Behavior ............................................................................................ 22

3 Actual CSHOLD Behavior–32-Bit Writes to SPIDAT1 ................................................................ 22

4 Actual CSHOLD Behavior–Halfword Writes to SPIDAT1 ............................................................ 23

5 Workaround Assuming 32-Bit Writes to SPIDAT1 Followed by a Write Only to CSHOLD ...................... 23

6 Workaround Assuming Halfword Writes to SPIDAT1................................................................. 23

7 IDMA, SDMA, MDMA Paths ............................................................................................. 25

8 Priority Arbitration Scheme for L2 RAM ................................................................................ 37

9 MSTPRI1 Register ........................................................................................................ 49

10 Typical Emulation Interface Circuit ...................................................................................... 55

11 Emulation Interface Circuit with Existing Fielded Debug Controller Pods ......................................... 56

12 New Target Design with Existing Fielded Debug Controller Pods .................................................. 57

13 New Target Design with New Debug Controller Pods................................................................ 57

List of Tables

1 Device Revision Codes .................................................................................................... 6

2 Silicon Revision 2.3 Advisory List ....................................................................................... 10

3 RBG888/RBG666 Pin Mux Options..................................................................................... 12

4 USB Electrical Characteristics in Violation ............................................................................. 17

5 DaVinci DVSDK Software Packages, LSPs, and Patches ........................................................... 34

6 Allowable CPU and SDMA Priorities.................................................................................... 38

7 Silicon Revision 1.3 Advisory List ....................................................................................... 42

8 Bus Master Priority Defaults ............................................................................................. 50

9 RTCK Buffer Characteristics ............................................................................................. 56

10 Bug Summary ............................................................................................................. 58

11 Switching Characteristics Over Recommended Operating Conditions for VPBE Control and Data Output
With Respect to PCLK and VPBECLK ................................................................................. 59

12 Switching Characteristics Over Recommended Operating Conditions for VPBE Control and Data Output
With Respect to VCLK .................................................................................................... 59

13 Switching Characteristics Over Recommended Operating Conditions for Asynchronous Memory Cycles
for EMIFA Module (see Figure 6-21 and Figure 6-22)................................................................ 62

14 Timings for ATA/CF Module — Ultra DMA AC Timing (see Figure 7-28 through Figure 7-37) ................. 63

15 Silicon Revision 1.1 Advisory List ....................................................................................... 65

4 List of Figures SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Errata
SPRZ246J–September 2006–Revised August 2010

TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2,
and 1.1

1 Introduction

This document describes the known exceptions to the functional specifications for the TMS320DM6441
Digital Media System-on-Chip (DMSoC). [See the TMS320DM6441 Digital Media System-on-Chip data
manual (literature number SPRS359D or later).] Throughout this document, TMS320DM644x and DM644x
refer to the TMS320DM6441 device.

For additional information, see the latest version of the TMS320DM644x DMSoC Peripherals Overview
Reference Guide (literature number SPRUE19).

The advisory numbers in this document are not sequential. Some advisory numbers have been moved to
the next revision and others have been removed and documented in the user's guide. When items are
moved or deleted, the remaining numbers remain the same and are not resequenced.

This document also contains Usage Notes. Usage Notes highlight and describe particular situations where
the device's behavior may not match presumed or documented behavior. This may include behaviors that
affect device performance or functional correctness. These notes will be incorporated into future
documentation updates for the device (such as the device-specific data sheet), and the behaviors they
describe will not be altered in future silicon revisions.

1.1 Device and Development Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,
TMP, or TMS (e.g., TMS320DM6441AZWT). Texas Instruments recommends two of three possible prefix
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of
product development from engineering prototypes (TMX/TMDX) through fully-qualified production
devices/tools (TMS/TMDS).

Device development evolutionary flow:
TMX Experimental device that is not necessarily representative of the final device's electrical

specifications
TMP Final silicon die that conforms to the device's electrical specifications but has not

completed quality and reliability verification
TMS Fully-qualified production device
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal

qualification testing
TMDS Fully-qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:

"Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.

All trademarks are the property of their respective owners.

5SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprs359
http://www.ti.com/lit/pdf/sprue19


DAVINCI

DM6441xZWT##

#x-#######

Device Revision Code

TMX320

DAVINCI

DM6441xZWT##

#x-#######

Device Revision Code

TMS320

Introduction www.ti.com

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.

1.2 Revision Identification

The device revision can be determined by the device revision code marked on the top of the package. The
location of the device revision code for the ZWT package is shown in Figure 1. Figure 1 shows some
examples of the types of DM6441 package symbolization.

A Qualified devices are marked with the letters "TMS" at the beginning of the device name, while nonqualified devices
are marked with the letters "TMX" or "TMP" at the beginning of the device name.

B "#" denotes an alphanumeric character. "x" denotes an alpha character only.

Figure 1. Example, Device Revision Codes for TMX320DM6441 (ZWT) and TMS320DM6441 (ZWT)

Silicon revision is identified by a code on the chip. If x is "B", then the silicon is revision 2.3 for TMS
devices or revision 1.3 for TMX devices. If x is "A", then the silicon is revision 2.1 for TMS devices, or
revision 1.2 for TMX devices, or revision 1.1 for XDAVINCI-AZWT devices. If x is "blank", then the silicon
is revision 1.3 for TMS devices. Table 1 lists the silicon revisions associated with each device revision
code for the DM6441 device.

Table 1. Device Revision Codes

Device Revision Code (x) Silicon Revision Comments

B 2.3 TMS320DM6441BZWT

A 2.1 TMS320DM6441AZWT

(blank) 1.3 TMS320DM6441ZWT

B 1.3 TMX320DM6441BZWT

A 1.2 TMX320DM6441AZWT

A 1.1 XDAVINCI – AZWT

6 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

2 Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional
Specifications

NOTE: In Silicon Revision 2.3, the SPI boot mode is added as a backup to the NAND boot mode in
the ROM bootloader (RBL). Additional updates have also been made to the RBL. For more
information, see the TMS320DM644x DMSoC ARM Subsystem Reference Guide (literature
number SPRUE14) and the TMS320DM644x ROM Migration Guide (literature number
SPRAB80).

2.1 Usage Notes for Silicon Revision 2.3

Usage Notes highlight and describe particular situations where the device's behavior may not match
presumed or documented behavior. This may include behaviors that affect device performance or
functional correctness. These notes will be incorporated into future documentation updates for the device
(such as the device-specific data sheet), and the behaviors they describe will not be altered in future
silicon revisions.

2.1.1 EDMA Transfer Request (TR) Dequeue Priority Limitation

On DM6441 Silicon Revision 2.3 and earlier, if there are multiple events in both Q0 and Q1, then the
transfer requests associated with events in Q0 will get submitted to TC0 prior to any transfer requests
associated with events in Q1 getting submitted to TC1 — even if TC0 is busy processing earlier transfer
requests and TC1 is idling. This can cause delays in submission of requests on Q1. Therefore, it is
recommended to reserve the higher priority Q0/TC0 for submission of urgent, small, real-time sensitive
transfers (such as audio data transferred to and from ASP) and allocate Q1/TC1 for longer, non-real-time
sensitive transfers (such as block memory DDR2 to internal memory and vice versa).

2.1.2 Bus Priority Inversion Can Affect DDR2 Throughput

On DM6441 Silicon Revision 2.3 and earlier, under certain conditions low priority modules can occupy the
bus and prevent high priority modules like the VPSS from getting the required DDR2 throughput. The
DDR2 memory controller arbitration policy gives preference to accesses to open banks, regardless of the
requesting modules' priorities. This is not normally an issue, but can cause a problem if a low priority
module performs extremely fast, contiguous accesses. This condition can effectively lock out other
modules (even with higher priorities) trying to access the DDR2 memory controller for a long period.

For example, when the ARM is executing the STM (Store Multiple) instruction with the D-cache enabled,
the ARM is able to achieve a high-peak transfer rate to cache and the DDR2 burst writes from the cache
can stall the OSD (On-Screen Display) subsystem from DDR2 reads to the point that the display can be
unusable. This can occur even though the VPSS, by default, has the highest priority. For more details on
master peripheral priorities, see the "Bandwidth Management" subsection of the TMS320DM644x DMSoC
ARM Subsystem Reference Guide (literature number SPRUE14).

The DDR2 memory controller Peripheral Bus Burst Priority Register (PBBPR address 0x2000 0020)
contains a user-programmable field to indicate the maximum number of 32-byte DDR2 burst transfers that
can go through before the DDR2 memory controller raises the priority of the oldest request in the queue.
At reset, this value defaults to 255 (0xFF), meaning that this feature is disabled and a request can remain
in the queue indefinitely.

It is recommended that the value of the DDR2 memory controller Peripheral Bus Burst Priority Register
(PBBPR address 0x2000 0020) be reduced to limit the length of time that a peripheral can be held off due
to the policy giving preference to the open bank. There is a performance trade-off between fast,
low-priority peripherals and time-critical high priority peripherals when determining a value for this
parameter. A hex value of 0x20 should provide a good ARM (cache enabled) performance and still allow
good utilization by the VPSS or other modules.

7SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprue14
http://www.ti.com/lit/pdf/sprab80
http://www.ti.com/lit/pdf/sprue14


Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

2.1.3 Audio Serial Port (ASP) Transfers Should be Buffered in Internal Memory

On DM6441 Silicon Revision 2.3 and earlier, Audio Serial Port (ASP) transfers may need to originate and
complete from on-chip buffers, either in ARM Internal RAM (TCM) or DSP RAM. This is due to the fact
that there is no tolerance for audio data dropouts that may occur due to the delays in DDR2 accesses
from other masters and from unavoidable DDR2 refresh cycles; even if the Q0/TC0 is dedicated to
transfers from off-chip memories. On-chip buffers might be needed to ensure immunity from DDR2
latencies. DDR2 latencies are system-dependent, varying between applications, and are impacted by the
amount and type of data traffic to DDR2 memories. Once completed, the data can be shuttled between
the internal buffer and the DDR2 memory by using EDMA Q1/TC1.

For silicon revision 1.3 and earlier, if using on-chip buffers for ASP transfers, also see the following two
advisories: 1.3.24 ARM: Concurrent Access to ARM Internal Memory May Fail, and 2.3.33 DSP
SDMA/IDMA: Unexpected Stalling When Memories DSP Level 2 Memory Ports used as RAM .

2.1.4 DDR2 VTP I/O Calibration Must be Performed Following Device Power-up and Device Reset

On DM6441 Silicon Revision 2.3 and earlier, the DDR2 memory controller is able to control the impedance
of the output I/O. This feature allows the DDR2 memory controller to tune the output impedance of the I/O
to match that of the PCB board. Control of the output impedance of the I/O is an important feature
because impedance matching reduces reflections, creating a cleaner signal propagation. Calibrating the
output impedance of the I/O also reduces the power consumption of the DDR2 memory controller. The
calibration is performed with respect to voltage, temperature, and process (VTP). The VTP information
obtained from the calibration is used to control the output impedance of the I/O.

VTP I/O calibration must be performed following device power-up and device reset. If the DDR2 memory
controller is reset via the Power and Sleep Controller (PSC), and the VTP input clock is disabled,
accesses to the DDR2 memory controller will not complete. To re-enable accesses to the DDR2 memory
controller, enable the VTP input clock, then perform the VTP calibration sequence again. The VTP
calibration is part of the DDR2 memory controller initialization sequence. For more information on the VTP
calibration and the proper DDR2 memory controller initialization sequence, see the TMS320DM644x
DMSoC DDR2 Memory Controller User's Guide (literature number SPRUE22).

2.1.5 ASP: Initialization Procedure When External Device is Frame-Sync Master

On DM6441 Silicon Revision 2.3 and earlier, if the ASP transmitter expects a frame sync from an external
device, care must be taken to ensure that the proper action is employed. After the transmitter comes out
of reset (XRST = 1), it waits for a frame sync from the external device. If the first frame sync arrives very
shortly after the transmitter is enabled, the CPU or EDMA controller may not have a chance to service the
ASP data transmit register (DXR). In this case, the transmitter shifts out the default data in the transmit
shift register (XSR) instead of the desired value, which has not yet arrived in the DXR. This causes
problems in some applications such that the first data element in the frame is invalid. The data stream
appears element-shifted (the first data word may appear in the second channel instead of the first).

To ensure proper operation when the external device is the frame master, you must make sure that the
DXR is already serviced with the first word when a frame sync occurs. To do so, you can keep the
transmitter in reset until the first frame sync is detected. The software is set up such that it will only take
the transmitter out of reset (XRST = 1) promptly after detecting the first frame sync. This ensures that the
transmitter does not begin data transfers at the data pin during the first frame-sync period. This also
provides almost an entire frame period for the DM6441 device to service the DXR with the first word
before the second frame sync occurs. The transmitter only begins data transfers upon receiving the
second frame sync. At this point, the DXR is already serviced with the first word.

The ASP transmitter and receiver on the DM6441 device are capable of generating an interrupt upon the
detection of frame synchronization. However, on the DM6441 device, the receiver and/or transmitter must
be out of reset to enable this feature. Therefore, instead of directly using the ASP interrupt to detect the
first frame sync, on the DM6441 device you can use the GPIO peripheral. This can be achieved by
connecting the frame-sync signal to a GPIO pin. The software can either poll the GPIO pin to detect the
first frame sync or program the GPIO peripheral to generate an interrupt to the CPU upon detecting the
first frame-sync edge. For more information on the GPIO peripheral, see the TMS320DM644x DMSoC
General-Purpose Input/Output (GPIO) User's Guide (SPRUE25). For details on the initialization sequence
when the external device is the frame-sync master, see the TMS320DM644x DMSoC Audio Serial Port
(ASP) User's Guide (SPRUE29).

8 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprue22
http://www.ti.com/lit/pdf/sprue25
http://www.ti.com/lit/pdf/sprue29


www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

2.1.6 SPI Master Mode: CSHOLD Bit Must be Initialized Twice After Reset

On DM6441 Silicon Revision 2.3 and earlier, in addition to the procedure described in Advisory 2.3.32
(SPI Master Mode: Extra Step Required to Use CSHOLD), the SPIDAT1.CSHOLD bit must be initialized
twice with the same value after reset and before the first SPI transfer. This is required to clear an internal
pipeline stage in the CSHOLD logic.

2.1.7 ATA Postwrite and Pre-Fetch Do Not Provide Benefits

On DM6441 Silicon Revision 2.3 and earlier, when the Host Controller (DM6441) is performing a
Read/Write transaction onto an HDD or CF Devices via a PIO Transaction, then the CPU (ARM) is
responsible for Reading and Writing the data by directly accessing the Data Register Port. Since the
interface speed is slower than the ARM CPU, it is required that an Internal Wait State be generated by the
Host Controller to slow down the CPU (ARM). However, this wait time is much larger than a PIO Cycle
time increasing the cycle time indirectly.

This problem is a common problem with many CPUs including ARM. In order to alleviate this problem, the
ATA module designer has incorporated a feature that allows the CPU to write directly to the DMA FIFO,
as opposed to the Data Register, in order to perform a Burst Access and avoiding the back to back wait
state issue. This feature is enabled via activating the Postwrite/Prefetch capability.

Even though this feature is activated, it is observed that the CPU is taking about the same time to offload
and upload data from the FIFO when compared with accessing the Data Register, i.e., data path through
the FIFO did not give us any additional leverage.

9SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

2.2 Silicon Revision 2.3 Known Design Exceptions to Functional Specifications

Table 2. Silicon Revision 2.3 Advisory List

Title ...................................................................................................................................... Page

Advisory 2.3.3 —VPFE: CCDC DC-Subtract Function Does Not Clip Luma to Zero for YUV Modes ...................... 11
Advisory 2.3.4 —VPFE: CCDC Register Write Shadowing Does Not Work.................................................... 11
Advisory 2.3.5 —VPFE: Pixel Misalignment on CCDC to Preview Engine Path............................................... 11
Advisory 2.3.11 —VPBE: RGB666 Pin Mux Option Does Not Work ............................................................ 12
Advisory 2.3.12 —VPBE: Restriction on Horizontal Width for RGB888 Video Windows ..................................... 13
Advisory 2.3.13 —USB: Extraneous USB Interrupts Generated ................................................................. 15
Advisory 2.3.18 —SPI: Receive Overrun Interrupt and Bit Error Can be Lost ................................................. 16
Advisory 2.3.19 —SPI: RXINTFLG Bit in SPIFLG Register May Not Get Cleared ............................................ 16
Advisory 2.3.20 —SPI: A Write to SPIFLG Receiver Overrun Bit Does Not Clear the Flag.................................. 16
Advisory 2.3.21 —SPI: The Receive Overrun Interrupt Flag is Not Set ........................................................ 16
Advisory 2.3.27 —USB: Some Electrical Parameters Violate USB Specification.............................................. 17

Advisory 2.3.28 —DSP Subsystem: Back-to-Back SPLOOPs With Interrupts Can Cause Incorrect Operation on
C64x+........................................................................................................................... 18

Advisory 2.3.29 —DSP Subsystem: C64x+ Incorrectly Generates False Exceptions for Multiple Writes .................. 19
Advisory 2.3.30 —SPI: SPIINTVECT and SPIFLG Registers are Cleared When Read in Debug Mode................... 21
Advisory 2.3.31 —SPI: SPI Master Receives Extra Bit When SPICLK Polarity Changes.................................... 21
Advisory 2.3.32 —SPI Master Mode: Extra Step Required to Use CSHOLD .................................................. 22

Advisory 2.3.33 —DSP SDMA/IDMA: Unexpected Stalling When Memories DSP Level 2 Memory Ports Used as
RAM............................................................................................................................. 24

Advisory 2.3.34 —VPBE: Restriction When 6/5 Vertical Expansion Filter is Enabled ........................................ 29
Advisory 2.3.36 —DSP: Internal Clock Misalignment ............................................................................. 30
Advisory 2.3.37 —VPFE: Preview Engine Hangs When the Video Port is Enabled in CCDC ............................... 31
Advisory 2.3.40 —VPBE: VENC Default Luma Interpolation Filter Does Not Clip to Zero ................................... 31
Advisory 2.3.41 —VLYNQ/ASP: VLYNQ and Audio Transfers Induce Noise Into the Audio Stream ....................... 32
Advisory 2.3.42 —VPBE (S/W): Linux Legacy Video Driver Causes Jittering on Video Windows .......................... 33
Advisory 2.3.43 —USB (Device Mode): Calculated CRC Value Does Not Match Host CRC Value ........................ 35

Advisory 2.3.44 —DMA Access to L2 SRAM May Stall When the C64x+ CPU Command Priority is Lower Than or
Equal to the DMA Command Priority....................................................................................... 37

Advisory 2.3.45 —VPBE: Video Window 0 Corruption in RGB Mode When Video Window 1 Enabled .................... 39
Advisory 2.3.46 —VPBE: Video Window Buffer Location Limitation in Multibuffer Application .............................. 40

10 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.3 VPFE: CCDC DC-Subtract Function Does Not Clip Luma to Zero for YUV Modes

Revision(s) Affected: 2.3 and earlier

Details: The CCD Controller (CCDC) in the VPFE subsystem includes an optional Luma
DC-subtract function for YUV processing. This subtract operation does not clip Luma to
zero.

Note: The Optical Black Clamp/DC-subtract function for the Raw Data modes does
properly clip to zero for R/G/B and Ye/Cy/G/Mg color spaces.

Workaround(s): Do not use the DC-subtract function for YUV modes.

Advisory 2.3.4 VPFE: CCDC Register Write Shadowing Does Not Work

Revision(s) Affected: 2.3 and earlier

Details: Register write shadowing in the CCDC does not work correctly (CCDCFG.VDLC = 0).
Due to this bug, the CCDC PCR.ENABLE and the CCDCFG.YCINSWP fields are always
shadowed, regardless of the setting of CCDCFG.VDLC. The SDR_ADDR register will
only work correctly when CCDCFG.VDLC = 1, otherwise a delayed write to the
SDR_ADDR occurs, creating an unexpected delay in outputting the image to SDRAM.
Other registers, listed in the subsection Programming the CCDC under "Registering
Accessibility During Frame Processing" of the TMS320DM644x DMSoC Video
Processing Front End (VPFE) User's Guide (literature number SPRUE38), are affected
such that shadowing does not occur on the next frame as specified.

Workaround(s): Set CCDCFG.VDLC = 1, such that all registers, except those noted above, are
Busy-Writable, which forces register writes to take effect immediately. If changes to the
other registers are required, the CCDC should be disabled, and the current frame should
be allowed to complete. Register changes can then be made, and the CCDC can then
be re-enabled.

Advisory 2.3.5 VPFE: Pixel Misalignment on CCDC to Preview Engine Path

Revision(s) Affected: 2.3 and earlier

Details: There can be a timing glitch between the asynchronous VPFE input pixel clock and the
internal VPFE clock that can cause pixel misalignment on the CCDC to PREV path. This
misalignment is observed as causing a "pink" effect on the processed image (since the
color pattern is misaligned). Once this first frame is adversely affected, the PREV
hardware does not reset itself properly for subsequent frames, so the output will keep
looking pink for the duration of the Preview mode. A similar issue on the end pixel can
occur as well.

Workaround(s): Define the Preview Engine processing frame to start no earlier than the second pixel on
a line and to end no later than the second-to-last pixel on a line. This requires the CCDC
to be configured to transfer more pixels per line than is needed by the Preview Engine.

11SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprue38


Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.3.11 VPBE: RGB666 Pin Mux Option Does Not Work

Revision(s) Affected: 2.3 and earlier

Details: The intention of the RGB666 pin mux option (PINMUX0 register at 0x01C4 0000) is to
allow the users to configure PWM2/B2/GPIO47 and PWM1/R2/GPIO46 pins as B2 and
R2 functions, respectively. However, due to a hardware limitation, setting the RGB666
bit (PINMUX0.22) does not enable the B2 and R2 functions.

Workaround(s): Enable the RGB888 pin mux option (PINMUX0.23 = 1).

When the RGB888 pin mux option is enabled, the B2 and R2 pin functions are available;
however, by enabling the RGB888 pin mux option, the six additional pins lose their GPIO
pin function capability (see Table 3).

Table 3. RBG888/RBG666 Pin Mux Options

PINMUX0 PIN FUNCTIONS

PWM2/ PWM1/ C_FIELD/ LCD_FIELD/RGB888 RGB666 R1/ B1/ G1/ G0/B2/ R2/ R0/ B0/(Bit 23) (Bit 22) GPIO38 GPIO6 GPIO5 GPIO2GPIO47 GPIO46 GPIO4 GPIO3

0 0 GPIO47 GPIO46 GPIO38 GPIO6 GPIO5 GPIO4 GPIO3 GPIO2

0 1 B2 R2 GPIO38 GPIO6 GPIO5 GPIO4 GPIO3 GPIO2

1 x B2 R2 R1 B1 G1 R0 B0 G0

12 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.12 VPBE: Restriction on Horizontal Width for RGB888 Video Windows

Revision(s) Affected: 2.3 and earlier

Details: When a video window is configured for RGB888 data-input mode, certain horizontal
width configurations result in corrupted video windows. The problem occurs at different
widths, depending on enabling horizontal zoom (1x, 2x, and 4x) and/or 9/8 horizontal
expansion modes.

Workaround(s): To work around this problem, the following constraints must be met for each case:

Case 1a: Video Window 0 (in RGB888 mode)

When 1x, 2x, 4x zoom, or 9/8 expansion is enabled, VIDWIN0XL must NOT be inside
the ranges defined below:

• Z* (179 + 256N – 3) pixels < VIDWIN0XL < Z*(179 + 256N + 3) pixels
• Z*(261.5 + 256N – 5.5) pixels < VIDWIN0XL < Z*(261.5 + 256N + 5.5) pixels

for all integer values of N where:

Z = 1, 2, 4, or 9/8

XL register is the video window's horizontal display width in pixels (window width).

EXAMPLE:

When 1x zoom (Z = 1) is enabled on video window 0, the prohibited VIDWIN0XL ranges
are the following:

1. (179 + 256N – 3) < VIDWIN0XL < (179 + 256N + 3) for all integer values of N
2. (261.5 + 256N – 5.5) < VIDWIN0XL < (261.5 + 256N + 5.5) for all integer values of N

For example,

• VIDWIN0XL = 436 will not work because this value falls inside the first range defined
above when N = 1 (432 < VIDWIN0XL < 438).

• VIDWIN0XL = 1026 will not work because this value falls inside the second range
defined above when N = 3 (1024 < VIDWIN0XL < 1030).

• VIDWIN0XL = 1024 will work because this value does not fall inside either ranges
defined above for any N.

Case 1b: Video Window 0 (in RGB888 mode)

When (2x)*(9/8) or (4x)*(9/8) is enabled, VIDWIN0XL must NOT be inside the ranges
defined below:

• Z* (179 + 256N – 3) pixels < VIDWIN0XL < Z*(179 + 256N + 3) pixels
• Z*(261.5 + 256N – 5.5) pixels < VIDWIN0XL < Z*(261.5 + 256N + 5.5) pixels
• VIDWIN0XL = (Z/2)*(1 + 72N)

for all integer values of N where:

Z = 2 when (2x)*(9/8) is enabled and

Z = 4 when (4x)*(9/8) is enabled

XL register is the video window's horizontal display width in pixels (window width).

13SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Case 2a: Video Window 1 (in RGB888 mode)

When 1x, 2x, 4x zoom or 9/8 expansion is enabled, VIDWIN1XL must NOT be inside the
ranges defined below:

• Z*(91.5 + 256N – 5.5) pixels < VIDWIN1XL < Z*(91.5 + 256N + 5.5) pixels
• Z*(173.5 + 256N – 3.5) pixels < VIDWIN1XL < Z*(173.5 + 256N + 3.5) pixels

for all integer values of N where:

Z = 1, 2, 4, or 9/8

XL register is the video window's horizontal display width in pixels (window width).

Case 2b: Video Window 1 (in RGB888 mode)

When (2x)*(9/8) or (4x)*(9/8) is enabled, VIDWIN1XL must NOT be inside the ranges
defined below:

• Z*(91.5 + 256N – 5.5) pixels < VIDWIN1XL < Z*(91.5 + 256N + 5.5) pixels
• Z*(173.5 + 256N – 3.5) pixels < VIDWIN1XL < Z*(173.5 + 256N + 3.5) pixels
• VIDWIN1XL = (Z/2)*(1 + 72N)

for all integer values of N where:

Z = 2 when (2x)*(9/8) is enabled and

Z = 4 when (4x)*(9/8) is enabled

XL register is the video window's horizontal display width in pixels (window width).

14 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.13 USB: Extraneous USB Interrupts Generated

Revision(s) Affected: 2.3 and earlier

Details: When the DM6441 device is in high-speed (HS) USB peripheral mode and suspended,
an extraneous SUSPEND interrupt can be generated if the host issues a RESET.
Although an extraneous SUSPEND interrupt is generated, the reset interrupt still arrives
as expected at the end-of-reset sequence.

Also, when the DM6441 device is in peripheral mode (full-speed [FS] or high-speed
[HS]) and being reset to HS mode (RESET with chirping), an extraneous RESET
interrupt can be generated during the reset sequence.

Workaround(s): To work around the problem, the following constraints must be met:

1. Software should ignore SUSPEND interrupts when already in a "suspended" state.
2. Software must service every USB RESET interrupt. The interrupt flags must be

cleared before doing any register reads or setups so that any following USB
interrupts are not missed.

15SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.3.18 SPI: Receive Overrun Interrupt and Bit Error Can be Lost

Revision(s) Affected: 2.3 and earlier

Details: Receive Overrun Interrupt (RXOVINT) and Bit Error interrupt (BITERRINT) can be lost if:
Reading of the SPIFLG register coincides with the setting of these interrupt flag bits.
Reading of the upper 16 bits of SPIBUF register coincides with the setting of these
interrupt bits.

Workaround(s): Use the interrupt instead of the polling method to check the status of these interrupts.

Access only the lower 16 bits of the SPIBUF register to read received data.

If the polling method must be used, group the error interrupts into one Level (i.e., Level0)
and the RX complete interrupt into the other Level (i.e., Level1). Use the SPIINTVECT0
and SPIINTVECT1 registers to find out the interrupt status first and then only read the
SPIFLG register to decode the source of the error interrupts.

Advisory 2.3.19 SPI: RXINTFLG Bit in SPIFLG Register May Not Get Cleared

Revision(s) Affected: 2.3 and earlier

Details: The RXINTFLG bit in the SPIFLG register may not get cleared by reading the SPIBUF
register when the read coincides with the setting of the RXINTFLG bit due to new data
arrival.

Workaround(s): When the above condition occurs, the system is at the verge of receive overrun.
Therefore, either optimize the SPIBUF servicing routine to avoid receive overrun or use
the EDMA3 to avoid the race condition from occurring.

Advisory 2.3.20 SPI: A Write to SPIFLG Receiver Overrun Bit Does Not Clear the Flag

Revision(s) Affected: 2.3 and earlier

Details: A write to the SPIFLG receiver overrun (SPIFLG.OVRNINTFLG) bit does not clear the
flag if the write coincides with the setting of the receive interrupt flag
(SPIFLG.RXINTFLG).

Workaround(s): Write to the SPIFLG.OVRNINTFLG bit, then read back the value of the flag. If the flag
did not clear, then write to clear the flag again.

Advisory 2.3.21 SPI: The Receive Overrun Interrupt Flag is Not Set

Revision(s) Affected: 2.3 and earlier

Details: The Receive Overrun Interrupt flag is not set if the overrun condition that sets the
interrupt flag coincides with a read of the upper bytes (bits 31:24) of the SPIBUF
register.

Workaround(s): None

16 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.27 USB: Some Electrical Parameters Violate USB Specification

Revision(s) Affected: 2.3 and earlier

Details: Some electrical characteristics violate the USB 2.0 specification; see Table 4.

Workaround(s): Consider this violation and design your system accordingly.

Table 4. USB Electrical Characteristics in Violation

USB DM6441 DATA MANUALSPECIFICATION UNIT
MIN MAX MIN MAX

The lesser of:USB high-speed disconnect detection
VHSDSC

(1) threshold (differential signal 525 625 525 mV1. VOD_DIS (2) - 75
amplitude) 2. 710

(1) VHSDSC violates the USB 2.0 specification.
(2) VOD_DIS = High-speed differential output voltage during a disconnected state.

17SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.3.28 DSP Subsystem: Back-to-Back SPLOOPs With Interrupts Can Cause Incorrect
Operation on C64x+

Revision(s) Affected: 2.3 and earlier

Details: Back-to-back software pipeline loops (SPLOOPs) with interrupts can cause incorrect
operation on C64x+. This bug occurs when the first SPLOOP is interrupted and there are
less than 2 execute packets between the SPKERNEL of the first SPLOOP block
(SPKERNEL instruction marks the end of the first SPLOOP block) and the SPLOOP
instruction of the second SPLOOP block (SPLOOP instruction marks the beginning of
the second SPLOOP block). The first SPLOOP block terminates abruptly (i.e., without
completing the loop, even though the termination condition is false). The failure
mechanism can be seen as a hang or by the first SPLOOP block draining for the
interrupt and starting the second SPLOOP block without taking the interrupt or returning
to complete the first SPLOOP block.

Workaround(s): The C6000 compiler release v6.0.6 and above detects this problem. If there are fewer
than 2 execute packets between the SPKERNEL and SPLOOP instructions, the compiler
will add the appropriate number of NOP instructions following the SPKERNEL
instruction.

For example,

...
SPKERNEL 0, 0
NOP 1 ; SDSCM00012367 HW bug workaround
MVK .L1 0x1,A0

[ A0] SPLOOPW 3 ;12
NOP 1
...

The assembler will detect sequences that could potentially trigger this bug, and issue a
remark. For example,
"neg_test.asm", REMARK at line 21 [R5001] SDSCM00012367 potentially

triggered by this execute packet sequence. SLOOP must be at
least 2 EPs away from previous SPKERNEL for safe interrupt
behavior.

Note: The assembler tool, asm6x.exe, can be used to determine if a previous version of
the compiler generated code that could potentially be affected by this silicon issue. The
assembler can also be used on assembly source code to see if the source could be
affected by this issue. Replace the old version of asm6x.exe with the 6.0.6 asm6x.exe in
your current build setup and recompile or reassemble.

Internal Tracking Number: 4

18 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.29 DSP Subsystem: C64x+ Incorrectly Generates False Exceptions for Multiple Writes

Revision(s) Affected: 2.3 and earlier

Details: The C64x+ CPU may generate an incorrect resource conflict exception when taking an
interrupt. This only affects applications that run with exceptions enabled. Applications
enable exceptions by writing 1 to the GEE bit in the Task State Register (TSR).
Applications that do not enable exceptions are not affected by this errata.

The CPU generates this incorrect exception in the following scenario:

1. The CPU begins draining the pipeline as part of an interrupt context switch. During
this time, the CPU annuls instructions in the pipeline that have not yet reached the
E1 pipeline phase while it drains the pipeline.

2. The first annulled execute packet (resident in the DC pipeline stage at the time
draining begins) writes to one or more predicate registers. Because it is annulled, the
writes do not occur.

3. The second annulled execute packet (resident in the DP pipeline stage at the time
draining begins) has a predicated single cycle instruction that uses a predicate
written by the execute packet described in item 2. Because it is annulled, the write
does not occur.

4. The value held in the predicate register would cause the instruction in the second
annulled execute packet to write to some register in the same cycle as another
instruction if it were not annulled. The conflicting writes would not happen if the first
execute packet had not been annulled.

The exception is not a valid exception. If the CPU executed instructions described in
items 2 and 3 above, rather than annulling them while draining the pipeline for an
interrupt, the execute packet in item 2 would set the predicate(s) such that the writes in
the subsequent execute packet do not conflict.

Examples of sequences that generate the incorrect exception are:

ZERO A0
ZERO B0

---------------------> interrupt occurs
MVK 1, A0 ;(1st annulled EPKT)

[!A0] MVK 2, A1 ;(2nd annulled EPKT) \_ Appears both MVKs write A1,
||[!B0] MVK 3, A1 ;(2nd annulled EPKT) / triggers invalid exception.

...
ZERO A0

[!A0] LDW *A4, A5
NOP
NOP

--------------------> interrupt occurs
MVK 1, A0 ;(1st annulled EPKT)

[!A0] MVK 2, A5 ;(2nd annulled EPKT) LDW writes A5 this cycle

...

ZERO A0
[!A0] DOTP2 A3, A4, A5

NOP
-------------------> interrupt occurs

MVK 1, A0 ;(1st annulled EPKT)
[!A0] MVK 2, A5 ;(2nd annulled EPKT) DOTP2 writes A5 this cycle

19SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Workaround(s): The CPU only recognizes the incorrect exception while it drains the pipeline for an
interrupt. As a result, the CPU begins exception processing upon reaching the interrupt
handler. The NRP (NMI Return Pointer Register) and NTSR (NMI Task State Register)
will reflect the state of the machine upon arriving at the interrupt handler.

Therefore, to identify the incorrect resource conflict exception in software, verify the
following conditions at the beginning of the exception handler prior to normal exception
processing:

1. Exception occurred during an interrupt context switch.

(a) In NTSR, verify that INT=1, SPLX=0, IB=0, CXM=00.
(b) Verify that NRP points to an interrupt service fetch packet. That is, (NRP &

0xFFFF FE1F) == (ISTP & 0xFFFF FE1F).
2. The exception is a resource conflict exception. In IERR, verify that RCX == 1 and all

other IERR bits == 0.
3. The exception is an internal exception. In EFR, verify that IXF == 1 and all other EFR

bits == 0.

Upon matching the above conditions, suppress the exception as follows:

1. Clear EFR.IXF by writing 2 to ECR.
2. Resume the interrupt handler by branching to NRP.

The above workaround identifies and suppresses all cases of the incorrect resource
conflict exception. It resumes normal program execution when the incorrect exception
occurs, and has minimal impact on the execution time of program code. The interrupted
code sequence runs as expected when the interrupt handler returns.

The workaround also suppresses a particular valid exception case that is
indistinguishable from the incorrect case. Specifically, the code will suppress the
exception generated by two instructions with different delay slots (e.g., LDW and
DOTP2) writing to the same register in the same cycle, where the conflicting writes occur
during the interrupt context switch.

An example of a sequence with incorrectly suppressed exception is:

LDW *A0, A1
DOTP2 A3, A2, A1
NOP

-----------------> interrupt occurs
NOP
NOP ; Both LDW and DOTP2 write to A1 this cycle

The workaround will not suppress these valid resource conflict exceptions if the multiple
writes occur outside an interrupt context switch. That is, the workaround will not
suppress the exception generated by the code above when it executes without an
interfering interrupt.

For more details, see the following sections in the TMS320C64x/C64x+ DSP CPU and
Instruction Set Reference Guide (literature number SPRU732).

• Interrupt Service Table Pointer Register (ISTP) describes the ISTP control register.
• Nonmaskable Interrupt (NMI) Return Pointer Register (NRP) describes the NRP

control register.
• TMS320C64x+ DSP Control Register File Extensions describes the ECR, EFR,

IERR, TSR and NTSR control registers.
• Pipeline describes the overall operation of the C64x+ pipeline, including the behavior

of the E1, DC and DP pipeline phases.
• Actions Taken During Nonreset Interrupt Processing describes the operation of the

C64x+ pipeline during interrupt processing, including how it annuls instructions.
• C64x+ CPU Exceptions describes exception processing.

Internal Tracking Number: 5

20 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU732


www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.30 SPI: SPIINTVECT and SPIFLG Registers are Cleared When Read in Debug Mode

Revision(s) Affected: 2.3 and earlier

Details: Both the INTVECT and SPIFLG registers are cleared when refreshing the memory
window in debug mode with CCS. These registers should be cleared only by regular
CPU reads, not during debug/suspend mode.

Workaround(s): None

Advisory 2.3.31 SPI: SPI Master Receives Extra Bit When SPICLK Polarity Changes

Revision(s) Affected: 2.3 and earlier

Details: If the polarity of the SPICLK pin is changed and the change aligns with the receive edge
for the new buffer, then it will be considered as a real SPICLK edge and the receive shift
register shifts the data.

Workaround(s): Pre-select the SPIFMTx register by byte writing to just the DFSEL field in the SPIDAT1
register before actually writing to the SPIDAT1 field of the SPIDAT1 register. This
additional step needs to be done only when there is going to be an SPICLK polarity
change for the new buffer.

21SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



SPIx_CLK

SPIx_SIMO

(a) Write SPIDAT1
= 0x10001245
(CSHOLD=1)

(b) Write SPIDAT1
= 0x00005678
(CSHOLD=0)

(a) (b)

SPI_ENx

SPIx_CLK

SPIx_SIMO

(a) Write SPIDAT1
= 0x10001245
(CSHOLD=1)

(b) Write SPIDAT1
= 0x00005678
(CSHOLD=0)

(a) (b)

SPI_ENx

Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.3.32 SPI Master Mode: Extra Step Required to Use CSHOLD

Revision(s) Affected: 2.3 and earlier

Details: The SPI module chip-select hold (CSHOLD) feature allows the device to instruct the SPI
to keep the chip-select pin asserted between transfers. This feature applies in master
mode and is enabled by writing a '1' to SPIDAT1.CSHOLD (bit 28).

When data is written to the SPIDAT1 register with the CSHOLD bit set to '1', the master
is supposed to keep the SPI_ENx pin asserted after the transfer completes. When data
is written to the SPIDAT1 register with CSHOLD set to '0', the master is supposed to
de-assert the SPI_ENx pin after the transfer completes.

For example, assume that the device needs to send two 16-bit words (0x1234 and
0x5678) to an SPI slave that requires its chip select to remain asserted between the
transfers. This is a common requirement when communicating with SPI memory devices.

According to the SPI specification, the following sequence should produce the expected
result as illustrated in Figure 2:

• Write 0x10001234 to SPIDAT1 for transmission of 0X1234 (CSHOLD = 1)
• Write 0x00005678 to SPIDAT1 for transmission of 0x5678 (CSHOLD = 0)

Figure 2. Expected CSHOLD Behavior

Instead, what actually occurs is that SPI_ENx is momentarily de-asserted at the
beginning of the second write, as illustrated in Figure 3.

Figure 3. Actual CSHOLD Behavior–32-Bit Writes to SPIDAT1

Both Figure 2 and Figure 3 assume that SPIDAT1 is written using a single 32-bit write
instruction. If SPIDAT1 is instead written using an 8-bit or 16-bit instruction to write to the
CSHOLD field, followed by a 16-bit write to the transmit shift register field of SPIDAT1,
then what actually occurs is illustrated in Figure 4. This is the same case illustrated in
Figure 3 except that the de-assertion of SPI_ENx lasts for the duration between writing a
'0' to the CSHOLD field and writing new data to the transmit shift register.

22 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



SPIx_CLK

SPIx_SIMO

(a) Write (8 or 16−bit)
SPIDAT1.CSHOLD=1

(c) write (8 or 16−bit)
SPIDAT1.CSHOLD=0

(d) write of
0x5678 to SPIDAT1[15:0]

(b) write of
0x1234 to SPIDAT1[15:0]

(a) (b) (c) (d)

SPI_ENx

SPIx_CLK

SPIx_SIMO

(a) Write SPIDAT1
= 0x10001245
(CSHOLD=1)

(c) Write SPIDAT1.CSHOLD=0
using 8 or 16 bit write.
(do not write to SPIDAT1[15:0])

(b) Write SPIDAT1
=0x10005678
(CSHOLD=1)

(a) (b) (c)

SPI_ENx

SPIx_CLK

SPIx_SIMO

(a) Write (8 or 16−bit)
SPIDAT1.CSHOLD=1

(d) write (8 or 16−bit)
SPIDAT1.CSHOLD=0

(c) write of
0x5678 to SPIDAT1[15:0]

(b) write of
0x1234 to SPIDAT1[15:0]

(a) (b) (c) (d)

SPI_ENx

www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Figure 4. Actual CSHOLD Behavior–Halfword Writes to SPIDAT1

Workaround(s): For each word in the sequence of words during which SPI_ENx should be held low, write
to the SPIDAT1 register with the CSHOLD bit set to '1'. Follow this by a write to only the
CSHOLD field of SPIDAT1, setting CSHOLD = 0 to de-assert SPI_ENx. See Figure 5 for
an illustration.

Figure 5. Workaround Assuming 32-Bit Writes to SPIDAT1 Followed by a Write Only to CSHOLD

Alternatively, only write to the SPIDAT1 CSHOLD field before and after the transfer to
toggle the SPI_ENx pin. During the transfer, write only to the data field of SPIDAT1[15:0]
using 16-bit (halfword) write commands. For an illustration, see Figure 6.

Figure 6. Workaround Assuming Halfword Writes to SPIDAT1

23SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.3.33 DSP SDMA/IDMA: Unexpected Stalling When Memories DSP Level 2 Memory Ports
Used as RAM

Revision(s) Affected: 2.3 and earlier

Details: Note: This advisory is not applicable if DSP L2 memory is configured as 100% cache, or
if L2 RAM and VICP RAM are not accessed by IDMA or SDMA during run-time.

The C64x+ Megamodule has a Master Direct Memory Access (MDMA) bus interface and
a Slave Direct Memory Access (SDMA) bus interface. The MDMA interface provides
DSP access to resources outside the C64x+ Megamodule (i.e., DDR2, EMIFA, VLYNQ
remote memory). The MDMA interface is typically used for CPU/cache accesses to
memory beyond the Level 2 (L2 RAM/Cache, VICP RAM) memory level. These
accesses include cache line allocates, write-backs, and non-cacheable loads and stores
to/from system memories. The SDMA interface allows other master peripherals,
including EDMA transfer controllers, VPSS, UHPI, USB, ATA, EMAC, and VLYNQ, to
access Level 1 Data (L1D), Level 1 Program (L1P), and L2 DSP memories. The DSP
Internal DMA (IDMA) is a C64x+ Megamodule DMA engine used to move data between
internal DSP memories (L1,L2) and/or the DSP peripheral configuration bus. The IDMA
engine shares resources with the SDMA interface.

The C64x+ Megamodule has an L1D cache and L2 cache both implementing write-back
data caches– it holds updated values for external memory as long as possible. It writes
these updated values, called "victims", to external memory when it needs to make room
for new data or when requested to do so by the application. The L1D sends its victims to
L2. The caching architecture has pipelining, meaning multiple requests could be pending
between L1, L2, and MDMA. For more details on the C64x+ Megamodule and its MDMA
and SDMA ports, see the TMS320C64x+ DSP Megamodule Reference Guide (literature
number SPRU871).

Ideally, the MDMA (dashed-dotted line in Figure 7) and SDMA/IDMA paths (dashed lines
in Figure 7) operate independently with minimal interference. Normally MDMA accesses
may stall for extended periods of time due to expected system level delays (e.g.,
bandwidth limitations, DDR2 memory refreshes). However, when using L2 as RAM,
SDMA and IDMA accesses to L2/L1/VICP RAM may experience unexpected stalling in
addition to the normal stalls seen by the MDMA interface. For latency-sensitive traffic,
the SDMA stall can result in missing real-time deadlines. In a more severe case, the
SDMA stall can produce a deadlock condition in the SOC. An IDMA stall cannot produce
a deadlock condition.

Note: SDMA/IDMA accesses to L1P/D will not experience an unexpected stall if there
are no SDMA/IDMA accesses to Level 2 memory ports (L2 RAM and VICP RAM).
Unexpected SDMA/IDMA stalls to L1 happen only when they are pipelined behind Level
2 memory port accesses. Additionally, the deadlock scenario will be avoided if there are
no SDMA accesses to the Level 2 memory ports.

Figure 7 is provided for illustrative purposes and is incomplete for simplification. The
IDMA/SDMA (dashed-lines) path could also go to L1D/L1P memories, and IDMA can go
to DSP CFG peripherals. MDMA transactions can originate also from L1P or L1D
through the L2 controller or directly from DSP.

24 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU871


Cache Control

Memory Protect

Bandwidth Mgmt

L1P

RAM/
Cache

256

Bandwidth Mgmt

Memory Protect

Cache Control

256

L2

256

RAM/
Cache ROM

256

Instruction Fetch

C64x + CPU

256

Cache Control

Memory Protect

Bandwidth Mgmt

L1D

64 64

8 x 32

256

256

256
CFG

MDMA SDMA

EMC

256

32
Peripherals

64 64

RAM/
Cache

Register
File A

Register
File B

EDMA Master
Peripherals

ID
M

A

128
Power Down

Interrupt
Controller

www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Figure 7. IDMA, SDMA, MDMA Paths

NOTES:
1. The dashed lines in Figure 7 represent SDMA/IDMA paths.
2. The dashed-dotted line in Figure 7 represents the MDMA path.

25SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

SDMA/IDMA stalls may occur during the following scenarios. Each of these scenarios
describes expected normal DSP functionality, but the SDMA/IDMA access potentially
exhibits additional unexpected stalling.

1. Bursts of writes to non-cacheable MDMA space (i.e., DDR2, EMIFA, VLYNQ remote).
The DSP buffers up to 4 non-cacheable writes. When this buffer fills, SDMA/IDMA is
blocked until the buffer is no longer full. Therefore, bursts of non-cacheable writes
longer than three writes can stall SDMA/IDMA traffic.

2. Various combinations of L1 and L2 cache activity:

(a) L1D read miss generating victim traffic. L2 read is also missed and goes to
external memory via MDMA. The SDMA/IDMA may be stalled until both the read
miss and victim are complete (includes an external memory access).

(b) L1D read request missing L2 (going external) while another L1D request is
pending. The SDMA/IDMA may be stalled until the external memory access is
complete.

(c) L2 victim traffic to external memory during any pending L1D request. SDMA/IDMA
may be stalled until external memory access and the pending L1D request is
complete.

The duration of the IDMA/SDMA stalls depends on the quantity/characteristics of the
L1/L2 cache and MDMA traffic in the system. In cases 2a, 2b, and 2c, stalling may or
may not occur depending on the state of the cache request pipelines and the traffic
target locations. These stalling mechanisms may also interact in various ways, causing
longer stalls. Therefore, it is difficult to predict if and how long stalling will occur.

IDMA/SDMA stalling and any system impact is most likely in systems with excessive
context switching, L1/L2 cache miss/victim traffic, and heavily loaded EMIF.

Use the following procedure to determine if SDMA/IDMA stalling is the cause of real-time
deadline misses for existing applications. Situations where real-time deadlines may be
missed include loss of ASP samples and low peripheral throughput.

1. Determine if the transfer missing the real-time deadline is accessing VICP RAM, L2,
or L1D memory. If not, then SDMA/IDMA stalling is not the source of the real-time
deadline miss.

2. Identify all SDMA transfers to/from Level 2 memory ports (L2 RAM or VICP RAM)
[e.g., EDMA transfer to/from L2 from/to an ASP, HPI block transfer to/from L2, EDMA
transfer to/from VICP RAM]. If there are no SDMA transfers going into L2, then
SDMA/IDMA stalling is not the source of the problem.

3. Redirect all SDMA transfers to L2 memory to other memories using one of the
following methods:

(a) Temporarily transfer all the L2 SDMA transfers to L1D SRAM or ARM RAM.
(b) If not all L2 SDMA transfers can be moved to L1D memory or ARM RAM memory,

temporarily direct some of the transfers to DDR memory and keep the rest in L1D
memory/ARM RAM memory. Still, there should be no L2 SDMA transfers.

(c) If 'a' and 'b' are not possible, move the transfer with the real-time deadline to
EMAC CPPI RAM. If the EMAC CPPI RAM is not big enough, a two-step
mechanism can be used to page a small working buffer defined in EMAC CPPI
RAM into a bigger buffer in L2 SRAM. The EDMA module can be setup to
automate this double buffering scheme without CPU intervention for moving data
from EMAC CPPI RAM. Some throughput degradation is expected when the
buffers are moved to EMAC CPPI RAM.
Note: EMAC CPPI RAM memory is only word-addressable. Therefore, EDMA
transfers to/from EMAC CPPI RAM must have SRCBIDX/DSTBIDX = 4.

If real-time deadlines are still missed after implementing any of the options in Step 3,
then IDMA/SDMA stalling is likely not the cause of the problem. If real-time deadline
misses are solved using any of the options in Step 3, then IDMA/SDMA stalling is likely
the source of the problem.

26 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Note: The above steps 2 and 3 are applicable only to the SDMA accesses to L2 RAM.
Accesses to VICP RAM are typically driven by an application-specific requirement and
cannot be redirected to some other memory. Additionally, for memory to memory
transfers involving VICP, the issue would translate more into unexpected longer
stalls/delays, and thereby performance degradation, not necessarily missing real-time
deadlines. For accesses to VICP RAM via the SDMA interface, if unexpected
performance degradation is seen, use the guidelines under Method 2 in the
Workaround(s) section.

As previously mentioned, a possible deadlock scenario is introduced in the presence of
the SDMA stalls just described. This scenario occurs when multiple masters are
connected to the Data SCR indirectly through a bridge. For DM644x device the masters
that fall into this category are the ARM data port (ARM-D) and the masters connected to
Bridge 2 as shown in the Interconnect diagram in the data sheet (UHPI/ EMAC/ VLYNQ/
USB/ ATA). If the following sequence of events occurs then a deadlock situation might
arise.

1. One of the following two accesses occur:

(a) ARM-D issues a write to the DSP’s SDMA followed by a subsequent write
command to DDR2 (or EMIFA).

(b) Any master connected to Bridge 2 issues a write to the DSP’s SDMA followed by
a subsequent write command to DDR2 (or EMIFA) from the same or different
master connected to Bridge 2.

2. If at this time the DSP’s SDMA asserts itself not ready and is unable to accept more
write data, and if a cache line writeback from the DSP to DDR2 (or EMIFA) occurs.

In the above scenario, it is possible for data phases from the write command issued to
DDR2 (or EMIFA) to be stuck behind the data phases for the write to the DSP’s SDMA
traffic in the SCR.

Therefore, if the DSP issues victim traffic to the same slave (DDR2 or EMIFA) then data
associated with the victim traffic (#2) intended for DDR2 (or EMIFA) will be stuck behind
write commands issued for #1. However, due to the MDMA/SDMA blocking issue, the
SDMA traffic for #1 will be waiting for the MDMA traffic for #2 to finish, manifesting itself
into a deadlock situation.

Workaround(s): Method 1

For applications involving L2 RAM only, entirely eliminate IDMA/SDMA stalling and
potential for a deadlock condition using one or both of the following:

1. Configure entire L2 RAM as 100% cache (e.g., move all data buffers to L1D/P, ARM
RAM, EMAC CPPI memory, or external memory).
Note: Some throughput degradation is expected when the buffers are moved to ARM
RAM or EMAC CPPI RAM. Additionally, CPPI memory is only word-addressable.
Therefore, EDMA transfers to/from EMAC CPPI RAM must have
SRCBIDX/DSTBIDX = 4.

2. Eliminate all IDMA/SDMA access to L2 RAM during any time IDMA/SDMA stalling
would have an impact (e.g., could preload data/code through IDMA/SDMA during
system initialization/re-configuration).

Method 2

For applications involving IDMA/SDMA accesses to L2 RAM and/or VICP RAM, perform
any of the following to reduce the IDMA/SDMA stalling system impact:

1. Improve system tolerance on DMA side (IDMA/SDMA/MDMA):

(a) Understand and minimize latency-critical SDMA/IDMA accesses to Level 2
memories or L1P/D.

(b) Directly reduce critical real-time deadlines if possible at peripheral/IO level (e.g.,
increase word size and/or reduce bit rates on serial ports).

27SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

(c) Reduce DSP MDMA latency by:

(i) Increase priority of DSP access to DDR2/EMIFA such that MDMA latency of
MDMA accesses causing stalls is minimized.
Note: Other masters, such as VPSS, may have real-time deadlines which
dictate higher priority than DSP.

(ii) Lower PR_OLD_COUNT field setting in the DDR2 memory controller’s Burst
Priority Register. Values ranging between 0x10 and 0x20 should give decent
performance and minimize latency; lower values may cause excessive
SDRAM row thrashing.

(iii) Do not perform EMIFA access using EMIFA WAIT handshaking during DSP
run-time. Devices using WAIT potentially insert excessive latency to external
memory accesses.

2. Minimize offending scenarios on DSP/Caching side:

(a) If DSP performing non-cacheable writes is causing the issue, insert
non-cacheable reads every few writes to allow write buffer to drain.

(b) Avoid caching from slow memories such as asynchronous memory. Instead, page
the data via the EDMA from the off-chip async memory to L2 SRAM or SDRAM
space before accessing the data from the DSP.
Note: Paging cannot occur while real-time deadlines must be met.

(c) Use explicit cache commands to trigger cache write-backs during appropriate
times (L1D Writeback All, L2 Writeback All). Do not use these commands when
real-time deadlines must be met.

(d) Restructure program data and data flow to minimize the offending cache activity.

(i) Define the read-only data as “const.” The const C keyword tells the compiler
that the array will not be written to. By default, such arrays are allocated to the
“.const” section as opposed to BSS. With a suitable linker command file, the
developer can link the .const section off-chip, while linking .bss on-chip.
Because programs initialize .bss at run time, this reduces the program’s
initialization time and total memory image.

(ii) Explicitly allocate lookup tables and writeable buffers to their own sections.
The #pragma DATA_SECTION(label, “section”) directive tells the compiler to
place a particular variable in the specified COFF section. The developer can
explicitly control the layout of the program with this directive and an
appropriate linker command file.

(iii) Avoid directly accessing data in slow memories (e.g., flash); copy at
initialization time to faster memories.

(e) Modify troublesome code.

(i) Rewrite using DMAs to minimize data cache writebacks. If the code accesses
a large quantity of data externally, consider using DMAs to bring in the data,
using double buffering and related techniques. This will minimize cache
write-back traffic and likelihood of IDMA/SDMA stalling.

(ii) Re-block the loops. In some cases, restructuring loops can increase reuse in
the cache, and reduce the total traffic to external memory.

(iii) Throttle the loops. If restructuring the code is impractical, then it is reasonable
to slow it down. This reduces the likelihood that consecutive SDMA/IDMA
blocks “stack up” in the cache request pipelines resulting in a long stall.

Perform the following to eliminate the potential for a deadlock condition:

1. Force the ARM-D to perform writes to either the DSP memory space or the
DDR2/EMIFA memory space but not to both.

2. For UHPI, EMAC, VLYNQ, USB, and ATA, do one of the following:

(a) Force the completion of pending write commands to either the DSP memory
space or the DDR2/EMIFA memory space before initiating writes to a different
destination. Pending write commands from a particular master are forced to
complete when the same master initiates a read from the same destination
memory.

28 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

(b) Force each master to perform writes to either the DSP memory space or the
DDR2 (or EMIFA) memory space, but not to both. This means that as a group
these masters must only perform writes to either DSP memory or DDR2/EMIFA
memory. For example, if EMAC writes to DSP memory and USB writes to DDR2
memory, the potential for the deadlock is still present.

Advisory 2.3.34 VPBE: Restriction When 6/5 Vertical Expansion Filter is Enabled

Revision(s) Affected: 2.3 and earlier

Details: The video windows are corrupted when the 6/5 vertical Expansion Filter is enabled under
the following configuration: both video window 0 and video window 1 are enabled,
6/5 expansion is enabled, expansion filter is enabled, and the windows are at specific
vertical coordinates.

Additionally, the video windows are corrupted when 6/5 expansion is enabled, expansion
filter is enabled, and 4x or 2x vertical zoom is enabled for video window 0.

Workaround(s): To work around this problem, when the 6/5 vertical Expansion Filter is enabled, the
following constraints must be met:

• (VIDWIN1YP + VIDWIN1YL - VIDWIN0YP) + 1 = Z*(6N)
Where: Z = 1, 2, or 4 is the vertical zoom factor for video window 0 or 1, N is an
integer, and YP register is a window's vertical position (upper-left pixel offset from
base pixel).

• Additionally, when 6/5 vertical Expansion Filter is enabled, 4x or 2x vertical zoom
cannot be enabled in video window 0.

29SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.3.36 DSP: Internal Clock Misalignment

Revision(s) Affected: 2.3 and earlier

Details: If using ARM Boot DSP Mode or turning on/off the DSP Subsystem power domain (for
power savings), there is a possibility that the DSP's internal clock dividers will become
out of phase with respect to the rest of chip-level clocks. This can cause violations in the
timing requirements for some critical paths.

One known symptom of this advisory is that applications that make use of the
Video/Imaging Co-Processor (VICP), might exhibit random failures in the form of
application stalls, video artifacts, or VICP memory/data corruption.

The likelihood of experiencing this issue varies from one DM644x device to the next.
Depending on the DM644x device, you may see different behavior. For some DM644x
devices, you may not see any issues when operating at room temperature and nominal
core voltage but, other devices might experience the issue under the same nominal
conditions. Factors such as high case temperature, high frequency, and lower core
voltage can cause this issue to become more prominent.

This advisory is not encountered when using DSP Self-Boot Mode.

Workaround(s): This issue can be avoided by following the PSC initialization sequence below. The
following sequence should be implemented by all applications, including those not
using VICP.

1. Apply power to the power pins (CVDDDSP) of the DSP Subsystem power domain. In
this step, the ARM coordinates with an external device (e.g., a microcontroller) to
supply power to the power pins. For information on the power pins of the DSP power
domain, see the device-specific data manual.

2. Wait for the GOSTAT[1] bit in the PTSTAT register to clear to "0".
3. Set the NEXT bit in the PDCTL1 register to "1" to prepare the DSP power domain for

an "on" transition.
4. Set the NEXT bits [bits 2:0] in the MDCTL39 register to "0h" to prepare the DSP

module for a SwRstDisable transition.
5. Set the GO[1] bit in the PTCMD register to "1" to initiate the state transitions.
6. Wait for the EPC bit in the EPCPR register to change to "1", indicating that the power

has been applied.
7. Set the DSPPWRON bit in the CHP_SHRTSW system control module register to "1"

to short the power rails of the Always On and DSP power domains.
8. Set the EPCGOOD bit in the PDCTL1 register to "1", indicating that power has been

applied. The PSC proceeds with the transition after software sets the bit to "1".
9. Wait for the GOSTAT[1] bit in the PTSTAT register to clear to "0".
10. Set the NEXT bits in the MDCTL39 register to "3h" to prepare the DSP module for

an enable transition.
11. Set the GO [1] bit in the PTCMD register to "1" to initiate the state transitions.
12. Wait for the GOSTAT [1] bit in the PTSTAT register to clear to "0".

30 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.37 VPFE: Preview Engine Hangs When the Video Port is Enabled in CCDC

Revision(s) Affected: 2.3 and earlier

Details: For RGB Bayer pattern input data, the CCDC can be setup in such a way that it can
output raw data to DDR2 while concurrently sending the same data via its video port to
the Preview Engine, H3A and Histogram modules. The Preview Engine and Histogram
modules can alternatively get input data from DDR2 while the H3A module can only get
input data from the CCDC via the video port. In other words, the following con-current
data path should work.

CCDC → H3A

CCDC → DDR2 → Preview Engine → DDR2

The problem is that these two data paths can not work con-currently. Once the video
port is enabled in the CCDC by setting FMTCFG.VPEN = 1, the Preview Engine hangs
after a while, i.e., the second data path breaks when the first is enabled. When the
Preview engine hangs, its PCR.BUSY bit stays at 1 and the interrupt is never triggered.
A VPSS reset is needed to bring the Preview Engine back to normal functional mode.

The Preview Engine is configured in one shot mode and its data source is from memory.

Workaround(s): To work around this issue implement one of the following recommendations:

1. Disable the CCDC video port(FMTCFG.VPEN = 0) while using the Preview Engine in
one shot mode getting data from memory.

2. When H3A is used, configure the Preview Engine to get input from video port.

Advisory 2.3.40 VPBE: VENC Default Luma Interpolation Filter Does Not Clip to Zero

Revision(s) Affected: 2.3 and earlier

Details: The Video Encoder (VENC) in the VPBE subsystem includes an optional 2x interpolation
function for the luma signal. The default filter used for this interpolation
(VMISC.YUPF = 0), does not clip the luma to zero.

Workaround(s): Do not use the default setting for luma 2x interpolation filter (VMISC.YUPF = 0).
Instead, use the alternate setting for luma 2x interpolation filter (VMISC.YUPF = 1).

31SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.3.41 VLYNQ/ASP: VLYNQ and Audio Transfers Induce Noise Into the Audio Stream

Revision(s) Affected: 2.3 and earlier

Details: VLYNQ and ASP share the same SCR7 internal bus. VLYNQ accesses tend to be high
latency. When the DM644x CPU or EDMA3 initiates read/write accesses to a remote
VLYNQ device, it can create blocking conditions and stalls for concurrent accesses
made by the CPU or EDMA3 to the ASP. Thus, a VLYNQ access while the ASP is
transferring data will generate enough internal bus stalls to cause the ASP to miss its
sampling window/real-time deadlines. The missed sampling data induces noise into the
audio stream.

Workaround(s): No specific workaround can be documented besides the general advice of preventing
concurrent transfers on both of the peripherals.

Through internal testing, we have found the following use cases may help:

• Use only “Remotely Initiated Transactions” - i.e., the remote device pushes/pulls data
where necessary, rather than via a “Host Initiated Access”

• Eliminate host initiated VLYNQ write stalls - by ensuring the write FIFO is empty
before issuing a new write transaction

• Ensure host initiated VLYNQ slave reads complete as fast as possible to minimize
stall time

• Operate VLYNQ at its' max frequency and max bus-width (4 RX/TX pins)

32 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.42 VPBE (S/W): Linux Legacy Video Driver Causes Jittering on Video Windows

Revision(s) Affected: 2.3 and 2.1

Details: A workaround to "Advisory 1.3.8, VPBE: OSD Field Signal is Inverted for All but Video
Window 0" has been included in the VPBE driver of DaVinci Linux Support Package
(LSP) Version 1.30 (Beta) and earlier. The VPBE driver disables the VIDWIN0 and
inverts the field signals for all other window planes to bypass the issue as described in
the advisory.

For Linux-based designs using the DM644x Linux Support Package found in the DaVinci
DVSDK (see Table 5), the user can remove the temporary restriction on VIDWIN0 by
patching the kernel.

Table 5 lists the software packages the LSPs are under and the corresponding patches
needed to remove the temporary restriction on VIDWIN0. Note: Patches are currently
supported on LSPs: 1.10, 1.20, and 1.30 (Beta) only.

Workaround(s): Download the appropriate patch from the TI DVEVM update web site:
www.ti.com/dvevmupdates. Simply Log in and select the patch needed. Table 5 lists the
patch file names for each particular DVDSK and associated LSP.

If the driver source has been modified (on LSP 1.10), the patch may not apply cleanly
(i.e., the command returns with errors).

In this case, the user can:

(a) Try to debug the patch using the "Helpful Tips If Patch Does Not Apply Cleanly"
section below

(b) Use the steps provided in the "Instructions to Manually Remove the VIDWIN0
Restriction" section below

Helpful Tips If Patch Does Not Apply Cleanly

These tips address only the LSP 1.10 patch which uses the FBDev driver. If the user has
modified the "davincifb.c" file, please perform a "dry-run" of the patch application before
applying the patch to verify the patch application will apply cleanly.
patch -p1 --dry-run < patch_file.patch

where patch_file.patch is, insert patch file name from Table 5.

Any messages about offsets, can be ignored — for example:
Hunk #1 succeeded at 51 (offset 3 lines)

If the patch has failed hunks, the user will need to either: apply the patch and fix the
rejects or view the patch and manually apply the changes.

In the case where the user has made extensive modifications to the FBDev driver, and
wishes to remove the VIDWIN0 restriction manaully, please use the patch content to
make these changes.

Instructions to Manually Remove the VIDWIN0 Restriction

The following modifications can be used to specifically remove the workaround to the
LSP 1.10 FBDev Frame Buffer driver as described in Advisory 1.3.8, VPBE: OSD Field
Signal is Inverted for All but Video Window 0:

Note: These steps do not cover the full patch as provided using the patch method. The
full patch also adds methods to detect the CPU ID to determine which workaround is
needed.

33SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

1. The global field inversion bit is set in the OSD_MODE register by writing 0x200. This
setting is not needed for PG 2.3 and PG 2.1 silicon.
Search for the following piece of code which sets the global field inversion bit in the
OSD_MODE reigster:

dispc_reg_out(OSD_MODE, 0x200);

This line should be removed for PG 2.3 and PG 2.1 silicon.

2. In the set_win_enable function, currently video window 0 (VIDWIN0) is being disabled
by the following piece of code:

dispc_reg_merge(OSD_VIDWINMD, 0, OSD_VIDWINMD_ACT0);

The second parameter in the above call has to be changed to "1", so that VIDWIN0 is
enabled.

Table 5. DaVinci DVSDK Software Packages, LSPs, and Patches

S/W PACKAGE LSP PATCH FILE NAME

ti_davinci_mv_1_10_dm644x_pg_2_1_vid0_revert_field_inversion_fix_046DVSDK 1.20 1.10 https://www-a.ti.com/downloads/sds_support/targetcontent/psp/mv_lsp_1_10/index.html

lsp_1_20_dm644x_pg_2_1_vid0_revert_field_inversion_fix_001DVSDK 1.30 1.20 https://www-a.ti.com/downloads/sds_support/targetcontent/psp/mv_lsp_1_20/index.html

1.30 lsp_1_30_beta_dm644x_pg_2_1_vid0_revert_field_inversion_fix_001DVSDK 1.40 (Beta) https://www-a.ti.com/downloads/sds_support/targetcontent/psp/mv_lsp_1_30/index.html

34 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.43 USB (Device Mode): Calculated CRC Value Does Not Match Host CRC Value

Revision(s) Affected: 2.3 and earlier

Details: The USB Controller can occasionally calculate a bad CRC for a received data packet.
This error is rare and only occurs when ALL of the following conditions are met:

• USB Controller is in Device Mode of Operation and is receiving data
• Received data packet has a good CRC value of 0x7FF2
• A timing violation caused by a synchronization error (race condition)

The timing synchronization error is caused by a race condition between two control
signals in the PHY Clock and System Clock domains. When these two synchronized
control signals are crossing a clock boundary and the received data packet has a good
CRC value of 0x7FF2, a race condition may occur causing one of the control signals to
be latched a few pico-seconds ahead of the other control signal.

The issue has been observed on both Bulk (Non-Isochronous) and Isochronous transfers
and may potentially exist on Control and Interrupt transfers since the data paths for all
these transfers are the same or are very similar.

When the problem occurs in Non-Isochronous transfer types, the data that was "in-flight"
to the USB Controller’s FIFO from the Host is discarded by the USB Controller. Due to
the error condition, the USB Controller also refrains from sending an ACK packet to the
Host, as mandated by the USB transfer protocol. This forces the Host to re-transmit the
data packet, anticipating an error in data transmission. The problem is usually corrected
when the Host re-transmits the data packet.

When this problem occurs in Isochronous transfer mode for either High- or Full-speed,
the USB Controller flags the device application S/W that a CRC error existed but retains
the received data within the FIFO as well as captures the received data packet size
value minus one byte from the actual data size. Since the magnitude of the actual timing
violated due to the synchronization problem is only in pico-seconds, the entire data sent
from the Host is routed into the USB device receive FIFO (i.e., even though the received
data counter is one byte less, the full data packet is available for the USB driver).

Workaround(s): Case 1a: Non-Isochronous Transfers (High-Speed): For non-Isochronous transfers
operating in High-Speed mode, the Host and Device H/W perform the necessary
re-transmission; thererfore, the issue should be transparent to the Host driver. The issue
will also be transparent to the USB device driver since the H/W flushes the received data
and forces the Host driver to re-transmit by not sending an ACK packet. For this reason,
no interrupt is generated by the H/W to signify an error condition to the device-side
application S/W.

Although quite rare, when both the Host and Device are operating in High-Speed mode
and all the three consecutive transmissions did not occur without an error, the Host will
use a PING packet at a later time to check if the endpoint is ready for accepting data.
Upon the Host receiving an ACK packet in response to the PING packet, the Host
re-initiates the previously failed transmission again. This process continues until the
transfer takes place without error. For this reason, the Non-Isochronous High-Speed
transfer is immune to this issue except for a throughput reduction for the time it takes for
the re-transmission.

Case 1b: Non-Isochronous Transfers (Full-Speed): For non-Isochronous transfers
operating in Full-Speed mode, it is recommended that the Host driver be constructed in
such a way that it invokes the transfer multiple times prior to forcing a reset to the USB
device. When the transfer is repeated, it is expected for the transfer to complete
"error-free".

If the Host driver is not "set up" to invoke multiple failed transfers then, the Host driver
will reset the USB driver, re-enumerate, and continue from where it left off.

35SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Case 2: Isochronous Transfers (High- and Full-Speed): For Isochronous Transfers
operating in either High- or Full-Speed modes, upon receiving a CRC error, the USB
controller flags the device application S/W that a CRC error existed but will retain the
received data within the FIFO as well as capture the received data packet size value
minus one byte from the actual data packet size. Since the magnitude of the actual
timing violated due to the synchronization problem is only in pico-seconds, the entire
data sent from the Host is routed into the USB device receive FIFO (i.e., even though
the received data counter is one byte less, the full data packet is available for the USB
driver) and the USB driver should ignore the received CRC error and read one more
additional byte from the receive FIFO. This one-byte counter difference is transparent to
the Host H/W and S/W.

Due to the rare occurrence of this issue and its very minimal impact on applications,
there are no plans to correct this issue in future silicon revisions.

36 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



C64x+ CPU

IDMA

EDMA

EMAC

USB

Inherit
Priority

Programmable Priority

Programmable Priority
L2 RAM

Highest Priority Master Granted Access.
Contention counters implemented to not
starve low priority requestors

C64x+ Megamodule

HPI

VLYNQ

SDMA

S
H

A
R

E
D

 R
E

S
O

U
R

C
E

A
R

B
IT

R
A

T
IO

N

A
R

B
IT

R
A

T
IO

N

M
a
s
te

r 
P

ri
o

ri
ty

E
x
te

rn
a
l 
S

y
s
te

m
 M

a
s
te

rs
www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.44 DMA Access to L2 SRAM May Stall When the C64x+ CPU Command Priority is
Lower Than or Equal to the DMA Command Priority

Revision(s) Affected: 2.3 and earlier

Details: Note: DMA refers to all non-CPU requests. This includes Internal Direct Memory Access
(IDMA) requests and all other system DMA master requests via the Slave Direct Memory
Access (SDMA) port.

The C64x+ Megamodule uses a bandwidth management (BWM) system to arbitrate
between the DMA and CPU requests issued to L2 RAM. For more information on the
BWM feature, see the TMS320C64x+ DSP Megamodule Reference Guide (literature
number SPRU871). The BWM arbitration grants L2 bandwidth based on programmable
priorities and contention-cycle-counters. The contention-cycle-counters count the number
of cycles for which the associated L2 requests are blocked by higher-priority requests.
When the contention-cycle-counter reaches a programmed threshold (MAXWAIT), the
associated L2 request is granted a slice of L2 bandwidth. This prevents indefinite
blocking of lower-priority requests when faced with the continuous presence of
higher-priority requests.

Ideally, the BWM arbitration will grant equal L2 bandwidth between equal priority DMA
and CPU requests. Instead, when requests arrive at the BWM such that the CPU priority
is lower than or equal to the DMA priority, the bandwidth is always granted in favor of the
CPU over the DMA. In the case of successive CPU requests, it is possible for the CPU
to block all DMA requests until the CPU traffic subsides. Figure 8 shows a high-level
diagram of the arbitration scheme used for L2 RAM requests.

Figure 8. Priority Arbitration Scheme for L2 RAM

When the SDMA has finished sending all of its commands to the L2 controller, the
C64x+ Megamodule drops the effective transfer priority to seven. The L2 Controller uses
this effective priority to arbitrate the SDMA command with the CPU.

This happens regardles of what the actual SDMA priority is. This means that if the CPU
Priority is equal to seven, then it can also trigger the issue highlighted by this advisory.

Workaround: Configure the DMA and CPU requests to different priority levels such that the CPU
priority level is higher than the DMA priority level. Priority seven should not be used for
the CPU. There is no penalty for setting the IDMA and SDMA priorities equal to each
other.

The following table highlights which priority combinations are affected and what
combinations are valid:

37SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU871


Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Table 6. Allowable CPU and SDMA Priorities

CPU PRIORITY SDMA PRIORITIES ALLOWED

0 Not allowed; Affected by Advisory Issue

1 0

2 0-1

3 0-2

4 0-3

5 0-4

6 0-5

7 Not allowed; Affected by Advisory Issue

Pseudo code provided below highlights how the various requestor priorities can be
configured:

CPU request priority is programmed within the CPUARBU register:

/** Pseudo code only **/

Uint32 *CPUARBU;

CPUARBU = ( Uint32 * ) ( 0x01841000 );

/* Set priority different from IDMA/SDMA */
*CPUARBU = [CPU_PRIORITY];

IDMA request priority is programmed within the IDMA1_COUNT register

/** Pseudo code only **/

Uint32 *IDMA1_SRC, *IDMA1_DST;
Uint32 *IDMA1_CNT;

IDMA1_SRC = ( Uint32 * ) ( 0x01820108 );
IDMA1_DST = ( Uint32 * ) ( 0x0182010C );
IDMA1_CNT = ( Uint32 * ) ( 0x01820110 );

*IDMA1_SRC = sourceAddress;
*IDMA1_DST = destinationAddress;

/* Set IDMA priority different from CPU */
*IDMA_CNT = ( [IDMA_PRI] << [IDMA_PRI_SHIFT] ) | buffSize ;

SDMA request priority is inherited from the MSTPRIn registers

/** Pseudo code only **/

Uint32 *MSTPRI0, *MSTPRI1;

MSTPRI0 = ( Uint32 * ) ( 0x01C4003C );
MSTPRI1 = ( Uint32 * ) ( 0x01C40040 );

/* Set SDMA master priorities different from CPU */
*MSTPRI0 = [MAST_PRI] << [MAST_SHIFT];
*MSTPRI1 = [MAST_PRI] << [MAST_SHIFT];

38 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.3.45 VPBE: Video Window 0 Corruption in RGB Mode When Video Window 1 Enabled

Revision(s) Affected: 2.3 and earlier

Details: When Video Window 0 is in RGB mode and Video Window 1 is also enabled, certain
locations of Video Window 1 cause Video Window 0 to become corrupted.

Workaround: To avoid video corruption, when Video Window 0 is in RGB mode and Video Window 1
is also enabled, the following equation must be satisfied:

• (VPBE_VIDWIN1XP - VPBE_VIDWIN0XP) MODULO 256 NOT between 81-96 or
161-176

39SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.3.46 VPBE: Video Window Buffer Location Limitation in Multibuffer Application

Revision(s) Affected: 2.3 and earlier

Details: When the source buffer locations are being updated in real-time for Video Window 0 and
Video Window 1, there might be video corruption due to the swapping of the buffers.
This might happen in both "ping-pong" mode and "manual" mode where VIDWIN0ADR
and VIDWIN1ADR values are updated manually.

Workaround: To avoid video corruption, when multiple buffers are used, all buffers must be allocated
on the same 128-MB half of the DDR2 memory (i.e., all buffers must be allocated
between address ranges 0x8000 0000 and 0x87FF FFFF or 0x8800 0000 and 0x8FFF
FFFF).

40 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

3 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional
Specifications

3.1 Usage Notes for Silicon Revision 2.1

Silicon Revision 2.1 applicable usage note(s) have been found on a later silicon revision; for more detail,
see Section 2.1, Usage Notes for Silicon Revision 2.3, of this document.

3.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

All known design exceptions to functional specifications for silicon revision 2.1 still apply and have been
moved up to Section 2.2, Silicon Revision 2.3 Known Design Exceptions to Functional Specifications, of
this document.

41SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

4 Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional
Specifications

4.1 Usage Notes for Silicon Revision 1.3

Silicon Revision 1.3 applicable usage note(s) have been found on a later silicon revision; for more detail,
see Section 2.1, Usage Notes for Silicon Revision 2.3, of this document.

4.2 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications

All other known design exceptions to functional specifications for silicon revision 1.3 still apply and have
been moved up to Section 2.2 (Silicon Revision 2.3 Known Design Exceptions to Functional
Specifications) of this document.

Table 7. Silicon Revision 1.3 Advisory List

Title ...................................................................................................................................... Page

Advisory 1.3.1 —VPBE: Limited OSD Window Addressing Range.............................................................. 43
Advisory 1.3.2 —EMU: Loss of DSP/ARM/ARM ETM Cross Triggering Capability Halts Emulation ....................... 43
Advisory 1.3.6 —DSP Shutdown: DSP Clock Stop Sequence Does Not Work................................................ 44
Advisory 1.3.7 —VLYNQ: VLYNQ Clock Buffer has Limited Drive Strength ................................................... 45
Advisory 1.3.8 —VPBE: OSD Field Signal is Inverted for All but Video Window 0............................................ 46
Advisory 1.3.9 —VPBE: Video Window 0 is Shifted When Overlaid by Video Window 1 .................................... 47
Advisory 1.3.10 —VPBE: RGB888 Video Windows Corrupted When Overlaid by OSD Windows.......................... 48

Advisory 1.3.14 —Device Configuration: MSTPRI0 Register Does Not Work. MSTPRI1 Register Affects All
Fixed-Priority Masters......................................................................................................... 49

Advisory 1.3.15 —Clock Domain: Peripherals in the Fixed-Clock Domain (MXI) may Lose Register Contents if Clock
is Turned Off ................................................................................................................... 51

Advisory 1.3.16 —L1D Cache: C64x+ L1D Cache May Lose Data or Hang DMA Operations Under Certain
Conditions ...................................................................................................................... 52

Advisory 1.3.17 —DSP Subsystem: C64x+ CPU STORE Instruction to Any MMRs or EMIFA While IDMA Channel 0
Transfer is in Progress Can Hang C64x+ CPU ........................................................................... 53

Advisory 1.3.22 —PSC: PTSTAT Register Does Not Clear After Warm/Maximum Reset ................................... 54
Advisory 1.3.23 —EMU: Poor Quality of the RTCK and TDO Emulation Signals May Cause Loss of Synchronization . 55
Advisory 1.3.24 —ARM: Concurrent Access to ARM Internal Memory May Fail .............................................. 58
Advisory 1.3.25 —VPBE: AC Timings Differ From Data Manual Specifications ............................................... 59
Advisory 1.3.26 —USB: Electrostatic Discharge (ESD) Sensitivity Classification ............................................. 60
Advisory 1.3.35 —VPBE: Video Corruption on VIDWIN1 Caused by Synchronization Issue................................ 61
Advisory 1.3.38 —EMIFA: AC Timings Differ From Data Manual Specifications .............................................. 62
Advisory 1.3.39 —ATA/CF Ultra DMA: AC Timings Differ From Data Manual Specifications ............................... 63

42 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.1 VPBE: Limited OSD Window Addressing Range

Revision(s) Affected: 1.3 and earlier

Details: The OSD window addressing is limited to 128 MB of DDR2 memory. After the first 128
MB of DDR2 boundary is exceeded, the addressing will wrap around.

Workaround: Place OSD window content in the first 128 MB block of DDR2 memory.

Advisory 1.3.2 EMU: Loss of DSP/ARM/ARM ETM Cross Triggering Capability Halts Emulation

Revision(s) Affected: 1.3 and earlier

Details: Cross triggering capability between DSP and ARM and on ARM ETM (Embedded Trace)
halts due to buffer full or buffer overflow do not function properly.

Standard debug capability using the internal ARM breakpoint and control logic is still
functional. Cache benchmarking, profiling, and adaptive clocking logic are still functional.

Workaround: None

43SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.6 DSP Shutdown: DSP Clock Stop Sequence Does Not Work

Revision(s) Affected: 1.3 and earlier

Details: The DSP clock stop sequence does not work as documented in the DSP Module Clock
Off section of the TMS320DM644x DMSoC ARM Subsystem Reference Guide (literature
number SPRUE14).

The documented sequence works only when the emulator is connected.

Workaround: The software must be structured such that no peripheral is allowed to access the DSP
resources before shutting down the DSP clock. The DSP must check for completion of
all its master peripheral initiated requests (i.e., IDMA, MDMA, EDMA, cache operations,
etc.). The ARM must check for the completion of all its master peripheral initiated
transactions to the DSP resources.

Use the following DSP clock stop sequence:

1. The ARM stops all masters from accessing the DSP and DSP memory.
2. The ARM polls all masters for write-completion status (or wait N number of cycles if

the transfer completion status is not implemented).
3. The DSP must have the Power-Down Controller (PDC) interrupt enabled and the

PDC Interrupt Service Routine (ISR) set up before the ARM initiates the DSP clock
shutdown procedure.
The ARM issues the DSP clock stop command (PSC DISABLE Command) to the
DSP Power domain by writing a 0x02 value in the NEXT bit field (bits 2:0) of the DSP
Local Power Sleep Controller (LPSC) Module Control (MDCTL) register. This
generates a DSP PDC interrupt.

(a) Write a 0x01 value in the GO[1:0] bit field (bits 1:0) of the DSP Power Domain
Transition Command (PTCMD) register to start the transition sequence for DSP
LPSC.

(b) Check (poll for 0) the GOSTAT[1:0] bit field (bits 1:0) in the DSP Power Domain
Transition Status (PTSTAT) register for power transition sequence completion.

(c) Check value (poll for 0x02) in the STATE bit field (bits 5:0) of the DSP LPSC
Module Status (MDSTAT) register indicating the DSP clock stop sequence
completion.

4. Complete the following tasks within the DSP PDC Interrupt Service Routine (ISR):

(a) Check for completion of all DSP master requests (The DSP polls transfer
completion statuses of all Master peripherals)

(b) Enable one of the ARM2DSP interrupts — ARM2DSP0, ARM2DSP1,
ARM2DSP2, ARM2DSP3 or the NMI interrupt that will be used to wake up the
DSP during the DSP clock-on sequence.

(c) Write 0x0001 5555 value to the PDCCMD register in the DSP Power-Down
Controller (PDC).

(d) Set FORCE bit (bit 0) in the PSC Global Control Register (GBLCTL) at 0x01C4
1000 address.

(e) Execute the IDLE instruction.
5. The ARM clears the FORCE bit in the PSC GBLCTL register after the PSC indicates

the DSP clock shutdown is complete.

NOTE: Power must not be removed from the CVDDDSP pins.

44 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprue14


www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.7 VLYNQ: VLYNQ Clock Buffer has Limited Drive Strength

Revision(s) Affected: 1.3 and earlier

Details: In VLYNQ master mode (DM644x sourcing the VLYNQ clock), the limited drive strength
of the buffer results in poor signal integrity at high speeds (> 50 MHz).

Workaround: Use one of the following options:

• Use the VLYNQ in slave mode, so the clock is sourced by the downstream device.
• For high speed designs that source the VLYNQ clock, use only a point-to-point

connection on this signal. Do not use the multiplexed
EM_CS5/GPIO8/VLYNQ_CLOCK functionality.
In addition, keep the trace length for this signal limited to 4 inches or less.

45SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.8 VPBE: OSD Field Signal is Inverted for All but Video Window 0

Revision(s) Affected: 1.3 and earlier

Details: When using interlaced video out (e.g., standard NTSC/PAL output), the field signals
within the OSD module are inverted for all windows except VIDWIN0. The order in which
the field data is fetched is swapped for the other windows (VIDWIN1, OSDWIN0, and
OSDWIN1). The result is a poor display of the input window data in frame mode
(contains the full vertical resolution of the display) compared to those in field mode
(contains data for a single field, which is fetched twice to generate the output image).

Workaround: Choose one of the following three options:

• Use VIDWIN0 and limit the use of VIDWIN1 and OSDWIN1/2 to field mode data
(½ vertical resolution data).

• Swap the field order for all windows by setting the OSD mode register field signal
inversion bit [OSD.MODE.FSINV = 1], use VIDWIN1 and OSDWIN1/2, and limit use
of VIDWIN0 to field mode data (½ vertical resolution data).

• Swap the DDR2 memory start address for VIDWIN0 using the ping-pong buffer as
described below.
In the following explanation, vid0_addr is the start address for image data in DDR2
memory and vid0_buflen is the line offset in bytes.
Configure the following parameters at initialization time:

OSD.MODE.FSINV = 1;
OSD.VIDWIN0ADR = vid0_addr - vid0_buflen;
OSD.VIDWIN0OFST.V0LO = vid0_buflen / 32;
OSD.PPVWIN0ADR = vid0_addr + vid0_buflen;
OSD.VIDWINMD.VFF0 = 1;
OSD.MISCCTL.PPRV = 1;

In the Video Encoder (VENC) interrupt service routine, swap the address of VIDWIN0
as follows:

OSD.MISCCTL.PPSW = VENC.VSTAT.FIDST;
The VENC reads lines 0, 2, 4, etc. from the DDR2 memory while displaying the odd
field and reads lines 1, 3, 5, etc. from the DDR2 memory while displaying the even
field. To work around this problem, the OSD.VIDWIN0ADR register is set one line
before the start of data, the OSD.PPVWIN0ADR register is set one line after the start
of data, and the address of VIDWIN0 is swapped depending on the field ID in the
VENC (end of frame) interrupt service routine. When the field ID is even, the
OSD.VIDWIN0ADR is selected; when the field ID is odd, the OSD.PPVWIN0ADR is
selected; thus, the even and odd lines are read out of DDR2 memory in proper order.

46 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.9 VPBE: Video Window 0 is Shifted When Overlaid by Video Window 1

Revision(s) Affected: 1.3 and earlier

Details: Position of Video Window 0 (VIDWIN0) is shifted when overlaid by certain sizes of Video
Window 1 (VIDWIN1) at certain locations.

Workaround: To work around this problem, the following constraints must be met:

Case 1:

VIDWIN0 is YUV input-data format

VIDWIN1 is YUV or RGB888 input-data format

• VIDWIN1XP > VIDWIN0XP
• VIDWIN1XP - VIDWIN0XP = 16N
• VIDWIN1XL = 16N + 8

Where:
N is an integer
XP register is the video window's horizontal display start position

(upper-left pixel offset from base pixel)
XL register is the video window's horizontal display width in pixels (window width)

Case 2:

VIDWIN0 is RGB888 input-data format

VIDWIN1 is YUV input-data format

• VIDWIN1XP > VIDWIN0XP
• VIDWIN1XL + VIDWIN1XP - VIDWIN0XP = 32N pixels

Where:
N is an integer
XP register is the video window's horizontal display start position

(upper-left pixel offset from base pixel)
XL register is the video window's horizontal display width in pixels (window width)

47SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.10 VPBE: RGB888 Video Windows Corrupted When Overlaid by OSD Windows

Revision(s) Affected: 1.3 and earlier

Details: The video windows are corrupted when configured in RGB888 data-input mode and
overlaid at specific locations by a specific size OSD window in a bitmap or RGB565
data-input format.

The problem occurs for both Video Windows 0 and 1 and occurs for all OSD data-input
formats (i.e., 8-bit, 4-bit, 2-bit, 1-bit, and RGB565).

Workaround: To work around this problem, the following constraints must be met:

OSDWINnXL + OSDWINnXP - VIDWINnXP ≠ 80 + 256M ± 16 pixels

Where:

M is an integer

n = 0 or 1 (video- or OSD-window number)

XP register is the video window's horizontal display start position
(upper-left pixel offset from base pixel)

XL register is the video window's horizontal display width in pixels (window width)

48 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.14 Device Configuration: MSTPRI0 Register Does Not Work. MSTPRI1 Register
Affects All Fixed-Priority Masters.

Revision(s) Affected: 1.3 and earlier

Details: The DM6441 device has two bus master priority control registers (MSTPRI0 and
MSTPRI1) for system-level performance tuning. These registers are located at address
0x01C4 003C and 0x01C4 0040, respectively.

Due to a hardware connection problem, the MSTPRI0 register has no effect on the
ARM_DMA, ARM_CFG, C64x+_CFG, and VICP bus priority. On the other hand, the
MSTPRI1 register affects all fixed-priority masters according to Figure 9, MSTPRI1
Register.

31 24

Reserved

R-0000 0000

23 19 18 16

Reserved VLYNQP/VICPP

R-01000 R/W-100

15 14 12 11 10 8

Rsvd ATAP Rsvd USBP/C64x+_CFGP

R-0 R/W-100 R-0 R/W-100

7 6 4 3 2 0

Rsvd ARM_CFGP Rsvd EMACP/ARM_DMAP

R-0 R/W-100 R-0 R/W-100

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 9. MSTPRI1 Register

49SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

The default bus master priority values are also changed (see Table 8).

Table 8. Bus Master Priority Defaults

Master Default Priority

VPSS 0

TC0 0

TC1 0

ARM (DMA) 4

ARM (CFG) 4

C64x+ (DMA) 7

C64x+ (CFG) 4

EMAC 4

USB 4

ATA/CF 4

VLYNQ 4

VICP 4

Workaround: None

50 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.15 Clock Domain: Peripherals in the Fixed-Clock Domain (MXI) may Lose Register
Contents if Clock is Turned Off

Revision(s) Affected: 1.3 and earlier

Details: The UART, I2C, PWM, Timer, and WD Timer are the fixed-clock domain peripherals that
run at the rate of input clock (MXI). If for some reason (i.e., power savings) the clocks to
these peripherals are shut down via their respective Power and Sleep Controller (PSC),
their register content may be lost.

Workaround: Use one of the following:

• Do not shut down the clocks to these peripherals (UART, I2C, PWM, and Timers)
once programmed and enabled.

• If clocks to these peripherals (UART, I2C, PWM, and Timers) are stopped, restart the
clock, then reprogram all the peripheral registers.

51SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.16 L1D Cache: C64x+ L1D Cache May Lose Data or Hang DMA Operations Under
Certain Conditions

Revision(s) Affected: 1.3 and earlier

Details: Under certain conditions, parallel loads with predication to the same cache line may
cause victims to be dropped and/or the DMA to hang.

All of the following conditions must be true in order for this problem to occur:

1. Two LD instructions in parallel.
2. Both are LDs to the same cache line (upper 26 address bits are the same).
3. The LD using T1 is predicated and the predicate is false.
4. The LD using T2 is either not predicated, or is predicated and the predicate is true.
5. The cache line is absent from the cache.
6. The two other lines in the same L1D set are valid.
7. The LRU cache line in the set is dirty.

Results:

• L1D informs L2 to expect a victim for the affected set
• L2 stalls DMAs with addresses that correspond to that set

NOTE: DMA includes accesses from IDMA, EDMA, and any external masters —
such as the EMAC or other CPUs.

• L1D processes the true-predicated request correctly
• L1D does not send the indicated victim

Impact: If the load instruction reads a cacheable location:

• The updated data in the LRU line gets dropped.
• DMA accesses whose addresses match the affected set hang.

If the load instruction reads a non-cacheable location:

• L1D retains the updated data from the LRU line.
• DMA reads may see stale data if the LRU line's address is in L2 memory.

Workaround: Use Code Gen patch 6.0.3 (available on update advisor) to recompile your source code
and avoid this issue. Libraries supplied by TI will be re-released using the 6.0.3 compiler
patch. Customer-generated libraries from TI's Third-Party supplier may also need to be
recompiled.

For existing object code and libraries, an available Perl script can determine the
locations of parallel predicated loads that may fail. The script is available at the same
update advisor location as the Code Gen patch.

52 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.17 DSP Subsystem: C64x+ CPU STORE Instruction to Any MMRs or EMIFA While
IDMA Channel 0 Transfer is in Progress Can Hang C64x+ CPU

Revision(s) Affected: 1.3 and earlier

Details: The C64x+ DSP uses IDMA Channel 0 to transfer contents between the DSP internal
memory and the resources on the CFG address spaces. The C64x+ DSP accessible
resources on the CFG bus are:

• Asynchronous EMIF
• Timer
• ASP
• EDMA
• PSC
• VICP

The C64x+ core can potentially hang if any CPU STORE instruction to the CFG bus
takes place while previously initiated IDMA Channel 0 transfers are in progress.

Workaround: The user should analyze the application for potential places in which IDMA Channel 0 is
used with potential places in which STWs to CFG address space are performed. Extra
attention should be paid to portions of the application that are multi-threaded. For
example, if the main-line application code performs IDMA Channel 0 transactions and an
Interrupt Service routine performs CPU STORE instructions to CFG address space, the
application is at risk to encounter this bug, depending on the timing of interrupt
occurrences.

For those systems using DSP/BIOS 5.30, the HWI interrupt dispatcher will ensure that
this cannot occur. In this version of DSP/BIOS, the default behavior for the dispatcher
checks for IDMA0 completion before actually calling the ISR, meaning that if software
modules do not violate the constraints described above, the combination of the individual
modules in a multi-tasking environment will also work. See DSP/BIOS 5.30
documentation for more details at
https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html.

For systems that do not use DSP/BIOS, the system integrator will need to ensure that
the following steps are taken:

1. Modify the interrupt service routine (or any routine(s) that perform CPU STORE
instruction to CFG address space) to ensure that IDMA transfers are not in progress
(poll on IDMA0_STAT) prior to performing CPU STORE instruction to CFG address
space.
Note: This has negative impact of increasing interrupt service routine latency in the
event that an IDMA is in progress when the interrupt service routine begins.
However, this can be limited to only the interrupt service routines which perform CPU
STORE instructions to CFG address space.

2. Modify the IDMA submission code to:

• Disable the specific interrupts prior to performing IDMA
• Perform IDMA transaction
• Poll for IDMA completion
• Re-enable interrupts
Note: This has the negative impact of Increasing interrupt service routing latency,
potentially eliminating a key advantage of IDMA, where the CPU can perform useful
computation while IDMA is in progress.

53SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html


Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.22 PSC: PTSTAT Register Does Not Clear After Warm/Maximum Reset

Revision(s) Affected: 1.3 and earlier

Details: Following either a warm reset or a maximum reset, the GOSTAT bit field in the PTSTAT
register will not clear to 0. Code executing state transitions at either the power domain
level or the module level will hang when it polls for the GOSTAT bit to clear to 0.
Section 7.4 in the TMS320DM644x DMSoC ARM Subsystem Reference Guide (literature
number SPRUE14) describes how to properly execute state transitions at the power
domain level as well as at the module level.

Workaround: Following a warm reset or a maximum reset, clear the reserved location at address
0x01C4 1A20 prior to executing any state transitions at the power domain level or at the
module level. This means that prior to enabling any power domains or changing the
state of any of the peripherals modules (such as transitioning from disable to enable) the
reserved location at address 0x01C4 1A20 must be cleared to 0.

54 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprue14


High-speed
comparator

Chip Board TI or 3P XDS560
emulator

100 Ω 1%

100 pF

33 Ω

I/O voltage x 1/2

Emulator
RTCK

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.23 EMU: Poor Quality of the RTCK and TDO Emulation Signals May Cause Loss of
Synchronization

Revision(s) Affected: 1.3 and earlier

Details: Poor quality of the RTCK and TDO emulation signals, due to weak emulation output
buffers, may slow down the interface between the device and the debugger hardware
(debug controller pod) and software (Code Composer Studio). In some extreme cases,
the debugger hardware and the software may experience loss of synchronization with
the device.

Figure 10 illustrates the typical hardware interface between the TMS320DM644x DSP
and the current TI or third-party debug controller pod. This combination of debug
controller pod and DSP may not work reliably for two reasons:

• The RTCK and TDO buffers have approximately 100 Ω output impedance and rise
and fall time of 5 ns and 4 ns respectively to minimize EMI and switching noise.

• The emulation pod is designed for a low impedance high drive output buffer with less
than 3-ns rise/fall time. The debug controller pod expects the chip to drive the AC
termination inside the emulation pod shown in Figure 10.

Figure 10. Typical Emulation Interface Circuit

The 100 Ω chip buffer impedance, combined with 33 Ω series termination on the target
board creates a voltage divider at the debug controller pod terminal with a RC time
constant on the order of 10 ns. The slow 10 ns rise time causes the debug controller pod
input to oscillate as the signal passes through the switching threshold. In addition, at
faster debug controller pod operating frequencies (max TCK = 34 MHz), the RTCK and
TDO signals are not able to swing to the full range (0 V - 1.8 V), instead these signals
swing between 0.4 V and 1.45 V.

Workaround: Four solutions are recommended, based on the selected debug controller pod and DSP
target combination.

To determine which version of the TI pod is used to examine the label on the bottom of
the enclosure. The revision code is the least significant digit, i.e., "ABCD EFG HJx"
where "x" is the revision code. For third party debug controller pods, contact the vendor
to determine which version you have.

For the purposes of this advisory, "existing" refers to Revision "B" or older debug
controller pods. A "new debug controller pod" refers to any TI XDS560 revision "D" or
later product, an ZDS560DT, or a comparable third-party debug emulation pod.

1. Existing Target Boards/Existing Debug controller pods:
When using an existing debug controller pod (i.e., XDS560 Revision B or compatible
third-party debug controller pod) the use of an external buffer board (such as
TMDSADP1414 or TMDSADP1420) is required. Figure 11 illustrates this method.

55SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



High-speed
comparator

Chip Board TI or 3P XDS560
emulator

100 Ω 1%

100 pF

I/O voltage x 1/2

Emulator
RTCK

External
buffer board

Revision
B

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 11. Emulation Interface Circuit with Existing Fielded Debug Controller Pods

2. New Target Board Designs/Existing Debug controller pods:

(a) When designing a new target board to be used with an existing debug controller
pod, it is recommended that a buffer is added to the RTCK net and the series
resistor is changed. See Figure 12.

(b) The series termination resistor utilized should be a 10 Ω, (or 22 Ω depending on
net lengths), instead of the original 33-Ω value.

(c) The recommended buffer for the RTCK line is a TI SN74AUC1G17, Single
Schmitt-Trigger Buffer. The buffer characteristics for RTCK is shown in Table 9.

Table 9. RTCK Buffer Characteristics

Signal Drive Rise Tpd Fall

RTCK 8 mA 1.5 nS 1.1 nS 1.5 nS

(d) The Tpd delay for the new buffer is rated at a nominal at 1.1 nS. The delay
induced by this buffer in the RTCK line will increase the TDI setup time (Tsu) time
by approximately 1.1 nS and decrease the hold time (Th) by 1.1 nS relative to
RTCK.

(e) The delay induced by this buffer in the RTCK line will decrease the TDI setup time
(Tsu) by approximately 1.1 nS and increase the hold time (Th) by 1.1 nS relative
to RTCK.

56 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



High-speed
comparator

Chip Board TI or 3P XDS560
emulator

100 Ω 1%

100 pF

10-22 Ω

I/O voltage x 1/2

Emulator
RTCK

Schmitt
trigger buffer

Revision
B

High-speed
comparator

Chip Board TI or 3P XDS560
emulator

51.1 Ω 1%

15 pF

10-22 Ω

I/O voltage x 1/2

Emulator
RTCK

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Figure 12. New Target Design with Existing Fielded Debug Controller Pods

3. Existing Target Boards/New Debug controller pods:
When using an existing target board without any added buffering and a new debug
controller pod such as TI XDS560 Revision D, XDS560T, or comparable third-party
debug controller pod, the use of an external buffer board or on board buffer is not
required.

4. New Target Boards/New Debug controller pods:

(a) When designing a new target board to be used with a new debug controller pod, it
is not necessary to add an additional buffer in the RTCK net on the target board.
Inserting a buffer, such as the TI SN74AUC1G17, Single Schmitt-Trigger Buffer
(as shown in Figure 12) will not impact performance nor the timing significantly.

(b) The series termination resistor used should be a 10 Ω, or 22 Ω depending on net
lengths, instead of the original 33 Ω value.

(c) Figure 13 illustrates the recommended configuration for a new target and debug
controller pod.

Figure 13. New Target Design with New Debug Controller Pods

57SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.24 ARM: Concurrent Access to ARM Internal Memory May Fail

Revision(s) Affected: 1.3 and earlier

Details: ARM internal memory consists of two physical memories: RAM0 and RAM1. The ARM
processor can access these memories over two separate busses: ITCM bus ( RAM0:
0x0000 - 0x1FFF; RAM1: 0x2000 - 0x3FFF) and DTCM bus (RAM0: 0x8000 - 0x9FFF;
RAM1: 0xA000 - 0xBFFF). The EDMA3.0 and other bus masters (including DSP, USB,
ATA, HPI, and EMAC) are able to access RAM0 and RAM1 via the DTCM address
range.

Under certain conditions, access errors may occur when the ARM, the EDMA, and other
bus masters attempt to access ARM internal memory at the same time. An access error
means that data is not written or read properly. Access errors may occur under the
following conditions:

• When the ARM accesses RAM0 via the DTCM bus (0x8000 - 0x9FFF) and another
master concurrently accesses RAM1 (0xA000 - 0xBFFF).

• When an ARM ITCM, an ARM DTCM, and a bus master (including EDMA3.0, DSP,
USB, ATA, HPI, and EMAC) access are attempted to the same physical memory
(RAM0 or RAM1), concurrently.

Workaround: Avoid conditions that cause access errors. Design your software so that accesses to
ARM internal memory are made according to the Bug Summary shown in Table 10. In
Table 10, P (pass) means that no bug will occur under the corresponding conditions.

Table 10. Bug Summary (1) (2)

3 Active Accesses 2 Active Accesses 1 Active Access

ARM ITCM R0 R0 R0 R0 R1 R1 R1 R1 R0 R0 R1 R1 R0 R0 R1 R1 n n n n R0 n n R1 n n naccess

ARM DTCM R0 R0 R1 R1 R0 R0 R1 R1 R0 R1 R0 R1 n n n n R0 R0 R1 R1 n R0 n n R1 n naccess

DMA access R0 R1 R0 R1 R0 R1 R0 R1 n n n n R0 R1 R0 R1 R0 R1 R0 R1 n n R0 n n R1 n

Pass/Fail F F P P P F P F P P P P P P P P P F P P P P P P P P P

(1) "3 active accesses" means all three (ITCM, DTCM, and DMA) accesses at the same time, "2 active accesses" means any two
(ITCM, DTCM, or DMA) accesses at the same time, and "1 active access" means only one (ITCM, DTCM, or DMA) access at a
time.

(2) R0 = RAM0, R1 = RAM1, n = access to neither RAM0 or RAM1, F = Fail, P = Pass

58 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.25 VPBE: AC Timings Differ From Data Manual Specifications

Revision(s) Affected: 1.3 and earlier

Details: The timing parameters in Table 11 and Table 12 differ from those specified in the
TMS320DM6441 Digital Media System-on-Chip data manual (literature number
SPRS359 or later). Table 11 and Table 12 lists the differences between the data manual
values and the actual values on silicon revision 1.3 and earlier.

Workaround: During PCB board design and layout, the AC timings specified in Table 12 should be
considered when designing interfaces to the VPBE peripheral.

Table 11. Switching Characteristics Over Recommended Operating Conditions for VPBE Control
and Data Output With Respect to PCLK and VPBECLK

1.05 V and 1.2 V
NO. PARAMETER UNIT

MIN MAX

11 td(PCLK-VCTLV) Delay time, PCLK edge to VCTL valid 13.3 ns

13 td(PCLK-VDATAV) Delay time, PCLK edge to VDATA valid 13.3 ns

29 td(VPBECLK-VCTLV) Delay time, VPBECLK rising edge to VCTL valid 13.3 ns

31 td(VPBECLK-VDATAV) Delay time, VPBECLK rising edge to VDATA valid 13.3 ns

Table 12. Switching Characteristics Over Recommended Operating Conditions for VPBE Control
and Data Output With Respect to VCLK

1.05 V 1.2 V
NO. PARAMETER UNIT

MIN MAX MIN MAX

td(VCLKL-VCTLV) Delay time, VCLK negative edge to VCTL valid 6.3 5.5 ns
23

td(VCLKH-VCTLV) Delay time, VCLK positive edge to VCTL valid 5.1 4.4 ns

td(VCLKL-VCTLIV) Delay time, VCLK negative edge to VCTL invalid 1.2 0.9 ns
24

td(VCLKH-VCTLIV) Delay time, VCLK positive edge to VCTL invalid 0.3 -0.1 ns

td(VCLKL-DATAV) Delay time, VCLK negative edge to DATA valid 6.3 5.5 ns
25

td(VCLKH-DATAV) Delay time, VCLK positive edge to DATA valid 5.1 4.4 ns

td(VCLKL-DATAIV) Delay time, VCLK negative edge to DATA invalid 1.2 0.9 ns
26

td(VCLKH-DATAIV) Delay time, VCLK positive edge to DATA invalid 0.3 -0.1 ns

59SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprs359


Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.26 USB: Electrostatic Discharge (ESD) Sensitivity Classification

Revision(s) Affected: 1.3 and earlier

Details: Based on JESD22-A114D, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM), test results show that the TMS320DM6441 device's electrostatic
discharge (ESD) sensitivity classification is Class 1B due to the two USB pins:
USB_VDDA3P3 and USB_ID. All other pins meet the Texas Instruments design goal ESD
testing classification of Class 2.

JESD22-C101C, Field-Induced Charged-Device Model Test Method for Electrostatic-
Discharge-Withstand Thresholds of Microelectronic Components, testing was also
conducted and results demonstrated that the TMS320DM6441 device's charged-device
model (CDM) sensitivity classification is Class III (500 to 1000 V). These results are
consistent with the Texas Instruments CDM design goal.

Workaround: Ensure that proper ESD-sensitivity device handling procedures are followed.

This advisory will be corrected or improved to meet Texas Instruments design goals in a
future silicon revision.

60 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.35 VPBE: Video Corruption on VIDWIN1 Caused by Synchronization Issue

Revision(s) Affected: 1.3 and earlier

Details: There is a clock synchronization issue for VIDWIN1. The synchronization issue which
occurs only in the VIDWIN1 control logic causes temporary corruption of data that is
observed as an occasional flicker on the display. This behavior is not seen on the
VIDWIN0 or on any of the two OSD windows when VIDWIN1 is disabled. This issue is
independent of whether analog or digital display output is used and impacts both
progressive and interlaced modes. For interlaced systems, the issue is less frequent but
not completely eliminated when using the internally sourced 27-MHz clock for the VPBE
clock.

Workaround(s): To prevent this exception, use VIDWIN0; do not use VIDWIN1.

61SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated



Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.38 EMIFA: AC Timings Differ From Data Manual Specifications

Revision(s) Affected: 1.3 and earlier

Details: The timing parameters in Table 13 differ from those specified in the TMS320DM6441
Digital Media System-on-Chip data manual (literature number SPRS359D or later or
later). Table 13 lists only the differences between the data manual values and the actual
values on silicon revision 1.3 and earlier.

Workaround(s): During PCB board design and layout, the AC timings specified in Table 13 should be
considered when designing interfaces to the EMIFA peripheral.

Table 13. Switching Characteristics Over Recommended Operating Conditions for Asynchronous
Memory Cycles for EMIFA Module (1) (2) (see Figure 6-21 and Figure 6-22)

-594
NO. PARAMETER UNIT

MIN MAX

Output setup time, EM_CS[5:2] low to EM_OE low (RS + 1) * E + 1.2 ns(SS = 0)
4 tsu(EMCSL-EMOEL)

Output setup time, EM_CS[5:2] low to EM_OE low ns(SS = 1)

Output hold time, EM_OE high to EM_CS[5:2] high (RH + 1) * E - 1.3 ns(SS = 0)
5 th(EMOEH-EMCSH)

Output hold time, EM_OE high to EM_CS[5:2] high -1.4(SS = 1)

7 th(EMOEH-EMBAIV) Output hold time, EM_OE high to EM_BA[1:0] invalid (RH + 1) * E - 2.1 ns

9 th(EMOEH-EMAIV) Output hold time, EM_OE high to EM_A[21:0] invalid (RH + 1) * E - 2.4 ns

Output hold time, EM_WE high to EM_CS[5:2] high (WH + 1) * E - 1.4 ns(SS = 0)
17 th(EMWEH-EMCSH)

Output hold time, EM_WE high to EM_CS[5:2] high -1.4(SS = 1)

21 th(EMWEH-EMBAIV) Output hold time, EM_WE high to EM_BA[1:0] invalid (WH + 1) * E - 2.2 ns

23 th(EMWEH-EMAIV) Output hold time, EM_WE high to EM_A[21:0] invalid (WH + 1) * E - 2.5 ns
(1) RS = Read setup, RST = Read STrobe, RH = Read Hold, WS = Write Setup, WST = Write STrobe, WH = Write Hold, TA = Turn

Around, EW = Extend Wait mode, SS = Select Strobe mode. These parameters are programmed via the Asynchronous Bank
and Asynchronous Wait Cycle Configuration Registers and support the following range of values: TA[3:0], RS[15:0], RST[63:0],
RH[7:0], WS[15:0], WST[63:0], WH[7:0], and EW[255:0]. For more information, see the TMS320DM644x DMSoC Asynchronous
External Memory Interface (EMIF) Reference Guide (literature number SPRUE20).

(2) E = SYSCLK5 period in ns for EMIFA. For example, when running the DSP CPU at 594 MHz, use E = 10.1 ns.

62 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprs359
http://www.ti.com/lit/pdf/sprue20


www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.39 ATA/CF Ultra DMA: AC Timings Differ From Data Manual Specifications

Revision(s) Affected: 1.3 and earlier

Details: The timing parameters in Table 14 differ from those specified in the TMS320DM6441
Digital Media System-on-Chip data manual (literature number SPRS359 or later).
Table 14 lists the differences between the data manual values and the actual values on
silicon revision 1.3 and earlier.

Workaround: During PCB board design and layout, the AC timings specified in Table 14 should be
considered when designing interfaces to the ATA/CF peripheral in Ultra DMA mode.

Table 14. Timings for ATA/CF Module — Ultra DMA AC Timing (1) (2) (see Figure 7-28 through Figure
7-37)

1.05 V and 1.2 V
NO. MODE UNIT

MIN MAX

0 ns

1 ns

Data valid INPUT setup time, data valid before STROBE 2 ns
6 tDVS 3 ns

4 ns

Data valid OUTPUT setup time, data valid before (UDMASTB)P –0-4 nsSTROBE 3.3
(1) P = SYSCLK5 period, in ns, for ATA. For example, when running the DSP CPU at 405 MHz, use P = 14.8 ns.
(2) UDMASTB equals the value programmed in the UDMSTBxP bit field in the UDMASTB register. UDMATRP equals the value

programmed in the UDMTRPxP bit field in the UDMATRP register. TENV equals the value programmed in the UDMATNVxP bit
field in the UDMATENV register. For more detailed information, see the TMS320DM644x DMSoC ATA Controller User's Guide
(literature number SPRUE21).

63SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprs359
http://www.ti.com/lit/pdf/SPRUE21


Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

5 Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional
Specifications

5.1 Usage Notes for Silicon Revision 1.2

Silicon Revision 1.2 applicable usage note(s) have been found on a later silicon revision; for more detail,
see Section 2.1, Usage Notes for Silicon Revision 2.3, of this document.

5.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications

All known design exceptions to functional specifications for silicon revision 1.2 still apply and have been
moved up to Section 2.2, Silicon Revision 2.3 Known Design Exceptions to Functional Specifications and
to Section 4.2, Silicon Revision 1.3 Known Design Exceptions to Functional Specifications, of this
document.

64 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1 SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated



www.ti.com Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications

6 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional
Specifications

6.1 Usage Notes for Silicon Revision 1.1

Silicon Revision 1.1 applicable usage note(s) have been found on a later silicon revision; for more detail,
see Section 2.1, Usage Notes for Silicon Revision 2.3, of this document.

6.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

All other known design exceptions to functional specifications for silicon revision 1.1 still apply and have
been moved up to Section 2.2 (Silicon Revision 2.3 Known Design Exceptions to Functional
Specifications) and to Section 4.2 (Silicon Revision 1.3 Known Design Exceptions to Functional
Specifications) of this document.

Table 15. Silicon Revision 1.1 Advisory List

Title ...................................................................................................................................... Page

Advisory 1.1.6 —DDR2: Multiple Master Access to the DDR2 at the Same Time may Cause Master to Stop ........... 65

Advisory 1.1.6 DDR2: Multiple Master Access to the DDR2 at the Same Time may Cause Master to
Stop

Revision(s) Affected: 1.1

Details: If multiple masters (CPUs or master peripherals) are accessing the DDR2 Memory
Controller simultaneously and at least one of the masters is performing 64-byte burst
transfers to the DDR2 Memory Controller, one of the masters may stop, requiring a
power-up reset to recover.

Workaround: Reliable operation is achieved when the DDR2 Memory Controller VCLK and MCLK are
set to a 1:1 ratio. The lockup is sensitive to non 1:1 frequency ratios between the clock
used by the DDR2 Memory Controller (VCLK) and the clock used by the DDR2 PHY
interface to the external bus (MCLK).

For more detailed information on the clocks to the DDR2 Memory Controller, see the
TMS320DM644x DMSoC DDR2 Memory Controller User's Guide (literature number
SPRUE22).

The recommended clock configurations are:

• DSP CPU clock at 486 MHz
ARM CPU clock at 243 MHz
VCLK at 162 MHz
MCLK at 162 MHz

• DSP CPU clock at 567 MHz
ARM CPU clock at 283.5 MHz
VCLK at 189 MHz
MCLK at 189 MHz

Note: A DDR2 clock rate of 189 MHz is only supported on silicon revision 1.1 as a
workaround for this advisory. For silicon revisions 1.2 and later, see the device-specific
data manual for the DDR maximum clock rate supported.

65SPRZ246J–September 2006–Revised August 2010 TMS320DM6441 DMSoC Silicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprue22


Revision History www.ti.com

Revision History

This silicon errata revision history highlights the technical changes made to the SPRZ246I revision to make it an
SPRZ246J revision.

DM6441 Revision History

SEE ADDITIONS/MODIFICATIONS/DELETIONS

Global Added Silicon Revision 2.3 information/data.

NOTE: In Silicon Revision 2.3, the SPI boot mode is added as a backup to the NAND boot mode in the ROM
bootloader (RBL). Additional updates have also been made to the RBL. For more information, see the
TMS320DM644x DMSoC ARM Subsystem Reference Guide (literature number SPRUE14) and the
TMS320DM644x ROM Migration Guide (literature number SPRAB80).

Section 2.1 Usage Notes for Silicon Revision 2.3:
• Moved applicable Silicon Revision 2.1 Usage Notes to this section

Section 2.2 Silicon Revision 2.3 Known Design Exceptions to Functional Specifications:
• Moved applicable Silicon Revision 2.1 Advisories to this section

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

66 Revision History SPRZ246J–September 2006–Revised August 2010

Copyright © 2006–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprue14
http://www.ti.com/lit/pdf/sprab80


IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	TMS320DM6441Digital Media System-on-ChipSilicon Revisions 2.3, 2.1, 1.3, 1.2, and 1.1
	Table of Contents
	1 Introduction
	1.1 Device and Development Support Tool Nomenclature
	1.2 Revision Identification

	2 Silicon Revision 2.3 Usage Notes and Known Design Exceptions to Functional Specifications
	2.1 Usage Notes for Silicon Revision 2.3
	2.1.1 EDMA Transfer Request (TR) Dequeue Priority Limitation
	2.1.2 Bus Priority Inversion Can Affect DDR2 Throughput
	2.1.3 Audio Serial Port (ASP) Transfers Should be Buffered in Internal Memory
	2.1.4 DDR2 VTP I/O Calibration Must be Performed Following Device Power-up and Device Reset
	2.1.5 ASP: Initialization Procedure When External Device is Frame-Sync Master
	2.1.6 SPI Master Mode: CSHOLD Bit Must be Initialized Twice After Reset
	2.1.7 ATA Postwrite and Pre-Fetch Do Not Provide Benefits

	2.2 Silicon Revision 2.3 Known Design Exceptions to Functional Specifications

	3 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications
	3.1 Usage Notes for Silicon Revision 2.1
	3.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

	4 Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications
	4.1 Usage Notes for Silicon Revision 1.3
	4.2 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications

	5 Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications
	5.1 Usage Notes for Silicon Revision 1.2
	5.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications

	6 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications
	6.1 Usage Notes for Silicon Revision 1.1
	6.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications


	Revision History



