
	���������� �
����
�����
 ����
������

Design Manual

2000 Linear Products
SPSS011D

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

This manual describes the TSP50C0x/1x family of speech synthesizing
devices. When necessary, the differences between the family members are
shown in separate and consecutive sections. The object of this user’s guide
is to provide the information needed to implement a speech synthesizer design
using a TSP50C0x/1x device.

How to Use This Manual

This document contains the following chapters:

Chapter 1 Introduction to the TSP50C0x/1x Family
This chapter describes the TSP50C0x/1x family features, D/A options, pin
assignments and descriptions, and gives a brief introduction to linear
predictive coding.

Chapter 2 TSP50C0x/1x Family Architecture
This chapter describes the architecture of the TSP50C0x/1x family with a
separate section for the LCD driver, reference voltage and contrast
adjustment, and clock options of the TSP50C12.

Chapter 3 TSP50C0x/1x Electrical Specifications
This chapter provides the electrical specifications for the TSP50C0x/1x
family.

Chapter 4 TSP50C0x/1x Assembler
This chapter contains a detailed description of the TSP50C0x/1x
assembler.

Chapter 5 TSP50C0x/1x Instruction Set
This chapter provides the instruction set for the TSP50C0x/1x.

Chapter 6 TSP50C0x/1x Applications
This chapter describes various hints and useful advice for designing
applications for the TSP50C0x/1x.

Running Title—Attribute Reference

iv

Chapter 7 Customer Information
This chapter describes customer information including development
cycles structure, speech development/production sequence, mechanical
information, and ordering information.

Appendix A Script Preparation and Speech Development Tools
This appendix describes script preparation and development tools for the
TSP50C0x/1x.

Appendix B TSP50C0x/1x Sample Synthesis Program
This appendix contains a sample synthesis program that counts numbers
from one to five.

Appendix C External ROM Initialization
This appendix contains a sample program to initialize external ROM.

Appendix D DTMF Program
This appendix contains a sample program that generates a dual-tone
multifrequency (DTMF) signal.

Appendix E Sample Music Program
This appendix contains a sample program that produces Mozart’s Minuet
in G.

Appendix F TSP50P11 (OTP) Version
This appendix contains advance information for the TSP50P11, which is
a one-time-programmable (OTP) version of the TSP50C11.

 Notational Conventions

v Read This First

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s.

Here is a sample program listing:

0349 0059 6B SPEAK2 LUAA –Get word
0350 005A 60 ANEC StopWord –End phase?

005B FF

� In syntax descriptions the following notational conventions are used in this
guide:

� A reserved keyword (an instruction, command or directive) is shown in
bold capital letters and should be entered as shown.

� An optional field is indicated by brackets and italics and describes the
type of information that should be entered:
 [label]

� User-supplied contents are indicated by angle brackets and italics
and describe the type of information that should be entered:

<num>

� A required blank is indicated by a caret (^).

The following syntax example demonstrates the notational conventions
used in this guide.

[<label>]^ABAAC ^...[<comment>]

� A lower case h at the end of a numeric value indicates that the value is
hexadecimal (e.g., 01FAh, 032Bh, and 0FFh).

� All addresses in this manual are in hexadecimal format unless otherwise
noted. All other are numbers are in decimal format unless otherwise noted.

� Abbreviations:

� ’04: TSP50C04
� ’06: TSP50C06
� ’10: TSP50C10
� ’11: TSP50C11
� ’12: TSP50C12
� ’13: TSP50C13
� ’14: TSP50C14
� ’19: TSP50C19
� LSB, MSB: Least significant and most significant bits
� LSbyte, MSbyte: Least significant and most significant bytes

Notational Conventions

vi

� Port A refers to pins PA0 — PA7 operating together.

� Port B refers to pins PB0 and PB1 operating together.

� Individual bits of a register are indicated with the register abbreviation
followed by a decimal point and the bit number (e.g., bit 5 of the A register
is A.5 or bit 2 of the mode register is MR.2).

� *X is the contents of the location pointed to by the address stored in
X register.

� A’ indicates the old contents of the A register

 Information About Cautions

vii Read This First

Information About Cautions

This book may contain cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about
Texas Instruments Speech
Synthesizer products

Write to:
Texas Instruments Incorporated
Market Communications Manager, MS 8206
P.O. Box 655303
Dallas, Texas 75265–5303

Order Texas Instruments
documentation

Call the TI Literature Response Center:
(800) 477–8924

Report mistakes in this document
or any other TI documentation

Send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 8345
P.O. Box 655303
Dallas, Texas 75265–5303

Trademarks

IBM, PC, PC/XT, PC/AT are trademarks of IBM Corporation.
TI is a trademark of Texas Instrument Incorporated.

viii

 Contents

ix Contents

Contents

1 Introduction to the TSP50C0x/1x Family 1-1.
1.1 Introduction 1-2.
1.2 Description 1-3.

1.2.1 TSP50C0x/1x Family Features 1-5.
1.2.2 TSP50C04/06/13/14/19 Additional Features 1-5.
1.2.3 TSP50C10/11 Additional Features 1-5.
1.2.4 TSP50C12 Additional Features 1-6.

1.3 D/A Options 1-7.
1.3.1 Two-Pin Push Pull (Option 1) – Accurate to 10 Bits (+1/2 LSB) 1-7.
1.3.2 Single-Pin Single Ended (Option 2) – Accurate to Only 9 Bits (+1 LSB) 1-9.
1.3.3 Single-Pin Double Ended (Option 3) – Accurate to 10 Bits (+1/2 LSB) 1-11.

1.4 TSP50C10/11 Pin Assignments and Descriptions 1-13.
1.5 TSP50C12 Pin Assignments and Descriptions 1-16.
1.6 TSP50C04/06/13/14/19 Pin Assignments and Descriptions 1-18.
1.7 Introduction to LPC (Linear Predictive Coding) 1-19.

1.7.1 The Vocal Tract 1-19.
1.7.2 The LPC Model 1-20.
1.7.3 LPC Data Compression 1-20.

2 TSP50C0x/1x Family Architecture 2-1.
2.1 TSP50C0x/1x Functional Description 2-2.

2.1.1 Read-Only Memory (ROM) 2-4.
2.1.2 Program Counter 2-5.
2.1.3 Program Counter Stack 2-5.
2.1.4 TSP50C10/11 Random-Access Memory (RAM) 2-6.
2.1.5 TSP50C12 Random-Access Memory (RAM) 2-6.
2.1.6 TSP50C04/06/13/14/19 Random-Access Memory (RAM) 2-7.
2.1.7 Arithmetic Logic Unit (ALU) 2-8.
2.1.8 A Register 2-8.
2.1.9 X Register 2-9.
2.1.10 B Register 2-9.
2.1.11 Status Flag 2-9.
2.1.12 Integer Mode Flag 2-10.
2.1.13 Timer Register 2-10.
2.1.14 Timer Prescale Register 2-11.
2.1.15 Pitch Register and Pitch-Period Counter (PPC) 2-11.

Contents

x

2.1.16 Speech Address Register 2-12.
2.1.17 Parallel-to-Serial Register 2-13.
2.1.18 Input/Output Ports 2-13.
2.1.19 Mode Register 2-15.

2.2 Speech Synthesizer 2-17.
2.2.1 Synthesizer Mode 0 – OFF 2-17.
2.2.2 Synthesizer Mode 1 – LPC 2-17.
2.2.3 Synthesizer Mode 2 – PCM 2-17.
2.2.4 Synthesizer Mode 3 – PCM and LPC 2-17.
2.2.5 Use of RAM by the Synthesizer 2-18.
2.2.6 Frame-Length Control 2-18.
2.2.7 Digital-to-Analog Converter 2-19.

2.3 Interrupts 2-20.
2.4 TSP50C12 LCD Functional Description 2-22.

2.4.1 TSP50C12 LCD Driver 2-22.
2.4.2 TSP50C12 LCD Drive Type A 2-24.
2.4.3 TSP50C12 LCD Drive Type B 2-26.

2.5 TSP50C12 LCD Reference Voltage and Contrast Adjustment 2-28.
2.6 TSP50C12 Clock Options 2-29.

3 TSP50C0x/1x Electrical Specifications 3-1.
3.1 Absolute Maximum Ratings Over Operating Free-Air TemperatureRange† 3-2.
3.2 Recommended Operating Conditions 3-3.
3.3 Timing Requirements 3-4.
3.4 TSP50C10/11 Electrical Characteristics 3-6.
3.5 TSP50C12 Electrical Characteristics 3-8.
3.6 TSP50C04/06/13/14/19 Electrical Characteristics 3-10.

4 TSP50C0x/1x Assembler 4-1.
4.1 Description of Notation Used 4-2.
4.2 Invoking the Assembler 4-3.
4.3 Command-Line Options 4-4.

4.3.1 BYTE Unlist Option 4-4.
4.3.2 DATA Unlist Option 4-5.
4.3.3 XREF Unlist Option 4-5.
4.3.4 TEXT Unlist Option 4-5.
4.3.5 WARNING Unlist Option 4-5.
4.3.6 Complete XREF Switch 4-5.
4.3.7 Object Module Switch 4-5.
4.3.8 Listing File Switch 4-5.
4.3.9 Page-Eject Disable Switch 4-6.
4.3.10 Error-to-Screen Switch 4-6.
4.3.11 Instruction Count Switch 4-6.
4.3.12 Binary-Code File-Disable Switch 4-6.

 Contents

xi Contents

4.4 Assembler Input and Output Files 4-7.
4.4.1 Assembly Source File 4-7.
4.4.2 Assembly Binary Object File 4-7.
4.4.3 Assembly Tagged Object File 4-8.
4.4.4 Assembly Listing File 4-8.

4.5 Source-Statement Format 4-9.
4.5.1 Label Field 4-9.
4.5.2 Command Field 4-9.
4.5.3 Operand Field 4-10.
4.5.4 Comment Field 4-10.
4.5.5 Constants 4-10.
4.5.6 Decimal Integer Constants 4-10.
4.5.7 Binary Integer Constants 4-10.
4.5.8 Hexadecimal Integer Constants 4-11.
4.5.9 Character Constants 4-11.
4.5.10 Assembly-Time Constants 4-11.

4.6 Symbols 4-12.
4.7 Character Strings 4-13.
4.8 Expressions 4-14.

4.8.1 Arithmetic Operators in Expressions 4-14.
4.8.2 Parentheses In Expressions 4-14.

4.9 Assembler Directives 4-15.
4.9.1 AORG Directive 4-16.
4.9.2 BYTE Directive 4-16.
4.9.3 COPY Directive 4-16.
4.9.4 DATA Directive 4-17.
4.9.5 EQU Directive 4-17.
4.9.6 END Directive 4-18.
4.9.7 IDT Directive 4-18.
4.9.8 LIST Directive 4-19.
4.9.9 NARROW Directive 4-19.
4.9.10 OPTION Directive 4-19.
4.9.11 PAGE Directive 4-22.
4.9.12 RBYTE Directive 4-22.
4.9.13 RDATA Directive 4-23.
4.9.14 RTEXT Directive 4-23.
4.9.15 TEXT Directive 4-24.
4.9.16 TITL Directive 4-24.
4.9.17 UNL Directive 4-25.
4.9.18 WIDE Directive 4-25.

5 TSP50C0x/1x Instruction Set 5-1.
5.1 Instruction Syntax 5-2.
5.2 TSP50C0x/1x Assembly Instructions 5-3.

Contents

xii

6 TSP50C0x/1x Applications 6-1.
6.1 Synthesizer Control 6-2.

6.1.1 Speech Coding and Decoding 6-2.
6.1.2 RAM Usage 6-4.
6.1.3 ROM Usage 6-8.

6.2 Program Overview 6-9.
6.2.1 Initialization 6-9.
6.2.2 Phrase Selection 6-9.
6.2.3 Speech Initialization 6-9.
6.2.4 Level-1- Interrupt Service Routine 6-10.
6.2.5 Frame-Update Routine 6-10.

6.3 Synthesis Program Walk-Through 6-11.
6.4 Arithmetic Modes 6-39.
6.5 Operation of the Multiply Instruction 6-42.
6.6 Standby Mode 6-43.
6.7 Slave Mode 6-44.

6.7.1 Slave-Mode Write Operation 6-45.
6.7.2 Slave-Mode Read Operation 6-47.

6.8 TSP60C18/81 Interface 6-48.
6.8.1 External ROM Mode 6-48.
6.8.2 TSP60C18/81 I/O Signals 6-48.
6.8.3 TSP60C18 Addressing 6-50.
6.8.4 TSP60C81 Addressing 6-50.
6.8.5 TSP60C18/81 Addressing Modes 6-51.
6.8.6 TSP60C18/81 Control 6-53.
6.8.7 Initialization of the TSP60C18/81 6-54.
6.8.8 Direct-Address Initialization of the TSP60C18/81 6-55.
6.8.9 8-Bit Indirect-Address Initialization of the TSP60C18/81 6-56.
6.8.10 16-Bit Indirect-Address Initialization of the TSP60C18/81 6-57.
6.8.11 Placing the TSP60C18/81 in a Low-Power Standby Condition 6-58.

6.9 Use of the GET Instruction 6-60.
6.9.1 GET From Internal ROM 6-62.
6.9.2 GET From External ROM 6-62.
6.9.3 GET From Internal RAM 6-63.

6.10 Generating Tones Using PCM 6-66.
6.10.1 Operation of the TASYN Instruction in PCM Mode 6-66.
6.10.2 Timing Considerations in PCM Mode 6-67.
6.10.3 DTMF Program Walk-Through 6-67.

6.11 TSP50C19 Programming 6-75.
6.11.1 Memory Block Selection 6-75.
6.11.2 Data Block Selection 6-76.
6.11.3 Preparing the Source Code 6-76.
6.11.4 Program Location in ROM 6-77.

7 Customer Information 7-1.
7.1 Development Cycle 7-2.

 Running Title—Attribute Reference

xiii Chapter Title—Attribute Reference

7.2 Summary of Speech Development/Production Sequence 7-3.
7.3 Mechanical Information 7-4.

7.3.1 N016 300-Mil Plastic Dual-In-Line Package 7-4.
7.3.2 DW020 Plastic Small-Outline Wide-Body (SOWB) Package 7-6.
7.3.3 FN068 68-Lead Plastic Leaded Chip Carrier (PLCC) Package 7-8.
7.3.4 TSP50C12 (PLCC) Reflow Soldering Precautions 7-10.

7.4 Ordering Information 7-11.
7.5 New Product Release Forms (TSP50C0x/1x) 7-11.

7.5.1 New Product Release Form for TSP50C04 7-12.
7.5.2 New Product Release Form for TSP50C06 7-14.
7.5.3 New Product Release Form for TSP50C10A 7-16.
7.5.4 New Product Release Form for TSP50C11A 7-18.
7.5.5 New Product Release Form for TSP50C12 7-20.
7.5.6 New Product Release Form for TSP50C13 7-22.
7.5.7 New Product Release Form for TSP50C14 7-24.
7.5.8 New Product Release Form for TSP50C19 7-26.

A Script Preparation and Speech Development Tools A-1.
A.1 Script Generation A-2.

A.1.1 Speaker Selection A-2.
A.1.2 Speech Collection A-2.
A.1.3 LPC Editing A-3.
A.1.4 Pitfalls A-4.

A.2 Speech Development Tools A-5.

B TSP50C0x/1x Sample Synthesis Program B-1.

C External ROM Initialization C-1.

D DTMF Program D-1.

E Sample Music Program E-1.

F TSP50P11 (OTP Version) F-1.
F.1 Introduction F-2.
F.2 Programming Mode F-3.
F.3 Special Functions Testing F-5.
F.4 Absolute Maximum Ratings Over Operating Free-Air Temperature Range† F-6.
F.5 Recommended Operating Conditions F-7.
F.6 TSP50P11 Electrical Characteristics F-8.
F.7 Protection Bit F-9.
F.8 Programming Interface Timing F-11.
F.9 Differences Between the TSP50P11 and the TSP50C11 F-13.

G Glossary G-1.

Illustrations

xiv

Illustrations

1–1 TSP50C10/11 Functional Block Diagram 1-3.
1–2 TSP50C12 Functional Block Diagram 1-4.
1–3 TSP50C04/06/13/14/19 Functional Block Diagram 1-4.
1–4 D/A Output Waveform for Two-Pin Push Pull (Option 1) 1-8.
1–5 Four-Transistor Amplifier Circuit 1-8.
1–6 Operational Amplifier Interface Circuit 1-9.
1–7 Power Amplifier Interface Circuit 1-9.
1–8 D/A Output Waveform for Single Ended (Option 2) 1-10.
1–9 One-Transistor Amplifier Circuit 1-11.
1–10 D/A Output Waveform for Single-Pin Double Ended (Option 3) 1-12.
1–11 Operational Amplifier Interface Circuit 1-12.
1–12 TSP50C10/11 Pin Assignments 1-13.
1–13. Power-Up Initialization Circuit 1-15.
1–14 Oscillator Circuit 1-15.
1–15 TSP50C12 Pin Assignments 1-16.
1–16 TSP50C04/06/13/14/19 Pin Assignments 1-18.
1–17 LPC-12 Vocal Tract Model 1-20.
2–1 TSP50C0x/1x System Block Diagram 2-3.
2–2 TSP50C10/11 RAM Map 2-6.
2–3 TSP50C12 RAM Map 2-7.
2–4 TSP50C04/06/13/14/19 RAM Map 2-8.
2–5 RAM Map During Speech Generation 2-18.
2–6 TSP50C12 LCD Driver Type A Timing Diagram 2-25.
2–7 TSP50C12 LCD Driver Type B Timing Diagram 2-27.
2–8 TSP50C12 Voltage Doubler 2-28.
2–9 RC OSC Option Circuit 2-29.
3–1 Initialization Timing Diagram 3-4.
3–2 Write Timing Diagram (Slave Mode) 3-4.
3–3 Read Timing Diagram (Slave Mode) 3-5.
3–4 External Interrupt Timing Diagram 3-5.
3–5 Typical Input Leakage Current on INIT 3-7.
6–1 D6 Frame Decoding 6-3.
6–2 Speech Parameter Unpacking and Decoding 6-4.
6–3 ACAAC in Extended-Sign Mode 6-41.
6–4 ACAAC in Integer Mode 6-41.
6–5 Slave-Mode Write Operation 6-46.

 Illustrations

xv Contents

6–6 Slave-Mode Read-Then-Write Operation 6-47.
6–7 TSP60C18/81-to-TSP50C0x/1x Hookup 6-53.
6–8 Register Connections for GET Instruction 6-60.
6–9 Parallel-to-Serial Operation for GET 5 Instruction 6-61.
6–10 Operation of TASYN in PCM Mode 6-66.
6–11 Format of Data in A Register Before TASYN 6-66.
7–1 Speech Development Cycle 7-2.
7–2 TSP50C04/06/10/11/13/14/19 16-Pin N Package 7-5.
7–3 TSP50C04/06/10/11/13/14/19 20-Pin DW Package 7-7.
7–4 TSP50C12 68-Lead PLCC Package 7-9.
A–1 SDS5000 A-5.
A–2 EVM50C1X A-6.
A–3 SEB50C1X A-6.
A–4 SEB60CXX A-6.
A–5 ADP50C12 A-7.
A–6 FAB50C1x A-8.
F–1 TSP50P11 Pin Assignments F-2.
F–2 Simplified Timing Waveforms F-4.
F–3 Normal Programming Timing Waveforms F-9.
F–4 Programming with Protection Set Timing Waveforms F-10.
F–5 Initialization and Write Sequence Timing Waveforms F-11.
F–6 Programming and Read Sequence Timing Waveforms F-12.

Tables

xvi

Tables

1–1 TSP50C10/11 Terminal Functions 1-14.
1–2 TSP50C10/11 I/O Configurations 1-15.
1–3 TSP50C12 Terminal Functions 1-17.
1–4 TSP50C04/06/13/14/19 Terminal Functions 1-18.
2–1 Reserved ROM Locations 2-4.
2–2 TSP50C19 ROM Block Addressing 2-4.
2–3 I/O Registers 2-14.
2–4 Mode Register 2-16.
2–5 Interrupt-1 Vectors 2-20.
2–6 Interrupt-2 Vectors 2-21.
2–7 TSP50C12 Display RAM Map 2-23.
3–1 Recommended Operating Conditions 3-3.
3–2 D/A Options Timing Requirements 3-4.
3–3 Initialization Timing Requirements 3-4.
3–4 Write Timing Requirements (Slave Mode) 3-4.
3–5 Read Timing Requirements (Slave Mode) 3-5.
3–6 External Interrupt Timing Requirements 3-5.
3–7 TSP50C10/11 Electrical Characteristics Over Recommended Ranges of Supply Voltage and

Operating Free-Air Temperature (unless otherwise noted) 3-6.
3–8 TSP50C12 Electrical Characteristics Over Recommended Ranges of Supply Voltage and

Operating Free-Air Temperature (unless otherwise noted) 3-8.
3–9 TSP50C04/06/13/14/19 Electrical Characteristics Over Recommended Ranges

of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted) 3-10.
4–1 Switches and Options 4-4.
4–2 Summary of Assembler Directives 4-15.
5–1 TSP50C0x/1x Instruction Set 5-3.
5–2 TSP50C0x/1x Instruction Table 5-6.
6–1 D6 Parameter Size 6-2.
6–2 Hardware-Fixed RAM Locations 6-5.
6–3 Other RAM Locations Used in Sample Program 6-6.
6–4 FLAGS Bit Descriptions for Sample Program 6-7.
6–5 ROM Usage 6-8.
6–6 TXA Operation 6-40.
6–7 TSP60C18/81 Pin Functional Descriptions 6-49.
6–8 TSP60C18/81 Pinout 6-50.
6–9 TSP60C18/81 Addressing Modes 6-51.
6–10 Indirect Address Example 6-52.

 Tables

xvii Contents

6–11 Mode Register Control of GET Data Source 6-61.
6–12 Relative Weights of DAC Magnitude Bits 6-67.
6–13 Sample Rates 6-69.
6–14 TSP50C14 Memory Blocks 6-75.
6–15 TSP50C19 ROM Block Selection 6-75.
6–16 ASM50C1x Assembler Relative Address and Block Selected 6-76.
F–1 TSP50P11 Terminal Functions F-2.
F–2 Special Testing Functions† F-5.
F–3 Recommended Operating Conditions F-7.
F–4 TSP50P11 Electrical Characteristics Over Recommended Ranges of Supply

Voltage and Operating Free-Air Temperature (unless otherwise noted) F-8.
F–5 Timing Characteristics for Initialization and Write Sequences F-11.
F–6 Timing Characteristics for Initialization and Write Sequences F-12.
F–7 TSP50P11 Excitation Function Differences F-13.

xviii

 Running Title—Attribute Reference

1-1 Chapter Title—Attribute Reference

Introduction to the TSP50C0x/1x Family

The TSP50C0x/1x family of speech synthesizers offer cost-effective solutions
for high-volume applications. Each incorporates a built in microprocessor that
allows music as well as speech capability. Texas Instruments offers five sizes
of internal ROM for up to three minutes of speech. In addition, the devices can
be interfaced to external speech memory.

Topic Page

1.1 Introduction 1-2.

1.2 Description 1-3.

1.3 D/A Options 1-7.

1.4 TSP50C10/11 Pin Assignments and Descriptions 1-13.

1.5 TSP50C12 Pin Assignments and Description 1-16.

1.6 TSP50C04/06/13/14/19 Pin Assignments and Descriptions 1-18.

1.7 Introduction to LPC (Linear Predictive Coding) 1-19.

Chapter 1

Introduction

 1-2

1.1 Introduction

The TSP50C0x/1x uses a revolutionary architecture to combine an 8-bit
microprocessor, a speech synthesizer, ROM, RAM, and I/O in a low-cost sing-
le-chip system. The architecture uses the same ALU (Arithmetic Logic Unit)
for the synthesizer and the microprocessor, thus reducing chip area and cost
and enabling the microprocessor to do a multiply operation in 1.6 µs. Linear
Predictive Coding (LPC) is used to synthesize high-quality speech at a low
data rate.

The TSP50C0x/1x is highly flexible and programmable, making it suitable for
a wide variety of applications. Its low system cost opens up new applications
for solid-state speech. They include:

� Talking Clocks
� Toys
� Telephone Answering Machines
� Home Monitors
� Navigation Aids
� Laboratory Instruments
� Personal Computers
� Inspection Controls
� Inventory Controls
� Machine Controls
� Warehouse Systems
� Warning Systems
� Appliances
� Mailboxes
� Equipment for the Handicapped
� Learning Aids
� Computer-Aided Instruction
� Magazine and Direct-Mail Advertisements
� Point-of-Sale Displays

 Description

1-3 Introduction to the TSP50C0x/1x Family

1.2 Description

The TSP50C0x/1x can be divided into several functional blocks (Figure 1–1,
Figure 1–2, Figure 1–3). The ALU and RAM are shared by the speech
synthesizer and the microcomputer.

The TSP50C0x/1x implements an LPC-12 speech synthesis algorithm using
a 12-pole lattice filter. The internal microprocessor fetches speech data from
the internal or external ROM (TSP60C18 or TSP60C81), decodes the speech
data, and sends the decoded data to the synthesizer. The microprocessor also
interpolates (smooths) the speech data between fetches. The output of the
synthesizer can be used to drive transistor or integrated-circuit amplifiers.
Some digital low-pass filtering is provided inside the TSP50C0x/1x.

The general-purpose microprocessor in the TSP50C0x/1x is also capable of
a variety of logical, arithmetic, and control functions. It can often be used for
the nonsynthesis tasks of the customer’s application as well.

Figure 1–1. TSP50C10/11 Functional Block Diagram

Oscillator

DA1
DA2

Port A

Microcomputer

Timing

ALU

RAM

I/O

Microprocessor

ROM

PWM
Output

Port B

OSC1 OSC2

Speech
Synthesizer

Description

 1-4

Figure 1–2. TSP50C12 Functional Block Diagram

Oscillator

DA1
DA2

Port A

Microcomputer

Timing

ALU

RAM

I/O

Microprocessor

ROM

PWM
Output

Port B

OSC1 OSC2

LCD Driver

8 Common
LCD Outputs

24-Segment
LCD Outputs

Speech
Synthesizer

Figure 1–3. TSP50C04/06/13/14/19 Functional Block Diagram

Oscillator

DA1
DA2

Port A

Microcomputer

Timing

ALU

RAM

I/O

Microprocessor

ROM

PWM
Output

Port B
Speech

Synthesizer

 Description

1-5 Introduction to the TSP50C0x/1x Family

1.2.1 TSP50C0x/1x Family Features

Key features of the entire TSP50C0x/1x family are in the following list.

� Programmable LPC-12 Speech Synthesizer
� 8-Bit Microprocessor With 61 Instructions
� 4-V to 6-V CMOS Technology for Low Power Dissipation
� 3 D/A Configurations – Mask Selectable
� 10-kHz or 8-kHz Speech Sample Rate
� 10 Software Controllable I/O Lines (9 I/O Lines With Two-Pin D/A Output)
� Internal Timer
� External Interrupt
� Single-Cycle Multiply Instruction
� Executes Up to 600,000 Instructions Per Second
� Built-in Interface to TSP60C18 or TSP60C81 Speech ROM
� Built-In Slave Mode to Act as Microprocessor Peripheral

1.2.2 TSP50C04/06/13/14/19 Additional Features

Key features of the TSP50C04/06/13/14/19 are in the following list.

� Direct Speaker Drive Capability (32 Ω speaker)
� Internal Clock Generator That Requires No External Components
� Two-Pin D/A Output and 10 Pins of I/O Simultaneously Possible
� Two D/A Configurations – Mask Selectable
� Optional Doubling of the D/A Output
� 16 Twelve-Bit Words and 48 Bytes of RAM
� Bytes of ROM:

� TSP50C04 has 4K bytes of ROM.
� TSP50C06 has 6K bytes of ROM.
� TSP50C13 has 8K bytes of ROM.
� TSP50C14 has 16K bytes of ROM.
� TSP50C19 has 32K bytes of paged ROM.

1.2.3 TSP50C10/11 Additional Features

Key features of the TSP50C10/11 are in the following list.

� Three D/A Configurations – Mask Selectable
� 16 Twelve-Bit Words and 112 Bytes of RAM
� Bytes of ROM:

� TSP50C10 has 8K bytes of ROM.
� TSP50C11 has 16K bytes of ROM.

Description

 1-6

1.2.4 TSP50C12 Additional Features

Key features of the TSP50C12 are in the following list.

� Direct LCD Drive Capability for an 8 × 24 (192-Segment) Display
� 1/8 Duty Cycle and 1/4 Bias Drive With On-Chip Voltage Reference
� Internal Contrast Adjustment
� 24 Bytes of Display RAM
� Limited Direct Speaker Drive Capability
� RC Oscillator Option
� 16K bytes of ROM
� 16 Twelve-bit Words and 112 Bytes of RAM

 D/A Options

1-7 Introduction to the TSP50C0x/1x Family

1.3 D/A Options

The TSP50C0x/1x offers three D/A (digital-to-analog) output options to match
different applications. The DAC (digital-to-analog converter) is a
pulse-width-modulated type with 9 bits or 10 bits of resolution and a 16-kHz
or 20-kHz sampling rate. Each option has a range of 480 to –480 segments
per sample period, with two options having a resolution of ±1/2 LSB and the
third having a resolution of ±1 LSB.

The DAC produces samples at twice the rate that data is received from the
LPC filter. For example, if the LPC filter is running at approximately 10 kHz,
then the DAC is running at approximately 20 kHz.

The TSP50C04/06/13/14/19 can be used with a normal-sized pulse width or
with the PW2 option. The PW2 option causes the processor to produce a
double-sized pulse width. This results in a higher volume output, which
includes some risk of clipping the output.

1.3.1 Two-Pin Push Pull (Option 1) – Accurate to 10 Bits (±1/2 LSB)

Option 1 works well with a very efficient and inexpensive four-transistor
amplifier. It requires two pins, so the I/O pin B1 is used for the second pin,
meaning that only 9 bits of I/O are available. When the DAC is idle, or the
output value is 0, both pins are high. When the output value is positive, DA1
goes low with a duty cycle proportional to the output value, while DA2 stays
high. When the output value is negative, DA2 goes low with a duty cycle
proportional to the output value, while DA1 stays high. This option offers a
resolution of 10 bits.

Figure 1–4 shows examples of D/A output waveforms with different output
values. Each pulse of the DAC is divided into 480 segments per sample period.
For a positive output value x = 0 to 480, DA1 goes low for x segments while
DA2 stays high. When the DAC is idle or the output value is 0, both DA1 and
DA2 are high. For a negative value x = 0 to –480, DA2 goes low for |x|
segments while DA1 stays high.

This option can be used with the TSP50C04/06/13/14/19 to directly drive a
32 Ω speaker in applications where the anti-aliasing low-pass filter is not
needed. When the device is placed in a low power state, this DAC option
places both of the DAC lines high.

D/A Options

 1-8

Figure 1–4. D/A Output Waveform for Two-Pin Push Pull (Option 1)

0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2 0 1 2

High

Low

High

Low

High

Low

High

Low

DA2

DA1

DA2

DA1

480 – x 240

x 240

Output Value = x
where x = 0 to 480
(as shown x = 360)

Output Value = 240 Output Value = 479 Output Value = 480

Output Value = x
where x = 0 to –480
(as shown x = –120)

Output Value = –240 Output Value = 0 Output Value = –480

240

240

480 + x

| x |

1

479

Figure 1–5, Figure 1–6, and Figure 1–7 show examples of circuits that can be
used with this option.

Figure 1–5. Four-Transistor Amplifier Circuit

10 µF

+

5 V

10 µF

470 Ω

470 Ω

470 Ω

470 Ω
32-Ω SpeakerDA1

DA2

 D/A Options

1-9 Introduction to the TSP50C0x/1x Family

Figure 1–6. Operational Amplifier Interface Circuit

1 µF

+

–

47 kΩ

VDD

10 kΩ

10 kΩ

47 kΩ

1 µF

≈ 2.5 V p-p

VDD/2

DA1

DA2

Figure 1–7. Power Amplifier Interface Circuit

10 µF

+

–

VDD

2 kΩ

DA1

DA2

R1

R1

R2 C1R2C1

2

3

6

4

5

8-Ω
Speaker

OUTPUT

VSS

TSP50C0x/1x

2N2222

LM386

NOTES: R1 ≈ 56 kΩ 10%
R2 = 2 kΩ 10%
C1 = 0.022 µF 20%
R2 and C1 set low-pass cutoff frequency: fc = 1/(2πR2 × C1)
For values given above, fc = 3.6 kHz
Gain control can be added by connecting a 10-µF capacitor in series with a 10-kΩ pot. This series combination is
connected between pins 1 and 8. When this is done, R1 should be increased to approximately 250 kΩ.

1.3.2 Single-Pin Single Ended (Option 2) – Accurate to Only 9 Bits (±1 LSB)

Option 2 is designed for use with a single-transistor amplifier, offering the
lowest-cost solution and still retaining all 10 I/O pins. It has only 9 bits of
resolution and the amplifier power consumption is higher than the
four-transistor amplifier mentioned above. It is available on the TSP50C10,

D/A Options

 1-10

TSP50C11, and the TSP50C04/06/13/14/19. The duty cycle of the output is
proportional to the output value. If the output value is 0, the duty cycle is 50%.
As the output value increases from 0 to the maximum, the duty cycle goes from
being high 50% of the time up to 100% high. As the value goes from 0 to the
most negative value, the duty cycle decreases from 50% high to 0%.

Each pulse of the DAC is divided into 480 segments per sample period. As
shown in Figure 1–8, when the output value is x = –480 to 480, DA1 goes low
for |x/2–240| segments. When the output value is 0, DA1 goes low for 240
segments.

When the devices are placed in a low-power state, this option places the DAC
output pin into a low state.

Note:

Using Option 2 causes a click at the beginning and end of speech and (under
certain conditions) during synthesis. Software is available to minimize these
clicks.

Figure 1–8. D/A Output Waveform for Single Ended (Option 2)

0 1 2

High

Low
DA1

Output Value = x
0 1 2

Output Value = 120
0 1 2

Output Value = 480
0 1 2

Output Value = 0

0 1 2

High

Low

DA1

Output Value = –480
0 1 2

Output Value = 2
0 1 2

Output Value = 478
0 1 2

Output Value = –240

where x = 480 to–480
(as shown x = 240)

|x/2 + 240|

|x/2–240|

300

180

240

240

241

239

479 120

3601

Figure 1–9 shows an example of a circuit that can be used with option 2.

 Running Title—Attribute Reference

1-11 Chapter Title—Attribute Reference

Figure 1–9. One-Transistor Amplifier Circuit

50 µF

500 Ω
DA1

8-Ω
Speaker

2N3904

VDD

VSS

0.1-µF
Disc

+

1.3.3 Single-Pin Double Ended (Option 3) – Accurate to 10 Bits (±1/2 LSB)

Option 3 is provided for use with operational and power amplifiers. It offers
both 10 bits of resolution and 10 I/O pins and is available on the TSP50C10,
TSP50C11, and the TSP50C12. When the output value is zero, the D/A output
is biased at approximately 1/2 VDD. When the output value is positive, the D/A
output pulses to about 1/2 VDD – 1 V. The duty cycle is proportional to the
output value. When the output value is negative, the D/A output pulses to 1/2
VDD+1 V with a duty cycle proportional to the output value.

Figure 1–10 shows examples of D/A output waveforms with different output
values. Each pulse of the DAC is divided into 480 segments per sample period.
For a positive output value x = 0 to 480, DA1 goes low to 1/2 VDD –1 V for x
segments. When the DAC is idle, or the output value is 0, DA1 goes to 1/2 VDD.
For a negative value x = 0 to –480, DA1 goes high to 1/2 VDD + 1 V for |x|
segments.

When the devices are placed in a low-power state, this option places the DAC
output pin into a low state.

D/A Options

 1-12

Figure 1–10. D/A Output Waveform for Single-Pin Double Ended (Option 3)

0 1 2

DA1

Output Value = x
where x = 0 to 480
(as shown x = 360)

0 1 2

Output Value = 240

0 1 2

Output Value = 479

0 1 2

Output Value = 480

1/2 VDD+1 V

1/2 VDD

1/2 VDD–1 V

0 1 2

DA1

Output Value = x
where x = 0 to –480
(as shown x = –360)

0 1 2

Output Value = –240

0 1 2

Output Value = 0

0 1 2

Output Value = –480

1/2 VDD+1 V

1/2 VDD

1/2 VDD–1 V

480 + x

|x| 240

240

480 – x

x

240

240 479

1

Figure 1–11 shows an example of a circuit that can be used with option 3.

Figure 1–11. Operational Amplifier Interface Circuit

1 µF

+

–

VDD

100 kΩ

10 kΩ

47 kΩ

≈ 2 V p-p
DA1

VDD
2

 TSP50C10/11 Pin Assignments and Descriptions

1-13 Introduction to the TSP50C0x/1x Family

1.4 TSP50C10/11 Pin Assignments and Descriptions

Figure 1–12 shows the pin assignments for the TSP50C10/11. Table 1–1
provides terminal functional descriptions. Table 1–2 shows the possible
TSP50C10/11 I/O configurations. Figure 1–13 illustrates the recommended
power-up initialization circuit. Note that the pullup resistor is required to be
lower than 50 kΩ. Figure 1–14 illustrates the recommended clock circuit. Refer
to subsection 2.1.18, Input/Output Ports, for more information on I/O
configuration.

Figure 1–12. TSP50C10/11 Pin Assignments

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

N PACKAGE

(TOP VIEW)

OSC2

PA3
PA2
PA1
PA0
VSS

INIT
OSC1

PA4
PA5
PA6
PA7
VDD

DA1
PB1/DA2
PB0

1

2

3

4

5

6

7
8

9

10

20

19

18

17

16

15

14
13

12

11

PA3
PA2
PA1
PA0
NC
NC

VSS
INIT

OSC1
OSC2

PA4
PA5
PA6
PA7
NC
NC
VDD
DA1
PB1/DA2
PB0

DW PACKAGE
(TOP VIEW)

NC – No internal connection

TSP50C10/11 Pin Assignments and Descriptions

 1-14

Table 1–1.TSP50C10/11 Terminal Functions

Terminal
Terminal Number

Terminal
Name N Package DW Package I /O Description

DA1 11 13 O D/A output. Three mask options are available.

DA2 10† 12† O D/A output. Three mask options are available.

INIT 6 8 I Initialize input. When INIT goes low, the clock stops, the
TSP50C10/11 goes into low-power mode, the program
counter is set to zero, and the contents of the RAM are
retained. An INIT pulse of 1 µs is sufficient to reset the
processor.

OSC1 7 9 I Clock input. Crystal or ceramic resonator between OSC1
and OSC2, or signal into OSC1. 9.6 MHz for 10-kHz
sampling rate or 7.68 MHz for 8-kHz sampling rate.

OSC2 8 10 – Clock return

PA0–PA7 1–4, 1–4, I /O 8-bit bidirectional I/O port
13–16 17–20

PB0–PB1 9–10† 11, 12† I /O 2-bit bidirectional I/O port

VDD 12 14 – 5-V supply voltage

VSS 5 7 – Ground terminal

† The operation of this pin depends on the D/A option selected.

 TSP50C10/11 Pin Assignments and Descriptions

1-15 Introduction to the TSP50C0x/1x Family

Table 1–2.TSP50C10/11 I/O Configurations

16-Pin 20-Pin Master Master16-Pin
D Package

20-Pin
DW Package

Master Slave 1-Pin Master
1 Pi D/AD Package

Pin Number
DW Package
Pin Number 1-Pin D/A 1-Pin D/A † 2-Pin D/A

Slave 1-Pin
D/A 1-Pin D/A

TSP60C18

4 4 PA0 PA0 PA0 D0 C0

3 3 PA1 PA1 PA1 D1 C1

2 2 PA2 PA2 PA2 D2 C2

1 1 PA3 PA3 PA3 D3 C3

16 20 PA4 PA4 PA4 D4 PA4

15 19 PA5 PA5 PA5 D5 PA5

14 18 PA6 PA6 PA6 D6 PA6

13 17 PA7 PA7 PA7 BUSY/D7 SRCK

9 11 PB0 PB0 PB0 CE STR

10 12 PB1 PB1/ IRQ DA2 R/W R/W
† With external interrupt

Figure 1–13. Power-Up Initialization Circuit

0.1 µF

47 kΩ

Optional
Reset
Switch

INIT

VDD

Figure 1–14. Oscillator Circuit

1 MΩ

TSP50C0x/1x

OSC1 OSC2

30 pF30 pF

INIT

9.6-MHz or 7.68 -MHz
Crystal or Ceramic Resonator

CLK

TSP50C12 Pin Assignments and Descriptions

 1-16

1.5 TSP50C12 Pin Assignments and Descriptions

Figure 1–15 shows the pin assignments for the TSP50C12. Table 1–3
provides terminal functional descriptions. The I/O configurations in Table 1–2
also applies to the TSP50C12, but the pin numbers given are different.
Figure 1–13 illustrates the recommended power-up initialization circuit, and
Figure 1–14 illustrates the recommended clock circuit. The TSP50C12 is
available only in die form. Refer to subsection 2.1.18, Input/Output Ports, for
more information on I/O configuration.

Figure 1–15. TSP50C12 Pin Assignments

28 29

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44
30

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
31 32 33 34

PLCC PACKAGE
(TOP VIEW)

8 7 6 5 49 3 1 68 672

35 36 37 38 39

66 65

27

64 63 62 61

40 41 42 43

N
C

N
C

NC – No internal connection

V S
S

NC
C8
C7
C6
C5
C4
C3
C2
C1
S1
S2
S3
S4
S5

NC

IN
IT

V S
S

S
21

S
22

S
23

S
24

O
S

C
1

P
B

O
O

S
C

2

P
B

1/
D

A
2

V
D

D

D
A

1

N
C

N
C

VDD
NC
NC

N
CS
6

S
7

S
9

S
10N
C S
8

P
A

2
P

A
1

P
A

0

P
A

7
P

A
6

P
A

5
P

A
4

P
A

3

S
11 N
C

S19
S18
S17
S16

S15

VC1
VLCD
VC2
VX2

S14
S13
S12

S20

VSS
NC

NC

 TSP50C12 Pin Assignments and Descriptions

1-17 Introduction to the TSP50C0x/1x Family

Table 1–3.TSP50C12 Terminal Functions

Terminal
Name

Terminal
Number I/O Description

DA2 4† O D/A output. D/A options 1 and 3 are available.

DA1 6 O D/A output. D/A options 1 and 3 are available.

PB1 4† I/O Bidirectional I/O pin

PB0 3 I/O Bidirectional I/O pin

INIT 67 I Initialize input. When INIT goes low, the clock stops, the TSP50C12
goes into low-power mode, the program counter is set to zero, and the
contents of the RAM are retained. An INIT pulse of 1 µs is sufficient to
reset the processor.

OSC1‡ 1 I Clock input. Crystal or ceramic resonator between OSC1 and OSC2,
or signal into OSC1. 9.6 MHz for 10-kHz sampling rate or 7.68 MHz for
8-kHz sampling rate.

OSC2‡ 2 – Clock return

PA0 – PA7 31–38 I/O 8-bit bidirectional I/O port

C1–C8 11–18 O LCD common lines (rows)

SEG1–SEG24 19–23,
28–30,
39–41,
46–49,
54–58,
63–66

O LCD segment lines (columns)

VC1 53 –

VC2 51 – Voltage doubler capacitor connection

VX2 50 –

VLCD 52 – LCD supply voltage

VDD 5,
24

– 5-V supply voltage

VSS 7, 45, 68 – Ground terminals

† The operation of this pin depends on the D/A option selected.
‡ Ceramic resonator requires two pins. RC oscillator requires one pin for timing and one buffered clock output for trim monitoring.

TSP50C04/06/13/14/19 Pin Assignments and Descriptions

 1-18

1.6 TSP50C04/06/13/14/19 Pin Assignments and Descriptions

Figure 1–16 shows the pin assignments for the TSP50C04/06/13/14/19.
Table 1–4 provides terminal functional descriptions. The I/O configurations in
Table 1–2 apply to the TSP50C04/06/13/14/19 with the exception of the pin
numbering and the DA2 pin assignment. Figure 1–13 illustrates the
recommended power-up initialization circuit for the TSP50C04/06/13/14/19.
OSC1 should be tied to either VSS or VDD. Refer to subsection 2.1.18,
Input/Output Ports, for more information on I/O configurations.

Figure 1–16. TSP50C04/06/13/14/19 Pin Assignments

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

N PACKAGE
(TOP VIEW)

PB0

PA3
PA2
PA1
PA0
VSS

INIT
OSC1

PA4
PA5
PA6
PA7
DA2
DA1
VDD
PB1

1

2

3

4

5

6

7
8

9

10

20

19

18

17

16

15

14
13

12

11

PA3
PA2
PA1
PA0
NC
NC

VSS
INIT

OSC1
PB0

PA4
PA5
PA6
PA7
NC
NC
DA2
DA1
VDD
PB1

DW PACKAGE
(TOP VIEW)

NC – No internal connection

Table 1–4.TSP50C04/06/13/14/19 Terminal Functions

Terminal Terminal NumberTerminal
Name N Package DW Package I/O Description

DA1 11 13 O D/A output. D/A options 1 and 2 are available.†

DA2 12 14 O D/A output. D/A options 1 and 2 are available.†

INIT 6 8 I Initialize input. When INIT goes low, the clock stops, the
TSP50C04/06/13/14/19 goes into low-power mode,
the program counter is set to zero, and the contents of
the RAM are retained. An INIT pulse of 1 µs is sufficient
to reset the processor.

OSC1 7 9 I OSC1 should be tied to VSS or VDD.

PA0–PA7 1–4, 1–4, I /O 8-bit bidirectional I/O port,
13–16

,
17–20

PB0–PB1 8–9 10 –11 I /O 2-bit bidirectional I/O port

VDD 10 12 – 5-V supply voltage

VSS 5 7 – Ground terminal
† Both DA1 and DA2 are driven with the same levels when option 2 is selected.

 Introduction to LPC (Linear Predictive Coding)

1-19 Introduction to the TSP50C0x/1x Family

1.7 Introduction to LPC (Linear Predictive Coding)

The LPC-12 system uses a mathematical model of the human vocal tract to
enable efficient digital storage and re-creation of realistic speech. To
understand LPC, it is essential to understand how the vocal tract works. This
introduction, therefore, begins with a short description of the vocal tract, after
which the LPC model and data compression techniques are addressed. A
short discussion of the techniques and pitfalls of collecting, analyzing, and
editing speech for LPC synthesis is included in Appendix A, Script Preparation
and Speech Development Tools. For more information, contact your TI Field
Sales Representative or Regional Technology Center.

1.7.1 The Vocal Tract

Speech is the result of the interaction of three elements in the vocal-tract air
from the lungs, a restriction that converts the air flow to sound, and the vocal
cavities that are positioned to resonate properly.

Air from the lungs is expelled through the vocal tract when the muscles of the
chest and diaphragm are compressed. Pressure is used as a volume control
with higher pressure for louder speech.

As air flows through the vocal tract, it makes little sound if there is no restriction.
The vocal cords are one type of restriction. They can be tightened across the
vocal tract to stop the flow of air. Pressure builds up behind them and forces
them open. This happens over and over, generating a series of pulses. The
tension on the vocal cords can be varied to change the frequency of the pulses.
Many speech sounds, such as the |A| sound, are produced by this type of
restriction, which is called voiced speech.

A different type of restriction in the mouth causes a hissing sound called white
noise. The |S| sound is a good example. White noise occurs when the tongue
and some part of the mouth are in close contact or when the lips are pursed.
This restriction causes high flow velocities then creating turbulence that, in
turn, produces white noise, which is called unvoiced speech.

The pulses from the vocal cords and the noise from the turbulence have fairly
broad, flat spectral characteristics. In other words, they are noise, not speech.
The shape of the oral cavity changes noise into recognizable speech. The
positions of the tongue, the lips, and the jaws change the resonance of the
vocal tract, shaping the raw noise of restricted airflow into understandable
sounds.

Introduction to LPC (Linear Predictive Coding)

 1-20

1.7.2 The LPC Model

The LPC model incorporates elements analogous to each of the elements of
the vocal tract previously described. It has an excitation function generator that
models both types of restriction, a gain-multiplication stage to model the
possible levels of pressure from the lungs, and a digital filter to model the
resonance in the oral and nasal cavities.

Figure 1–17 shows the LPC model in schematic form. The excitation function
generator accepts coded pitch information as an input and can generate a
series of pulses similar to vocal cord pulses. It can also generate white noise.
The waveform is then multiplied by an energy factor that corresponds to the
pressure from the lungs. Finally, the signal is passed through a digital filter that
models the shape of the oral cavity. In the TSP50C0x/1x, this filter has twelve
poles, so the synthesis is referred to as LPC-12.

Figure 1–17. LPC-12 Vocal Tract Model

LPC-12
Digital
Filter

DAC

Periodic

White Noise

K1 – K12
Filter

Coefficients

Energy

Pitch

1.7.3 LPC Data Compression

The data compression for LPC-12 takes advantage of other characteristics of
speech. Speech changes fairly slowly, and the oral and nasal cavities tend to
fall into certain areas of resonance more than others. The speech is analyzed
in frames generally from 10 ms to 25 ms long. The inputs to the model are
calculated as an average for the entire frame. The synthesizer smooths or
interpolates the data during the frame so that there is not an abrupt transition
at the end of each frame. Often speech changes even more slowly than the
frame.

 Introduction to LPC (Linear Predictive Coding)

1-21 Introduction to the TSP50C0x/1x Family

The Texas Instruments LPC model allows for a repeat frame in which the only
values changed are the pitch and the energy. The filter coefficients are kept
constant from the previous frame. To take advantage of the recurrent nature
of resonance in the oral cavity, all the coefficients are encoded with anywhere
from seven to three bits for each coefficient. The coding table is designed so
that more coverage is given to the coefficient values that occur frequently.

 1-22

 Running Title—Attribute Reference

2-1 Chapter Title—Attribute Reference

TSP50C0x/1x Family Architecture

This chapter describes the architecture and function of the TSP50C0x/1x
family of speech synthesizers including RAM, ROM, registers, flags, and the
DAC.

Topic Page

2.1 TSP50C0x/1x Functional Description 2-2.

2.2 Speech Synthesizer 2-17.

2.3 Interrupts 2-20.

2.4 TSP50C12 LCD Functional Description 2-22.

2.5 TSP50C12 LCD Reference Voltage and Contrast Adjustment 2-28. . . .

2.6 TSP50C12 Clock Options 2-29.

Chapter 2

TSP50C0x/1x Functional Description

 2-2

2.1 TSP50C0x/1x Functional Description

As shown in the block diagram in Figure 2–1, the major components of the
TSP50C0x/1x are a speech synthesizer, an 8-bit microprocessor, an internal
4K-byte ROM (TSP50C04), 6K-byte ROM (TSP50C06), 8K-byte ROM
(TSP50C10/13),16K-byte ROM (TSP50C11/12/14), 32K-byte ROM
(TSP50C19), and input/output ports.

When synthesis is disabled, instructions are fetched by the microprocessor
from the ROM 600,000 (10-kHz speech sample rate) or 480,000 (8-kHz
speech sample rate) times per second. These instructions control the actions
of the TSP50C0x/1x. By placing different instruction patterns in the ROM, the
TSP50C0x/1x can be programmed to accomplish a wide variety of tasks. To
generate speech, the processor accesses speech data from either the internal
ROM or an external source such as a TSP60C18 speech ROM, an EPROM,
or a host processor. Once the data has been read, the processor must unpack
and decode the individual speech parameters and store the results in a
dedicated section of the RAM.

The synthesizer shares access to the RAM and addresses the individual
parameter locations as needed when generating speech. The instruction
execution rate slows to 280,000 or 224,000 instruction cycles per second
during synthesis because the synthesizer also shares the ALU (Arithmetic
Logic Unit) and ROM data paths with the microprocessor. The microprocessor
must perform interpolation during each frame as well as fetch the data for the
next frame.

The I/O consists of one 8-bit bidirectional port (port A) and one 2-bit
bidirectional port (port B). Each bit can be software configured for input or
output and for push pull or open drain (no pullup driver). There are two
specialized I/O modes for specific functions. Slave mode configures the
TSP50C0x/1x to act as a peripheral to a host microprocessor. External ROM
mode allows the TSP50C0x/1x to interface with a TSP60C18 or TSP60C81
speech ROM.

 TSP50C0x/1x Functional Description

2-3 TSP50C0x/1x Family Architecture

Figure 2–1. TSP50C0x/1x System Block Diagram

Synthesizer Stack

Integer Flag Integer Flag’

A

B

Timer

Prescale

Mode

P/S Buffer

Random Number

X

ALU Status Flag’

A’

B’

X’

16 × 12-Bit RAM

48 × 8-Bit RAM (TSP50C04/06/13/14/19)

112 × 8-Bit RAM (TSP50C10/11/12)

24 × 8-Bit Display RAM (TSP50C12 Only)

1 × 4-Bit Contrast Adjust (TSP50C12 Only)

4 × 8-Bit I/O

4 × 2-Bit I/O

Program Counter

3-Level Stack

Speech Address

Pitch Counter

D/A Register

Excitation

14
-B

it
D

at
a

B
us

Pitch

Status Flag

Port A

Port B

P/S Register

D/A Output

4096-Byte ROM (TSP50C04)
6144-Byte ROM (TSP50C06)

8192-Byte ROM (TSP50C10/13)
16384-Byte ROM (TSP50C11/12/14)

32768-Byte ROM (TSP50C19)
384-Byte Excitation ROM

TSP50C0x/1x Functional Description

 2-4

2.1.1 Read-Only Memory (ROM)

The TSP50C04 has a 4K-byte ROM. The TSP50C06 has a 6K-byte ROM. The
TSP50C10 and the TSP50C13 each have an 8K-byte ROM. The
TSP50C11/12/14 each have a 16K-byte ROM. The TSP50C19 has a 32K-byte
ROM. ROM can be used for program instructions and speech data as required
by the application. Certain locations in the ROM, described in Table 2–1, are
reserved for specific purposes.

Table 2–1.Reserved ROM Locations

Address Function

0000h Execution start location after INIT rising edge

0010h–001Fh Interrupt start locations (see Section 2.3, Interrupts)

0FE0h – 0FFFh Texas Instruments test code (TSP50C04 only)

17E0h – 17FFh Texas Instruments test code (TSP50C06 only)

1FE0h–1FFFh Texas Instruments test code (TSP50C10/13 only)

3FE0h–3FFFh Texas Instruments test code (TSP50C11/12/14/19 only)

5FFDh – 5FFFh Texas Instruments test code (TSP50C19 only)

7FFDh – 7FFFh Texas Instruments test code (TSP50C19 only)

The TSP50C19 has a paged ROM as shown in Table 2–2. The lower 8K-bytes
of ROM are available at any time. The upper 8K-byte block of address space
is switched between three separate ROM blocks depending upon the value
loaded to the B2 and B3 output ports. See Section 6.11, TSP50C19 Program-
ming, for more information.

Table 2–2.TSP50C19 ROM Block Addressing

ROM Address
Port
B2

Port
B3

ROM
Block Listing Address Accessed

0000h – 1FFFh X X Block 1 0000h – 1FFFh

2000h–3FFFh O 0 Block 2 2000h–3FFFh

2000h–3FFFh O 1 Block 3 4000h–5FFFh

2000h–3FFFh 1 0 Block 4 6000h–7FFFh

 TSP50C0x/1x Functional Description

2-5 TSP50C0x/1x Family Architecture

The ROM may be accessed in the following four ways:

� The program counter is used to address processor instructions.

� The GET instruction can be used to transfer 1 to 8 bits from the ROM to
the A register. The GET counter is initialized by the LUAPS instruction. The
SAR (speech address register) points to the ROM location to be used.

� The LUAA instruction can be used to transfer a byte from the ROM into the
A register. The value in the A register when LUAA is executed points to the
ROM address to be used.

� The LUAB instruction can be used to transfer a byte from the ROM into the
B register. The value in the A register when LUAB is executed points to the
ROM address to be used.

2.1.2 Program Counter

The TSP50C0x/1x has a 14-bit program counter that points to the next
instruction to be executed. After the instruction is executed, the program
counter is normally incremented to point to the next instruction. The following
instructions modify the program counter:

BR branch

BRA branch to address in A register

CALL call subroutine

RETN return from subroutine

RETI return from interrupt

SBR short branch

2.1.3 Program Counter Stack

The program counter stack has three levels. When a subroutine is called or
an interrupt occurs, the contents of the program counter are pushed onto the
stack. When an RETN or an RETI is executed, the contents of the top stack
location are popped into the program counter.

TSP50C0x/1x Functional Description

 2-6

2.1.4 TSP50C10/11 Random-Access Memory (RAM)

The TSP50C10/11 RAM has 128 locations (Figure 2–2). The first 16 RAM
locations are used by the synthesizer and are 12 bits long. The remaining 112
locations are 8 bits long. When not synthesizing speech, the entire RAM may
be used for algorithm data storage. The I/O control registers are also mapped
into the RAM address space from 080h to 087h. For more information, see
subsection 2.1.18, Input/Output Ports.

Figure 2–2. TSP50C10/11 RAM Map

11 10 9 8 34567 2 1 0 Address

000h

001h

00Eh

00Fh

010h

011h

07Eh

07Fh

080h

081h

086h

087h

(Synthesis RAM)

(General-Purpose RAM)

(I/O)

2.1.5 TSP50C12 Random-Access Memory (RAM)

The TSP50C12 RAM has 16 12-bit synthesizer RAM locations and 112 8-bit
general purpose RAM locations (Figure 2–3). The RAM also has 24 8-bit
display RAM locations and one 4-bit contrast adjustment register. The I/O
ports are mapped into RAM address space from 0F0h–0F7h.

 TSP50C0x/1x Functional Description

2-7 TSP50C0x/1x Family Architecture

Figure 2–3. TSP50C12 RAM Map

11 10 9 8 34567 2 1 0 Address

000h

001h

00Eh

00Fh

010h

011h

07Eh

07Fh

080h

081h

096h

097h

0F0h

0F1h

098h

0F6h

0F7h

(Synthesis RAM)

(General-Purpose RAM)

(Display)

(Contrast)

(I/O)

2.1.6 TSP50C04/06/13/14/19 Random-Access Memory (RAM)

The TSP50C04/06/13/14/19 RAM has the same basic RAM layout as the
TSP50C10/11 (see Figure 2–4) with one exception. The general-purpose
RAM location range is from 010h to 03Fh.

TSP50C0x/1x Functional Description

 2-8

Figure 2–4. TSP50C04/06/13/14/19 RAM Map
11 10 9 8 34567 2 1 0 Address

000h

001h

00Eh

00Fh

010h

011h

080h

081h

086h

087h

(Synthesis RAM)

(General-Purpose RAM)

(I/O)

03Fh

2.1.7 Arithmetic Logic Unit (ALU)

The ALU performs arithmetic and logic functions for the microprocessor and
the synthesizer. The ALU is 14 bits in length, providing the resolution needed
for speech synthesis. When 8-bit data are transferred to the ALU, they are right
justified. The input to the upper 6 bits may be either zeros (integer mode) or
equal to the MSB of the 8-bit data (extended-sign mode) depending on the
arithmetic mode selected using the EXTSG and INTGR instructions. See the
description of each instruction for specific information. All bit and comparison
operations are performed on the lower 8 bits. The ALU is capable of doing an
8-bit by 14-bit multiply with a 14-bit scaled result in a single instruction cycle.

2.1.8 A Register

The A register, or accumulator, is the primary 14-bit register and is used for
arithmetic and logical operations. Its contents can be transferred to RAM and

 TSP50C0x/1x Functional Description

2-9 TSP50C0x/1x Family Architecture

most of the other registers. It can be loaded from RAM, ROM, and most other
registers. The contents are saved in a dedicated storage register during
level-1 interrupts and restored by the RETI instruction.

A Register

13 12 11 10 9 8 34567 2 1 0

2.1.9 X Register

The X register is an 8-bit register used as a RAM index register. All RAM
access instructions (except for the direct-addressing instructions TAMD,
TMAD, and TMXD) use the X register to point to a specific RAM location. The
X register can also be used as a general-purpose counter. The contents of the
X register are saved during level-1 interrupts and restored by the RETI
instruction. If a RAM location with an illegal address is loaded via the X register,
the EVM board with the TSE chip accepts it, but a problem appears on the TSP
chip.

X Register

34567 2 1 0

2.1.10 B Register

The 14-bit B register is used for temporary storage. It is helpful for storing a
RAM address because it can be exchanged with the X register using the XBX
instruction. The B register can be added to, subtracted from, or exchanged
with the A register, making it useful for data storage after calculations. The
contents of the B register are saved during level-1 interrupts and restored by
the RETI instruction.

B Register

13 12 11 10 9 8 34567 2 1 0

2.1.11 Status Flag

The status flag is set or cleared by various instructions depending on the result
of the instruction. Refer to the individual description of instructions in
Chapter 5, TSP50C0x/1x Instruction Set, to determine the effect an instruction

TSP50C0x/1x Functional Description

 2-10

has on the value of the status flag. The BR, SBR, and CALL instructions are
conditional, modifying the program counter only when the status flag is set.
The value of the status flag is unknown at power up. Therefore, if the first
instruction after power up is one of these conditional instructions, the
execution of the instruction cannot be predicted. The value of the status flag
is saved during interrupts and restored by the RETI instruction.

Status Flag

0

2.1.12 Integer Mode Flag

The integer mode flag is set by the INTGR instruction and cleared by the
EXTSG instruction. When the integer mode flag is set (integer mode), the
upper bits of data less than 14 bits in length are zero filled when being
transferred to, added to, or subtracted from the A and B registers. When the
integer mode flag is cleared (extended-sign mode), the upper bits of data less
than 14 bits in length are sign extended when being transferred to, added to,
or subtracted from the A and B registers. The value of the integer mode flag
is saved during interrupts and restored by the RETI instruction.

Integer Mode Flag

0

2.1.13 Timer Register

The 8-bit timer register is used for generating interrupts and for counting
events. It decrements once each time the timer prescale register goes from
000h to 0FFh. It can be loaded using the TATM instruction and examined with
the TTMA instruction. When it decrements from 000h to 0FFh, a level-2
interrupt request is generated. If interrupts are enabled and no interrupt is
being processed already, an immediate interrupt occurs; if not, the interrupt
request remains pending until interrupts are enabled. The timer continues to
count whether or not it is reloaded.

Timer Register

34567 2 1 0

Note:

 The timer does not decrement before it is initialized. However, on the EVM,
the timer decrements after a STOP/RUN.

 TSP50C0x/1x Functional Description

2-11 TSP50C0x/1x Family Architecture

2.1.14 Timer Prescale Register

The 8-bit timer prescale register is a programmable divider between the
processor clock and the timer register. When it decrements from 000h to 0FFh,
the timer register is also decremented. The timer prescale register is then
reloaded with the value in its preset latch, and the counting starts again.

The timer prescale register clock comes from an internal clock. The internal
clock runs at 1/16 the clock frequency of the chip; thus, the timer prescale
register decrements once every instruction cycle when not in LPC mode. The
TAPSC instruction loads the timer prescale register’s preset latch. If the timer
has not yet been initialized with the TATM instruction, the TAPSC instruction
also loads the timer prescale register.

Timer Prescale Register

34567 2 1 0

2.1.15 Pitch Register and Pitch-Period Counter (PPC)

Although the 14-bit pitch register and pitch-period counter are part of the
synthesizer, they affect the microprocessor in many ways. The pitch-period
counter controls the timing of the periodic impulse (excitation function) that
simulates the vocal cords. On the TSP50C0x/1x, the pitch-period counter is
also used to synchronize the interpolation of all speech parameters during
each frame. This pitch-synchronous interpolation helps to minimize the
inevitable noise from interpolation by making it occur at the lowest energy part
of the speech and by making it a harmonic of the speech fundamental
frequency.

The pitch register is used when LPC speech is being synthesized. The
following discussion presumes that the LPC mode is active. The pitch register
is loaded with the TASYN instruction. When speech starts, the pitch-period
counter is cleared. The pitch-period counter is decremented by 020h for each
speech sample, with speech samples occurring at an 8-kHz or 10-kHz rate.
When the pitch-period counter decrements past zero, the pitch register is
added to it. When the pitch-period counter goes below 200h or when a pitch
register is added to it with a result less than 200h, a level-1 interrupt occurs.
This interrupt can be used to synchronize the interpolation algorithm. The
excitation function is put out when the pitch-period counter is between 140h
and 000h. For further information, see Chapter 6, TSP50C0x/1x Applications,
of this book.

TSP50C0x/1x Functional Description

 2-12

Pitch Register

13 12 11 10 9 8 34567 2 1 0

For voiced or unvoiced frames, the LSB and the MSB of the A register must
be zero when data is transferred from the A register to the pitch register with
the TASYN instruction (see the following illustration). If this is not done,
problems with the TSP50C0x/1x chip may occur that are not apparent when
using the TSE50C1x chip.

13 12 11 10 9 8 34567 2 1 0

0 0

A Register

13 12 11 10 9 8 34567 2 1 0

0 0

Pitch Register

For voiced frames, the pitch register must be loaded with a value no higher
than 1FFEh. In addition, there are three recommendations for the minimum
pitch-register value for voiced frames. First, it is required that the pitch-register
value be 042h or higher. If this is not done, problems with the TSP chip may
occur that are not apparent with the TSE chip. Second, it is strongly
recommended that the pitch register be loaded with a value of 142h or higher.
This permits the complete excitation pulse to be used in the LPC synthesis.
Third, for best results with the recommended software algorithms, a
pitch-register value of 202h or higher is recommended. The requirement that
the pitch register value be less than or equal to 1FFEh and the
recommendation of a value greater than or equal to 142h result in a pitch range
of 39 Hz to 994 Hz when operating with a 10-kHz sample rate.

For unvoiced frames, the pitch register is required to be loaded with a value
between 042h and 3FEh. If this is not done, problems with the TSP chip may
occur that are not apparent with the TSE chip.

2.1.16 Speech Address Register

The speech address register (SAR) is a 14-bit register that is used to point to
data in internal ROM. The LUAPS instruction transfers the value in A to the
speech address register and loads the parallel-to-serial register (see
subsection 2.1.17, Parallel-to-Serial Register) with the internal ROM value
pointed to by the SAR. The GET instruction can then be used to bring 1 to 8

 TSP50C0x/1x Functional Description

2-13 TSP50C0x/1x Family Architecture

bits at a time from the parallel-to-serial register into the accumulator.
Whenever the parallel-to-serial register becomes empty, it is loaded with the
internal ROM value pointed to by the SAR, and the SAR is incremented.

Speech Address Register

13 12 11 10 9 8 34567 2 1 0

2.1.17 Parallel-to-Serial Register

The 8-bit parallel-to-serial register is used primarily to unpack speech data. It
can be loaded with 8 bits of data from internal ROM pointed to by the speech
address register, internal RAM pointed to by the X register, or external
TSP60C18 or TSP60C81 speech ROM pointed to by the SAR in the
TSP60C18 or TSP60C81. The LUAPS instruction is used to initialize the
parallel-to-serial register and zero its bit counter. GET instructions can then be
used to transfer one to eight bits from the parallel-to-serial register to the
accumulator. When the parallel-to-serial register is empty, it is automatically
reloaded. When the GET is from RAM, however, the X register is not
automatically incremented. The EXTROM and RAMROM bits in the mode
register control the source for the parallel-to-serial register. See the speech
address register description in subsection 2.1.16, Speech Address Register,
for more information.

Parallel-to-Serial Register

34567 2 1 0

2.1.18 Input/Output Ports

Ten bidirectional lines – 8-bit port A and 2-bit port B – are available for
interfacing with external devices. Each bit is individually programmable as an
input or an output under the control of the respective data-direction register.
In addition, each output bit can be individually programmed using the
pullup-enable register for one of two output modes – push pull or open drain
(no pullup). Each input bit can be programmed by the same register for
resistive pullup or high impedance. The four registers associated with each of
the two I/O ports are memory mapped. Only two bits of the B port are available
on the outside of the chip. The states of the upper six bits of port B are
undetermined on the TSP50C04/06/10/11/12/13/14. The states of the upper
four bits of port B are undetermined on the TSP50C19. Transfers from any of
the I/O port registers to the A register leave the bits in the A register

TSP50C0x/1x Functional Description

 2-14

corresponding to the upper six bits of port B on the
TSP50C04/06/10/11/12/13/14 and the upper four bits of the TSP50C19
undetermined. Details of the I/O registers are shown in Table 2–3.

The TSP50C19 uses 4 bits for port B. Only two of the four are available on the
outside of the chip. The remaining two are used as a page select for the ROM.
See Section 6.11, TSP50C19 Programming, for more information.

Table 2–3. I/O Registers

(a) I/O register type and location

Location †

Register Type Port A Port B

Data Input Register (DIR) Read Only 080h 084h

Pullup Enable Register (PER) Read/Write 081h 085h

Data Direction Register (DDR) Read/Write 082h 086h

Data Output Register (DOR) Read/Write 083h 087h

† For the TSP50C12, the register locations are F0–F7.

(b) I/O register pin function and pin state

Desired Pin Function DOR DDR PER Pin State

Input, High Impedance X 0 0 High Impedance

Input, Internal Pullup X 0 1 Passive Pullup

Output, Active Pullup 0 1 0 0

Output, Active Pullup 1 1 0 1

Output, Open Drain 0 1 1 0

Output, Open Drain 1 1 1 High Impedance

A read of the DDR, PER, and DOR registers indicates the last value written to
them.

A read of the DIR always indicates the actual level on I/O, which is true even
when the DDR is set for output. This allows true bidirectional data flow without
having to switch the port between input and output. To avoid high-current
conditions, this should only be attempted on pins set for open drain with a 1
written to the data register.

 TSP50C0x/1x Functional Description

2-15 TSP50C0x/1x Family Architecture

Leaving a high-impedance I/O pin unconnected could cause power
consumption to rise while the processor is in run mode. The power
consumption is between VDD and VSS with no increase in current through the
input. This should cause no problem with device functionality. When the part
is in standby mode, unconnected high-impedance pins have no effect on either
power consumption or device functionality.

The I/O can also be put in slave mode making the TSP50C0x/1x usable as a
peripheral to a host microprocessor. Port A can be connected to an 8-bit data
bus and controlled by R/W (PB1) and strobe (PB0). A read (R/W high and
strobe low) puts the port A output latch values out on port A. A write (R/W low
and strobe low) latches the value on the data bus into the port A input latch.
In addition, bit 7 of the A output latch (pin PA7) is cleared. This makes it
possible to use PA7 as a write-handshake line. Any lines that are to be used
on the data bus in this mode should be configured as inputs.

In external ROM mode, the TSP50C0x/1x can be interfaced easily to a
TSP60C18 or TSP60C81 speech ROM. PB0 is used as a chip enable strobe
output to the TSP60C18 or TSP60C81, and PA7 is used as a clock.
PA0 — PA3 are used for address and data transfer, and one other bit must be
used for read/write control of the TSP60C18 or TSP60C81.

When the two-pin push-pull option is selected for the D/A output on the
TSP50C10/11/12, PB1 is used for the second D/A pin, making it unavailable
for I/O. In this case, no attempt should be made to use the PB1 interrupt.

If the PCM and LPC mode register bits are both cleared, a high-to-low
transition on PB1 causes a level-1 interrupt. This can be used to generate an
interrupt with an external event.

2.1.19 Mode Register

The mode register (Table 2–4) is an 8-bit write-only register that controls the
operating mode of the TSP50C0x/1x. When INIT goes low, all mode register
bits are cleared. The mode register is not saved during a subroutine call or
interrupt.

TSP50C0x/1x Functional Description

 2-16

Table 2–4.Mode Register

(a) Mode register bits

Mode Register Bits

7 6 5 4 3 2 1 0

UNV MASTER RAMROM EXTROM ENA2 PCM LPC ENA1

(b) Mode register bit descriptions

Bit Name Bit Low Bit High

ENA1 Disables level-1 interrupt Enables level-1 interrupt

LPC Disables LPC processor – all instruction cycles
used by the microprocessor.

Enables LPC processor – 53% of instruction
cycles dedicated to LPC synthesis when the PCM
bit is low and 50% if the instruction cycles are
dedicated to LPC synthesis when PCM is set high.

PCM Disables PCM mode. Level-1 interrupt is either
PPC < 200h in LPC mode or pin PB1 otherwise.

Enables PCM mode. LPC high causes an interrupt
rate of fosc/960 and microprocessor control of
LPC excitation value. LPC low causes an interrupt
rate of fosc/480 and microprocessor control of
D/A register.50% of the instruction cycles are
dedicated to LPC synthesis when the PCM bit is
set high.

ENA2 Disables level-2 interrupt Enables level-2 interrupt

EXTROM Disables operation of external ROM hardware
interface.

Enables operation of external ROM hardware
interface.

RAMROM Enables data source for GET instructions to be
either internal or external ROM.

Enables data source for GET instructions to be
internal RAM.

MASTER Enables I/O master operation. All available I/O
pins are controlled by internal microprocessor.

Enables I/O slave operation. Pin PB0 becomes
hardware chip enable strobe, and PB1 becomes
R/W. Port A is controlled by PB0 and PB1.

UNV Enables pitch-controlled excitation sequence
when in LPC mode (PCM low, voiced).

Enables random excitation sequence when in
LPC mode (PCM low, unvoiced).

 Speech Synthesizer

2-17 TSP50C0x/1x Family Architecture

2.2 Speech Synthesizer

The task of generating synthetic speech is divided between the programmable
microprocessor and the dedicated speech synthesizer. The four speech
synthesizer modes, which are set by the LPC and PCM bits in the mode
register, are discussed in the following paragraphs.

2.2.1 Synthesizer Mode 0 – OFF

When the PCM and LPC bits are both cleared, the synthesizer is disabled. All
instruction cycles are devoted to the microprocessor.The TASYN instruction
transfers the A register to the pitch register, making it easy to load the pitch
register before starting the LPC synthesizer. In this mode, the level-1 interrupt
is triggered by a high-to-low transition on pin PB1.

2.2.2 Synthesizer Mode 1 – LPC

This is the normal speaking mode. The TASYN instruction loads the pitch
register, and the level-1 interrupt is triggered by the pitch-period counter going
below 200h. Fifty-three percent of the instruction cycles are used by the
synthesizer.

The microprocessor controls speech synthesis by unpacking and decoding
parameters, by setting the update interval (frame rate), and by interpolating
the parameters during the frame. The speech synthesizer acts as a 12-pole
digital lattice filter, a pitch-controlled or white-noise excitation generator, a
2-pole digital low-pass filter, and a digital-to-analog converter. Speech
parameter input is received from dedicated space in the microprocessor RAM,
and speech samples are generated at 8 kHz or 10 kHz. Communication
between the microprocessor and the speech synthesizer takes place via a
shared memory space in the microprocessor RAM. Refer to Chapter 6,
TSP50C0x/1x Applications, of this book for more information.

2.2.3 Synthesizer Mode 2 – PCM

This mode is used for tone and music generation or for very-high-bit-rate
speech. The microprocessor uses all the instruction cycles, and the TASYN
instruction transfers the A register directly to the D/A register. The level-1
interrupt occurs at a rate twice the speech sample rate (16 kHz or 20 kHz),
giving access to the unfiltered D/A output.

2.2.4 Synthesizer Mode 3 – PCM and LPC

When both the PCM and LPC bits are set, the LPC synthesizer runs normally
with its excitation function provided by software. The level-1 interrupt occurs

Speech Synthesizer

 2-18

at the speech sample rate, and the TASYN instruction transfers the A register
to the excitation function input of the synthesizer. This mode is included for use
with RELPS (Residual Encoded Linear Predictive Synthesis) and similar
techniques. The synthesizer takes 50% of the instruction cycles in this mode.

2.2.5 Use of RAM by the Synthesizer

The synthesizer uses locations 001h to 00Fh in the RAM. When synthesis is
taking place, the parameters for the synthesizer come directly from these RAM
locations. The addresses are shown in Figure 2–5.

Figure 2–5. RAM Map During Speech Generation

34567 2 1 0 Comments

Not Used For Synthesis

Energy

K12 (LPC-12 Values)

K11

K10

K9

K8

K7

K6

K5

K4

K3

K1

C1 (Low-Pass Filter)

K2

C2

9 8Address

000h

001h

002h

003h

004h

005h

006h

007h

008h

009h

00Ah

00Bh

00Dh

00Eh

00Ch

00Fh

1011

2.2.6 Frame-Length Control

The frame length is controlled by the value put into the prescale register and
the range over which the timer is allowed to vary. Typical synthesis and
interpolation routines let the timer decrement through a range of fixed size, so
the prescale value should be selected to give the proper frame duration based
on the timer’s range.

 Speech Synthesizer

2-19 TSP50C0x/1x Family Architecture

2.2.7 Digital-to-Analog Converter

The TSP50C0x/1x contains an internal digital-to-analog converter (DAC)
connected to the output of the synthesizer. The DAC is available in three
pulse-width-modulated forms for the TSP50C10/11 and two
pulse-width-modulated forms for the TSP50C04/06/12/13/14/19. See Section
1.3, D/A Options, for more information. The DAC outputs samples at a rate
given by fosc/480. For a 9.6-MHz oscillator, this results in an output sample
rate of 20 kHz. For a 7.68-MHz oscillator, this results in an output sample rate
of 16 kHz. The DAC output rate is twice the speech sample rate, with a digital
low-pass filter in all modes except PCM mode. When the device is initialized,
the DAC is placed in an OFF state. This state is the same as a zero state for
the two-pin and single-pin double-ended modes, but in the single-pin
single-ended mode, the DAC goes to the maximum negative value. This fact
must be taken into account to minimize clicks during speech. Once synthesis
or PCM generation is turned off following speech or other sound output (return
to mode 0), the DAC maintains whatever value was last loaded by the LPC
filter or (in PCM mode) the TASYN instruction.

Interrupts

 2-20

2.3 Interrupts

The TSP50C0x/1x has two interrupts: interrupt-1 and interrupt-2. Both are
enabled and disabled by bits in the mode register. Interrupt-1 is a synthesis
interrupt and has a higher priority. It also has more hardware support. When
an interrupt-1 occurs, the program counter is placed on the program counter
stack, and the status flag, integer mode flag, A register, B register, and X
register are all saved in dedicated storage registers. The mode register is not
saved and restored during interrupts. Then the program counter is loaded with
the interrupt start location and execution of the interrupt routine begins. When
the interrupt routine returns, all these registers are restored, and the program
counter is popped from the stack.

Interrupt-1 is caused by 1 of 4 conditions depending on the state of the two
mode-register bits PCM and LPC. These conditions, as well as the interrupt
routine start address for each case, are shown in Table 2–5.

Table 2–5. Interrupt-1 Vectors

Address PCM LPC Interrupt Trigger

0018h 0 1 Pitch-period counter less than 200h
(see subsection 2.1.15)

001Ah 0 0 Pin PB1 goes from high to low (see subsection 2.1.18)

001Ch 1 1 fosc /960 clock (see subsection 2.2.4)

001Eh 1 0 fosc /480 clock (see subsection 2.2.3)

Interrupt-2 has a lower priority and cannot interrupt the interrupt-1 routine. It
can be interrupted by interrupt-1. During a level-2 interrupt, the program
counter, status bit, and integer mode flag are the only registers saved. The A
register, X register, and B register must be saved by the program if they are
used by both it and the routine being interrupted. The mode register is not
saved. Interrupt-2 is always caused by a timer underflow – the timer going from
000h to 0FFh – but it starts at different addresses depending on the state of
two mode-register bits. Table 2–6 shows the interrupt-2 vectors.

 Interrupts

2-21 TSP50C0x/1x Family Architecture

Table 2–6. Interrupt-2 Vectors

Address PCM LPC Interrupt Trigger

0010h 0 1

0012h 0 0
All level-2 interrupts caused by timer underflow

0014h 1 1
All level-2 interru ts caused by timer underflow

0016h 1 0

The interrupting conditions for interrupt-1 and interrupt-2 set interrupt-pending
latches. If an interrupt is enabled (and in the interrupt-2 case, not overridden
by an interrupt-1-pending condition), the interrupt is taken immediately. If,
however, the interrupt is not enabled, the pending-interrupt latch causes an
interrupt to occur as soon as the respective interrupt is enabled in the mode
register.

Interrupts are not taken in the middle of double-byte instructions, during
branch or call instructions, or during the subroutine or interrupt returns (RETN
or RETI). A single instruction software loop (instruction of BR, BRA, CALL, or
SBR to itself) should be avoided since an interrupt is never taken.
Consecutively executed branches or calls delay interrupts until after the
execution of the instruction at the eventual destination of the string of branches
(or calls).

If consecutive branches (or calls) are avoided, the worst-case interrupt delay
in the main level is four instruction cycles. The worst-case delay occurs when
the interrupt occurs during the first execution cycle of a branch and the first
instruction at the branch destination address is a double-cycle instruction.

When the interrupt occurs, execution begins at the interrupt address. The state
of the status bit is not known when the interrupt occurs, so a BR or CALL
instruction should not be used for the first instruction. Two SBRs may be used,
since one of them is always taken, or it may be possible to use some other
instruction that sets the status bit, followed by an SBR.

The mode register is not saved and restored during interrupts. Any changes
made to the mode register during interrupts remains in effect after the return,
including the enabling and disabling of interrupts.

Note:

If a level-1 interrupt is followed immediately by a RETI, the potential exists
with some single byte instructions to corrupt the A register upon return. To
avoid this problem, do not place a RETI immediately at the interrupt vector.
Instead, precede the RETI with a CLA or some other instruction.

TSP50C12 LCD Functional Description

 2-22

2.4 TSP50C12 LCD Functional Description

The LCD functionality of the TSP50C12 is included without adding instructions
to the instruction set. An additional 192 bits of RAM are added to serve as the
display RAM. The display RAM is physically placed at RAM addresses 080h
– 097h. As a result, port A’s registers are mapped from 0F0h to 0F3h and port
B’s registers are mapped from 0F4h to 0F7h. This RAM mapping is consistent
with the SE50C10 emulator device used in the extended RAM mode (pin
controllable).

When data is stored into the display RAM locations, it may immediately affect
the voltage levels on the LCD segment outputs. Because the microprocessor
access of RAM is time multiplexed with LCD access, there are no
asynchronous ambiguities on segment outputs. If the display RAM update
routines are slow, it may be necessary to buffer the display data in another area
of RAM and then transfer it to the display RAM in a more time efficient block
move.

An LCD voltage reference generator is also included on the TSP50C12. This
circuit eliminates the need for an external voltage reference generator.

2.4.1 TSP50C12 LCD Driver

The TSP50C12 can drive an 8 × 24 (192-segment) LCD display with 1/8 duty
cycle. The driver function for the LCD is controlled by internal timing hardware.
Display data for the LCD is stored in a dedicated section of RAM. This data is
stored in pixel form with 24 consecutive 8-bit words. Table 2–7 shows the
memory locations for each pixel.

 TSP50C12 LCD Functional Description

2-23 TSP50C0x/1x Family Architecture

Table 2–7.TSP50C12 Display RAM Map

Address MSB LSB

080h S24c1 S23c1 S22c1 S21c1 S20c1 S19c1 S18c1 S17c1

081h S16c1 S15c1 S14c1 S13c1 S12c1 S11c1 S10c1 S9c1

082h S8c1 S7c1 S6c1 S5c1 S4c1 S3c1 S2c1 S1c1

083h S24c2 S23c2 S22c2 S21c2 S20c2 S19c2 S18c2 S17c2

084h S16c2 S15c2 S14c2 S13c2 S12c2 S11c2 S10c2 S9c2

085h S8c2 S7c2 S6c2 S5c2 S4c2 S3c2 S2c2 S1c2

086h S24c3 S23c3 S22c3 S21c3 S20c3 S19c3 S18c3 S17c3

087h S16c3 S15c3 S14c3 S13c3 S12c3 S11c3 S10c3 S9c3

088h S8c3 S7c3 S6c3 S5c3 S4c3 S3c3 S2c3 S1c3

089h S24c4 S23c4 S22c4 S21c4 S20c4 S19c4 S18c4 S17c4

08Ah S16c4 S15c4 S14c4 S13c4 S12c4 S11c4 S10c4 S9c4

08Bh S8c4 S7c4 S6c4 S5c4 S4c4 S3c4 S2c4 S1c4

08Ch S24c5 S23c5 S22c5 S21c5 S20c5 S19c5 S18c5 S17c5

08Dh S16c5 S15c5 S14c5 S13c5 S12c5 S11c5 S10c5 S9c5

08Eh S8c5 S7c5 S6c5 S5c5 S4c5 S3c5 S2c5 S1c5

08Fh S24c6 S23c6 S22c6 S21c6 S20c6 S19c6 S18c6 S17c6

090h S16c6 S15c6 S14c6 S13c6 S12c6 S11c6 S10c6 S9c6

091h S8c6 S7c6 S6c6 S5c6 S4c6 S3c6 S2c6 S1c6

092h S24c7 S23c7 S22c7 S21c7 S20c7 S19c7 S18c7 S17c7

093h S16c7 S15c7 S14c7 S13c7 S12c7 S11c7 S10c7 S9c7

094h S8c7 S7c7 S6c7 S5c7 S4c7 S3c7 S2c7 S1c7

095h S24c8 S23c8 S22c8 S21c8 S20c8 S19c8 S18c8 S17c8

096h S16c8 S15c8 S14c8 S13c8 S12c8 S11c8 S10c8 S9c8

097h S8c8 S7c8 S6c8 S5c8 S4c8 S3c8 S2c8 S1c8

NOTE: S–Segment or pixel on a given row (common time)
c –Row (common time)

TSP50C12 LCD Functional Description

 2-24

2.4.2 TSP50C12 LCD Drive Type A

The Type A drive method places limitations on the series resistance and pixel
capacitance of the display. This drive type requires a more complex LCD
display. The Type A option must be selected by the customer and given to TI
before releasing the device for mask tooling. Figure 2–6 shows the timing
waveforms for the LCD type A option.

 TSP50C12 LCD Functional Description

2-25 TSP50C0x/1x Family Architecture

Figure 2–6. TSP50C12 LCD Driver Type A Timing Diagram

c1

c2

S1

S2

S3

(c1/c2/c6 on)

(c1/c3/c8 on)

(c1 – c8 on)

c8

S1c1 “on”

S1c2 “off”

Vr
–Vr’
Vc’
Vr’

–Vr

Differential Voltage Across Pixel S1c1 (Vcommon – Vsegment)

1 Frame Period

Vr
–Vr’
Vc’
Vr’

–Vr

Vr
–Vr’
Vc’
Vr’

–Vr

Vr
–Vr’
Vc’
Vr’

–Vr

Vr
–Vr’
Vc’
Vr’

–Vr

Vr
–Vr’
Vc’
Vr’

–Vr

4∆V
∆V

0∆V
–∆V

–4∆V

2∆V
∆V

0∆V
–∆V

–2∆V

TSP50C12 LCD Functional Description

 2-26

2.4.3 TSP50C12 LCD Drive Type B

The Type B drive method operates at a lower frequency, allowing the common
signal to go high on the first frame and to go low on the next frame. This option
is preferred for applications that have large capacitance pixel loads and high
series trace resistances. This method also might be used if the microprocessor
is operated at higher frequencies. The Type B option must be selected by the
customer and given to TI before releasing the device for mask tooling.
Figure 2–7 shows the timing waveforms for the LCD type B option.

 TSP50C12 LCD Functional Description

2-27 TSP50C0x/1x Family Architecture

Figure 2–7. TSP50C12 LCD Driver Type B Timing Diagram

Vr
–Vr’
Vc’
Vr’

–Vr
1 Frame Period

Differential Voltage Across Pixel S1c1 (Vcommon – Vsegment)

4∆V
∆V

0∆V
–∆V

–4∆V

c1

c2

S1

S2

S3

(c1/c2/c6 on)

(c1/c3/c8 on)

(c1 – c8 on)

c8

S1c1 “on”

S1c2 “off”

Vr
–Vr’
Vc’
Vr’

–Vr

Vr
–Vr’
Vc’
Vr’

–Vr

Vr
–Vr’
Vc’
Vr’

–Vr

Vr
–Vr’
Vc’
Vr’

–Vr

Vr
–Vr’
Vc’
Vr’

–Vr

2∆V
∆V

0∆V
–∆V

–2∆V

TSP50C12 LCD Reference Voltage and Contrast Adjustment

 2-28

2.5 TSP50C12 LCD Reference Voltage and Contrast Adjustment

The TSP50C12 contains an internal voltage-reference generator to regulate
and adjust the LCD reference voltages. The voltage generator is comprised
of a voltage doubler, a bandgap reference, a voltage regulator, and a final trim
DAC. VLCD provides an isolated voltage supply for the voltage doubler. VLCD
can be connected to VDD or, for example, can be connected to a 4.5-V tap of
a 4-cell battery supply to improve the power efficiency of the circuit. An external
capacitor should be connected between VC1 and VC2. An external capacitor
should be connected between VX2 and VLCD. The bandgap provides a
reference voltage for the voltage regulator. The voltage regulator has a
nominal output of 4.9 V (±200 mV). The reference voltage can be trimmed by
writing to the DAC (memory-mapped to the lower four bits at RAM location
098h). The trim control ranges from –8 steps (0000) to +7 steps (1111) from
nominal with each step being approximately 100 mV. The value of this RAM
location is not initialized and must be set by the initialization software routine.
Figure 2–8 shows a diagram for the voltage doubler circuitry.

Figure 2–8. TSP50C12 Voltage Doubler

TSP50C12

0.01 µF
Cpump

0.047 µF
Cstore

VC1

VC2

VX2

VLCD

VDD

470 Ω

 TSP50C12 Clock Options

2-29 TSP50C0x/1x Family Architecture

2.6 TSP50C12 Clock Options

The RC oscillator requires a single external resistor between VDD and OSC1
with OSC2 left unconnected to set the operating frequency. The frequency
shift, as VDD changes, is limited to 10% over the operating range of 4 V to
6.5 V. The center frequency as a function of resistance requires trimming. For
applications requiring greater clock precision, a ceramic resonator option is
also available. The RC oscillator/ceramic resonator selection must be made
by the customer and given to TI before releasing the device for mask tooling.

Figure 2–9. RC OSC Option Circuit

OSC1

OSC2

100 kΩ

 2-30

 Running Title—Attribute Reference

3-1 Chapter Title—Attribute Reference

TSP50C0x/1x Electrical Specifications

This chapter contains electrical and timing information for the TSP50C0x/1x
family devices, organized according to device category.

Topic Page

3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature
Range 3-2.

3.2 TSP50C0x/1x Recommended Operating Conditions 3-3.

3.3 TSP50C0x/1x Timing Requirements 3-4.

3.4 TSP50C10/11 Electrical Characteristics 3-6.

3.5 TSP50C12 Electrical Characteristics 3-8.

3.6 TSP50C04/06/13/14/19 Electrical Characteristics 3-10.

Chapter 3

Absolute Maximum Ratings Over Operating Free-Air Temperature Range

 3-2

3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature
Range†

Supply voltage range, VDD (see Note 1) –0.3 V to 8 V.
Input voltage range, VI (see Note 1) –0.3 V to VDD + 0.3 V.
Output voltage range, VO (see Note 1) –0.3 V to VDD + 0.3 V.
Maximum Supply Current (IDD and ISS) 250 mA.
Operating free-air temperature range, TA 0°C to 70°C.
Storage temperature range (TSP50C04/06/10/11/12/13/14) –30°C to 125°C.
Storage temperature range (TSP50C19 only) 0°C to 125°C.

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the
device. These are stress ratings only, and functional operation of the device at these or any other
conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure
to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1:All voltages are with respect to ground.

Stresses beyond those listed here may cause permanent damage
to the device. This is a stress rating only.

 Recommended Operating Conditions

3-3 TSP50C0x/1x Electrical Specifications

3.2 Recommended Operating Conditions

The following table contains recommended operating characteristics for the
TSP50C0x/1x family.

Table 3–1.Recommended Operating Conditions

MIN NOM MAX UNIT

VDD Supply voltage† 4 6.5 V

VDD = 4 V 3 4

VIH High-level input voltage VDD = 5 V 3.8 5 V

VDD = 6 V 4.5 6

VDD = 4 V 0 0.8

VIL Low-level input voltage VDD = 5 V 0 1 V

VDD = 6 V 0 1.3

TA Operating free air temperature
Device functionality 0 70

°CTA Operating free-air temperature
LCD reference spec (TSP50C12 only) 10 40

°C

f Clock frequency
10-kHz speech sample rate‡ 9.6

MHzfosc Clock frequency
8-kHz speech sample rate‡ 7.68

MHz

fclock ROM clock frequency
External ROM mode interface to
TSP60C18 speech ROMs

fosc /4 MHz

Rspeaker Minimum speaker impedance
TSP50C04/06/13/14/19 direct speaker
drive using 2 pin push-pull DAC option

32 Ω

† Unless otherwise noted, all voltages are with respect to VSS.
‡ Speech sample rate = fosc /960.

Timing Requirements

 3-4

3.3 Timing Requirements

The following tables give timing requirements and the following figures give
timing waveforms for the TSP50C0x/1x family.

Table 3–2.D/A Options Timing Requirements
MIN NOM MAX Unit

tr Rise time, PAx, PBx, D/A options 1, 2
VDD = 4 V CL = 100 pF

22 ns

tf Fall time, PAx, PBx, D/A options 1, 2
VDD = 4 V, CL = 100 pF

10 ns

Table 3–3. Initialization Timing Requirements
MIN MAX UNIT

tINIT INIT pulsed low while the TSP50C0x/1x has power applied 1 µs

tsu(INIT) Minimum delay VDD to INIT 2 µs

Figure 3–1. Initialization Timing Diagram

tINIT

INIT

Table 3–4.Write Timing Requirements (Slave Mode)
MIN MAX UNIT

tsu(PB1) Setup time, PB1 low before PB0 goes low 20 ns

tsu(d) Setup time, data valid before PB0 goes high 100 ns

th(PB1) Hold time, PB1 low after PB0 goes high 20 ns

th(d) Hold time, data valid after PB0 goes high 30 ns

tw Pulse duration, PB0 low 100 ns

tr Rise time, PB0 50 ns

tf Fall time, PB0 50 ns

Figure 3–2. Write Timing Diagram (Slave Mode)

Data Valid

PB1

PB0

PA

tsu(PB1)

tw

th(PB1)

tf tsu(d)

tr

th(d)

 Timing Requirements

3-5 TSP50C0x/1x Electrical Specifications

Table 3–5.Read Timing Requirements (Slave Mode)

MIN MAX UNIT

tsu(PB1) Setup time, PB1 before PB0 goes low 20 ns

th(PB1) Hold time, PB1 after PB0 goes high 20 ns

tdis Output disable time, data valid after PB0 goes high 0 30 ns

tw Pulse duration, PB0 low 100 ns

tr Rise time, PB0 50 ns

tf Fall time, PB0 50 ns

td Delay time for PB0 low to data valid 50 ns

Figure 3–3. Read Timing Diagram (Slave Mode)

Data Valid

PB1

PB0

PA

tsu(PB1)

tw
th(PB1)

tf tr
tdistd

Table 3–6.External Interrupt Timing Requirements

MIN MAX UNIT

t (PB1) Pulse duration before PB1 goes low
fclock = 7.6 MHz 2

µstw(PB1) Pulse duration, before PB1 goes low
fclock = 9.6 MHz 2.5

µs

Figure 3–4. External Interrupt Timing Diagram

PB1

tw(PB1)

TSP50C10/11 Electrical Characteristics

 3-6

3.4 TSP50C10/11 Electrical Characteristics

Table 3–7 gives specifications and the Figure 3–5 gives the input leakage cur-
rent that applies to the TSP50C10 and TSP50C11.

Table 3–7.TSP50C10/11 Electrical Characteristics Over Recommended Ranges of Supply
 Voltage and Operating Free-Air Temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VT
Positive-going threshold voltage VDD = 4.5 V 2.7

VVT+
g g g

(INIT) VDD = 6 V 3.65
V

VT
Negative-going threshold voltage VDD = 4.5 V 2.3

VVT–
g g g g

(INIT) VDD = 6 V 3.15
V

Vh Hysteresis (VT VT) (INIT)
VDD = 4.5 V 0.4

VVhys Hysteresis (VT+ – VT–) (INIT)
VDD = 6 V 0.5

V

IIkg
Input leakage current
(except for OSC1, INIT see Figure 3–5)

1 µA

Istandby Standby current (INIT low) 10 µA

IDD† Supply current D/A option 1, 2, or 3 5 mA

VDD = 4 V, VOH = 3.5 V –4 –6

VDD = 5 V, VOH = 4.5 V –5 –7.5 mA

IOH
High-level output current VDD = 6 V, VOH = 5.5 V –6 –9.2

IOH
g

(PAx, PBx, D/A options 1, 2) VDD = 4 V, VOH = 2.67 V –8 –13

VDD = 5 V, VOH = 3.33 V –14 –20 mA

VDD = 6 V, VOH = 4 V –20 –29

VDD = 4 V, VOL = 0.5 V 10 17

VDD = 5 V, VOL = 0.5 V 13 20 mA

IOL
Low-level output current VDD = 6 V, VOL = 0.5 V 15 25

IOL (PAx, PBx, D/A options 1, 2) VDD = 4 V, VOL = 1.33 V 20 32

VDD = 5 V, VOL = 1.67 V 30 52 mA

VDD = 6 V, VOL = 2 V 41 71

Pullup resistance
Resistors selected with software and
connected between pin and VDD

15 30 60 kΩ

† Operating current assumes all inputs are tied to either VSS or VDD with no input currents due to programmed pullup resistors.
The DAC output and other outputs are open circuited.

 TSP50C10/11 Electrical Characteristics

3-7 TSP50C0x/1x Electrical Specifications

Figure 3–5. Typical Input Leakage Current on INIT

15

10

5

0
0 1 1.5 2 2.5

In
pu

t L
ea

ka
ge

 C
ur

re
nt

 (
IN

IT
)

–

20

25

Typical
Input Leakage Current On Init

Vs
Input Voltage

30

3 3.5 4

A
µ

VI – Input Voltage (INIT) – V

VDD = 6.5 V

VDD = 3.9 V

TSP50C12 Electrical Characteristics

 3-8

3.5 TSP50C12 Electrical Characteristics

Table 3–8 gives specifications that apply to the TSP50C12.

Table 3–8.TSP50C12 Electrical Characteristics Over Recommended Ranges of Supply
Voltage and Operating Free-Air Temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VT
Positive-going threshold voltage VDD = 4.5 V 2.7

VVT+
g g g

(INIT) VDD = 6 V 3.65
V

VT
Negative-going threshold voltage VDD = 4.5 V 2.3

VVT–
g g g g

(INIT) VDD = 6 V 3.15
V

Vh Hysteresis (VT VT) (INIT)
VDD = 4.5 V 0.4

VVhys Hysteresis (VT+ – VT–) (INIT)
VDD = 6 V 0.5

V

Vr 4.7 4.9 5.1

–Vr’
DAC i t 1000 T 25°C

3.717 3.875 4.033

LCD reference voltages Vc’
DAC register = 1000, TA = 25°C,
See Figures 2–5 and 2–6

2.734 2.85 2.966 V

Vr’
See Figures 2–5 and 2–6

1.751 1.825 1.899

–Vr 0.767 0.8 0.833

Vr LCD temperature coefficient† TA = 0°C to 40°C –2.5 mV/°C

DAC step
DAC step control of Vr with respect
to –Vr, VDD = 5 V, TA = 25°C

74 100 124 mV

IIkg
Input leakage current (except for
OSC1, INIT see Figure 3–5)

1 µA

Istandby Standby current (INIT low) 10 µA

IDD‡ Supply current D/A option 1 or 3 5 mA

VDD = 4 V, VOH = 3.5 V –4 –6

VDD = 5 V, VOH = 4.5 V –5 –7.5 mA

IOH
High-level output current VDD = 6 V, VOH = 5.5 V –6 –9.2

IOH
g

(PAx, PBx, D/A options 1) VDD = 4 V, VOH = 2.67 V –8 –13

VDD = 5 V, VOH = 3.33 V –14 –20 mA

VDD = 6 V, VOH = 4 V –20 –29

VDD = 4 V, VOL = 0.5 V 10 17

VDD = 5 V, VOL = 0.5 V 13 20 mA

IOL
Low-level output current VDD = 6 V, VOL = 0.5 V 15 25

IOL (PAx, PBx, D/A options 1) VDD = 4 V, VOL = 1.33 V 20 32

VDD = 5 V, VOL = 1.67 V 30 52 mA

VDD = 6 V, VOL = 2 V 41 71
† This negative temperature coefficient is normally advantageous because it tracks the temperature variation of most LCD

materials.
‡ Operating current assumes all inputs are tied to either VSS or VDD with no input currents due to programmed pullup resistors.

The DAC output and other outputs are open circuited.

 TSP50C12 Electrical Characteristics

3-9 TSP50C0x/1x Electrical Specifications

Table 3–8. TSP50C12 Electrical Characteristics Over Recommended Ranges of Supply
Voltage and Operating Free-Air Temperature(unless otherwise noted)
(Continued)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

Pullup resistance
Resistors selected with software and connected
between pin and VDD

15 30 60 kΩ

DAC buffer drive (D/A option 1) 32-Ω load connected across DA1 and DA2,
VDD = 4.5 V 60 mA

LCD frame rate fOSC = 9.6 MHz 96 Hz

TSP50C04/06/13/14/19 Electrical Characteristics

 3-10

3.6 TSP50C04/06/13/14/19 Electrical Characteristics

Table 3–9 gives specifications that apply to the TSP50C04, TSP50C06,
TSP50C13, TSP50C14, and the TSP50C19.

Table 3–9.TSP50C04/06/13/14/19 Electrical Characteristics Over Recommended Ranges
of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VT Positive going threshold voltage (INIT)
VDD = 4.5 V 2.7

VVT+ Positive-going threshold voltage (INIT)
VDD = 6 V 3.65

V

VT Negative going threshold voltage (INIT)
VDD = 4.5 V 2.3

VVT– Negative-going threshold voltage (INIT)
VDD = 6 V 3.15

V

Vh Hysteresis (VT VT) (INIT)
VDD = 4.5 V 0.4

VVhys Hysteresis (VT+ – VT–) (INIT)
VDD = 6 V 0.5

V

IIkg
Input leakage current (except for OSC1,
INIT see Figure 3–5)

1 µA

Istandby Standby current (INIT low) 10 µA

IDD† Supply current DAC option 1 or 2 5 mA

VDD = 4 V, VOH = 3.5 V –27 –41

VDD = 5 V, VOH = 4.5 V –34 –51 mA

High-level output current (D /A VDD = 6 V, VOH = 5.5 V –41 –63g (
options 1, 2) VDD = 4 V, VOH = 2.67 V –54 –88

VDD = 5 V, VOH = 3.33 V –95 –136 mA

IOH
VDD = 6 V, VOH = 4 V –136 –197

IOH
VDD = 4 V, VOH = 3.5 V –4 –6

VDD = 5 V, VOH = 4.5 V –5 –7.5 mA

High level output current (PAx PBx)
VDD = 6 V, VOH = 5.5 V –6 –9.2

High-level output current (PAx, PBx)
VDD = 4 V, VOH = 2.67 V –8 –13

VDD = 5 V, VOH = 3.33 V –14 –20 mA

VDD = 6 V, VOH = 4 V –20 –29
† Operating current assumes all inputs are tied to either VSS or VDD with no input currents due to programmed pullup resistors.

The DAC output and other outputs are open circuited.

 TSP50C04/06/13/14/19 Electrical Characteristics

3-11 TSP50C0x/1x Electrical Specifications

Table 3–9 TSP50C04/06/13/14/19 Electrical Characteristics Over Recommended Ranges
of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted)
(Continued)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VDD = 4 V, VOL = 0.5 V 27 41

VDD = 5 V, VOL = 0.5 V 34 51 mA

Low-level output current (D /A options VDD = 6 V, VOL = 0.5 V 41 63(
1, 2) VDD = 4 V, VOL = 1.33 V 54 88

VDD = 5 V, VOL = 1.67 V 95 136 mA

IOL
VDD = 6 V, VOL = 2 V 136 197

IOL
VDD = 4 V, VOL = 0.5 V 10 17

VDD = 5 V, VOL = 0.5 V 13 20 mA

Low level output current (PAx PBx)
VDD = 6 V, VOL = 0.5 V 15 25

Low-level output current (PAx, PBx)
VDD = 4 V, VOL = 1.33 V 20 32

VDD = 5 V, VOL = 1.67 V 30 52 mA

VDD = 6 V, VOL = 2 V 41 71

Pullup resistance
Resistors selected with software and
connected between pin and VDD

15 30 60 kΩ

f Oscillator frequency‡

7.68-MHz target frequency,
VDD = 5 V, TA = 25°C

7.21 7.68 8.15

MHzfosc Oscillator frequency‡
9.6-MHz target frequency,
VDD = 5 V, TA = 25°C

9.02 9.6 10.2

MHz

‡ The frequency of the internal clock has a temperature coefficient of approximately –0.2 %/ °C and a VDD coefficient typical =
3%/V and a maximum =5.4%/V.

 3-12

 Running Title—Attribute Reference

4-1 Chapter Title—Attribute Reference

TSP50C0x/1x Assembler

The TSP50C0x/1x assembler chapter describes how to invoke the assembler,
assembler command-line options, source-statement format, assembler sym-
bols and characters, and assembler directives.

Topic Page

4.1 Description of Notation Used 4-2.

4.2 Invoking the Assembler 4-3.

4.3 Command-Line Options 4-4.

4.4 Assembler Input and Output Files 4-7.

4.5 Source-Statement Format 4-9.

4.6 Symbols 4-12.

4.7 Character Strings 4-13.

4.8 Expressions 4-14.

4.9 Assembler Directives 4-15.

Chapter 4

Description of Notation Used

 4-2

4.1 Description of Notation Used

The notation used in this document is as follows:

� An optional field is indicated by brackets; for example,

[LABEL]

� User-supplied contents are indicated by braces; for example,

<num>

� A reserved keyword is shown in capital letters.

� A required blank is indicated by a caret (^).

The following syntax example demonstrates the notational conventions used
in this guide.

[<name>] ^ SBR ^ <number> ^ [<comment>]

 Invoking the Assembler

4-3 TSP50C0x/1x Assembler

4.2 Invoking the Assembler

The assembler is invoked by typing:

ASM10 ^ [<options>] ^ <source[.ext]>

where:

� Options represents a list of assembler options (see Section 4.3,
Command-Line Options).

� Source is the name of the source file with the extension optional.

� If the extension is not given, then the default extension .asm is
assumed. For example:

ASM10 –l PROGRAM

runs the assembler using the source file program.asm and generates the
output object file program.bin. No list file is generated.

Command-Line Options

 4-4

4.3 Command-Line Options

Several options can be invoked from the command line (Table 4–1). They are
invoked by listing their abbreviation prefixed by a minus sign. The following
example:

ASM10 –Lo PROGRAM.ASM

assembles the program in file program.asm but does not generate either a
listing file or an object file; however, any errors are written to the console. The
available options are detailed in Table 4–1. See subsection 4.9.10, OPTION
Directive, for information on invoking options from within the source code.

Table 4–1.Switches and Options

Character or
Number Action

B or b Lists only the first data byte in BYTE or RBYTE

D or d Lists only the first data byte in DATA or RDATA

I or i Counts the number of times a valid instruction has been used

L or l Displays error messages without generating a list

O or o Disables object file output

P or p Prints listing without page breaks

R or r Produces a reduced cross-reference list

S or s Writes no errors on screen unless listing file is generated

T or t Lists only the first data byte in TEXT or RTEXT

W or w Suppresses the warning message

X or x Adds a cross-reference list at the end

9 Generates object file in TI-990 tagged object format

4.3.1 BYTE Unlist Option

Placing a b or B in the command-line option field causes the assembler to list
only the first opcode in a BYTE or RBYTE statement. Normally, if a BYTE or
RBYTE statement has n arguments, they are listed in a column running down
the page in the opcode column of the listing, taking n lines to completely list
the resulting opcodes. If the BYTE unlist switch is set, then only the first line
(which also contains the source line listing) is written to the listing file.

 Command-Line Options

4-5 TSP50C0x/1x Assembler

4.3.2 DATA Unlist Option

Placing a d or D in the command-line option field causes the assembler to list
only the first opcode in a DATA or RDATA statement. Normally, if a DATA or
RDATA statement has n arguments, they are listed in a column running down
the page in the opcode column of the listing, taking n lines to completely list
the resulting opcodes. If the DATA unlist switch is set, then only the first line
(which also contains the source line listing) is written to the listing file.

4.3.3 XREF Unlist Option

Placing an x or X in the command-line option field causes the assembler to add
a cross-reference listing at the end of the listing file.

4.3.4 TEXT Unlist Option

Placing a t or T in the command-line option field causes the assembler to list
only the first opcode in a TEXT or RTEXT statement in the listing file. Normally,
if a TEXT or RTEXT statement has as an argument a string containing n
characters, the ASCII representation of these n characters is written in a
column in the opcode column of the listing. If the TEXT unlist switch is set, only
the first line (also containing the source line listing) is written to the list file.

4.3.5 WARNING Unlist Option

Placing a w or W in the command-line option field causes the assembler to
suppress WARNING messages. Warnings are still counted and error
messages are still generated.

4.3.6 Complete XREF Switch

Placing an r or R in the command-line option field causes the assembler to
produce a reduced XREF listing if one is produced. Normally, all symbols
(whether used or not) are listed in the XREF listing. The r option causes the
assembler to omit from the XREF listing all symbols from the copy files that
were never used.

4.3.7 Object Module Switch

Placing an o or O in the command-line option field causes the assembler to
not generate any object output modules.

4.3.8 Listing File Switch

Placing an l or L in the command-line option field causes the assembler to not
generate the listing file but to display any error messages to the screen.

Command-Line Options

 4-6

4.3.9 Page-Eject Disable Switch

Placing a p or P in the command-line option field causes the assembler to print
the listing in a continual manner without division into separate pages. When
desired, a form feed may still be forced using the PAGE command.

4.3.10 Error-to-Screen Switch

Placing an s or S in the command-line option field causes the assembler to not
write errors to the screen unless no listing file is being generated.

4.3.11 Instruction Count Switch

Placing an i or I in the command-line option field causes the assembler to
generate a table containing the number of times each valid instruction was
used in the program.

4.3.12 Binary-Code File-Disable Switch

Placing a 9 in the command-line option field causes the assembler to generate
the object module in tagged-object format in a file with a .mpo extension
instead of the normal binary formatted object module in a file with a .bin
extension.

 Assembler Input and Output Files

4-7 TSP50C0x/1x Assembler

4.4 Assembler Input and Output Files

The assembler takes as input a file containing the assembly source and
produces as output a listing file and an object file in either binary format or
tagged object format.

4.4.1 Assembly Source File

The assembly source file is specified in the command line. If the filename in
the command line has an extension, then the file name is used as given. If no
extension is specified, then the extension .asm is assumed.

For example:

ASM10 PROGRAM.SRC

uses the file program.src as the assembly source file.

ASM10 PROGRAM

uses the file program.asm as the assembly source file.

4.4.2 Assembly Binary Object File

The assembly process produces an object file in binary format by default. The
object output is placed in a file with the same file name as the assembly source
except that the extension is .bin. If the binary file is not desired, it can be
disabled either as a command-line option or with an OPTION statement.

For example:

ASM10 PROGRAM.SRC

uses the file program.src as the assembly source file and the file
program.bin as the binary object output file.

ASM10 –O PROGRAM.SRC

uses the file program.src as the assembly source file and produces no object
output.

Assembler Input and Output Files

 4-8

4.4.3 Assembly Tagged Object File

If desired, the assembler can substitute an object file in tagged object format
instead of the object file in binary format. If produced, the object output is
placed in a file with the same file name as the assembly source except that the
extension is .mpo.

For example:

ASM10 –9 PROGRAM.SRC

uses the file program.src as the assembly source file and the file program.mpo
as the tagged object output file. No binary-formatted object file is produced.

4.4.4 Assembly Listing File

The assembly process produces a listing file that contains the source
instructions, the assembled code, and (optionally) a cross-reference table.
The listing file is placed in a file with the same file name as the assembly source
except that the extension is .lst.

For example:

ASM10 PROGRAM.SRC

uses the file program.src as the assembly source file and the file program.lst
as the assembly listing file.

 Source-Statement Format

4-9 TSP50C0x/1x Assembler

4.5 Source-Statement Format

An assembly-language source program consists of source statements
contained in the assembly source file(s) that may contain assembler
directives, machine instructions, or comments. Source statements may
contain four ordered fields separated by one or more blanks. These fields
(label, command, operand, and comment) are discussed in the following
paragraphs.

The source statement can be as long as 80 characters. If the form width is set
to 80 characters (the default), the assembler truncates the source line at 60
characters. The user should ensure that nothing other than comments extend
past column 60.

Any source line starting with an asterisk (*) in the first character position is
treated as a comment in its entirety. It is ignored by the assembler and has no
effect on the assembly process.

The syntax of the source statements is:

[<label>] ^ COMMAND ^ <operand> ^ [<comment>]

A source statement may have an optional label that is defined by the user. One
or more blanks separate the label from the COMMAND mnemonic. One or
more blanks separate the mnemonic from the operand (if required by the
command). One or more blanks separate the operand from the comment field.
Comments are ignored by the assembler.

4.5.1 Label Field

The label field begins in character position one of the source line. If position
one is a character other than a blank or an asterisk, the assembler assumes
that the symbol is a label. If a label is omitted, then the first character position
must be a blank. The label may contain up to ten characters consisting of
alphabetic characters (a – z, A – Z), numbers (0 – 9), and some other
characters (@,$,_). The first character should be an alphabetic character, and
the remaining nine character positions can be any of the legal characters listed
above.

4.5.2 Command Field

The command field begins after the blank that terminates the label field or in
the first nonblank character past the first character position (which must be
blank when the label is omitted). The command field is terminated by one or
more blanks and may not extend past the sixtieth character position. The

Source-Statement Format

 4-10

command field may contain either an assembler mnemonic (e.g., TAX) or an
assembler directive (e.g., OPTION). The assembler does not distinguish
between capital and small letters in the command name; for example, TAX,
Tax, and tAX are all identical names to the assembler.

4.5.3 Operand Field

The operand field begins following the blank that terminates the command
field and may not extend past the sixtieth column position. The operand may
contain one or more constants or expressions described in subsection 4.5.5,
Constants, through subsection 4.5.10, Assembly-Time Constants. Terms in
the operand field are separated by commas. The operand field is terminated
by the first blank encountered.

4.5.4 Comment Field

The comment field begins after the blank that terminates the operand field or
the blank that terminates the command field if no operand is required. The
comment field may extend to the end of the source record and may contain any
ASCII character including blanks.

4.5.5 Constants

The assembler recognizes the following five types of constants:

Decimal integer constants
Binary integer constants
Hexadecimal integer constants
Character constants
Assembly-time constants

4.5.6 Decimal Integer Constants

A decimal integer constant is written as a string of decimal digits. The range
of values of decimal integers is –32,768 to 65,535. Positive decimal integer
constants greater than 32,767 are considered negative when interpreted as
two’s complement values.

The following are valid decimal constants:

1000 Constant equal to 1000 or 03E8h
–32768 Constant equal to –32768 or 8000h
25 Constant equal to 25 or 0019h

4.5.7 Binary Integer Constants

A binary integer constant is written as a string of up to 16 binary digits (0/1)
preceded by a question mark (?). If less than 16 digits are specified, the
assembler right-justifies the given bits in the resulting constant.

 Source-Statement Format

4-11 TSP50C0x/1x Assembler

The following are valid binary constants:

?0000000000010011 Constant equal to 19 or 0013h
?0111111111111111 Constant equal to 32767 or 7FFFh
?11110 Constant equal to 30 or 001Eh

4.5.8 Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to four hexadecimal
digits preceded by a number sign (#) or a greater than sign (>). If less than four
hexadecimal digits are specified, the assembler right-justifies the bits that are
specified in the resulting constant. Hexadecimal digits include the decimal
values 0 through 9 and the letters a (or A) through f (or F).

The following are valid hexadecimal constants:

#07F Constant equal to 127 (or 007Fh)
>#07f Constant equal to 127 (or 007Fh)
#307A Constant equal to 12410 (or 307Ah)

4.5.9 Character Constants

A character constant is written as a string of one or two alphabetic characters
enclosed in single quotes. A single quote can be represented within the
character constant by two successive quotes. If less than two characters are
specified, the assembler right-justifies the given bits in the resulting constant.
The characters are represented internally as 8-bit ASCII characters. A
character constant consisting of only two single quotes (no character) is valid
and is assigned the value 0000h.

The following are valid character constants:

’AB’ Constant equal to 4142h
’C’ Constant equal to 0043h
’”D’ Constant equal to 2744h

4.5.10 Assembly-Time Constants

An assembly-time constant is a symbol given a value by an EQU directive (see
subsection 4.9.5, EQU Directive). The value of the symbol is determined at
assembly time and may be assigned values with expressions using any of the
constant types.

Symbols

 4-12

4.6 Symbols

Symbols are used in the label field and the operand field. A symbol is a string
of ten or fewer alphanumeric characters (a – z, A – Z, 0 – 9, and the characters
@, _, and $). Uppercase and lowercase characters are not distinguished from
one another; for example, A1 and a1 are treated identically by the assembler.
No character may be blank. When more than ten characters are used in a
symbol, the assembler prints all the characters but issues a warning message
that the symbol has been truncated and uses only the first ten characters for
processing.

Symbols used in the label field become symbolic addresses. They are
associated with locations in the program and must not be used in the label field
of other statements. Mnemonic operation codes and assembler directives
may also be used as valid user-defined symbols when placed in the label field.

Symbols used in the operand field must be defined in the assembly, usually
by appearing in the label field of a statement or in the operand field of an EQU
directive.

The following are examples of valid symbols:

START

Start

strt_1

Predefined Symbol $

The dollar sign ($) is a predefined symbol given the value of the current
location within the program. It can be used in the operand field to indicate
relative program offsets.

For example:

BR $+6

results in a branch to an address six bytes beyond the current location.

 Character Strings

4-13 TSP50C0x/1x Assembler

4.7 Character Strings

Several assembler directives require character strings in the operand field. A
character string is written as a string of characters enclosed in single quotes.
A quote may be represented in the string by two successive quotes. The
maximum length of the string is defined for each directive that requires a
character string. The characters are represented internally as 8-bit ASCII.

The following are valid character strings:

’SAMPLE PROGRAM’

’Plan ’’C’’’

Expressions

 4-14

4.8 Expressions

Expressions are used in the operand fields of assembler instructions and
directives. An expression is a constant or symbol, a series of constants or
symbols, or a series of constants and symbols separated by arithmetic
operators.

Each constant or symbol may be preceded by a minus sign (unary minus) or
a plus sign (unary plus). Unary minus is the same as taking the two’s
complement of the value. An expression must not contain embedded blanks.
The valid range of values in an expression is –32,768 to 65,535. The value of
all terms of an expression must be known at assembly time.

4.8.1 Arithmetic Operators in Expressions

The following arithmetic operators may be used in an expression:

~ inversion
+ addition
– subtraction
* multiplication
/ division (remainder is truncated)
% modulo (remainder after division)
& bitwise AND
++ bitwise OR
&& bitwise EXCLUSIVE-OR

In evaluating an expression, the assembler first negates any constant or
symbol preceded by a unary minus and then performs the arithmetic
operations from left to right. The assembler does not assign arithmetic
operation precedence to any operation other than unary plus or unary minus
(so that the expression 4+5*2 is evaluated as 18, not 14).

4.8.2 Parentheses In Expressions

The assembler supports the use of parentheses in expressions to alter the
order of evaluating the expression. Nesting parentheses within expressions
is also supported. When parentheses are used, the portion of the expression
within the innermost parentheses is evaluated first, and then the portion of the
expression within the next innermost pair is evaluated. When evaluation of the
portions of the expression within the parentheses has been completed, the
evaluation is completed from left to right. Evaluation of portions of an
expression within parentheses at the same nesting level is considered as
simultaneous. Parenthetical expressions may not be nested more than eight
deep.

 Assembler Directives

4-15 TSP50C0x/1x Assembler

4.9 Assembler Directives

Assembler directives (Table 4–2) are instructions that modify the assembler
operation. They are invoked by placing the directive mnemonic in the
command field and any modifying operands in the operand field. The valid
directives are described in the following paragraphs.

Table 4–2.Summary of Assembler Directives

Directives That Affect the Location Counter

Mnemon-
ic

Directive Syntax

AORG Absolute origin [<label>]^AORG^<expression>^[<comment>]

Directives That Affect Assembler Output

IDT Program identifier [<label>]^IDT^’<string>’^[<comment>]

LIST Restart source listing [<label>]^LIST^[<comment>]

NARROW 80-column form width [<label>]^NARROW^[<comment>]

OPTION Output options [<label>]^OPTION^<option list>^[<comment>]

PAGE Page eject [<label>]^PAGE^[<comment>]

TITL Page title [<label>]^TITL^’<string>’^[<comment>]

UNL Stop source listing [<label>]^UNL^[<comment>]

WIDE 130-column form width [<label>]^WIDE^[<comment>]

Directives That Initialize Constants

BYTE Initialize byte [<label>]^BYTE^<expr-1>^[,<expr-2>,....., <expr-n>]^[<comment>]

RBYTE Reverse bit initialization
of byte

[<label>]^RBYTE^<expr-1>^[,<expr-2>,....., <expr-n>]^[<comment>]

DATA Initialize word [<label>]^DATA^<expr-1>^[,<expr-2>,....., <expr-n>]^[<comment>]

RDATA Reverse bit initialization
of word

[<label>]^RDATA^<expr-1>^[,<expr-2>,....., <expr-n>]^[<comment>]

EQU Define assembly time [<label>]^EQU^<expression>^[<comment>]

TEXT Initialize text [<label>]^TEXT^[–]’<string>’^[<comment>]

RTEXT Reverse byte initialization
of text

[<label>]^RTEXT^[–]’<string>’^[<comment>]

Miscellaneous Directives

COPY Copy source file [<label>]^COPY^<filename>^[<comment>]

END Program end [<label>]^END^[<comment>]

Assembler Directives

 4-16

4.9.1 AORG Directive

The AORG directive places the value found in the expression in the operand
field into the location counter. Subsequent instructions have addresses
starting at this value. The use of the label field is optional, but when a label is
used, it is assigned the value found in the operand field.

The syntax of the AORG directive is as follows:

[<label>] ^ AORG ^ <expression> ^ [<comment>]

In the following statement:

AORG #1000+Offset

if Offset has a value of 8, sets the location counter to #1008. If a label was
included, it also is assigned the value of #1008. The symbol Offset must be
previously defined.

4.9.2 BYTE Directive

The BYTE directive places the value of one or more expressions into
successive bytes of program memory. The range of each term is 0 to 255. The
command field contains BYTE. The operand field contains a series of one or
more terms separated by commas and terminated by a blank that represents
the values to be placed in the successive bytes of program memory.

The syntax of the BYTE directive is as follows:

[<label>] ^ BYTE ^ <expr_1>[,<expr_2>,...,<expr_n>] ^ [<comment>]

The following statement:

BYTE #E0,5,data+5

places the numbers 224, 5, and the result of the arithmetic operation data+5
into the next three bytes of program memory. The value of the symbol data
must be defined in the assembly process.

4.9.3 COPY Directive

The COPY directive causes the assembler to read source statements from a
different file. The assembler gets subsequent statements from the copy file
until either an end-of-file marker is found or an END directive is found in the
copy file. A copy file cannot contain another COPY directive. The command
field contains COPY. The operand field contains the name of the file from which
the source files are to be read.

 Assembler Directives

4-17 TSP50C0x/1x Assembler

The syntax of the COPY directive is as follows:

[<label>] ^ COPY ^ <filename> ^ [<comment>]

The directive in the following example:

COPY copy.fil

causes the assembler to take its source statements from a file called copy.fil.
At the end-of-file for copy.fil or when an END directive is found in copy.fil, the
assembler resumes processing source statements from the original source
file.

4.9.4 DATA Directive

The DATA directive places the value of one or more expressions into
successive words of program memory. The range of each term is 0 to 65,535.
The command field contains DATA. The operand field contains a series of one
or more terms separated by commas and terminated by a blank that
represents the values to be placed in the successive bytes of program
memory.

The syntax of the DATA directive is as follows:

[<label>] ^ DATA ^ <expr_1>[,<expr_2>,...,<expr_n>]^ [<comment>]

The following example:

DATA #E000,’AB’

places the following bytes into successive locations in program memory: E0h,
00h, 41h, 42h.

4.9.5 EQU Directive

The EQU directive assigns a value to a symbol. The label field contains the
name of the symbol to which a value is assigned. The command field contains
EQU. The operand field contains the value to be assigned to the symbol.

The syntax of the EQU directive is as follows:

[<label>] ^ EQU ^ <expression> ^ [<comment>]

The following example:

Offset EQU #100

assigns the numeric value of 256 (100h) to the symbol Offset.

Assembler Directives

 4-18

4.9.6 END Directive

The END directive signals the end of the source or copy file. It is treated by the
program as an end-of-file marker. If it is found in a copy file, the copy file is
closed and subsequent statements are taken from the source file. If it is found
in the source file, the assembly process terminates at that point in the file.

The syntax of the END directive is as follows:

[<label>] ^ END ^ [<comment>]

In the following example:

ACAAC 1

END

CLA

the ACAAC 1 instruction is assembled, but the CLA and any subsequent
instructions are ignored.

4.9.7 IDT Directive

The IDT directive assigns a name to the object module produced. Use of the
label field is optional. When used, a label assumes the current value of the
location counter. The command field contains IDT. The operand field contains
the module name <string>, a character string of up to eight characters within
single quotes. When a character string of more than eight characters is
entered, the assembler prints a truncation warning message and retains the
first eight characters as the program name.

The syntax of the IDT directive is as follows:

[<label>] ^ IDT ’<string>’ ^ [<comment>]

The following example:

AORG 20

L1 IDT ’Example’

assigns the value of 20 to the symbol L1 and assigns the name ’Example’ to
the module being assembled. The module name is then printed in the source
listing as the operand of the IDT directive and appears in the page heading of
the source listing. The module name is also placed in the object code (if the
tagged object format code is being produced).

 Assembler Directives

4-19 TSP50C0x/1x Assembler

4.9.8 LIST Directive

The LIST directive restores printing of the source listing. This directive is
required only when a no-source-listing (UNL) directive is in effect and causes
the assembler to resume listing. This directive is not printed in the source
listing, but the line counter increments.

The syntax of the LIST directive is as follows:

[<label>] ^ LIST ^ [<comment>]

In the following example:

AORG 10

T1 LIST Turn on source listing

the label T1 is assigned the value 10 and listing is resumed. The line is not
printed out so that although the label T1 is entered into the symbol table and
appears in the cross-reference listing, the line in which it is assigned a value
does not appear in the listing file.

4.9.9 NARROW Directive

The NARROW directive causes the assembler to assume an 80-column form
width for the listing file. The default is 80 columns. (See subsection 4.9.18,
WIDE Directive)

The syntax of the NARROW directive is as follows:

[<label>] ^ NARROW ^ [<comment>]

The following example uses the NARROW directive:

AORG 10

T1 NARROW Switch to 80–column listing format

4.9.10 OPTION Directive

The OPTION directive selects several options that affect assembler operation.
The <option-list> operand is a list of keywords separated by commas; each
keyword selects an assembly feature. Only the first character of the keyword
is significant. Use of the label field is optional. When used, the label assumes
the current value of the location counter.

Assembler Directives

 4-20

The syntax of the OPTION directive is as follows:

[<label>] ^ OPTION ^ <option-list> ^ [<comment>]

The following are examples of the OPTION directive:

OPTION 990,XREF,SCRNOF

OPTION 990,XREF,SCREEN

OPTION 9,X,S

The three examples above have an identical effect. The binary object file is
replaced by an object file in tagged object format. The cross-reference listing
is produced, and the error messages are not sent to the screen (unless no
source listing file is being produced). See Section 4.3, Command-Line
Options, for information on invoking options from the command line.

 The available options are listed in the following paragraphs.

BUNLST – Byte Unlist Option

Placing any valid symbol starting with B or b in the option list enables the byte
unlist option. This option limits the listing of BYTE or RBYTE directives to one
line. Normally, if a BYTE or RBYTE directive has more than one operand, the
resulting object code is listed in a column in the opcode column of the source
listing. If the directive has ten operands, ten lines are required in the source
listing. BUNLST is used to avoid this.

DUNLST – Data Unlist Option

Placing any valid symbol starting with D or d in the option list enables the data
unlist option. This option limits the listing of DATA or RDATA directives to one
line. Normally, if a DATA or RDATA directive has more than one operand, the
resulting object code is listed in a column in the opcode column of the source
listing. If the directive has ten operands, ten lines are required in the source
listing. DUNLST is used to avoid this.

FUNLST – Byte, Data, and Text Unlist Option

Placing any valid symbol starting with F or f in the option list limits the listing
of BYTE, RBYTE, DATA, RDATA, TEXT, or RTEXT directives to one line. In
effect, it is equivalent to calling the DUNLST, BUNLST, and TUNLST directives
all at the same time.

I COUNT – Instruction Count List Option

Placing any valid symbol starting with I or i in the option list causes the program
to generate a table containing the number of times each valid instruction was
used in the program. If used, it should be placed at the start of the program.

 Assembler Directives

4-21 TSP50C0x/1x Assembler

LSTUNL – Listing Unlist Option

Placing any valid symbol starting with L or l in the option list inhibits the listing
file from being produced. It takes precedence over the LIST directive.

OBJUNL – Object File Unlist Option

Placing any valid symbol starting with O or o in the option list enables the object
file unlist option. This option inhibits either of the object output files from being
produced.

PAGEOF – Page Break Inhibit Option

Placing any valid symbol starting with P or p in the option list enables the page
break inhibit option. This option causes the listing file to be printed in a
continuous stream without page breaks.

RXREF – Reduced XREF Option

Placing any valid symbol starting with R or r in the option list enables the
reduced XREF option. This option causes symbols that were found in copy
files but never used to be omitted from the cross-reference listing (if produced).

SCRNOF – Screen Error Message Unlist Option

Placing any valid symbol starting with S or s in the option list enables the
screen error message unlist option. This option causes the error messages to
not be listed to the screen unless the listing file is not being produced.

TUNLST – Text Unlist Option

Placing any valid symbol starting with T or t in the option list enables the text
unlist option. This option limits the listing of TEXT or RTEXT directives to one
line. A TEXT or RTEXT directive normally takes as many lines to list as there
are characters in the operand. TUNLST causes only the first line of the
directive listing to be produced.

WARNOFF – Warning Message Unlist Option

Placing any valid symbol starting with W or w in the option list inhibits the listing
of warning diagnostics. Warnings are still counted and the total is still printed
at the end of the source listing.

XREF – Cross-Reference Listing Enable

Placing any valid symbol starting with X or x in the option list causes a
cross-reference listing to be produced at the end of the source listing. If used,
it should be placed at the start of the program.

Assembler Directives

 4-22

990 – Tagged Object Output Switch

Placing any valid symbol starting with 9 in the option list causes the assembler
to omit the binary coded object module (normally produced as a .bin file) and
to produce a tagged object module (as a .mpo file) instead.

4.9.11 PAGE Directive

The PAGE directive forces the assembler to continue the source program
listing on a new page. The PAGE directive is not printed in the source listing,
but the line counter increments. Use of the label field is optional. When used,
a label assumes the current value of the location counter. The command field
contains PAGE. The operand field is not used.

The syntax of the PAGE directive is as follows:

[<label>] ^ PAGE ^ [<comment>]

In the following example:

AORG 10

T1 PAGE Force Page Eject

the label T1 is assigned the value 10, and listing is resumed at the top of the
next page. The line is not printed out, so that although the label T1 is entered
into the symbol table and appears in the cross-reference listing, the line in
which it is assigned a value does not appear in the listing file.

4.9.12 RBYTE Directive

The RBYTE directive places the value of one or more expressions into
successive bytes of program memory in a bit-reversed form. The range of
each term is 0 to 255. The command field contains RBYTE. The operand field
contains a series of one or more terms separated by commas and terminated
by a blank that represents the values to be placed in the successive bytes of
program memory.

The syntax of the RBYTE directive is as follows:

[<label>] ^ RBYTE ^ <expr_1>[,<expr_2>,...,<expr_n>] ^ [<comment>]

The following example:

RBYTE #E0,5,data+5

Places the numbers 7 (07h), 160 (A0h), and the bit-reversed result of the
arithmetic operation (data+5) in successive bytes of program memory. The
value of the symbol data must be defined in the assembly process.

 Assembler Directives

4-23 TSP50C0x/1x Assembler

4.9.13 RDATA Directive

The RDATA directive places the value of one or more expressions into
successive words of program memory in a bit-reversed form. The range of
each term is 0 to 65,535. The command field contains RDATA. The operand
field contains a series of one or more terms separated by commas and
terminated by a blank that represents the values to be placed in the successive
words of program memory.

The syntax of the RDATA directive is as follows:

[<label>] ^ RDATA <expr_1>[,<expr_2>,...,<expr_n>] ^ [<comment>]

The following example:

RDATA #E000,’AB’

places the following bytes into successive locations in program memory: 00h,
07h, 42h, 82h.

4.9.14 RTEXT Directive

The RTEXT directive writes an ASCII string to the object file in reverse order.
If the string is preceded by a minus sign, the last character in the string to be
written (which is the first character of the string as given) is written with its most
significant bit set high. The use of the label field is optional. When used, the
label assumes the current value of the location counter. The command field
contains RTEXT. The operand field contains a character string of up to 52
characters long enclosed in single quotes (optionally preceded by a minus
sign).

The syntax of the RTEXT directive is as follows:

[<label>] ^ RTEXT ^ [–]’<string>’ ^ [<comment>]

The following examples:

RTEXT –’This is a test’

RTEXT ’This is a test’

both write the string “tset a si sihT” to the output file. The first example writes
the first T in the word “This”, which is the last character to be written with its
most significant bit set high (that is, as a #D4 instead of a #54).

Assembler Directives

 4-24

4.9.15 TEXT Directive

The TEXT directive writes an ASCII string to the object file. If the string is
preceded by a minus sign, the last character in the string is written with its most
significant bit set high. The use of the label field is optional. When used, the
label assumes the current value of the location counter. The command field
contains TEXT. The operand field contains a character string of up to 52
characters in length enclosed in single quotes (optionally preceded by a minus
sign).

The syntax of the TEXT directive is as follows:

[<label>] ^ TEXT ^ [–]’<string>’ ^ [<comment>]

The following examples:

TEXT –’This is a test’

TEXT ’This is a test’

both write the string “This is a test” to the output file. The first example writes
the final ’t’ in the word “test” with its most significant bit set high (that is, as a
#F4 instead of a #74).

4.9.16 TITL Directive

The TITL directive inserts a title to be printed in the heading of each page of
the source listing. When a title is desired in the heading of the listing’s page,
a TITL directive must be the first source statement submitted to the assembler.
Unlike the IDT directive, the TITL directive is not printed in the source listing.
The assembler does not print the comment because the TITL directive is not
printed, but the line counter does increment. Use of the label field is optional.
When used, a label field assumes the current value of the location counter. The
command field contains TITL. The operand field contains the title (string) – a
character string of up to 50 characters in length enclosed in single quotes.
When more that 50 characters are entered, the assembler retains the first 50
characters as the title and prints a syntax error message. The comment field
is optional.

The syntax of the TITL directive is as follows:

[<label>] ^ TITL ’<string>’ ^ [<comment>]

The following example:

TITL ’Sample Program’ This is a sample line

causes the title, Sample Program, to be printed in the page heading of the
source listing. When a TITL directive is the first source statement in a program,

 Assembler Directives

4-25 TSP50C0x/1x Assembler

the title is printed on all pages until another TITL directive is processed.
Otherwise, the title is printed on the next page after the directive is processed
and on subsequent pages until another TITL directive is processed. None of
this line is printed to the listing file.

4.9.17 UNL Directive

The UNL directive inhibits the printing of the source listing output until the
occurrence of a LIST directive. It is not printed in the source listing, but the
source line counter is incremented. The label field is optional. When used, the
label assumes the value of the location counter. The command field contains
the symbol UNL. The operand field is not used.

The syntax of the UNL directive is as follows:

[<label>] ^ UNL ^ [<comment>]

The following example:

AORG 10

T1 UNL Turn off source listing

assigns the value 10 to the label T1, and listing is inhibited.

4.9.18 WIDE Directive

The WIDE directive causes the assembler to assume a 130-column form width
for the listing file. The default is 80 columns. (See subsection 4.9.9, NARROW
Directive)

The syntax of the WIDE directive is as follows:

[<label>] ^ WIDE ^ [<comment>]

The following is an example of the WIDE directive:

AORG 10

T1 WIDE Switch to 130–column listing format

 4-26

 Running Title—Attribute Reference

5-1 Chapter Title—Attribute Reference

TSP50C0x/1x Instruction Set

This chapter describes the 61 different TSP50C0x/1x instructions (Table 5–1
and Table 5–2). Each instruction requires either one or two instruction cycles
to execute. Each instruction cycle consists of 16 clock cycles; therefore, a
clock speed of 9.6 MHz translates to 600,000 instruction cycles per second.
When LPC synthesis is enabled, every other instruction cycle is taken for
synthesis calculations, and two additional cycles are used for excitation
function look up. This causes the instruction cycle rate for the program to drop
to 280,000 instruction cycles per second.

Topic Page

5.1 Instruction Syntax 5-2.

5.2 TSP50C0x/1x Assembly Instructions 5-3.

Chapter 5

Instruction Syntax

 5-2

5.1 Instruction Syntax

The syntax for the source code instructions is:

[<label>]^< opcode mnemonic >^[<operand>]^ [<comment>]

The fields are:

� A 10-character optional label field
� A 6-character opcode mnemonic field
� An opcode-dependent operand field
� An optional comment field

Each of the fields is separated by one or more tabs or spaces.

 TSP50C0x/1x Assembly Instructions

5-3 TSP50C0x/1x Instruction Set

5.2 TSP50C0x/1x Assembly Instructions

The following section contains descriptions, opcodes, source code (syntax),
object code, execution results, status flag information, and examples for the
assembly instructions used to program the TSP50C0x/1x family. Table 5–1
lists the assembly instructions in alphabetical order with operand size in bits,
instruction cycles requires, status conditions, number of bytes required, op-
code, and a description.

Table 5–1.TSP50C0x/1x Instruction Set

Operand Size (Bits)

Instruction Cycles Required

Status (1 Always Set, C Conditional, N/A Does Not Apply)

Number of Bytes Required

Opcode (Hex)

Mnemonic Description

ABAAC 1 C 1 2C Add B register to A register

ACAAC 12 2 C 2 70 Add constant to A register

AGEC 8 2 C 2 63 A greater than or equal to constant

AMAAC 1 C 1 28 Add memory to A register

ANDCM 8 2 1 2 65 AND constant and memory

ANEC 8 2 C 2 60 A register not equal to constant

AXCA 8 2 1 2 68 A register times constant

AXMA 1 1 1 39 A register times memory

AXTM 1 1 1 38 A register times timer

BR 13 2 1 2 40 Branch if status set

BRA 1 1 1 1F Branch always to address in A register

CALL 12 2 1 2 00 Call if status set

CLA 1 1 1 2F Clear A register

CLB 1 1 1 24 Clear B register

CLX 1 1 1 20 Clear X register

DECMN 1 C 1 27 Decrement memory

DECXN 1 C 1 22 Decrement X register

EXTSG 1 1 1 3C Extended-sign mode

GET 3 2 C 1 30 Get bits

TSP50C0x/1x Assembly Instructions

 5-4

Table 5–1. TSP50C0x/1x Instruction Set (Continued)

Operand Size (Bits)

Instruction Cycles Required

Status (1 Always Set, C Conditional, N/A Does Not Apply)

Number of Bytes Required

Opcode (Hex)

Mnemonic Description

IAC 1 C 1 3A Increment A register

IBC 1 C 1 25 Increment B register

INCMC 1 C 1 26 Increment memory

INTGR 1 1 1 3B Set integer mode

IXC 1 C 1 21 Increment X register

LUAA 2 1 1 6B Look up A register, result to A register

LUAB 2 1 1 6D Look up A register, result to B register

LUAPS 2 1 1 6C Start parallel-to-serial transfer

ORCM 8 2 1 2 64 OR constant with memory

RETI 1 C 1 3E Return from interrupt

RETN 1 1 1 3D Return from subroutine

SALA 1 C 1 2E Shift A register left

SALA4 1 1 1 1B Shift A register left 4 bits

SARA 1 1 1 15 Shift A register right

SBAAN 1 C 1 2D Subtract B register from A register

SBR 7 1 1 1 80 Short branch if status set

SETOFF 1 N/A 1 3F Turn processor off

SMAAN 1 C 1 29 Subtract memory from A register

TAB 1 1 1 1A Transfer A register to B register

TAM 1 1 1 16 Transfer A register to memory

TAMD 8 2 1 2 6A Transfer A register to memory direct

TAMIX 1 1 1 13 Transfer A register to memory, increment X register

TAMODE 1 1 1 1D Transfer A register to mode register

TAPSC 1 1 1 19 Transfer A register to prescale register

TASYN 1 1 1 1C Transfer A register to synthesizer register

 TSP50C0x/1x Assembly Instructions

5-5 TSP50C0x/1x Instruction Set

Table 5–1. TSP50C0x/1x Instruction Set (Continued)

Operand Size (Bits)

Instruction Cycles Required

Status (1 Always Set, C Conditional, N/A Does Not Apply)

Number of Bytes Required

Opcode (Hex)

Mnemonic Description

TATM 1 1 1 1E Transfer A register to timer register

TAX 1 1 1 18 Transfer A register to X register

TBM 1 1 1 2A Transfer B register to memory

TCA 8 2 1 2 6E Transfer constant to A register

TCX 8 2 1 2 62 Transfer constant to X register

TMA 1 1 1 11 Transfer memory to A register

TMAD 8 2 1 2 69 Transfer memory to A register direct

TMAIX 1 1 1 14 Transfer memory to A register, increment X register

TMXD 8 2 1 2 6F Transfer memory direct to X register

TRNDA 1 1 1 2B Transfer random number to A register

TSTCA 8 2 C 2 67 Test constant and A register

TSTCM 8 2 C 2 66 Test constant and memory

TTMA 1 1 1 17 Transfer timer to A register

TXA 1 1 1 10 Transfer X register to A register

XBA 1 1 1 12 Exchange A register and B register

XBX 1 1 1 23 Exchange B register and X register

XGEC 8 2 C 2 61 X register greater than or equal to constant

TSP50C0x/1x Assembly Instructions

 5-6

Table 5–2 lists the instructions by opcode.

Table 5–2.TSP50C0x/1x Instruction Table

MSB

LSB 0 1 2 3 4 5 6 7 8-F

0 CALL TXA CLX GET 1 BR BR ANEC ACAAC SBR

1 CALL TMA IXC GET 2 BR BR XGEC ACAAC SBR

2 CALL XBA DECXN GET 3 BR BR TCX ACAAC SBR

3 CALL TAMIX XBX GET 4 BR BR AGEC ACAAC SBR

4 CALL TMAIX CLB GET 5 BR BR ORCM ACAAC SBR

5 CALL SARA IBC GET 6 BR BR ANDCM ACAAC SBR

6 CALL TAM INCMC GET 7 BR BR TSTCM ACAAC SBR

7 CALL TTMA DECMN GET 8 BR BR TSTCA ACAAC SBR

8 CALL TAX AMAAC AXTM BR BR AXCA ACAAC SBR

9 CALL TAPSC SMAAN AXMA BR BR TMAD ACAAC SBR

A CALL TAB TBM IAC BR BR TAMD ACAAC SBR

B CALL SALA4 TRNDA INTGR BR BR LUAA ACAAC SBR

C CALL TASYN ABAAC EXTSG BR BR LUAPS ACAAC SBR

D CALL TAMODE SBAAN RETN BR BR LUAB ACAAC SBR

E CALL TATM SALA RETI BR BR TCA ACAAC SBR

F CALL BRA CLA SETOFF BR BR TMXD ACAAC SBR

The remainder of this section describes each instruction in detail.

 Add B Register to A Register ABAAC

5-7 TSP50C0x/1x Instruction Set

Description ABAAC – Add B Register to A Register

Action Adds the contents of the B register to the contents of the A register and stores
the result in the A register.

Opcode 2C

Syntax [<label>]^ABAAC ^...[<comment>]

Object Code

34567 2 1 0

10100 1 0 0Instruction

Execution A + B → A

Status Flag 1 if there is a carry into bit eight of the ALU; 0 if not.

Note:

The addition is performed independent of the arithmetic mode (EXTSG or
INTGR) as an unsigned addition of all 14 bits of the B register and A register.

ACAAC Add Constant to A Register

5-8

Description ACAAC – Add Constant to A Register

Action Adds the 12-bit constant specified by the operand to the contents of the A
register and stores the result in the A register.

Opcode 70 – 7F

Syntax [<label>]^ACAAC ^<CONST12>^...[<comment>]

Object Code

34567 2 1 0

1110Instruction

CONST12Constant

← 4 most significant bits of constant

← 8 least significant bits of constant

Execution A + CONST12 → A

Status Flag 1 if there is a carry into bit 8 of the ALU; 0 if not.

Note:

The results of the addition are dependent on the arithmetic mode. If the pro-
cessor is in integer mode (INTGR), then the addition is of a 12-bit unsigned
number with a 14-bit unsigned number. If the processor is in extended-sign
mode (EXTSG), then the 12-bit constant is sign extended to a 14-bit two’s
complement number prior to the addition.

This instruction is useful when a table index has been placed in the A register.
The base address of the table can be added to the index with this instruction,
and a look-up can be completed to fetch the desired table element.

Example

TMAD INDEX Bring table index in from memory

ACAAC TABLE Add address of start of table

LUAA Bring table element into A register

TABLE

 A Register Greater Than or Equal to Constant AGEC

5-9 TSP50C0x/1x Instruction Set

Description AGEC – A Register Greater Than or Equal to Constant

Action Compares the contents of the lower 8 bits of the A register and the 8-bit
constant specified in the operand. Sets the status flag if the contents of the
lower 8 bits of the A register are greater than the operand.

Opcode 63

Syntax [<label>]^AGEC^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

00110 0 1 1Instruction

CONST8Constant

Execution A ≥ CONST8 → SF

Status Flag 1 if the lower 8 bits of the A register are greater than or equal to the 8-bit
constant; 0 if not.

Note:

Comparison is always done on an unsigned basis, that is, 0FFh is greater
than 0FEh. Only the lower eight bits of the A register are compared to the
8-bit constant value. The upper 6 bits of the A register are not considered,
so the result is independent of the arithmetic mode (EXTSG or INTGR).

Example

CLA Prepare A register

LOOP IAC Increment A register

AGEC TEST Is A reg greater than TEST

SBR TARGET Yes, escape loop

SBR LOOP No, continue loop

TARGET

AMAAC Add Memory to A Register

5-10

Description AMAAC – Add Memory to A Register

Action Adds the contents of RAM addressed by the X register to the A register and
stores the result in the A register.

Opcode 28

Syntax [<label>]^AMAAC ^...[<comment>]

Object Code

34567 2 1 0

10100 0 0 0Instruction

Execution A + *X → A

Status Flag 1 if there is a carry into bit 8 of the ALU; 0 if not.

Note:

When the most significant bit of the memory being used is set, the addition
results are dependent on the arithmetic mode (EXTSG or INTGR). A carry
into bit eight sets the status flag in all cases.

This instruction may be used when the sum of two variables is desired.

Example

TMAD VALUE1 Fetch value from memory

TCX VALUE2 Point to second value

AMAAC Add two values

TAMD VALUE3 Store sum in memory

 AND a Constant With Memory ANDCM

5-11 TSP50C0x/1x Instruction Set

Description ANDCM – Logical AND a Constant With Memory

Action Bit-wise ANDs the contents of the memory addressed by the X register and
an 8-bit constant and stores the results in the memory location addressed by
the X register.

Opcode 65

Syntax [<label>]^ANDCM^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

00110 1 0 1Instruction

CONST8Constant

Execution *X && CONST8 → *X

Status Flag 1 always

Note:

The operation is performed independent of the arithmetic mode (EXTSG or
INTGR) on the lower 8 bits of the RAM location; any other bits are unaffected.

Performing an ANDCM operation upon a 12-bit RAM location with a nonzero
result in the lower 8 bits causes the upper 4 bits of the RAM location to incre-
ment. For example, if X register is cleared to zero and RAM[0] contains a val-
ue of 1, then performing an ANDCM 1 results in RAM[0] containing the value
101h.

Example

TCX FLAGS Point to FLAGS

ANDCM #F0 Reset lower 4 bits to zero

ANEC A Register Not Equal to Constant

5-12

Description ANEC – A Register Not Equal to Constant

Action Compares the lower 8 bits of the A register to the constant specified by the
operand and sets the status flag if they are not equal.

Opcode 60

Syntax [<label>]^ANEC^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

00110 0 0 0Instruction

CONST8Constant

Execution A ≠ CONST8 → SF

Status Flag 1 if the lower 8 bits of the A register are not equal to the 8-bit operand; 0 if they
are equal.

Note:

Only the lower eight bits of the A register are compared to the 8-bit constant
value. This instruction is independent of the arithmetic mode (EXTSG or
INTGR).

Example

CLA Prepare A register

LOOP IAC Increment A register

ANEC TEST Is A register equal to TEST

SBR LOOP No, continue loop

SBR TARGET Yes, escape loop

TARGET

 A Register Times Constant AXCA

5-13 TSP50C0x/1x Instruction Set

Description AXCA – A Register Times Constant

Action Multiplies the contents of the A register and the operand and leaves the results
(right shifted 7 bits) in the A register.

Opcode 68

Syntax [<label>]^AXCA^<CONST8> ^...[<comment>]

Object Code

34567 2 1 0

10110 0 0 0Instruction

CONST8Constant

Execution (A × CONST8)/128 → A

Status Flag 1 always

Notes:

1) The operation is performed independent of the arithmetic mode (EXTSG
or INTGR) as a 2’s complement multiplication of all 14 bits of the A regis-
ter and the 8-bit constant. The result is right shifted 7 bits so that the most
significant 14 bits of the 21-bit result are available for further use.

2) When the A register contains the value 2000h, the results of the AXCA
instruction are not reliable.

Example

TCA #3F Load first value

AXCA #1F Multiply by second value

(result is #0F)

AXMA A Register Times Memory

5-14

Description AXMA – A Register Times Memory

Action Multiplies the contents of the A register and the lower 8 bits of the contents of
the memory location addressed by the X register; leaves the results (right
shifted by 7 bits) in the A register.

Opcode 39

Syntax [<label>]^AXMA^...[<comment>]

Object Code

34567 2 1 0

11100 0 0 1Instruction

Execution (A × *X)/128 → A

Status Flag 1 always

Notes:

1) The operation is performed independent of the arithmetic mode (EXTSG
or INTGR) as a two’s complement multiplication of all 14 bits of the A reg-
ister and the 8-bit value fetched from memory. The result is right shifted
7 bits so that the most significant 14 bits of the 21-bit result are available
for further use.

2) When the A register contains the value 2000h, the results of the AXMA
instruction are not reliable.

Example

TCA #3F Load first value

TCX RAMLOC Point to memory

TAM Store value in RAM

TCA #1F Load second value

AXMA Multiply first value by second value

(result is #0F)

 A Register Times Timer AXTM

5-15 TSP50C0x/1x Instruction Set

Description AXTM – A Register Times Timer

Action Multiplies the contents of the A register and the contents of the timer register
and stores the results (right shifted by 7 bits) in the A register.

Opcode 38

Syntax [<label>]^AXTM^...[<comment>]

Object Code

34567 2 1 0

11100 0 0 0Instruction

Execution (A × TM)/128 → A

Status Flag 1 always

Notes:

1) The operation is performed independent of the arithmetic mode
(EXTSG/INTGR) as a two’s complement multiplication of all 14 bits of
the A register and the 8-bit value of the timer register. The result is right
shifted 7 bits so that the most significant 14 bits of the 21-bit result are
available for further use.

2) When the A register contains the value 2000h, the results of the AXTM
instruction are not reliable.

Example

TCA #3F Load first value

TATM Store first value in timer register

TCA #1F Load second value

AXTM Multiply first value by second value

(result is #0F if timer has

not decremented)

BR Branch If Status Set

5-16

Description BR – Branch If Status Set

Action If the status flag is set to 1, the program counter is loaded with the address
specified by the operand and execution proceeds from that address. If the
status flag is set to 0, the instruction following the BR instruction executes.

Opcode 40 – 5F

Syntax [<label>]^BR^<ADDR13>^...[<comment>]

Object Code

34567 2 1 0

010Instruction

ADDR13Constant

← 5 MSBs of destination address

← 8 LSBs of destination address

Execution if SF = 1, then ADDR13 → Program Counter

if SF = 0, then Program Counter + 2 → Program Counter

Status Flag 1 always

Note:

The branch instruction is a conditional instruction. When a branch is used fol-
lowing an instruction that always leaves the status flag set high, the branch
can be viewed as unconditional. To execute an unconditional branch after a
command that affects the status flag, repeat the branch as shown in the ex-
ample.

Example

ACAAC #3F Perform addition

BR LOC

BR LOC

 Branch Always to Address in A Register BRA

5-17 TSP50C0x/1x Instruction Set

Description BRA – Branch Always to Address in A Register

Action The program counter is loaded with the 14-bit address contained in the A
register, and execution proceeds from that address.

Opcode 1F

Syntax [<label>]^BRA^...[<comment>]

Object Code

34567 2 1 0

11000 1 1 1Instruction

Execution A → Program Counter

Status Flag 1 always

Notes:

1) This instruction is useful when a subroutine address has been placed in
a table. The base address of the table can be added to the index and the
address contained in the table can be fetched to the A register.

2) The BRA instruction is an unconditional instruction. The branch is al-
ways taken, regardless of the value of the status register.

3) While the extended-sign mode does not affect the operation of this in-
struction, it does affect the operation of many other instructions, includ-
ing most instructions used to transfer values to the A register. Care
should be taken that sign extension is not in effect when transferring val-
ues to the A register that are subsequently used by the BRA instruction,
because the value may be changed during the transfer and unexpected
results obtained.

Example

TMAD INDEX Bring table index in from memory

ACAAC TABLE Add address of start of table

LUAA Bring new address into A register

BRA Branch to new address

TABLE

CALL Call Subroutine If Status Set

5-18

Description CALL – Call Subroutine If Status Set

Action If the status flag is 1, the contents of the program counter are pushed onto the
stack, and the program counter is loaded with the address specified by the
operand. Execution proceeds from that address. If the status flag is 0, the
instruction following the CALL instruction executes.

Opcode 00 – 0F

Syntax [<label>]^CALL ^<ADDR12>^...[<comment>]

Object Code

34567 2 1 0

0000Instruction

ADDR12Constant

Execution If SF = 1, then Program Counter → Stack, and ADDR12 → Program Counter

If SF = 0, then Program Counter + 2 → Program Counter

Status Flag 1 always

Notes:

1) The program counter stack is capable of storing addresses up to three
levels deep. An address is pushed onto the stack whenever a CALL in-
struction occurs or whenever a hardware interrupt is executed. As ad-
dresses are pushed to the stack more than three levels deep, the last
three addresses pushed to the stack are retained, and previous ad-
dresses are lost.

2) The CALL instruction is a conditional instruction. When a call is used fol-
lowing an instruction that always leaves STATUS high, it can be viewed
as unconditional. Because the CALL address is only 12 bits, subroutines
should be placed in the lower 4K bytes of ROM. The BR instruction has
13 bits of address, making it possible to branch to the lower 8K bytes of
ROM. Subroutines can therefore be located in the second 4K bytes of
ROM by having the entry point in the lower 4K bytes with an immediate
branch to the higher 4K bytes.

 Clear A Register CLA

5-19 TSP50C0x/1x Instruction Set

Description CLA – Clear A Register

Action Sets the contents of the A register to 0.

Opcode 2F

Syntax [<label>]^CLA^...[<comment>]

Object Code

34567 2 1 0

10100 1 1 1Instruction

Execution 0 → A

Status Flag 1 always

CLB Clear B Register

5-20

Description CLB – Clear B Register

Action Sets the contents of the B register to 0.

Opcode 24

Syntax [<label>]^CLB^...[<comment>]

Object Code

34567 2 1 0

00100 1 0 0Instruction

Execution 0 → B

Status Flag 1 always

Note:

This instruction is used to initialize the B register.

 Clear X Register CLX

5-21 TSP50C0x/1x Instruction Set

Description CLX – Clear X Register

Action Sets the contents of the X register to 0.

Opcode 20

Syntax [<label>]^CLX^...[<comment>]

Object Code

34567 2 1 0

00100 0 0 0Instruction

Execution 0 → X

Status Flag 1 always

Note:

This instruction is used to initialize the X register.

DECMN Decrement Memory

5-22

Description DECMN – Decrement Memory

Action Decrements the contents of the 8-bit RAM location pointed to by the X register.
If the 8 bits are all zero, they are set to one and the status flag is set. If not, they
are simply decremented and the status flag is cleared.

Because the action taken by the DECMN instruction is to add 0FFh to the RAM
value, when this instruction is used with 12-bit RAM locations, the lower 8 bits
are decremented and the upper 4 bits are incremented whenever there is an
underflow from the lower 8 bits.

Opcode 27

Syntax [<label>]^DECMN^...[<comment>]

Object Code

34567 2 1 0

00100 1 1 1Instruction

Execution *X + 0FFh → *X

Status Flag 1 if the lower 8 bits of memory went from all 00h to all FFh; 0 if not.

 Decrement X Register DECXN

5-23 TSP50C0x/1x Instruction Set

Description DECXN – Decrement X Register

Action Decrements the contents of the X register. If the X register contains 000h, it
is set to 0FFh and the status flag is set to 1. Otherwise, the X register is
decremented and the status flag is cleared to zero.

Opcode 22

Syntax [<label>]^DECXN^...[<comment>]

Object Code

34567 2 1 0

00100 0 1 0Instruction

Execution X – 1 → X

Status Flag 1 if X register went from 000h to 0FFh; 0 if not.

EXTSG Change to Extended-Sign Mode

5-24

Description EXTSG – Change to Extended-Sign Mode

Action Changes TSP50C1x to extended-sign mode

Opcode 3C

Syntax [<label>]^EXTSG^...[<comment>]

Object Code

34567 2 1 0

11100 1 0 0Instruction

Execution The TSP50C1x is put into extended-sign mode. All data less than 14 bits in
length are sign extended when being added to, subtracted from, or transferred
to the A and B registers.

Status Flag 1 always

Note:

Sign extension means that the most significant bit of the data is copied into
bits from 13 to the most significant bit of the data. For example, a 12-bit RAM
location’s most significant bit is bit 11. In extended-sign mode, bit 11 is copied
into bits 12 and 13 when the data are transferred from the RAM location to
the A register. This mode is useful if signed arithmetic must be done on val-
ues greater than 8 bits. Refer to each instruction description to determine if
the arithmetic mode affects that particular instruction.

 Get Data From ROM/RAM GET

5-25 TSP50C0x/1x Instruction Set

Description GET – Get Data From ROM/RAM

Action Transfers 1 to 8 bits of data from internal ROM, internal RAM, or 1 to 4 bits from
external ROM (TSP60C18/81), to the A register via the parallel-to-serial
register.

Opcode 30 to 37

Syntax [<label>]^GET^<N>^...[<comment>]

Object Code

34567 2 1 0

01100 N – 1Instruction

Execution N bits of data are shifted from the LSB of the parallel-to-serial register into the
LSB of the A register. This reverses the order of the bits in the A register from
the order in the parallel-to-serial register. If more bits are required than are in
the parallel-to-serial register, an additional byte is fetched from ROM or RAM.
The previous contents of the A register are left shifted by N bits.

Status Flag 1 if the parallel-to-serial register buffer was emptied and needs to be reloaded
on the next GET; 0 if not.

Notes:

13 12 11 10 9 8 34567 2 1 0

34567 2 1 0

A Register

Parallel-to-Serial
Register

1) The data is shifted out of the LSB of the parallel-to-serial register and into
the LSB of the A register, resulting in a bit reversal of any single byte of
data transferred into the A register from the order stored in the ROM.

2) If more bits are requested than are immediately available in the parallel-
to-serial register, the next data byte is loaded to the parallel-to-serial reg-
ister and the remaining bits are transferred to the A register to satisfy the
GET instruction.

0 0 0 0 0 0 00000 0 0 0

01101 1 1 1

A Register

Parallel-to-Serial
Register

Prior to GET 5 Instruction

GET Get Data From ROM/RAM

5-26

Notes (continued):

3) When the parallel-to-serial register is reloaded from ROM, the SAR
(which is the address pointer for the GET instruction) is autoincremented
as needed. When the parallel-to-serial register is reloaded from RAM,
the X register is the address pointer and is not autoincremented.

After GET 5 Instruction

0 0 0 0 0 0 11000 1 0 1

––––– 1 0 1

A Register

Parallel-to-Serial
Register

4) Prior to the first use of the GET instruction, the GET counter, the parallel-
to-serial register, and the mode register must be initialized. This initial-
ization is accomplished by the TAMODE instruction and the LUAPS in-
struction, in that order. When using the GET instruction from RAM, a
dummy GET 8 instruction must be performed after the LUAPS instruc-
tion and before the real GET. See subsection 6.9.3, GET From Internal
RAM, for a sample program using RAM GET.

5) The source for the data fetched by the GET instruction can be either in-
ternal or external ROM or internal RAM. The TAMODE instruction is
used to control the source of the data.

6) When used to fetch data from external ROM, the GET instruction cannot
fetch more than 4 bits of data at a time.

7) If the LPC bit is set and the first GET instruction after the LUAPS loads
the maximum number of bits allowed (i.e., a GET 4 from external ROM
or a GET 8 from internal ROM or RAM), the same data is loaded twice
in a row. To avoid this problem, either perform the first GET before enter-
ing LPC mode or do a dummy GET (in the case of a GET from internal
RAM, a total of two dummy GET 8 commands is required). Refer to Sec-
tions 6.8, TSP60C18/81 Interface, and 6.9, Use of the GET Instruction,
for more information.

8) The status flag after either a GET 7 or a GET 8 is not reliable. If the state
of the status flag following the GET instruction is important to the applica-
tion, a GET 7 or a GET 8 should be avoided.

9) Getting more than four bits at a time from external ROM should be
avoided.

 Increment A Register IAC

5-27 TSP50C0x/1x Instruction Set

Description IAC – Increment A Register

Action Increments the contents of the A register by 1

Opcode 3A

Syntax [<label>]^IAC^...[<comment>]

Object Code

34567 2 1 0

11100 0 1 0Instruction

Execution A + 1 → A

Status Flag 1 if the lower 8 bits of the A register go from 0FFh to 000h; 0 if not.

Note:

This instruction increments all 14 bits of the A register, but only the lower 8
bits are used for status-flag determination.

Example

LOOP

IAC Increment loop counter

SBR DONE Branch if loop counter overflow

SBR LOOP Branch if no loop counter overflow

DONE

IBC Increment B Register

5-28

Description IBC – Increment B Register

Action Increments the contents of the B register by 1

Opcode 25

Syntax [<label>]^IBC^...[<comment>]

Object Code

34567 2 1 0

00100 1 0 1Instruction

Execution B + 1 → B

Status Flag 1 if the lower 8 bits of the B register go from 0FFh to 000h; 0 if not.

Note:

This instruction increments all 14 bits of the B register, but only the lower 8
bits are used for status-flag determination.

Example

LOOP

IBC Increment loop counter

SBR DONE Branch if loop counter overflow

SBR LOOP Branch if no loop counter overflow

DONE

 Increment Memory INCMC

5-29 TSP50C0x/1x Instruction Set

Description INCMC – Increment Memory

Action Increments the contents of the RAM location pointed to by the X register. If the
lower 8 bits are all ones, they are cleared to all zeros and the status flag is set
to 1. When this instruction is used with 12-bit RAM locations, the upper 4 bits
increments whenever the lowest 8 bits change from all 1s to all 0s.

Opcode 26

Syntax [<label>]^INCMC^...[<comment>]

Object Code

34567 2 1 0

00100 1 1 0Instruction

Execution *X + 1 → *X

Status Flag 1 if the lower 8 bits of memory go from 0FFh to 000h; 0 if not.

INTGR Change to Integer Mode

5-30

Description INTGR – Change to Integer Mode

Action Changes TSP50C1x to integer mode

Opcode 3B

Syntax [<label>]^INTGR^...[<comment>]

Object Code

34567 2 1 0

11100 0 1 1Instruction

Execution The upper bits of data less than 14 bits in length are zero filled when being
transferred to, added to, or subtracted from the A and B registers.

Status Flag 1 always

Note:

This instruction affects all data from RAM, the X register, or the timer register
that are transferred to, added to, or subtracted from the A and B registers.
It is used when only positive numbers are being used.

 Increment X Register IXC

5-31 TSP50C0x/1x Instruction Set

Description IXC – Increment X Register

Action Increments the contents of the X register by 1

Opcode 21

Syntax [<label>]^IXC^...[<comment>]

Object Code

34567 2 1 0

00100 0 0 1Instruction

Execution X + 1 → X

Status Flag 1 if the contents of the X register go from 0FFh to 000h; 0 if not.

Note:

The status flag is only set when the X register contains 0FFh prior to the ex-
ecution of the IXC instruction. In this case, the status flag is set and the X reg-
ister value is 0.

Example

LOOP

IXC Increment loop counter

SBR DONE Branch if loop counter overflow

SBR LOOP Branch if no loop counter overflow

DONE

LUAA Look Up With A Register

5-32

Description LUAA – Look Up With A Register

Action Replaces the contents of the A register with the contents of the ROM
addressed by the A register. When in extended-sign mode, the value fetched
is sign extended to 14 bits.

Opcode 6B

Syntax [<label>]^LUAA ^...[<comment>]

Object Code

34567 2 1 0

10110 0 1 1Instruction

Execution *A → A

Status Flag 1 always

Extended-Sign Mode

When in extended-sign mode (EXTSG), the value loaded to the A register
is sign extended. This can cause problems in two areas: when loading the
target address to the A register, the address may be changed if bit 7 is high,
causing incorrect data to be loaded with the LUAA instruction; and the data
fetched may be sign extended. These problems can be avoided by ensuring
that the processor is in integer mode (INTGR) prior to loading the A register.

Example

INTGR Ensure integer mode

TCA TABLE Load table address

ACAAC INDEX Add table offset

LUAA Fetch table entry

 Look Up With B Register LUAB

5-33 TSP50C0x/1x Instruction Set

Description LUAB – Look Up With B Register

Action Replaces the contents of the B register with the contents of the ROM
addressed by the A register. When in extended-sign mode, the value fetched
is sign extended to 14 bits.

Opcode 6D

Syntax [<label>]^LUAB ^...[<comment>]

Object Code

34567 2 1 0

10110 1 0 1Instruction

Execution *A → B

Status Flag 1 always

Extended-Sign Mode

When in extended-sign mode (EXTSG) the value loaded to either the B
register or the A register is sign extended. This can cause problems in two
areas: when loading the target address to the A register, the address may
be changed if bit 7 is high, causing incorrect data to be loaded with the LUAB
instruction; and the data fetched to the B register may be sign extended.
These problems can be avoided by ensuring that the processor is in integer
mode (INTGR) prior to loading the A register.

Example

INTGR Ensure integer mode

TCA TABLE Load table address

ACAAC INDEX Add table offset

LUAB Fetch table entry to B register

LUAPS Indirect Look Up With A Register

5-34

Description LUAPS – Indirect Look Up With A Register

Action Transfers A register contents to speech address register (SAR) and uses the
resulting address to look up a speech data word. The data word is placed into
the parallel-to-serial buffer and SAR is incremented.

Opcode 6C

Syntax [<label>]^LUAPS^...[<comment>]

Object Code

34567 2 1 0

10110 1 0 0Instruction

Execution A → SAR; *SAR → PS; SAR + 1 → SAR

Status Flag 1 always

Note:

This instruction is used to initialize the parallel-to-serial register prior to GET
instructions. It should be used even if the data are coming from external ROM
or internal RAM. In these cases, the SAR does not need initialization, but the
bit counter in the parallel-to-serial register still does.

Example

TCA SPEECH Load address of data

LUAPS Initialize PS register

GET 4 Get first data

 OR Constant With Memory ORCM

5-35 TSP50C0x/1x Instruction Set

Description ORCM – OR Constant With Memory

Action Logically ORs the contents of RAM pointed to by the X register with the 8-bit
operand and stores the results in RAM.

Opcode 64

Syntax [<label>]^ORCM^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

00110 1 0 0Instruction

CONST8Constant

Execution *X || CONST8 → *X

Status Flag 1 always

Note:

This instruction can be used to set an individual bit in RAM to 1.

Example

SILENCE EQU #01

.

.

.

TCX FLAGS Point to flags variable

ORCM SILENCE Set silence bit high

RETI Return From Interrupt

5-36

Description RETI – Return From Interrupt

Action If the interrupt is a level-1 interrupt, retrieves the old contents of the A register,
B register, status flag, integer mode bit, and X register from the interrupt
storage locations; pops the top value from the stack to the program counter;
and resumes execution from the new address in the program counter. If the
interrupt is a level-2 interrupt, only the status flag, integer mode bit, and
program counter are retrieved. If a RETI instruction is executed with interrupts
enabled and without an interrupt first occurring, the stack control can be
corrupted. The mode register is not saved and restored during interrupts. Any
changes made to the mode register during interrupts stay in effect after the
RETI instruction. The RETI acts as a NO-OP instruction if no interrupt has
occurred. If a RETI is executed with interrupts disabled, any interrupt pending
flag is cleared.

Opcode 3E

Syntax [<label>]^RETI^...[<comment>]

Object Code

34567 2 1 0

11100 1 1 0Instruction

Execution level-1: A’ → A; B’ → B; X’ → X; SF’ → SF;

IF’ → IF

Top of Program Counter Stack → Program Counter

level-2: SF’ → SF; IF’ → IF

Top of Program Counter Stack → Program Counter

Status Flag Restored to value before interrupt

Note:

If a level-1 interrupt is followed immediately by a RETI, then the potential ex-
ists with some single-byte instructions to corrupt the A register upon return.
To avoid this problem, do not place a RETI immediately at the interrupt vec-
tor. Instead, precede the RETI with a CLA or some other instruction. See the
following example.

AORG #1E Address level–1 pcm interrupt

CLA Dummy instruction at interrupt

RETI Return from interrupt

 Return From Subroutine RETN

5-37 TSP50C0x/1x Instruction Set

Description RETN – Return From Subroutine

Action Pops the top value from the stack and resumes execution from the new
address.

Opcode 3D

Syntax [<label>]^RETN^...[<comment>]

Object Code

34567 2 1 0

11100 1 0 1Instruction

Execution Top of Stack → Program Counter

Status Flag 1 always

Notes:

1) If stack is underflowed, RETN functions as a no-operation command.
Control goes to the next consecutive address. Calls can be made indefi-
nitely, but calls can only return three levels.

2) When using the EVM, a stack overflow can occur. Therefore, only three
levels of CALL can be executed in an EVM simulation.

SALA Shift A Register Left

5-38

Description SALA – Shift A Register Left

Action Shifts the A register left towards MSB by one bit and fills the LSB with a 0.

Opcode 2E

Syntax [<label>]^SALA ^...[<comment>]

Object Code

34567 2 1 0

10100 1 1 0Instruction

Execution A.i → A.i+1; 0 → A.0

Status Flag 1 if A.7 was a 1 before execution; 0 if A.7 was a 0 before execution.

Note:

The bit shifted out of bit 13 of the A register is lost. The results do not depend
on the arithmetic mode (EXTSG or INTGR).

 Shift A Register Left Four Bits SALA4

5-39 TSP50C0x/1x Instruction Set

Description SALA4 – Shift A Register Left Four Bits

Action Shifts the A register left towards MSB by four bits and fills the lower 4 bits with
zeros.

Opcode 1B

Syntax [<label>]^SALA4 ^...[<comment>]

Object Code

34567 2 1 0

11000 0 1 1Instruction

Execution A.i → A.i+4; 0 → A.0, A.1, A.2, A.3

Status Flag 1 always

Note:

Bits 10 to 13 of the A register are lost. The results do not depend on the arith-
metic mode (EXTSG or INTGR).

SARA Shift A Register Right One Bit

5-40

Description SARA – Shift A Register Right One Bit

Action Shifts the A register right towards LSB by one bit and fills the MSB with its old
value.

Opcode 15

Syntax [<label>]^SARA^...[<comment>]

Object Code

34567 2 1 0

01000 1 0 1Instruction

Execution A.i → A.i–1; A.13 → A.13

Status Flag 1 always

Note:

Data shifted out of bit 0 of the A register is lost. The results do not depend
on the arithmetic mode (EXTSG or INTGR).

 Subtract B Register From A Register SBAAN

5-41 TSP50C0x/1x Instruction Set

Description SBAAN – Subtract B Register From A Register

Action Subtracts the contents of the B register from the contents of the A register and
stores the result in the A register. If the subtraction requires a borrow operation
from bit 8 of the A register, the status flag is set to 1. Otherwise, the status flag
is cleared to 0.

Opcode 2D

Syntax [<label>]^SBAAN ^...[<comment>]

Object Code

34567 2 1 0

10100 1 0 1Instruction

Execution A – B → A

Status Flag 1 if the lower 8 bits of A register are less than the lower 8 bits of the B register;
0 if not.

Note:

The subtraction is performed independent of the arithmetic mode (EXTSG
or INTGR) as a two’s complement subtraction of all 14 bits of the B register
from the A register.

SBR Short Branch If Status Set

5-42

Description SBR – Short Branch If Status Set

Action When the status flag is set to 1, the lower seven bits of the program counter
are replaced by the value specified and execution proceeds from that address.
Otherwise, the instruction following the SBR instruction is executed.

Opcode 80 to FF

Syntax [<label>]^SBR^<ADDR7>^...[<comment>]

Object Code

34567 2 1 0

ADDR71Instruction

Execution If SF = 1, ADDR7 + Program Counter PAGE → PC

If SF = 0, Program Counter + 1 → Program Counter

Status Flag 1 always

Note:

1) The short branch instruction is a conditional instruction. When a short
branch is used following an instruction that always leaves the status flag
high, the short branch can be viewed as unconditional.

2) The program counter is incremented when the instruction is fetched. If
the program counter value is 0080h when the instruction is executed,
placing an SBR with an operand of 1 at address 007Fh results in a
branch to 81.

3) An SBR instruction executed at XX7Fh or XXFFh with status cleared
(branch not taken) goes to XX00h or XX80h, respectively. Version 1.06
or greater of the assembler generates a warning message for all SBR
instructions that occur at addresses ending in 7Fh or FFh.

 Set Processor to OFF Mode SETOFF

5-43 TSP50C0x/1x Instruction Set

Description SETOFF – Set Processor to OFF Mode

Action Places the processor in a low-power mode. The clock is stopped and I/O ports
are placed in a high-impedance state.

Opcode 3F

Syntax [<label>]^SETOFF^...[<comment>]

Object Code

34567 2 1 0

11100 1 1 1Instruction

Execution Processor powered down

Status Flag State at power up not guaranteed.

Note:

A rising edge on the INIT pin is necessary to restart the processor. The regis-
ter values are not retained, but the RAM values are retained provided that
power continues to be applied to the chip.

SMAAN Subtract Memory From A Register

5-44

Description SMAAN – Subtract Memory From A Register

Action Subtracts the contents of RAM addressed by the X register from the contents
of the A register and stores the result in the A register. If the initial value in the
lower 8 bits of the A register is less than the value in the lower 8 bits of RAM,
the status bit is set to 1; otherwise, the status bit is cleared to 0. If the processor
is in extended-sign mode, the value stored in memory is sign extended to a
14-bit value prior to the subtraction.

Opcode 29

Syntax [<label>]^SMAAN^...[<comment>]

Object Code

34567 2 1 0

10100 0 0 1Instruction

Execution A – *X → A

Status Flag 1 if the lower 8 bits of A register are less than the lower 8 bits in the RAM; 0
if not.

Note:

When the most significant bit of the memory being used is set, the subtrac-
tion results are dependent on the arithmetic mode (EXTSG or INTGR). A bor-
row from bit 8 sets the status flag in all cases.

This instruction may be used when the difference between two variables is
desired. It subtracts the contents of the memory indexed by the X register
from the A register.

Example

TMAD VALUE1 Fetch value from memory

TCX VALUE2 Point to second value

SMAAN Subtract two values

TAMD VALUE3 Store result in memory

 Transfer A Register to B Register TAB

5-45 TSP50C0x/1x Instruction Set

Description TAB – Transfer A Register to B Register

Action Copies the contents of the A register into the B register

Opcode 1A

Syntax [<label>]^TAB^...[<comment>]

Object Code

34567 2 1 0

11000 0 1 0Instruction

Execution A → B

Status Flag 1 always

TAM Transfer A Register to Memory

5-46

Description TAM – Transfer A Register to Memory

Action Copies the contents of the A register into the memory location addressed by
the X register. Since the memory location is too small to hold the complete
contents of the A register, the most significant bits are lost in the transfer.

Opcode 16

Syntax [<label>]^TAM^...[<comment>]

Object Code

34567 2 1 0

01000 1 1 0Instruction

Execution A → *X

Status Flag 1 always

 Transfer A Register to Memory Direct TAMD

5-47 TSP50C0x/1x Instruction Set

Description TAMD – Transfer A Register to Memory Direct

Action Copies the contents of the A register into the memory location addressed by
the operand. Since the memory location is too small to hold the complete
contents of the A register, the most significant bits are lost in the transfer.

Opcode 6A

Syntax [<label>]^TAMD^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

10110 0 1 0Instruction

CONST8Constant

Execution A → *CONST8

Status Flag 1 always

TAMIX Transfer A Register to Memory and Increment X Register

5-48

Description TAMIX – Transfer A Register to Memory and Increment X Register

Action Copies the contents of the A register into the memory location addressed by
the X register and then increments the X register. Since the memory location
is too small to hold the complete contents of the A register, the most significant
bits are lost in the transfer.

Opcode 13

Syntax [<label>]^TAMIX^...[<comment>]

Object Code

34567 2 1 0

01000 0 1 1Instruction

Execution A → *X; X + 1 → X

Status Flag 1 always

 Transfer A Register to Mode Register TAMODE

5-49 TSP50C0x/1x Instruction Set

Description TAMODE – Transfer A Register to Mode Register

Action Copies the lower 8 bits of the A register into the mode register

Opcode 1D

Syntax [<label>]^TAMODE^...[<comment>]

Object Code

34567 2 1 0

11000 1 0 1Instruction

Execution A → Mode Register

Status Flag 1 always

Note:

The bit definition for the mode register is in subsection 2.1.19,
Mode Register.

TAPSC Transfer A Register to Prescale Register

5-50

Description TAPSC – Transfer A Register to Prescale Register

Action Copies the lower 8 bits of the A register into the prescale register

Opcode 19

Syntax [<label>]^TAPSC^...[<comment>]

Object Code

34567 2 1 0

11000 0 0 1Instruction

Execution A → Prescale Register

Status Flag 1 always

Note:

The prescale circuit divides the timer clock by the value set by this instruction
plus 1. The output of the prescale circuit is used as a clock for the timer
register. Refer to subsection 2.1.14, Timer Prescale Register, for more
information.

 Transfer A Register to Synthesizer Register TASYN

5-51 TSP50C0x/1x Instruction Set

Description TASYN – Transfer A Register to Synthesizer Register

Action Copies the 14-bit A register to a speech-processor register. The specific
register and resulting control function depend on the operating mode: LPC
(load 14-bit pitch register; MSB and LSB of A register must be set to zero),
PCM/LPC (load 14-bit LPC excitation register), and PCM (load 12-bit DAC
register; see Section 6.10, Generating Tones Using PCM). If none of these
modes are active, the value goes into the pitch register just as if LPC mode
were active. This is done to allow preloading the pitch before turning on LPC
mode.

Opcode 1C

Syntax [<label>]^TASYN^...[<comment>]

Object Code

34567 2 1 0

11000 1 0 0Instruction

Execution A → Speech-Processor Register

Status Flag 1 always

Note:

The TASYN copies the 14-bit contents of the A register to the following
destinations depending on the contents of the MODE register (see
subsection 2.1.19, Mode Register).

Mode Bit

LPC PCM TASYN Destination

0 0 Pitch register

0 1 DAC register

1 0 Pitch register

1 1 Excitation register

TASYN Transfer A Register to Synthesizer Register

5-52

When loading the pitch register:

� The least significant bit and most significant bit of the A register are re-
quired to be zero.

� For voiced frames, the value in the A register:

� is required to be 0042h or higher
� is strongly recommended to be 0142h or higher
� is recommended to be 0202h or higher (see subsection 2.1.15, Pitch

Register and Pitch-Period Counter (PPC))

� For unvoiced frames, the value in the A register is required to be between
0042h and 03FEh. Note that even when a frame is unvoiced, a pitch-regis-
ter value must be loaded.

 Transfer A Register to Timer Register TATM

5-53 TSP50C0x/1x Instruction Set

Description TATM – Transfer A Register to Timer Register

Action Copies the lower 8 bits of the A register into the timer register

Opcode 1E

Syntax [<label>]^TATM^...[<comment>]

Object Code

34567 2 1 0

11000 1 1 0Instruction

Execution A → Timer Register

Status Flag 1 always

TAX Transfer A Register to X Register

5-54

Description TAX – Transfer A Register to X Register

Action Copies the contents of the lower 8 bits of the A register into the X register

Opcode 18

Syntax [<label>]^TAX^...[<comment>]

Object Code

34567 2 1 0

11000 0 0 0Instruction

Execution A → X

Status Flag 1 always

 Transfer B Register to Memory TBM

5-55 TSP50C0x/1x Instruction Set

Description TBM – Transfer B Register to Memory

Action Copies the contents of the B register into the memory location addressed by
the X register. Since the memory location is too small to hold the complete
contents of the B register, the most significant bits are lost in the transfer.

Opcode 2A

Syntax [<label>]^TBM^...[<comment>]

Object Code

34567 2 1 0

10100 0 1 0Instruction

Execution B → *X

Status Flag 1 always

TCA Transfer Constant to A Register

5-56

Description TCA – Transfer Constant to A Register

Action Copies the 8-bit constant specified by the operand into the A register. When
in extended-sign mode, the 8-bit value is sign extended to a 14-bit two’s
complement value in the A register.

Opcode 6E

Syntax [<label>]^TCA^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

10110 1 1 0Instruction

CONST8Constant

Execution Extended-sign mode: CONST8 → A.7 – A.0; CONST8 (7) → A.13 – A.8

Integer mode: CONST8 → A.7 – A.0; 0 → A.13 – A.8

Status Flag 1 always

 Transfer Constant to X Register TCX

5-57 TSP50C0x/1x Instruction Set

Description TCX – Transfer Constant to X Register

Action Copies the 8-bit constant specified by the operand into the X register

Opcode 62

Syntax [<label>]^TCX^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

00110 0 1 0Instruction

CONST8Constant

Execution CONST8 → X

Status Flag 1 always

TMA Transfer Memory to A Register

5-58

Description TMA – Transfer Memory to A Register

Action Copy the contents of the memory addressed by the X register into the A
register. When in extended-sign mode, the value fetched from RAM is sign
extended to a 14-bit 2’s complement value in the A register.

Opcode 11

Syntax [<label>]^TMA^...[<comment>]

Object Code

34567 2 1 0

01000 0 0 1Instruction

Execution *X → A

Result depends on whether the TSP50C1x is in integer mode or
extended-sign mode.

Status Flag 1 always

 Transfer Memory to A Register Direct TMAD

5-59 TSP50C0x/1x Instruction Set

Description TMAD – Transfer Memory to A Register Direct

Action Copies the contents of the memory addressed by the operand into the A
register. When in extended-sign mode, the value fetched from memory is sign
extended to a 14-bit two’s complement value in the A register.

Opcode 69

Syntax [<label>]^TMAD^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

10110 0 0 1Instruction

CONST8Constant

Execution *CONST8 → A

Result depends on whether the TSP50C1x is in integer mode or
extended-sign mode

Status Flag 1 always

TMAIX Transfer Memory to A Register and Increment X Register

5-60

Description TMAIX – Transfer Memory to A Register and Increment X Register

Action Copies the contents of the memory location addressed by the X register into
the A register and then increments the X register. When the processor is in
extended-sign mode, the value fetched from RAM is sign extended to a 14-bit
two’s complement in the A register.

Opcode 14

Syntax [<label>]^TMAIX^...[<comment>]

Object Code

34567 2 1 0

01000 1 0 0Instruction

Execution *X → A; X + 1 → X

Result depends on whether the TSP50C1x is in integer mode or
extended-sign mode

Status Flag 1 always

 Transfer Memory Directly to X Register TMXD

5-61 TSP50C0x/1x Instruction Set

Description TMXD – Transfer Memory Directly to X Register

Action Copies the lower 8 bits of the memory addressed by the operand into the X
register

Opcode 6F

Syntax [<label>]^TMXD^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

10110 1 1 1Instruction

CONST8Constant

Execution *CONST8 → X

Status Flag 1 always

TRNDA Transfer Random Number into A Register

5-62

Description TRNDA – Transfer Random Number into A Register

Action Copies an 8-bit random number into the A register. Extended-sign mode does
not affect the operation of this instruction. The value is not sign extended.

Opcode 2B

Syntax [<label>]^TRNDA^...[<comment>]

Object Code

34567 2 1 0

10100 0 1 1Instruction

Execution Random Number → A

Status Flag 1 always

Notes:

1) The random number register generates a pseudorandom count with
32,767 states. The algorithm is summarized in the following paragraph.

2) At power up, the random number is initialized to 0. At every subsequent
instruction cycle, the register is left shifted once, and bit 0 is set to the
exclusive NOR of bits 13 and 14 with a delay of one instruction cycle. The
transfer to the A register in response to TRNDA is done prior to this oper-
ation.

3) The random register takes several hundred instruction cycles to become
significantly randomized. The software should not expect TRNDA to give
a very random response immediately after an initialization.

 Test Constant With A Register TSTCA

5-63 TSP50C0x/1x Instruction Set

Description TSTCA – Test Constant With A Register

Action Compares the constant specified by the operand and the contents of the A
register. If any bit in the operand is high with the corresponding bit in the A
register low, the status flag is cleared to zero. Otherwise, the status flag is set
to 1.

Opcode 67

Syntax [<label>]^TSTCA^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

00110 1 1 1Instruction

CONST8Constant

Execution (A && CONST8 == CONST8) → SF

Status Flag Conditionally set to 1 if every bit that is high in the operand has a corresponding
high bit in the A register; otherwise set to 0.

Note:

This instruction logically ANDs the value stored in the A register with the val-
ue of the 8-bit constant and sets the status flag if the result is equal to the 8-bit
constant. The value in the A register does not change.

TSTCM Test Constant With Memory

5-64

Description TSTCM – Test Constant With Memory

Action Compares the constant specified by the operand and the contents of the
memory location addressed by the X register. If any bit in the operand is high
with the corresponding bit in the memory location low, the status flag is cleared
to zero. Otherwise, the status flag is set to 1.

Opcode 66

Syntax [<label>]^TSTCM^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

00110 1 1 0Instruction

CONST8Constant

Execution (*X && CONST8 == CONST8) → SF

Status Flag Conditionally set to 1 if every bit that is high in the operand has a corresponding
high bit in the memory addressed by the X register; otherwise set to 0.

Note:

This instruction logically ANDs the value stored in the RAM location pointed
to by the X register with the value of the 8-bit constant and sets the status
flag if the result is equal to the 8-bit constant. The value in memory is not
affected.

 Transfer Timer Register to A Register TTMA

5-65 TSP50C0x/1x Instruction Set

Description TTMA – Transfer Timer Register to A Register

Action Copies the contents of the timer register into the A register. When in
extended-sign mode, the value fetched from the timer register is sign extended
to a 14-bit 2’s complement number in the A register.

Opcode 17

Syntax [<label>]^TTMA^...[<comment>]

Object Code

34567 2 1 0

01000 1 1 1Instruction

Execution extended-sign mode: Timer Register → A.7 – A.0;
Timer Register.7 → A.13 – A.8

integer mode: Timer Register → A.7 – A.0; 0 → A.13 – A.8

Status Flag 1 always

TXA Transfer X Register to A Register

5-66

Description TXA – Transfer X Register to A Register

Action Copies the contents of the X register into the A register. When in extended-sign
mode, the value transferred from the X register is sign extended into a 14-bit
two’s complement number in the A register.

Opcode 10

Syntax [<label>]^TXA^...[<comment>]

Object Code

34567 2 1 0

01000 0 0 0Instruction

Execution extended-sign mode: X → A.7 – A.0; X.7 → A.13 – A.8

integer mode: X → A.7 – A.0; 0 → A.13 – A.8

Status Flag 1 always

 Exchange Contents of B Register and A Register XBA

5-67 TSP50C0x/1x Instruction Set

Description XBA – Exchange Contents of B Register and A Register

Action Exchanges the contents of the B register with the contents of the A register

Opcode 12

Syntax [<label>]^XBA^...[<comment>]

Object Code

34567 2 1 0

01000 0 1 0Instruction

Execution A ↔ B

Status Flag 1 always

XBX Exchange Contents of B Register and X Register

5-68

Description XBX – Exchange Contents of B Register and X Register

Action Exchanges the contents of the B register with the contents of the X register.
The upper 6 bits of the B register are truncated in the move to the X register.
When in extended-sign mode, the value transferred from the X register is sign
extended into a 14-bit 2’s complement number in the B register.

Opcode 23

Syntax [<label>]^XBX^...[<comment>]

Object Code

34567 2 1 0

00100 0 1 1Instruction

Execution sign-extended mode: X → B.7 – B.0; X.7 → B.13 – B.8; B → X

integer mode: X → B.7 – B.0; 0 → B.13 – B.8; B → X

Status Flag 1 always

 X Register Greater Than or Equal to Constant XGEC

5-69 TSP50C0x/1x Instruction Set

Description XGEC – X Register Greater Than or Equal to Constant

Action Compares the contents of the X register and the constant specified by the
operand and sets the status flag if the contents of the X register are greater
than or equal to the operand.

Opcode 61

Syntax [<label>]^XGEC^<CONST8>^...[<comment>]

Object Code

34567 2 1 0

00110 0 0 1Instruction

CONST8Constant

Execution SF = X ≥ CONST8

Status Flag 1 if the contents of the X register are greater than or equal to the operand; 0
if not.

Example

XGEC TESTV Is X ≥ TESTV

SBR GTE Branch if so

LESS

GTE

5-70

 Running Title—Attribute Reference

6-1 Chapter Title—Attribute Reference

TSP50C0x/1x Applications

To help in developing your system, this chapter contains application
information on the synthesizer, arithmetic modes, standby mode, slave mode,
interfacing to the TSP60C18, external ROM interface, and generating tones
with the TSP50C0x/1x.

Topic Page

6.1 Synthesizer Control 6-2.

6.2 Program Overview 6-9.

6.3 Synthesis Program Walk-Through 6-11.

6.4 Arithmetic Modes 6-39.

6.5 Operation of the Multiply Instruction 6-42.

6.6 Standby Mode 6-43.

6.7 Slave Mode 6-44.

6.8 TSP60C18/81 Interface 6-48.

6.9 Use of the Get Instruction 6-60.

6.10 Generating Tones Using PCM 6-66.

6.11 TSP50C19 Programming 6-75.

Chapter 6

Synthesizer Control

 6-2

6.1 Synthesizer Control

In this section, a sample program demonstrates how to control the synthesizer
in a TSP50C0x/1x device. This program causes the device to synthesize
speech from data stored in D6 format.

6.1.1 Speech Coding and Decoding

The TSP50C0x/1x device supports linear-predictive coding (LPC) with ten or
twelve K parameters. The LPC model requires the following three types of
information: pitch, energy, and up to twelve K parameters. The pitch parameter
controls the input into the LPC system by providing one of two excitation
signals. If the coded-pitch code is nonzero, a periodic pulse similar to that
produced by human vocal cords is created. A good example of the periodic
sound is the |A| vowel sound. If the coded-pitch code is zero, a white noise
source similar to the turbulence generated by constricted air flow in the mouth
is used. An example is the |F| sound. The LPC model is entirely digital; thus,
the excitation function is a series of digital data samples.

The excitation function specified by the pitch code is multiplied by the energy
parameter. The output of the multiplication is put into a filter whose resonance
is determined by a number of K parameters (normally 10 or 12) to model the
resonance of the human vocal tract. The output of the LPC model is a series
of digital samples, typically at an 8-kHz or 10-kHz clock rate, that are put into
the digital-to-analog converter.

The pitch, energy, and K parameters are stored in a coded form in a series of
frames of various bit lengths. The sample program uses the D6 format for
storing the speech data. In this format, each frame represents 200 samples.
For a 10-kHz sampling rate, this corresponds to 20 ms per frame. Each
parameter is stored using a set number of bits (see Table 6–1).

Table 6–1.D6 Parameter Size

Parameter Energy Repeat Pitch K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12

Bits 4 1 7 6 6 5 5 4 4 4 3 3 3 0 0

As shown in Figure 6–1, the different frame sizes range from 4 bits to 55 bits
depending on which parameters are needed for the specific frame type. The
D6 format is an LPC-10 model, meaning that it uses ten K parameters to
control the digital filter. K11 and K12 are therefore always set to zero and no
bits are needed to specify them.

 Synthesizer Control

6-3 TSP50C0x/1x Applications

Figure 6–1. D6 Frame Decoding

0000000

EnergyFrame Repeat Pitch K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Voiced
55 bits

Unvoiced
34 bits

Repeat
12 bits

Silent
4 bits

Stop
4 bits

0

0

1

0000

1111

A silence is represented with a silent frame (specified by an energy of zero).
No additional information is needed. A stop frame, indicated by an energy
value of 1111 (binary), tells the processor that a particular word or phrase has
ended and that control must be returned to the phrase selection program.
Because a zero energy indicates a silence frame and a coded energy of 15
represents a stop frame, valid audible energies can range from 1 to 14.

The voiced frame is the longest frame type. All ten K parameters are used
together with energy and pitch to specify a voiced frame. An unvoiced frame
is indicated by a zero pitch value. It is specified by a nonzero energy, a zero
pitch, and the first four K parameters.

If the vocal tract resonances change relatively slowly (e.g., with long vowels),
two or more frames in a row may have the same values for their K parameters.
If this occurs, the repeat bit is set high, and the K parameters are omitted. This
is called a repeat frame.

All of the frames are arranged as serial bit streams. This means that a frame
can start at any bit position within a given byte of memory. The GET instruction
is used to get bits from memory in a serial fashion, freeing the programmer
from bit-manipulation tasks. Once the bits for a particular parameter are
extracted from the bit stream, they must be decoded before use in the
synthesizer. The K10 unpacking and decoding process is shown in Figure 6–2.

Synthesizer Control

 6-4

Figure 6–2. Speech Parameter Unpacking and Decoding

000

K5 K6 K7 K8 K9 K10 E R Pitch K1 K2

Current Frame Next Frame

0101 1110 1110 001 010 100 1101 0 0101110 010110 110100
Coded Speech

(Binary)

Unpacked K10 (Binary)

K10 Coding Table

K10 Coded Values (Binary)

K10 Decoded Values (Hex)

Synthesizer RAM

100

001 010 011 100 101 110 111

C3 E6 F3 FD 06 11 1E 43

06
K10

To decode speech, the processor must do the following three things:

1) Determine the frame type
2) Unpack each parameter
3) Using a table lookup, decode each parameter

The specific details of these operations are given in Sections 6.2, Program
Overview, and 6.3, Synthesis Program Walk-Through. The processor is also
required to decide if each frame should be interpolated. Interpolation is used
to smooth out the transitions between frames.

Most of the time, speech changes smoothly. If 20-ms frames are used without
interpolation, changes occur abruptly and the speech sounds rough. The
TSP50C0x/1x devices require the program to interpolate the parameters.
When speech changes quickly, as in the case of a transition between a voiced
frame and an unvoiced frame, interpolation should not be performed.
Therefore, the sample program disables interpolation at voicing transitions.

6.1.2 RAM Usage

In the following discussion, all the addresses are given in hexadecimal
notation.

The sample program uses 03Ch RAM locations. During synthesis, use of the
12-bit RAM locations 001h through 00Fh is fixed by the architecture of the
TSP50C0x/1x. As shown in Table 6–2, these locations are assumed by the

 Synthesizer Control

6-5 TSP50C0x/1x Applications

synthesizer to contain the working values of the LPC speech parameters. The
names given in parentheses are the variable names used in the sample
program. When synthesis is disabled, these locations may be used at the
programmer’s discretion.

Table 6–2.Hardware-Fixed RAM Locations

RAM
Location Function

01 Energy working value (EN)

02 K12 working value (K12)

03 K11 working value (K11)

04 K10 working value (K10)

05 K9 working value (K9)

06 K8 working value (K8)

07 K7 working value (K7)

08 K6 working value (K6)

09 K5 working value (K5)

0A K4 working value (K4)

0B K3 working value (K3)

0C K2 working value (K2)

0D K1 working value (K1)

0E C1 working value (C1)

0F C2 working value (C2)

Use of other RAM locations is detailed in Table 6–3. Energy, pitch, and the first
four K factors are stored with 12 bits of precision, with the most significant byte
stored in one location and the least significant nibble stored in the next
consecutive location. The remaining K factors are stored with 8 bits of
precision.

Synthesizer Control

 6-6

Table 6–3.Other RAM Locations Used in Sample Program

RAM
Location Function

RAM
Location Function

10 New energy value (ENV2) 11 Current energy value (ENV1)

12 New pitch value (PHV2) 13 New fractional pitch value

14 Current pitch value (PHV1) 15 Current fractional pitch value

16 New K1 value (K1V2) 17 New fractional K1 value

18 Current K1 value (K1V1) 19 Current fractional K1 value

1A New K2 value (K2V2) 1B New fractional K2 value

1C Current K2 value (K2V1) 1D Current fractional K2 value

1E New K3 value (K3V2) 1F New fractional K3 value

20 Current K3 value (K3V1) 21 Current fractional K3 value

22 New K4 value (K4V2) 23 New fractional K4 value

24 Current K4 value (K4V1) 25 Current fractional K4 value

26 New K5 value (K5V2) 27 Current K5 value (K5V1)

28 New K6 value (K6V2) 29 Current K6 value (K6V1)

2A New K7 value (K7V2) 2B Current K7 value (K7V1)

2C New K8 value (K8V2) 2D Current K8 value (K8V1)

2E New K9 value (K9V2) 2F Current K9 value (K9V1)

30 New K10 value (K10V2) 31 Current K10 value (K10V1)

32 New K11 value (K11V2) 33 Current K11 value (K11V1)

34 New K12 value (K12V2) 35 Current K12 value (K12V1)

36 Stored value of timer used to
determine if update needed (TIMER)

37 Stored value of timer used in INTP
routine (SCALE)

38 LPC status and control flags (FLAGS) 39 Miscellaneous flags (FLAG1)

3A Buffer used to store current mode
register contents (MODE_BUF)

3B Most significant byte of phrase address
(ADR_MSB)

3C Least significant byte of phrase
address (ADR_LSB)

 Synthesizer Control

6-7 TSP50C0x/1x Applications

The program maintains copies of each decoded speech parameter for two
separate frames: the current frame and the new frame. Normally, the synthesis
routine interpolates smoothly between the current value of a given speech
parameter and its new value. The interpolated value is written to the working
value. However, in cases for which interpolation is not desired, the current
value is written to the working value.

The value in the timer register is used for two purposes; to determine when a
frame update needs to be performed and as a scale factor during interpolation.
To serve these two purposes, two locations are reserved for freezing values
read from the timer register. FLAGS contains the status and control flags as
detailed in Table 6–4. Because the mode register cannot be read, the sample
program maintains a copy of it in RAM in the location MODE_BUF.

Table 6–4.FLAGS Bit Descriptions for Sample Program

Bit Usage

0 Set if stop frame detected.

1 Set if new frame is a repeat frame.

2 Set if an update has been performed.

3 Set if current frame is a silent frame.

4 Set if current frame is an unvoiced frame.

5 Set if interpolation is not desired for frame.

6 Set if new frame is a silent frame

7 Set if new frame is an unvoiced frame.

Synthesizer Control

 6-8

6.1.3 ROM Usage

The sample program uses approximately 1.4K-bytes of ROM, leaving
approximately 2.6K-bytes (TSP50C04), 4.6K-bytes (TSP50C06), 6.6K-bytes
(TSP50C10/13), 14.6K-bytes (TSP50C11/12/14), or 29.6K-bytes
(TSP50C19) for other functions and speech data. Table 6–5 summarizes ROM
usage.

Table 6–5.ROM Usage

ROM Locations

’04 ’06 ’10/’13 ’11/’12/’14 ’19 Function

0000 0000 0000 0000 0000
Execution start location after INIT
rising edge

0000–000F 0000–000F 0000–000F 0000–000F 0000–000F Device initialization code

0010–001F 0010–001F 0010–001F 0010–001F 0010–001F Interrupt start locations

0020–05BE 0020–05BE 0020–05BE 0020–05BE 0020–05BE Synthesis program and tables

05BF–0FDF 05BF–17DF 05BF–1FDF 05BF–3FDF
05BF–3FDF,
4000–5FFC,
6000–7FFC

Available for user program and
speech data

0FE0–0FFF 17E0–17FF 1FE0–1FFF 3FE0–3FFF
3FE0–3FFF,
5FFD–5FFF,
7FFD–7FFF

Test codes (not available to user)

4000–417F 4000–417F 4000–417F 4000–417F 8000–817F
Excitation codes
(not available to user)

 Program Overview

6-9 TSP50C0x/1x Applications

6.2 Program Overview

The sample synthesis program, parts of which are used in this section for
explanation, is reproduced in its entirety in Appendix B, TSP50C0x/1x Sample
Synthesis Program. The following is an outline of the program flow:

� Initialize processor
� Initialize speech address register, pitch, C1, and C2
� Decode first two frames of speech
� Start synthesizer
� Enable interrupt
� Until stop frame reached:

� Decode each frame
� When interrupt occurs, recalculate working parameter values

� Wait two frames, then stop synthesizer
� Return to calling routine

The five main sections of the program are summarized in the following
sections.

6.2.1 Initialization

The device state is unknown at device power up. The initialization section
initializes the RAM and the mode register to a known state. In the sample
program, this is accomplished by writing zeros to all RAM locations and to the
mode register.

6.2.2 Phrase Selection

In general, this section contains all application-specific code. In the sample
program, this section merely contains repeated calls to the subroutine SPEAK,
causing successive utterances to be spoken.

6.2.3 Speech Initialization

This section consists of the subroutine SPEAK. It decodes the number
contained in the A register for a series of words into the addresses in ROM.
It initializes the TSP50C0x/1x for LPC synthesis and speaks the series of
words that comprise the desired sentence. For each word in the sentence,
SPEAK enables synthesis and the level-1 interrupt and loops until the
utterance is complete. It then branches back to speak the next word in the
sentence. This continues until the sentence is complete.

During each branch of the loop, the value in the timer register is polled. The
next frame of speech data is read in each time the timer register underflows.

Program Overview

 6-10

6.2.4 Level-1- Interrupt Service Routine

Once the synthesizer is enabled by SPEAK, it writes a new value to the
digital-to-analog converter (DAC) once every 30 instruction cycles. The value
that is written is calculated from the values contained in RAM locations 01 to
0F and the contents of the pitch-period counter (PPC). Loading these locations
with the correct values is the responsibility of the level-1-interrupt service
routine (INTP). This routine is invoked whenever the interrupt is enabled and
the PPC decrements below 200h.

If interpolation is not inhibited, INTP performs a linear interpolation between
the current value of each speech parameter and its new value using the value
in the timer register to scale the interpolation. While it is possible to simply load
the frame data to the working data, in practice, this results in speech that
sounds rough due to the sharp transition between the different frames. To
minimize this problem, INTP normally performs a linear interpolation between
the current and new frames for each of the speech parameters. However, this
is not always appropriate.

There are two cases in which the interpolation is inhibited and the transition
is handled abruptly. When done, INTP simply copies the current values into the
working values.

� Transition between voiced and unvoiced frames or between unvoiced and
voiced frames — A different number of K parameters are used in voiced
frames than in unvoiced frames, and the K parameters are different. At-
tempting to interpolate across the voicing transition results in strange
sounds.

� An unvoiced frame following a silence — Plosives (e.g., the “Phaa” in the
letter |P|) are abrupt unvoiced sounds. Trying to interpolate this case re-
sults in a gradual ramp up of a plosive, which is incorrect. In the corre-
sponding case of a voiced frame following a silence, it is acceptable to in-
terpolate.

6.2.5 Frame-Update Routine

LPC speech is coded as a series of frames spaced in time. Periodically, the
next frame must be read so that INTP (the level-1-interrupt service routine) has
new data to work with. This is the responsibility of the update routine. It reads
the coded speech data contained in the next frame, determines what type of
frame it is, decodes the speech data contained in the frame, and determines
whether or not interpolation should be performed by INTP.

If a stop frame is encountered, a flag is set that causes the INTP routine to
interpolate down to a silence. The synthesizer and the level-1 interrupt are
both inhibited on the next pass through the update routine.

 Synthesis Program Walk-Through

6-11 TSP50C0x/1x Applications

6.3 Synthesis Program Walk-Through

The following is a walk-through of a simple TSP50C0x/1x speech synthesis
program. The approach used in this program is not the only possible approach,
but it has the advantage of being relatively easy to explain. The complete
listing of this program can be found in Appendix B, TSP50C0x/1x Sample
Synthesis Program.

On power up, the processor begins executing code at location 000h. The
following code initializes the processor by clearing the mode register and the
RAM. After that, the processor branches around the interrupt vectors. Since
the first TMAD instruction after power up is not guaranteed to function
correctly, a TMAD instruction is included in the initialization code. This ensures
that the internal addressing is initialized correctly.

0244 ***
0245 * Start of program
0246 ***
0247 0000 AORG #0000
0248 0000 69 TMAD 0

0001 00
0001 00

0249
0250 *––––––––––Initialize mode register–––––––––––––––––––––––*
0251
0252 0002 2F CLA
0253 0003 1D TAMODE
0254
0255 *––––––––––Clear all ram to zero––––––––––––––––––––––––––*
0256
0257 0004 20 CLX –Start at bottom of RAM
0258 0005 13 RAM_LOOP TAMIX –Clear RAM, increment pointer
0259 0006 61 XGEC MAX_RAM+1 –Finished all RAM?

0007 80
0260 0008 40 BR GO yes, skip vector tables

0009 24
0261 000A 40 BR RAM_LOOP no, loop back

000B 05

In this sample program, ROM addresses 000Ch to 000Fh are not used. ROM
addresses 0010h to 001Fh contain branches to the interrupt service routines.
This section of the ROM address space is dedicated to this purpose by the
TSP50C0x/1x architecture. When an interrupt condition is generated, if the
interrupt is enabled in the mode register, the contents of the program counter
are replaced by the address of the appropriate interrupt vector. For example,
when the PPC is decremented below 0200h, the program counter is replaced

Synthesis Program Walk-Through

 6-12

with the value 0018h. When the next RETI instruction is encountered, the
original value of the program counter is restored. Normally, the instruction
placed at the interrupt vector address is a branch to the actual routine.
Because any branch instruction is conditional upon the value of the status bit
and the value of the status bit is unknown, two short branches to the interrupt
routine are used instead of a long branch. If the interrupt service routine is not
within reach of a short branch, the target of the short branches should be a long
branch to the interrupt service routine.

In this sample program, only one of the possible eight interrupt conditions is
used. The remaining seven vectors point to a dummy routine that has no effect.
In the following code fragment, because the routine INTP is out of reach of a
short branch, the interrupt vector points to INT1_01, which is a long branch to
INTP as previously discussed.

0263 ***
0264 * Interrupt vectors
0265 ***
0266 0010 AORG #0010
0267 0010 A2 SBR INT2_01 –Timer Underflow, PCM=0, LPC=1
0268 0011 A2 SBR INT2_01 –Timer Underflow, PCM=0, LPC=1
0269 0012 A2 SBR INT2_00 –Timer Underflow, PCM=0, LPC=0
0270 0013 A2 SBR INT2_00 –Timer Underflow, PCM=0, LPC=0
0271 0014 A2 SBR INT2_11 –Timer Underflow, PCM=1, LPC=1
0272 0015 A2 SBR INT2_11 –Timer Underflow, PCM=1, LPC=1
0273 0016 A2 SBR INT2_10 –Timer Underflow, PCM=1, LPC=0
0274 0017 A2 SBR INT2_10 –Timer Underflow, PCM=1, LPC=0
0275 0018 A0 SBR INT1_01 –PPC < 200 hex interrupt
0276 0019 A0 SBR INT1_01 –PPC < 200 hex interrupt
0277 001A A2 SBR INT1_00 –Pin (B1) goes low interrupt
0278 001B A2 SBR INT1_00 –Pin (B1) goes low interrupt
0279 001C A2 SBR INT1_11 –10 kHz Clock interrupt
0280 001D A2 SBR INT1_11 –10 kHz Clock interrupt
0281 001E A2 SBR INT1_10 –20 kHz Clock interrupt
0282 001F A2 SBR INT1_10 –20 kHz Clock interrupt
0283 *
0284 0020 40 INT1_01 BR INTP –PPC < 200 hex interrupt

0021 B4
0285 *
0286 0022 INT2_00
0287 0022 INT2_01
0288 0022 INT2_10
0289 0022 INT2_11
0290 0022 INT1_00
0291 0022 INT1_10
0292 0022 2F INT1_11 CLA
0293 0023 3E RETI

 Synthesis Program Walk-Through

6-13 TSP50C0x/1x Applications

Generally, user programs have several levels of indirection in their use of
speech address tables. Often, there are three levels of pointers:

� Sentence pointers that point to the start addresses of entries in the conca-
tenation tables

� Concatenation tables that contain lists of word numbers that define specif-
ic sentences (each word number is used as an index into the word address
table)

� A word address table containing the actual address of the start of each
word in memory

Sometimes there are several sentences randomly selected for a given
situation. This can lead to a fourth level of pointers that point to sentence
groups. All of these levels of pointers are easily accessed using either the GET,
LUAA, or LUAB instructions. The structure is dependent on the specific
application.

This sample program uses three levels of indirection as previously described.
The three tables are shown in the following code. Note that the use of single
bytes to store the word numbers in the concatenation table restricts the
vocabulary to 255 words. If a larger vocabulary is required, the BYTE directive
should be replaced with a DATA directive and the appropriate changes made
in the routine SPEAK.

The label VOC has the value of the start of the speech data. The number that
is added to it is the offset into the speech data where a given word begins. Each
of these word addresses occupies two bytes of memory.

Synthesis Program Walk-Through

 6-14

1565 ***
1566 * *
1567 * This is the lookup table giving the starting address *
1568 * of each concatenation list. *
1569 * *
1570 ***
1571 05BF 05C5’ SENTENCE DATA PHRASE0
1572 05C1 05CA’ DATA PHRASE1
1573 05C3 05CF’ DATA PHRASE2
1574 ***
1575 * *
1576 * This is the concatenation table giving the lists *
1577 * of word numbers that define each phrase. Each *
1578 * list is terminated by an #FF. *
1579 * *
1580 ***
1581 05C5 01 PHRASE0 BYTE 1,2,3,4,#FF
1582 05CA 04 PHRASE1 BYTE 4,3,2,1,#FF
1583 05CF 05 PHRASE2 BYTE 5,4,3,2,1,#FF
1584 ***
1585 * *
1586 * This is the lookup table for the speech stored at *
1587 * voc. *
1588 * *
1589 ***
1590 05D5 0000’ SPEECH DATA #0000
1591 05D7 05E3’ DATA #0000+VOC Word 1 “One”
1592 05D9 0667’ DATA #0084+VOC Word 2 “Two”
1593 05DB 06D9’ DATA #00F6+VOC Word 3 “Three”
1594 05DD 075D’ DATA #017A+VOC Word 4 “Four”
1595 05DF 07C3’ DATA #01E0+VOC Word 5 “Five”
1596 05E1 086F’ DATA #028C+VOC Word 6 “Six”

The following code speaks a series of sentences and then turns off the
processor. The number of the desired sentence is loaded into the A register
and the routine SPEAK is called to process the sentence. Three sentences are
spoken, and then the processor is turned off.

 Synthesis Program Walk-Through

6-15 TSP50C0x/1x Applications

0294 ***
0295 * Speak phrases
0296 ***
0297 0024 6E GO TCA 0 –Speak 1st phrase

0025 00
0298 0026 00 CALL SPEAK

0027 31
0299 *
0300 0028 6E TCA 1 –Speak 2nd phrase

0029 01
0301 002A 00 CALL SPEAK

002B 31
0302 *
0303 002C 6E TCA 2 –Speak 3rd phrase

002D 02
0304 002E 00 CALL SPEAK

002F 31
0305 *
0306 0030 3F SETOFF –Quit program

What follows is the routine SPEAK that is called to speak each of the
sentences. Before this routine is entered, the desired sentence number is
loaded in the A register. Because each sentence pointer is two bytes long, the
sentence number is doubled to get the correct offset into the sentence pointer
table. This offset is added to the start address of the table to get the address
of the table entry. The LUAA and LUAB instructions are used to get the two byte
address of the concatenation table entry.

0307 ***
0308 * Speak Utterance – Phrase number in A register
0309 ***
0310 0031 3B SPEAK INTGR
0311 0032 2E SALA –Double index to get offset
0312 0033 75 ACAAC SENTENCE –Add base of table

0034 BF
0313 0035 6D LUAB –get address MSB
0314 0036 3A IAC
0315 0037 6B LUAA –Get address LSB
0316 0038 12 XBA
0317 0039 1B SALA4 –Combine MSB and LSB
0318 003A 1B SALA4
0319 003B 2C ABAAC

In the following code, the selected concatenation table entry contains the word
number of the first word in the selected sentence. The address of the selected
concatenation table entry is stored in ADR_MSB and ADR_LSB.

Synthesis Program Walk-Through

 6-16

0321 003C 1A TAB –Save address
0322 003D 6A TAMD ADR_LSB –Save LSB of address

003E 3C
0323
0324 003F 68 AXCA 1 –Shift address right

0040 01
0325 0041 15 SARA by 8 bits
0326
0327 0042 6A TAMD ADR_MSB –Save MSB of address

0043 3B
0328 0044 12 XBA
0329 0045 40 BR SPEAK2

0046 59
0330

The following code gets the address of the current concatenation table entry,
increments to the next entry, and then stores that address. This code is
reached when the processor has finished speaking one word in a sentence
and is ready to speak the next word.

0331 0047 69 SPEAK1 TMAD ADR_LSB –Fetch and combine
0048 3C

0332 0049 1A TAB address
0333 004A 69 TMAD ADR_MSB

004B 3B
0334 004C 1B SALA4
0335 004D 1B SALA4
0336 004E 2C ABAAC
0337
0338 004F 3A IAC –Increment address
0339
0340 0050 1A TAB –Save new address
0341 0051 6A TAMD ADR_LSB –Save LSB of address

0052 3C
0342
0343 0053 68 AXCA 1 –Shift address right

0054 01
0344 0055 15 SARA by 8 bits
0345
0346 0056 6A TAMD ADR_MSB –Save MSB of address

0057 3B
0347 0058 12 XBA

 Synthesis Program Walk-Through

6-17 TSP50C0x/1x Applications

The next section of code uses the LUAA instruction to fetch the next byte of
the concatenation table entry, tests to see if it marks the end of the
concatenation table entry, and, if true, exits the routine.

0349 0059 6B SPEAK2 LUAA –Get word number
0350 005A 60 ANEC StopWord –End of phrase?

005B FF
0351 005C 40 BR SPEAK3 no, continue

005D 5F
0352 005E 3D RETN yes, exit loop

Now a word number is in the A register. The following code uses the word
number as an index into the word address table to get the starting address of
the word in memory. Because each address in the table is two bytes long, the
word number is doubled to get the correct offset into the table before adding
the address of the start of the table to the offset.

0354 005F 2E SPEAK3 SALA –Double index to get offset
0355 0060 75 ACAAC SPEECH –Add base of table

The A register now contains the address in ROM where the starting address
of the desired word is stored. The following fragment of code retrieves this
address and loads it into the SAR (speech address register). The LUAB
instruction gets the most significant byte of the address into the B register. The
LUAA gets the least significant byte of the address into the A register. The most
significant byte is then left shifted by 8 bits and the least significant byte is
added to it. The complete address is now in the A register. The LUAPS
transfers this address into the SAR. Speech begins at this address.

0356 0062 6D LUAB –Get address MSB
0357 0063 3A IAC
0358 0064 6B LUAA –Get address LSB
0359 0065 12 XBA
0360 0066 1B SALA4 –Combine LSB and MSB
0361 0067 1B SALA4
0362 0068 2C ABAAC
0363
0364 0069 6C LUAPS –Load Speech Address Register

Because LPC-10 coding is used in this example, the parameters K11 and K12
are not used. This section of code clears K11 and K12 and sets all the speech
flags to the default condition (zero).

Synthesis Program Walk-Through

 6-18

0366 006A 2F CLA –Kill K11 and K12 parameters
0367 006B 6A TAMD K11

006C 03
0368 006D 6A TAMD K12

006E 02
0369
0370 006F 6A TAMD FLAGS –Init flags for speech

0070 38

The values in C1 and C2 control the behavior of the output filter. For most
applications, the values should be set as shown in the following code.

0372 0071 2F CLA –Load C2 parameter
0373 0072 7B ACAAC C2_Value (a device constant)

0073 67
0374 0074 6A TAMD C2

0075 0F
0375
0376 0076 2F CLA –Load C1 parameter
0377 0077 7F ACAAC C1_Value (a device constant)

0078 61
0378 0079 6A TAMD C1

007A 0E

The following code assigns a default pitch to cover the case in which the first
frame is a silence frame. If this is the case, and no pitch was otherwise loaded,
the pitch period counter is loaded with a zero and the synthesis of the first
frame is then incorrect.

0383 007B 70 ACAAC #0C
007C 0C

0384 007D 6A TAMD PHV1
007E 14

0385 007F 6A TAMD PHV2
0080 12

The first two frames are now preloaded. In the following code, each call to
UPDATE loads one frame of speech. With two frames loaded into memory, the
synthesis routine can properly do its interpolation function.

0389 0081 01 CALL UPDATE –Load first frame
0082 B5

0390 0083 01 CALL UPDATE –Load 2nd frame
0084 B5

 Synthesis Program Walk-Through

6-19 TSP50C0x/1x Applications

In the following code, the first interpolation is done by calling the routine INTP.
This is the same routine that is invoked by the interrupt after it is enabled later.
Before INTP is called, however, the timer and prescaler values need to be
initialized so that the interpolation function of INTP yields the correct value.

0397 0085 6E TCA PSVALUE –Initialize prescale
0086 2E

0398 0087 19 TAPSC
0399 0088 6E TCA #7F –Pretend there was a previous

0089 7F
0400 008A 6A TAMD TIMER update

008B 36
0401 008C 6E TCA #FF –Set timer to max value to

008D FF
0402 008E 1E TATM disable interpolation
0403 008F 00 CALL INTP –Do first interpolation

0090 B4

The last step before the start of speech is to turn on the synthesizer and then
enable the interrupt. This is done by setting the appropriate bits in the mode
register with the TAMODE instruction.

There are many cases in which a program may need to know what value is
currently in the mode register. This is a problem because there is no way to
read directly from the mode register. The best way around this problem is to
maintain a copy of the mode register that can be read. This program, therefore,
designates a RAM location as MODE_BUF. Any changes to the mode register
are made in the following three-step procedure:

1) The change is made in MODE_BUF.
2) The value in MODE_BUF is transferred to the A register.
3) The mode register is changed with a TAMODE instruction.

In the following code, first the synthesizer is turned on and then a RETI is
executed to ensure that the interrupt-pending latch is not set before interrupts
are enabled. Once the interrupt is enabled, the routine INTP is reached
whenever the pitch period counter decrements below 200h.

Synthesis Program Walk-Through

 6-20

0412 0091 62 TCX MODE_BUF –Turn on LPC synthesizer
0092 3A

0413 0093 64 ORCM LPC
0094 02

0414 0095 11 TMA
0415 0096 1D TAMODE
0416
0417 0097 3E RETI –Reset interrupt pending latch
0418
0419 0098 64 ORCM INT1 –Enable interrupt

0099 01
0420 009A 11 TMA
0421 009B 1D TAMODE

In the following code, when the synthesis routine detects the stop frame, it
branches back to SPEAK1 to start speaking the next word. Until then, the
program polls the value of the timer register and updates the frame data
whenever the timer decrements below zero. First, it tests whether the timer
has already decremented below zero; if true, an update is performed. Second,
it tests whether the timer is equal to zero; if true, UPDATE is immediately
called. By the time UPDATE completes processing, the timer register has
underflowed.

 Synthesis Program Walk-Through

6-21 TSP50C0x/1x Applications

0430 009C SPEAK_LP
0431 009C 62 TCX FLAGS

009D 38
0432 009E 66 TSTCM Update_Flg –Is Update already done?

009F 04
0433 00A0 40 BR SPEAK_LP yes, loop

00A1 9C
0434
0435 00A2 62 TCX TIMER –Get old timer

00A3 36
0436 00A4 11 TMA register value
0437 00A5 1A TAB into B register
0438
0439 00A6 17 TTMA –Get new timer register
0440 00A7 15 SARA value and scale it.
0441
0442 00A8 16 TAM –Store new value
0443 00A9 12 XBA –Exchange new and old values
0444 00AA 2D SBAAN –Subtract new from old
0445 00AB 41 BR UPDATE –If underflowed, do an update

00AC B5
0446
0447 00AD 11 TMA –Get new timer value again.
0448 00AE 60 ANEC 0 –Is it about to underflow?

00AF 00
0449 00B0 40 BR SPEAK_LP no, loop again

00B1 9C
0450 00B2 41 BR UPDATE yes, do update now

00B3 B5

In the following code, INTP is the interrupt service routine for the level-1
interrupt. It is reached whenever the pitch-period counter decrements below
200h. Its purpose is to do any necessary interpolation of the reflection
coefficients (K parameters) and to load the result into the working registers.

On entry to INTP, the current value of the timer register is stored. This value
is used later when interpolation is performed.

0461 00B4 3B INTP INTGR –Ensure we are in integer mode
0462 00B5 17 TTMA –Get timer register contents
0463 00B6 15 SARA shift to make positive
0464 00B7 6A TAMD SCALE and store it

00B8 37

Synthesis Program Walk-Through

 6-22

If interpolation has been turned off by the UPDATE routine, INTP is exited. This
is shown in the following code.

0469 00B9 62 TCX FLAG1 –Point to flag
00BA 39

0470 00BB 66 TSTCM Int_Off –If routine disabled...
00BC 01

0471 00BD 41 BR IRETI ...branch to exit point
00BE B3

If there is a transition between a voiced frame and an unvoiced frame, then no
interpolation should be performed between the two frames because the K
parameters of a voiced frame are not compatible with the K parameters of an
unvoiced frame. Any transition between frame types is detected in the
UPDATE routine and signaled by setting the Int_Inh bit in FLAGS. The
following code tests FLAGS to see if interpolation should be performed
between frames.

0479 00BF 62 TINTP TCX FLAGS –Point to status flags
00C0 38

0480 00C1 66 TSTCM Int_Inh –Is interpolation inhibited?
00C2 20

0481 00C3 40 BR NOINT yes, inhibit interpolation
00C4 C7

0482 00C5 40 BR INTPCH no, interpolate
00C6 E4

The following code is reached if interpolation is inhibited. It sets the stored
value of the timer register to 7F, which effectively forces the interpolation to
yield the old values for the working values, thereby effectively disabling
interpolation.

0490 00C7 6E NOINT TCA #7F –Set Scale factor to
00C8 7F

0491 00C9 6A TAMD SCALE highest value
00CA 37

If there is a transition between a voiced and an unvoiced frame, the energy
needs to be cleared until the K parameters and the unvoiced bit in the mode
register all have been updated. This prevents the processor’s LPC filter from
using a mixture of voiced and unvoiced parameters. If the unvoiced bit in the
mode register does not match the unvoiced bit in FLAGS, the energy is
cleared. This is done in the following code.

 Synthesis Program Walk-Through

6-23 TSP50C0x/1x Applications

0501 00CB 62 TCX FLAGS
00CC 38

0502 00CD 66 TSTCM Unv_Flg2 –Is current frame unvoiced?
00CE 80

0503 00CF 40 BR Uv yes, go to unvoiced branch
00D0 D9

0504
0505 00D1 62 TCX Mode_Buf –Current frame is voiced

00D2 3A
0506 00D3 66 TSTCM UNV –Has mode changed to unvoiced?

00D4 80
0507 00D5 40 BR ClrEN yes, clear the energy

00D6 DF
0508 00D7 40 BR INTPCH no, no action required

00D8 E4
0509
0510 00D9 62 Uv TCX Mode_Buf –New frame is unvoiced

00DA 3A
0511 00DB 66 TSTCM UNV –Has voicing mode changed?

00DC 80
0512 00DD 40 BR INTPCH no, no action required

00DE E4
0513
0514 00DF 2F ClrEN CLA –Zero Energy during update
0515 00E0 6A TAMD EN

00E1 01
0516 00E2 40 BR INTPCH

00E3 E4

We are now ready to do the interpolation. Interpolation is done at this point with
the standard linear equation:

y = mx + b

rewritten to:

P = (Pcurrent – Pnew) × TIMER + Pnew

where:

P = interpolated parameter

Pcurrent = value of parameter in current frame

Pnew = value of parameter in new frame

TIMER = value in TIMER

The multiplication using the AXMA function scales the result by 080h. The
value in TIMER ranges from 07Fh to 000h. If interpolation is inhibited, TIMER
contains 07Fh and the interpolation results in P = Pcurrent.

Synthesis Program Walk-Through

 6-24

The following code interpolates pitch. Pitch (as well as K1 and K2) is stored
using two bytes. The program reads the most significant byte, left shifts it by
one nibble, and then adds the least significant nibble of the value (stored in the
second byte). The result is a 12-bit value. This is done both for the current and
new values.

Unlike the K parameters, decoded pitch is always positive. The INTGR
instruction at the start of INTP ensures the integer mode so that when the
program gets the decoded pitch from the decoding tables, it is not sign
extended. See Section 6.4, Arithmetic Modes, for additional information on
arithmetic modes.

0522 00E4 62 INTPCH TCX PHV2 –Combine new pitch and new
00E5 12

0523 00E6 14 TMAIX fractional pitch and
0524 00E7 1B SALA4 leave in the B register
0525 00E8 28 AMAAC
0526 00E9 21 IXC
0527 00EA 1A TAB
0528 00EB 14 TMAIX –Combine current pitch and
0529 00EC 1B SALA4 current fractional pitch
0530 00ED 28 AMAAC and leave in A register
0531
0532 00EE 2D SBAAN –(Pcurrent – Pnew)
0533 00EF 62 TCX SCALE

00F0 37
0534 00F1 39 AXMA –(Pcurrent–Pnew)*Timer
0535 00F2 2C ABAAC –Pnew+(Pcurrent–Pnew)*Timer

Unlike the other speech parameters, the interpolated pitch is not written to
RAM. Instead, it is written to the pitch register using the TASYN instruction.
Because the value in the PPC is used to address the excitation function values,
each of which is two bytes long, the interpolated pitch needs to be multiplied
by two before writing it to the PPC. This is done in following code using the
SALA instruction.

0536 00F3 2E SALA –Adjust for 2 byte excitation
0537 00F4 1C TASYN –Write to pitch register

Because the decoded K parameters can be both positive and negative, the
program goes to extended-sign mode so that the values do not change sign
when they are read into the A or B registers. This is done with the following line
of code.

0542 00F5 3C EXTSG –Allow negative K parameters

 Synthesis Program Walk-Through

6-25 TSP50C0x/1x Applications

K1 through K4 are interpolated in the same manner as energy. The
interpolation of K1 is shown in the following code. K2 through K4 are not
shown.

0543 00F6 62 TCX K1V2 –Combine New K1 and New
00F7 16

0544 00F8 14 TMAIX fractional K1 and
0545 00F9 1B SALA4 leave in the B register
0546 00FA 28 AMAAC
0547 00FB 21 IXC
0548 00FC 1A TAB
0549
0550 00FD 14 TMAIX –Combine current K1 and
0551 00FE 1B SALA4 current fractional K1 and
0552 00FF 28 AMAAC leave in the A register
0553
0554 0100 2D SBAAN –(K1current – K1new)
0555 0101 62 TCX SCALE

0102 37
0556 0103 39 AXMA –(K1current – K1new) * Timer
0557 0104 2C ABAAC –K1new+(K1current–K1new)*Timer
0558 0105 6A TAMD K1 –Load interpolated K1 value

0106 0D

Since K5 through K10 are stored using an 8-bit precision instead of the 12-bit
precision used for K1 through K4, the interpolation is simpler. The following
fragment of code shows the interpolation used for K5. The code for K6 through
K10 is similar.

0623 013A 62 TCX K5V2 –Put New K5 (adjusted to
013B 26

0624 013C 14 TMAIX 12 bits) in B register
0625 013D 1B SALA4
0626 013E 1A TAB
0627 013F 14 TMAIX –Put Current K5 (adjusted to
0628 0140 1B SALA4 12 bits) in A register
0629
0630 0141 2D SBAAN –(K5current – K5new)
0631 0142 62 TCX SCALE

0143 37
0632 0144 39 AXMA –(K5current – K5new) * Timer
0633 0145 2C ABAAC –K5new+(K5current–K5new)*Timer
0634 0146 6A TAMD K5 –Load interpolated K5 value

0147 09

Synthesis Program Walk-Through

 6-26

The decoded energy, like the pitch, is always positive. The INTGR instruction
places the processor in integer mode so that the decoded energy is not sign
extended. The following code interpolates the energy.

0761 018E 3B INTGR –Back to integer mode for energy
0762 018F 62 TCX ENV2 –Combine new energy and

0190 10
0763 0191 14 TMAIX fractional energy and
0764 0192 1B SALA4 leave in the B register
0765 0193 1A TAB
0766 0194 14 TMAIX –Combine current energy and
0767 0195 1B SALA4 current fractional energy
0768 0196 2D SBAAN –(Ecurrent – Enew)
0769 0197 62 TCX SCALE

0198 37
0770 0199 39 AXMA –(Ecurrent – Enew) * Timer
0771 019A 2C ABAAC –Enew+(Ecurrent–Enew)*Timer
0772 019B 6A XBA –Save energy

If there has been a voicing change, the mode register needs to be changed
to reflect the new value. The following code fragment changes the voicing bit
in the mode register to reflect the state of the current frame (which is stored
in FLAGS). After changing the mode register, the program stores the
interpolated energy and then exits from the INTP routine with either RETN or
RETI depending on whether this routine was reached using a subroutine call
or in response to an interrupt.

 Synthesis Program Walk-Through

6-27 TSP50C0x/1x Applications

0781 019C 62 STMODE TCX FLAGS
019E 38

0782 019E 65 ANDCM ~Update_Flg –Signal that interp done
019F FB

0783 01A0 66 TSTCM Unv_Flg2 –Is current frame unvoiced?
01A1 80

0784 01A2 41 BR SETUV –yes, set mode to unvoiced
01A3 AA

0785 01A4 62 TCX MODE_BUF no, ...
01A5 3A

0786 01A6 65 ANDCM ~UNV ...set mode to voiced
01A7 7F

0787 01A8 41 BR WRITEMODE
01A9 AE

0788
0789 01AA 62 SETUV TCX MODE_BUF –Current frame is unvoiced, so

01AB 3A
0790 01AC 64 ORCM UNV –set mode to unvoiced.

01AD 80
0790
0792 01B1 11 WRITEMODE TMA –Write mode information
0793 01AF 1D TAMODE to mode register
0794
0795 01B0 12 XBA –Write energy
0796 01B1 6A TAMD EN to filter

01B2 01
0797
0798 01B3 3E IRETI RETI –Return from interrupt
0799 01B4 3D RETN –Return from first call

The last major section in this sample program is the routine that reads in the
next frame and decodes it. The routine is called both from the speech-
initialization section (where it is used to preload the first two frames before
enabling synthesis) and from the SPEAK_LP loop (where it is used to refresh
the speech parameters when necessary).

Synthesis Program Walk-Through

 6-28

The routine UPDATE does the following:

� If stop frame encountered on last pass, then stop speaking
� Copies new unvoiced flag to current unvoiced flag
� Copies new silence flag to current silence flag
� Set new silence flag, new unvoiced flag, and interpolation flag to zero
� Copies new speech parameters to current speech parameters
� Get coded energy
� If silence frame, then set new silence flag
� If stop frame, then set stop flag
� Look up decoded energy from table and put in new energy
� If last frame was silent, then inhibit interpolation (this one is not silent)
� Get repeat bit, if repeat bit is one, then set repeat flag
� Get coded pitch
� If unvoiced frame, then set new unvoiced flag
� Look up decoded pitch from table and store as new pitch
� If new voicing is different from current voicing, then inhibit interpolation
� Get coded K parameters
� Look up decoded K parameters from table and store as new values

First, the level-1 interrupt is disabled so that an interpolation is not attempted
during the period that the frame data is not valid. The level-1 interrupt is
reenabled before exiting UPDATE. This is done in the following code.

0805 01B5 62 UPDATE TCX MODE_BUF
01B6 3A

0806 01B7 65 ANDCM ~INT1
01B8 FE

0807 01B9 11 TMA
0808 01BA 1D TAMODE

To prevent double updates, if the stored value of the timer register is zero, then
it needs to be changed to 7F. This is done in the following code. If this is not
done, then the polling routine discovers an underflow and calls UPDATE a
second time.

0815 01BB 62 TCX TIMER –Get stored value
01BC 36

0816 01BD 11 TMA of Timer into A
0817
0818 01BE 60 ANEC 0 –Is it zero?

01BF 00
0819 01C0 41 BR UPDT00 no, do nothing

01C1 C5
0820 01C2 6E TCA #7F yes, replace value

01C3 7F
0821 01C4 16 TAM

 Synthesis Program Walk-Through

6-29 TSP50C0x/1x Applications

Now the program tests the stop flag. If it was set on the last pass through
UPDATE, then the end of the current utterance has been reached, and the
program needs to disable synthesis and branch back to prepare for the next
utterance in the phrase. This is done in the following code.

0828 01C5 62 UPDT00 TCX FLAGS
01C6 38

0829 01C7 66 TSTCM STOPFLAG –Was stop frame encountered
01C8 01

0830 01C9 42 BR STOP yes, stop speaking
01CA EF

Now, before the next frame is loaded in, the flags from the new frame (the ones
that tell the voicing of the frame and whether the frame is silent or not) need
to be copied into the flags for the current frame. This is done in following code.

0835 01CB 66 TSTCM Unv_Flg1 –Was previous frame unvoiced?
01CC 10

0836 01CD 41 BR SUNVL yes, current frame=unvoiced
01CE D3

0837 01CF 65 ANDCM ~Unv_Flg2 no, current frame=voiced
01D0 7F

0838 01D1 41 BR TSIL and continue
01D2 D5

0839
0840 01D3 64 SUNVL ORCM Unv_Flg2 –Set current frame unvoiced.

01D4 80
0845 01D5 66 TSIL TSTCM Sil_Flg1 –Was previous frame silent?

01D6 08
0846 01D7 41 BR SSIL yes, current frame silent

01D8 DD
0847 01D9 65 ANDCM ~Sil_Flg2 no, current frame not sil.

01DA BF
0848 01DB 41 BR ZROFLG and continue

01DC DF
0849
0850 01DD 64 SSIL ORCM Sil_Flg2 –Set current frame silent

01DE 40

In the following code, the program resets the repeat flag, silence flag, unvoiced
flag, and interpolation-inhibit flag to zero. They are set later if the next frame
requires them to be set.

Synthesis Program Walk-Through

 6-30

0856 01DF 62 ZROFLG TCX FLAGS
01E0 38

0857 01E1 65 ANDCM #C5
01E2 C5

In the following code, the new speech parameters are saved as current speech
parameters prior to loading the next frame. Pitch, K1, and K10 are shown.

0862 01E3 62 TCX ENV2 –Transfer new frame energy
01E4 10

0863 01E5 14 TMAIX from new frame location
0864 01E6 13 TAMIX to current frame location
0865 *–––––PITCH–––––
0866 01E7 14 TMAIX –Transfer new frame pitch
0867 01E8 6A TAMD PHV1 to current frame location

01E9 14
0868
0869 01EA 14 TMAIX –Transfer new fractional pitch
0870 01EB 21 IXC to current frame location
0871 01EC 13 TAMIX
0872 *–––––K1–––––
0873 01ED 14 TMAIX –Transfer new frame K1 param.
0874 01EE 6A TAMD K1V1 to current frame location

01EF 18
0875 01F0 14 TMAIX –Transfer new fractional K1
0876 01F1 21 IXC to current frame location
0877 01F2 13 TAMIX
.
.
.
0911 *–––––K10–––––
0912 020F 14 TMAIX –Transfer new frame K10 param.
0913 0210 13 TAMIX to current frame location

The program is now ready to read in the new frame, decode it, and store the
decoded values. Energy and pitch require special handling because of the
special significance attached to certain values.

If energy has a value of 0, then the new frame is a silence frame. If the energy
has a coded value of 15 (in this example), then the new frame is a stop frame.
In the case of a stop frame, the program interpolates down to zero and then
stops speaking. Between these two values, energy is decoded using a table
look-up. The decoded value is stored in RAM.

The following code fragment reads the coded energy, sets the silence flag if
the energy is zero and sets the stop-frame flag and the silent-frame flag if the
energy is 15. If the coded energy is either zero or 15, the processor branches
to a section of code that clears the energy and the K parameters.

 Synthesis Program Walk-Through

6-31 TSP50C0x/1x Applications

0932 0211 2F CLA
0933 0212 62 TCX FLAGS

0213 38
0934 0214 33 GET EBITS –Get coded energy
0935 0215 60 ANEC ESILENCE –Is it a silent frame?

0216 00
0936 0217 42 BR UPDT0 No, continue

0218 1D
0937 0219 64 ORCM Sil_Flg1+Int_Inh Yes, set silence flag

021A 28
0938 021B 42 BR ZeroKs and zero K params

021C CD
0939 *
0940 021D 60 UPDT0 ANEC ESTOP –Is it a stop frame?

021E 0F
0941 021F 42 BR UPDT1 no, continue

0220 25
0942 0221 64 ORCM STOPFLAG+Sil_Flg1+Int_Inh yes, set flags

0222 29
0943 0223 42 BR ZeroKs and zero Ks

0224 CD

In the following code fragment, the energy is decoded. The LUAA instruction
is used to get the decoded energy.

0945 0225 73 UPDT1 ACAAC TBLEN –Add table offset to energy
0226 27

0946 0227 6B LUAA –Get decoded energy
0947 0228 6A TAMD ENV2 –Store the Energy in RAM

0229 10

If this is a silent frame (tested for earlier), no more parameters need to be read.
In this code fragment, the program branches to the routine exit point.

0953 022A 62 TCX FLAGS
022B 38

0954 022C 66 TSTCM Sil_Flg1 –Is this a silent frame?
022D 08

0955 022E 43 BR RTN yes, exit
022F 0C

The next code fragment is reached if the new frame is not silent. It reads the
repeat bit. This bit is set to indicate that all of the K parameters between the
new frame and the previous are identical. If this is so, the K parameters are
not provided. A flag is set indicating that this is a repeat frame. Later, this flag
is tested, and if this flag is not set, new K parameters are read in.

Synthesis Program Walk-Through

 6-32

0960 0230 30 UPDT2 GET RBITS –Get the Repeat bit
0961 0231 67 TSTCA #01 –Is this a repeat frame?

0232 01
0962 0233 42 BR SFLG1 yes, set repeat flag

0234 37
0963 0235 42 BR UPDT3

0236 39
0964
0965 0237 64 SFLG1 ORCM R_FLAG –Set repeat flag

0238 02

The next step is to read the coded pitch. This value is zero for an unvoiced
frame and nonzero for a voiced frame. If it is unvoiced, then the unvoiced flag
is set. This is done in the following code.

0969 0239 2F UPDT3 CLA
0970 023A 33 GET 4 –Get coded pitch
0971 023B 32 GET 3 –Get coded pitch
0972 023C 60 ANEC PUnVoiced –Is the frame unvoiced?

023D 00
0973 023E C1 SBR UPDT3A no, continue
0974 023F 64 ORCM Unv_Flg1 yes, set unvoiced flag

0240 10

In the next fragment of code, the pitch is decoded. The SALA instruction
doubles the index to compensate for the fact that pitch is stored as two bytes.
The LUAB instruction gets the most significant byte of the decoded pitch. The
LUAA gets the least significant nibble of the decoded pitch.

0976 0241 2E UPDT3A SALA –Double coded pitch and
0977 0242 73 ACAAC TBLPH add table offset to point

0243 37
0978
0979 0244 6D LUAB –Get decoded pitch
0980 0245 3A IAC
0981 0246 6B LUAA –Get decoded fractional pitch
0982
0983 0247 62 TCX PHV2 –Store the pitch and

0248 12
0984 0249 2A TBM fractional pitch in RAM
0985 024A 21 IXC
0986 024B 16 TAM

If the voicing has changed between voiced and unvoiced or vice versa,
interpolation needs to be inhibited because the tonal qualities of an unvoiced
frame differ markedly from those of a voiced frame. It is inappropriate to blend
them with an interpolation. The following code tests for a change in voicing and
sets a flag to inhibit interpolation if necessary. First, the new frame is tested.

 Synthesis Program Walk-Through

6-33 TSP50C0x/1x Applications

0991 024C 62 TCX FLAGS
024D 38

0992 024E 66 TSTCM Unv_Flg1 –Is the new frame unvoiced?
024F 10

0993 0250 D3 SBR UPDT3B yes, continue
0994 0251 42 BR VOICE no, go to voiced code

0252 5D

If the frame is unvoiced, the program reaches the following code. It tests the
current frame to see if it is silent or voiced. If either condition is true, then a flag
is set to inhibit interpolation. If the previous frame was silent, interpolation
should be inhibited to avoid distorting a plosive that follows a silence. A plosive
is an abrupt unvoiced sound that should not be interpolated. First, the program
tests to see if the previous frame was silent.

1002 0253 66 UPDT3B TSTCM Sil_Flg2 –Was the last frame silent?
0254 40

1003 0255 42 BR UPDT5 yes, inhibit interpolation
0256 63

Then the program tests to see if the previous frame was voiced.

1005 0257 66 TSTCM Unv_Flg2 –Was the last frame unvoiced
0258 80

1006 0259 42 BR UPDT4 yes, don’t change anything
025A 65

1007 025B 42 BR UPDT5 no, inhibit interpolation
025C 63

The following code is reached if the new frame is voiced. It simply tests to see
if the previous frame was also voiced. If it was not, then interpolation is
inhibited. Because it is acceptable to ramp up a voiced frame, the program
does not need to test for a leading silent frame as with the unvoiced frame.

1014 025D 66 VOICE TSTCM Unv_Flg2 –Was the last frame voiced?
025E 80

1015 025F 42 BR UPDT5 no, disable interpolation
0260 63

1016 0261 42 BR UPDT4 yes, continue
0262 65

Synthesis Program Walk-Through

 6-34

The following code inhibits interpolation.

1018 0263 64 UPDT5 ORCM Int_Inh –Inhibit interpolation
0264 20

Previously, the repeat bit was read to see if this is a repeat frame. If it is a repeat
frame, then the new K parameters are the same as the current K parameters
and no further action needs to be taken. If it is not a repeat frame, the program
needs to continue reading the new K parameters. This section of code
branches to the general routine exit if this is a repeat frame.

1025 0265 66 UPDT4 TSTCM R_FLAG –Is repeat flag set?
0266 02

1026 0267 43 BR RTN yes, exit routine
0268 0C

The first four K parameters (K1 through K4) are now loaded. Each of these
decoded K parameters is a 12-bit value that is stored in two bytes. The most
significant 8 bits are contained in the first byte, and the least significant 4 bits
are contained in the second byte.

In the following code, the GET instruction reads the coded K factor into the A
register. It is left shifted (multiplied by two) to convert it into an offset in the table
that contains the two-byte uncoded K parameters. The offset is added to the
starting address of the table with the ACAAC instruction. The LUAB instruction
reads the most significant byte of the K factor, and the LUAA instruction reads
the byte containing the least significant nibble. K1 is shown in the following
code. K2 through K4 are similar to K1.

1046 *–––––K1–––––
1047 0269 2F CLA
1048 026A 33 GET 4 –Get coded K1
1049 026B 31 GET 2 –Get coded K1
1050 026C 2E SALA –Convert it to a
1051 026D 74 ACAAC TBLK1 pointer to table element

026E 37
1052 026F 6D LUAB –Fetch MSB of uncoded K1
1053 0270 3A IAC
1054 0271 6B LUAA –Fetch fractional K1
1055 0272 62 TCX K1V2

0273 16
1056 0274 2A TBM –Store uncoded K1
1057 0275 21 IXC
1058 0276 16 TAM –Store fractional K1

 Synthesis Program Walk-Through

6-35 TSP50C0x/1x Applications

Now the program tests to see if the new frame is unvoiced. Unvoiced frames
use only four K parameters, and the remaining K parameters are set to zero.
At this point, the first four K parameters are already loaded. The following code
fragment tests to see if the new frame is unvoiced, and, if it is, branches to code
that zeroes the rest of the K parameters.

1098 029B 62 TCX FLAGS
029C 38

1099 029D 66 TSTCM Unv_Flg1 –Is this an unvoiced frame?
029E 10

1100 029F 42 BR UNVC Yes, zero rest of factors
02A0 E0

The remaining K parameters differ from the first four K parameters in that they
have only an 8-bit precision for their decoded values instead of the 12-bit
precision used for the first four K parameters. This precision reduction
simplifies the code. K5 is shown the following code fragment. K6 through K10
are similar to K5.

1109 *–––––K5–––––
1110 02A1 2F CLA
1111 02A2 33 GET K5BITS –Get Index into K5 table
1112 02A3 75 ACAAC TBLK5 and add offset of table

02A4 77
1113
1114 02A5 6B LUAA –Get uncoded K5
1115 02A6 6A TAMD K5V2 and store it in RAM

02A7 26

After all the K parameters for a voiced frame have been loaded, the UPDATE
routine can be exited by branching to the general routine exit. This is done in
the following code.

1163 02CB 43 BR RTN
02CC 0C

This section of code clears K parameters that are not used. Silent and stop
frames result in a branch to ZeroKs. Unvoiced frames result in a branch to
UNVC.

Synthesis Program Walk-Through

 6-36

1172 02CD 2F ZeroKs CLA
1173 02CE 6A TAMD ENV2 –Kill Energy

02CF 10
1174 02D0 6A TAMD K1V2 –Kill K1

02D1 16
1175 02D2 6A TAMD K1V2+1

02D3 17
1176 02D4 6A TAMD K2V2 –Kill K2

02D5 1A
1177 02D6 6A TAMD K2V2+1

02D7 1B
1178 02D8 6A TAMD K3V2 –Kill K3

02D9 1E
1179 02DA 6A TAMD K3V2+1

02DB 1F
1180 02DC 6A TAMD K4V2 –Kill K4

02DD 22
1181 02DE 6A TAMD K4V2+1

02DF 23
1182 02E0 2F UNVC CLA
1183 02E1 6A TAMD K5V2 –Kill K5

02E2 26
1184 02E3 6A TAMD K6V2 –Kill K6

02E4 28
1185 02E5 6A TAMD K7V2 –Kill K7

02E6 2A
1186 02E7 6A TAMD K8V2 –Kill K8

02E8 2C
1187 02E9 6A TAMD K9V2 –Kill K9

02EA 2E
1188 02EB 6A TAMD K10V2 –Kill K10

02EC 30
1189 * TAMD K11V2 –Kill K11
1190 * TAMD K12V2 –Kill K12
1191 02ED 43 BR RTN

02EE 0C

If the stop flag has been set, the following code is reached. It turns off the
synthesizer, writes a zero to the DAC in PCM mode, disables the interrupt, sets
the voicing to voiced as a default for the next utterance, and then branches to
SPEAK1 to begin the next utterance.

 Synthesis Program Walk-Through

6-37 TSP50C0x/1x Applications

1201 02EF 62 STOP TCX MODE_BUF
02F0 3A

1202 02F1 65 ANDCM ~LPC –Turn off synthesis
02F2 FD

1203 02F3 65 ANDCM ~INT1 –Disable interrupt
02F4 FE

1204 02F5 65 ANDCM ~UNV –Back to voiced for next word
02F6 7F

1205 02F7 64 ORCM PCM –Enable PCM mode
02F8 04

1206 02F9 11 TMA
1207 02FA 1D TAMODE –Set mode per above setting
1208 02FB 2F CLA
1209 02FC 1C TASYN –Write a zero to the DAC
1210 02FD 6E TCA #FA

02FE FA
1211 02FF 3A BACK IAC –Wait for minimum of 30
1212 0300 43 BR out instruction cycles

0301 04
1213 0302 42 BR back

0303 FF
1214 0304 62 OUT TCX MODE_BUF –Disable PCM

0305 3A
1215 0306 65 ANDCM ~PCM

0307 FB
1216 0308 11 TMA
1217 0309 1D TAMODE –Set mode per above setting
1218 030A 40 BR SPEAK1 –Go back for next word

030B 47

The following code sets a flag to indicate that a new frame has been loaded
and then tests to see if LPC synthesis is enabled. If it is enabled, the processor
reenables the level-1 interrupt and branches back to SPEAK_LP where it waits
until the next interrupt and periodically polls the timer register until the next
frame update is required. If LPC synthesis is not enabled, then the UPDATE
routine was reached by a CALL instruction to preload the first two frames, and
a RETN is executed to exit the UPDATE routine.

Synthesis Program Walk-Through

 6-38

1220 030C 62 RTN TCX FLAGS –Set a flag indicating that
030D 38

1221 030E 64 ORCM Update_Flg the parameters are updated
030F 04

1222
1223 0310 62 TCX MODE_BUF –Get mode

0311 3A
1224 0312 66 TSTCM LPC –Are we speaking yet?

0313 02
1225 0314 43 BR RTN1 yes, reenable interrupt

0315 17
1226 0316 3D RETN no, return for more data
1227
1228 0317 62 RTN1 TCX FLAG1 –Inhibit any pending

0318 39
1229 0319 64 ORCM Int_Off interpolation interrupt

031A 01
1230
1231 031B 62 TCX MODE_BUF –Reenable the interrupt

031C 3A
1232 031D 64 ORCM INT1

031E 01
1233 031F 11 TMA
1234 0320 1D TAMODE
1235
1236 0321 62 TCX FLAG1 –Reenable execution

0322 39
1237 0323 65 ANDCM ~Int_Off of the interpolation routine

0324 FE
1238 0325 40 BR SPEAK_LP –Go back to loop

0326 9C

The speech data decoding tables can be seen in the complete sample
program shown in Appendix B, TSP50C0x/1x Sample Synthesis Program.

 Arithmetic Modes

6-39 TSP50C0x/1x Applications

6.4 Arithmetic Modes

The interpretation of the value stored in a register or memory location is
arbitrary and depends on the assumptions that programmers put into their
software. A given value can represent a series of flags, a character value, a
fractional number, or a range of integers. Normally, multiplication instructions
assume a fractional value interpretation, and addition/subtraction instructions
assume a range-of-integers interpretation.

Even if it is known that the value represents a range of integers, a problem
remains—what range of integers is represented? If it is assumed that the
contents of an 8-bit register represent a value ranging from –12810 to 12710
with 000h representing the most negative value and 0FFh representing the
most positive value, the following problem arises: the addition of –12710 and
510 should yield –12210 instead of:

0000 00012 + 1000 01012 = 1000 01102, or 610.

To solve this problem, negative numbers are usually represented with twos
complement notation. Using this notation, a negative value is represented by
one plus the inversion of its positive equivalent. Thus, to represent a negative
one, its positive equivalent 0000 0001 is inverted to 1111 1110 and one is
added to it:

1111 11102 + 0000 00012 = 1111 11112

Following is the calculation of the sum of –127 and 5 using this notation:

1000 00012 + 0000 01012 = 1000 01102, or –12210

This is the correct result and solves the problem with negative values, but it
restricts the range of positive values. The most significant bit now operates as
a sign bit, leaving the remaining 7 bits to represent the absolute value. Only
12710 discrete positive values can be represented with those 7 bits, which is
too restrictive in many applications.

To solve this problem, the TSP50C0x/1x allows two different arithmetic modes.
Upon initialization, the processor is in integer mode. In the integer mode,
numbers are presumed by the processor to be integers ranging positive from
zero. In the extended-sign mode, numbers are presumed by the processor to
be values ranging positive or negative from zero, with negative numbers
represented by twos complement notation.

The EXTSG and INTGR instructions are used to control the arithmetic mode
of the TSP50C0x/1x. The EXTSG instruction puts the processor in
extended-sign mode, and the INTGR instruction puts the processor in integer

Arithmetic Modes

 6-40

mode. Please note that the integer mode and the extended-sign mode are
mutually exclusive; the processor is either in extended-sign mode or in integer
mode but cannot be in both at the same time.

Transferring a value between the X register and the A register illustrates the
difference in operation between the two modes. The X register has a size of
8 bits, and the A register has a size of 14 bits. A value of 0FFh in the X register
represents 255 in integer mode or –1 in extended-sign mode. To maintain
these values, the value left in the A register needs to be different between the
two modes. Table 6–6 illustrates the difference.

Table 6–6.TXA Operation

Mode X Register A Register Value

Integer Mode 0FFh → 00FFh = 25510

Extended-Sign Mode 0FFh → 3FFFh = –110

Integer Mode 005h → 0005h = 510

Extended-Sign Mode 005h → 0005h = 510

In extended-sign mode, the most significant bit acts as a sign bit. Because the
value needs to be maintained over the transfer, the high-order bits of the A
register are set to the state of the most significant bit of the X register. In integer
mode, the high-order bits of the A register are simply set to zero.

Note that there is no difference in the operation between the two modes if the
value represented is positive because in extended-sign mode, the most
significant bit of a positive value is zero. When the value is transferred, the
high-order bits are set to zero the same as in the integer mode.

 Arithmetic Modes

6-41 TSP50C0x/1x Applications

The operation of the following instructions are modified by the arithmetic
mode:

ACAAC Add 12-bit constant to A register

AMAAC Add memory data to A register

LUAA Look up memory addressed by A register, result in A register

LUAB Look up memory addressed by A register, result in B register

SMAAN Subtract memory data from A register

TCA Transfer 8-bit constant to A register

TMA Transfer memory data to A register (indirect)

TMAD Transfer memory data to A register (direct)

TMAIX Transfer memory data to A register, increment X register

TXA Transfer X register contents to A register

XBX Exchange B register and X register contents

In general, these instructions transfer a value to the 14-bit A or B registers from
a smaller register or memory location. Figure 6–3 illustrates the operation of
the ACAAC instruction in extended-sign mode. The 12-bit constant must be
sign-extended to 14 bits (to match the size of the A register) prior to the
addition. This modifies the value of the constant added to the A register from
FFFh to 3FFFh.

Figure 6–3. ACAAC in Extended-Sign Mode

CARRY
A REGISTER
CONSTANT

RESULT

113202h 0010000000102
0FFFh 11 1111 1111 11112

11 1111 1111 112

3201h 0010000011 00012

Figure 6–4 illustrates the same operation in integer mode. In integer mode, the
sign extension is not performed; consequently, the value added to the A
register remains FFFh.

Figure 6–4. ACAAC in Integer Mode

CARRY
A REGISTER
CONSTANT

RESULT

113202h 0010000000102
0FFFh 00 1111 1111 11112

11 1111 1111 112

0201h 0010000000 00012

Operation of the Multiply Instruction

 6-42

6.5 Operation of the Multiply Instruction

On digital computers, a multiplication frequently results in a value that is much
larger than either multiplicand. An example is the multiplication of two 2-bit
numbers:

112 × 112 = 10012

The result of multiplying two 2-bit numbers is a four-bit number. Similarly,
multiplying the 14-bit A register with the contents of an 8-bit memory location
results in a 22-bit value. This creates a problem because a value this large
cannot be stored. One solution is to limit the size of the multiplicands, but this
severely restricts the utility of the multiply instruction. A better solution is to
interpret the multiplicands as fractions and to truncate the least significant part
of the result. This solution minimizes overflow problems, and truncation affects
the least significant portion of the result instead of the most significant part. In
this scheme, an n-bit binary number is interpreted as follows:

value = (–A.1 × 20) + (A.2 × 2–1) + . . . + (A.n × 21–n)

where A.1 . . . A.n are the bit values of the number. For example, the four-bit
number 1010 is interpreted to have the following value:

value = (–1 × 20) + (0 × 2–1) + (1 × 2–2) + (0 × 2–3)

value = –1 + (0 × 0.5) + (1 × 0.25) + (0 × 0.125)

value = –0.75

Several points need to emphasized:

� The possible values using this scheme range from –1 to slightly less
than 1.

� Since the TSP50C0x/1x instructions are all 8-bit by 14-bit multiply instruc-
tions, the lower 8 bits of the result are truncated.

� Since the lower 8 bits of the result are truncated, many multiplications give
a zero result; for example:

(00 0000 0000 1111) × (0000 0011) = 00 0000 0000 0000 | 0010 1101

= 00 0000 0000 0000

 Standby Mode

6-43 TSP50C0x/1x Applications

6.6 Standby Mode

The TSP50C0x/1x can be put in a low-power-dissipation standby mode by
either executing a SETOFF instruction or by taking INIT low. If the device is
placed in standby with the SETOFF instruction, it may be brought to an active
state by pulsing INIT low and high. If the device is placed in a standby state
by taking INIT low, it may be brought to an active state by taking INIT high.

When the device is placed in the standby state, output data is cleared, the I/O
pins are placed into a high-impedance input mode, the program counter is
cleared to zero, the registers are left in an undefined state, and the values
stored in RAM are retained. The clock stops running and no instructions are
executed until INIT goes from low to high.

Slave Mode

 6-44

6.7 Slave Mode

Setting bit 6 of the mode register high places the TSP50C0x/1x in the slave
mode. This specialized mode is intended for applications in which the
TSP50C0x/1x device needs to be controlled by a master microprocessor.
When in slave mode, the functionality of the following ports is modified:

PB0 becomes a chip enable strobe. It is normally held high. When it is taken
low, data is read from or written to the PA0– PA7 pins depending on the value
of PB1.

PB1 becomes a read/write select input. If PB1 is low, data is written to the
TSP50C0x/1x when PB0 goes low. If PB1 is high, data may be read from the
TSP50C0x/1x when PB0 goes low.

Port A becomes a general bidirectional port controlled by PB0 and PB1. Pin
PA7 is used as a busy signal. If bit 7 in the output latch is set high by the
software, PA7 of the output latch is reset to a low state when PB0 goes low to
write data to the TSP50C0x/1x.

Because the PA7 output latch is used as a busy flag, leaving only PA0– PA6
for data, normally only seven bits of data may be exchanged between the
master and the slave in any one read operation from the TSP50C0x/1x. In write
operations to the TSP50C0x/1x, all 8 pins of port A can be used to transfer
data.

During read operations from the slave TSP50C0x/1x, the master is
responsible for maintaining its outputs connected to the TSP50C0x/1x port A
in a high-impedance state. Otherwise, bus contention results.

The TSP50C0x/1x I/O ports must be configured in input mode for slave mode
to work properly. Pin PA7 may be put in output mode, if desired. It then
functions as a handshaking line rather than a polled handshake bit.

Note:

Simultaneous configuration of SLAVE and EXTROM is not allowed. The ten
I/O lines cannot be arranged to give both capabilities.

Note:

Becauses of the use of Port B1 for this function, it will not work on TSP50C10,
TSP50C11, and TSP50C12 devices using the 2 pin digital DAC option.

 Slave Mode

6-45 TSP50C0x/1x Applications

6.7.1 Slave-Mode Write Operation

A typical sequence for an 8-bit write operation to the TSP50C0x/1x in the slave
mode is shown in Figure 6–5.

At the beginning of the operation, the TSP50C0x/1x has a low in the PA7
output latch. It is there either because it was written there with software or
because it was set low by the hardware on completion of a previous write
operation. The data transfer occurs as follows:

1) The master microprocessor sets R/W high to indicate a read operation.

2) The master polls the output state of PA7 by pulsing STR (on PB0) low and
reading the state of PA7 while STR is low.

3) Eventually, the TSP50C0x/1x completes processing any previous data or
instructions from the master. When it does, it writes a one to the PA7 output
latch.

4) When the master senses that PA7 has gone high, it sets the R/W signal
low to indicate a write operation.

5) The master presents valid data to port PA0– PA6.

6) The master pulses STR (on PB0) low, which causes the data on port
PA0– PA6 pins to be latched to the port A input latch. The TSP50C0x/1x
hardware causes the PA7 output latch to be cleared to zero, indicating that
the TSP50C0x/1x has accepted the data.

7) The TSP50C0x/1x polls the PA7 output latch. When it sees it go low, it
knows that data is being written to the port A input latch.

8) The TSP50C0x/1x polls the PB0 (STR) input line. When PB0 goes high,
the write is complete, and the data in PA0 is valid.

9) When it is ready to accept another command, the TSP50C0x/1x writes a
one to the PA7 output latch, thus starting another cycle.

Slave Mode

 6-46

Figure 6–5. Slave-Mode Write Operation

(Output Latch)

PB0 STR

PA7 Busy

PB1 R/W

Valid Data

Port A
(Input Latch)

2 2 6 8

1

3

4

5

2

7

 Slave Mode

6-47 TSP50C0x/1x Applications

6.7.2 Slave-Mode Read Operation

A typical sequence for an 8-bit read operation from the TSP50C0x/1x in the
slave mode is shown in Figure 6–6.

Figure 6–6. Slave-Mode Read-Then-Write Operation

(Output Latch)

PB0 STR

PA7 Busy

PB1 R/W

(Output Latch)
PA0–6

At the beginning of the operation, the TSP50C0x/1x, which is in slave mode,
has a low in the PA7 output latch. The slave has received a command or a
request for information from the master. When the TSP50C0x/1x is ready to
respond, the data transfer occurs as follows:

1) The TSP50C0x/1x writes the data to PA0 – PA6 and a logic one to port
PA7. The one on port PA7 is a signal that valid data is available in the pins
connected to port A.

2) The master periodically polls port A. When it finds PA7 has gone high, it
knows that PA0– PA6 contains valid data.

3) PA7 remains high, indicating that the slave is prepared for another com-
mand. The master can write to the slave at any time. When the slave polls
the PA7 output latch and finds it low, it knows that a new command from
the master is in the port A latch.

TSP60C18/81 Interface

 6-48

6.8 TSP60C18/81 Interface

The TSP60C18 is 256K-bit ROM organized internally as 16K-bits × 16 bits and
the TSP60C81 is a 1024K-bit ROM organized as 64K-bits by 16 bits. It is
designed specifically to provide additional low-cost ROM storage for the Texas
Instruments family of speech chips.

Note:

The TSP60C18 and the TSP60C81 devices have been obsoleted. The
material in this section is included for reference only.

6.8.1 External ROM Mode

Setting bit four of the mode register high places the TSP50C0x/1x device in
external ROM mode. When placed in this mode, the TSP50C0x/1x port
operation is modified to provide an efficient interface to the TSP60C18/81. The
ports affected are summarized in the following list:

� PB0 is dedicated as a strobe output. It should be configured as an output
by the software. Its output value is the logical AND of the PB0 output latch
and a hardware-generated strobe active signal. Software pulses this sig-
nal low to write addresses to the TSP60C18/81. Hardware pulses this sig-
nal low during GET instructions.

� PA7 is dedicated as a system clock signal going to the TSP60C18/81. It
should be configured by software as an output with a logical one written
to its output latch. Its value is the logical AND of the PA7 output latch and
a clock that runs at one-fourth the rate of the master clock.

� PA0, PA1, PA2, and PA3 are dedicated as data transfer pins.

Control of other ports is necessary to complete communications with the
TSP60C18/81, but the selection of which of the non-dedicated ports to use for
which signal is optional.

Note:

Simultaneous configuration of SLAVE and EXTROM is not allowed.

6.8.2 TSP60C18/81 I/O Signals

The TSP60C18/81 has ten functional pins in addition to power and ground.
The TSP60C81 adds an additional output for cascading ROMs. Table 6–7
summarizes the function of each signal, and Table 6–8 details the pinout of the
TSP60C18/81.

 TSP60C18/81 Interface

6-49 TSP50C0x/1x Applications

Table 6–7.TSP60C18/81 Pin Functional Descriptions

Signal Direction Function/Action

HCLB Input
If this pin is low, the device is initialized and forced into an input mode (output
buffers are put in the high-impedance state). This signal is not affected by the state
of the CEB input.

CEB Input If this pin is high, the C(0–3) pins are unconditionally in the high-impedance state.
This pin is provided to permit ROM expansion to greater than 1M bit.

STR Input When this pin is taken low, depending upon the state of the R/W signal, data is
read from or an address is written to the TSP60C18/81.

R/W Input
When this pin is high, data is output from the device when STR goes low. When
this pin is low, one nibble of the 16-bit address is input to the device when STR
goes low.

C(0–3) Input or Output

When STR goes low and R/W is low, the data present on these pins is latched into
the device as one nibble of the four-nibble address. When STR goes low and R/W
is high, one nibble of the currently addressed data is presented on these pins for
output. C(0) is the least significant bit and C(3) is the most significant bit of the
address/data nibble.

A0 Input

When this pin is low, the address that is loaded is understood to point directly to
the data that is desired for output. When this pin is high, the address that is loaded
is understood to point to a table entry that contains the address of the data that
is desired for output. See Section 6.8.5, TSP60C18/81 Addressing Modes, for
more information.

SRCK Input Free-running system clock for internal sequential logic (runs ~4x the
TSP50C1x nominal instruction rate)

CE† Output Inverted state of CEB input. This allows the use of two TSP60C81s in parallel.

† Applicable to the TSP60C81 only.

TSP60C18/81 Interface

 6-50

Table 6–8.TSP60C18/81 Pinout

Pin

Name TSP60C18 TSP60C81 Function

A0 2 27 Address mode control pin

C(0) 14 25 Address/data bit 0 (LSB)

C(1) 15 18 Address/data bit 1

C(2) 16 17 Address/data bit 2

C(3) 1 26 Address/data bit 3 (MSB)

CEB 7 11 Chip enable input

HCLB 6 3 Hardware clear input

R/W 8 12 I/O direction control

SRCK 10 14 System clock

STR 9 13 Chip enable strobe signal

VDD 3 28 Positive supply, 2.5 V to 6.5 V

VSS 11 15 Power return

CE – 16 Cascaded chip enable

NC 4, 5, 12, 13 1, 2, 4–10,
19–24

No internal connection

6.8.3 TSP60C18 Addressing

The TSP60C18 uses a 16-bit address on 16-bit boundaries to provide
addressing capabilities to 1M-bit. The TSP60C18 has a storage capability of
256K-bits. To achieve the full internal 1M-bit capability, the address space of
each TSP60C18 is internally masked so that up to four TSP60C18 devices can
be connected in parallel to produce a 1M-bit ROM system. While operating in
parallel, all like-numbered pins are connected together, the most significant
address bits are used to control which of the devices are addressed, and the
remaining 14 bits are used to control the relative address within the address
space of each device.

6.8.4 TSP60C81 Addressing

The TSP60C81, like the TSP60C18, uses a 16-bit address on 16-bit bound-
aries with a total addressing range of 1M-bit per device. Two devices can be
cascaded by daisy-chaining the CE–output of the first device to the CEB–in-
put of the second device. This allows a total of 2M-bits of address space.

 TSP60C18/81 Interface

6-51 TSP50C0x/1x Applications

6.8.5 TSP60C18/81 Addressing Modes

The TSP60C18/81 provides the following three addressing modes: 16-bit
direct addressing, 16-bit indirect addressing, and 8-bit indirect addressing.
The signal A0 determines which addressing mode is used.

When STR goes low to latch the second and fourth nibbles of the address, A0
is sampled. As shown in Table 6–9, the state of A0 during the two samples
determines the addressing mode.

Table 6–9.TSP60C18/81 Addressing Modes

State Of A0 During
Address Latch Address Mode †

Second
Nibble

Fourth
Nibble TSP60C18 TSP60C81

0 0 16-bit direct address 16-bit direct address

0 1 16-bit indirect address 16-bit indirect address

1 0 8-bit indirect address No mode change

1 1 8-bit indirect address 8-bit indirect address

† Applicable in single-chip applications only.

For the TSP60C18, if A0 is set high when the second nibble of the address is
latched in, no other nibbles are latched in. The two nibbles that were latched
in are presumed to be the least significant byte of a two-byte address that is
pointing to a 16-bit boundary of ROM with the most significant byte of the
address equaling 0. If any additional address nibbles are latched in, they are
treated as the beginning of a new and different address.

For the TSP60C81, if A0 is set high when the second and fourth nibbles of the
address are latched in, then the address is an 8-bit indirect address. If A0 is
high during the second nibble latch and is low during the fourth nibble latch,
then there is no mode change. The TSP60C81 remains in the same mode that
it was in before the latch.

For either the TSP60C18 or the TSP60C81, if A0 is low as the second nibble
of the address is latched in, the address is treated as a 16-bit address. The
state of A0 is sampled as the fourth nibble of the address is being latched in
to determine if the address is direct or indirect.

TSP60C18/81 Direct-Addressing Mode

If the TSP60C18/81 is loaded in the direct-addressing mode, the 16-bit
address loaded is presumed to point directly to the desired data.

TSP60C18/81 Interface

 6-52

TSP60C18/81 Indirect-Addressing Mode

If the TSP60C18/81 is loaded in the indirect-addressing mode, the 8-bit or
16-bit address does not point directly to the desired data. Instead, it points to
a location in the ROM that contains the address that points to the location of
the desired data. The TSP60C18/81 then automatically sets the internal data
pointer to the 16-bit address found in this location.

As an example, assume that the ROM contains the data shown in Table 6–10.

Table 6–10.Indirect Address Example

Address Data

0000 05A2

0001 0200

0002 0302

0200 1234

0201 5678

If the address 0001 is latched into the TSP60C18/81 with the signal A0 placing
the device in the indirect-addressing mode, the data that is fetched by
subsequent GET operations is pointed to by the address found in location
0001, that is, the data contained in location 0200. The first word returned by
subsequent GET statements is therefore 1234. Note that all addresses in this
example are 16-bit addresses.

Extreme care should be taken when using indirect-addressing
mode in multichip TSP60C18/81 systems. Device damage could
result if it is not properly executed. †

† Because the indirect-addressing mode is an internal function within each device and
not between devices, there are no special provisions made to use indirect addressing
in multichip TSP60C18/81 systems. Unless the table data is repeated in each
TSP60C18/81 device at the same lower 14-bit address location, the function works
improperly and device damage may result. If care is not taken to place identical tables
within each chip, multiple devices may be enabled at the same time, causing bus
contention on C(3–0).

 TSP60C18/81 Interface

6-53 TSP50C0x/1x Applications

6.8.6 TSP60C18/81 Control

In the remaining discussion of the TSP60C18/81, the device is assumed to be
connected to the TSP50C0x/1x as shown in Figure 6–7. PB0 must be used for
STR on the TSP60C18/81. PA7 must be used for SRCK and PA0 – PA3 must
be used for the data bus. The interconnection of the remaining pins is optional
depending on the application. In the hookup shown in Figure 6–7, HCLB is not
accessible to the TSP50C0x/1x.

Figure 6–7. TSP60C18/81-to-TSP50C0x/1x Hookup

TSP50C0x/1x

DA1
OSC2
OSC1

INIT
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
PB1
PB0

TSP60C18/81

STR
R/W
C0
C1
C2
C3
A0
HCLB

SRCK
CEB

high

low (CE) TSP60C81 Only

TSP60C18/81 Interface

 6-54

6.8.7 Initialization of the TSP60C18/81

The TSP60C18/81 can be initialized with either hardware or software. Either
way, after initialization the desired starting address of the data must still be
loaded as described in subsections 6.8.8, Direct-Address Initialization of the
TSP60C18/81, 6.8.9, 8-Bit Indirect-Address Initialization of the TSP60C18/81,
and 6.8.10, 16-Bit Indirect-Address Initialization of the TSP60C18/81.

Hardware Initialization

The TSP60C18/81 can be initialized with hardware by taking HCLB low and
then high, which effectively does a power-up initialization of the device. This
initializes the internal pointer counter, puts the device in load mode, and resets
the internal chip enable. The desired starting address of data must still be
loaded as described in the following section.

Software Initialization

The second way that the TSP60C18/81 can be initialized is through software,
which is accomplished by the following sequence:

1) Configure port B, PA0, PA1, PA2, PA3, and PA7 as outputs
2) Take PB0, PB1, and PA7 high
3) Place TSP50C0x/1x in external ROM mode
4) Execute LUAPS to initialize TSP50C0x/1x
5) Do a dummy load address operation
6) Do a dummy read
7) Load a valid address
8) Burn 8 or 16 instruction cycles, depending on address mode
9) Prime the device with two GET2 commands.

Subsections 6.8.8, Direct-Address Initialization of the TSP60C18/81, 6.8.9,
8-Bit Indirect-Address Initialization of the TSP60C18/81, and 6.8.10, 16-Bit In-
direct-Address Initialization of the TSP60C18/81 discuss the different pro-
cesses for initializing the TSP60C18/81.

 TSP60C18/81 Interface

6-55 TSP50C0x/1x Applications

6.8.8 Direct-Address Initialization of the TSP60C18/81

The TSP60C18/81 can be initialized in the 16-bit direct mode in the following
manner:

1) Hold A0 of the TSP60C18/81 low
2) Configure port B, PA0, PA1, PA2, PA3, PA4, and PA7 as outputs
3) Take PB0, PB1, and PA7 high
4) Place the TSP50C0x/1x in external ROM mode
5) Execute LUAPS to initialize TSP50C0x/1x
6) Do a dummy read

a) Take R/W low
b) Pulse STR low
c) Take R/W high
d) Pulse STR low

7) Load the valid address

a) Present the least significant nibble of the address on C0–C3
b) Pulse STR low
c) Present the second nibble of the address on C0–C3
d) Pulse STR low
e) Present the third nibble of the address on C0–C3
f) Pulse STR low
g) Present the most significant nibble of the address on C0–C3
h) Pulse STR low

8) Put PA0 – PA3 in high-impedance (3-state) mode
9) Set R/W high
10) Burn eight instruction cycles
11) Execute two GET2 instructions

The TSP60C18/81 is now prepared to output data to the TSP50C0x/1x in
response to GET instructions. See Appendix C, External ROM Initialization,
for a sample listing of a routine that performs this function.

TSP60C18/81 Interface

 6-56

6.8.9 8-Bit Indirect-Address Initialization of the TSP60C18/81

The TSP60C18/81 can be initialized in the 8-bit indirect mode in the following
manner:

1) Configure port B, PA0, PA1, PA2, PA3, PA4, and PA7 as outputs
2) Take PB0, PB1, and PA7 high
3) Place the TSP50C0x/1x in external ROM mode
4) Execute LUAPS to initialize TSP50C0x/1x
5) Do a dummy read

a) Take R/W low
b) Pulse STR low
c) Take R/W high
d) Pulse STR low

6) Take A0 of the TSP60C18/81 high
7) Load the valid address

a) Present the least significant nibble of the address on C0–C3
b) Pulse STR low
c) Present the second nibble of the address on C0–C3
d) Pulse STR low

8) Burn 16 instruction cycles
9) Execute two GET2 instructions

The TSP60C18/81 is now prepared to output data to the TSP50C0x/1x in
response to GET instructions. The data is pointed to by the table entry located
at the address that was loaded.

 TSP60C18/81 Interface

6-57 TSP50C0x/1x Applications

6.8.10 16-Bit Indirect-Address Initialization of the TSP60C18/81

The TSP60C18/81 can be initialized in the 16-bit indirect mode in the following
manner:

1) Configure port B, PA0, PA1, PA2, PA3, PA4, and PA7 as outputs
2) Take PB0, PB1, and PA7 high
3) Place the TSP50C0x/1x in external ROM mode
4) Execute LUAPS to initialize TSP50C0x/1x
5) Do a dummy read

a) Take R/W low
b) Pulse STR low
c) Take R/W high
d) Pulse STR low

6) Take A0 of the TSP60C18/81 low
7) Load the least significant byte of address

a) Present the least significant nibble of the byte on C0–C3
b) Pulse STR low
c) Present the most significant nibble of the byte on C0–C3
d) Pulse STR low
e) Take A0 of the TSP60C18/81 high
f) Load the most significant byte of address
g) Present the least significant nibble of the byte on C0–C3
h) Pulse STR low
i) Present the most significant nibble of the byte on C0–C3
j) Pulse STR low

8) Burn 16 instruction cycles
9) Execute two GET2 instructions

The TSP60C18/81 is now prepared to output data to the TSP50C0x/1x in
response to GET instructions. The data is pointed to by the table entry located
at the address that was loaded.

TSP60C18/81 Interface

 6-58

6.8.11 Placing the TSP60C18/81 in a Low-Power Standby Condition

The TSP60C18/81 can be placed in a low-power standby condition by
removing the clock while the nodes of the device are in a precharged condition.
This can be done in one of two ways.

1) Placing the TSP60C18/81 in a low-power mode by loading it with a partial
address and maintaining R/W and STR high, as shown in the following list:

a) Configure port B, PA0, PA1, PA2, PA3, and PA7 as outputs
b) Load PB0, PB1, and PA7 output ports with a logical 1
c) Place the TSP50C0x/1x in external ROM mode
d) Load the partial address (an address of one to three nibbles)

� Take R/W low
� Pulse STR low

e) Put the TSP50C0x/1x in internal ROM mode
f) Maintain PB0 and PB1 configured as outputs in the high state.

2) Placing the TSP60C18/81 in a low-power mode by loading it with a
complete address and maintaining R/W high and STR low, as shown in the
following list:

a) Configure port B, PA0, PA1, PA2, PA3, PA4, and PA7 as outputs
b) Load PB0, PB1, and PA7 output ports with a logical 1
c) Load PA0, PA1, PA2, and PA3 output ports with a logical 0
d) Place the TSP50C0x/1x in external ROM mode
e) Load the complete address (an address of four nibbles or 16 bits)

� Take R/W low
� Pulse STR low 4 times
� Wait a minimum of 16 instruction cycles
� Take R/W high
� Take STR low

f) Put the TSP50C0x/1x in internal ROM mode
g) Maintain PB0 low and PB1 high
h) To bring the TSP60C18/81 to an active condition, do an initialization

as previously discussed

 TSP60C18/81 Interface

6-59 TSP50C0x/1x Applications

Notes:

1) The SETOFF instruction places all outputs in a high-impedance state.
If a SETOFF instruction is executed to place the TSP50C0x/1x in a low-
power state, then pullup or pull-down resistors should be provided to
maintain the TSP60C18/81 control lines in the correct state after the
SETOFF is executed.

2) If the PA0 – PA4 and PA7 lines are used for purposes other than
interfacing to the TSP60C18/81, there can continue to be current drain
after the TSP60C18/81 is put into a low-power mode.

Use of the GET Instruction

 6-60

6.9 Use of the GET Instruction

The GET instruction is used to retrieve a bit stream from RAM, internal ROM,
or external ROM. It allows the program to unpack speech data in a
time-efficient manner. As shown in Figure 6–8, it is implemented through the
use of a parallel-to-serial shift register.

The parallel-to-serial register (P/S register) is loaded in a parallel manner from
the parallel-to-serial buffer (P/S buffer), which is in turn parallel loaded from the
source of the data (which could be internal ROM, external ROM, or internal
RAM). When the GET instruction is executed, the number of bits specified in
the operand of the GET instruction are shifted out of the LSB of the P/S register
into the LSB of the A register.

Figure 6–8. Register Connections for GET Instruction

13 12 11 10 9 8 34567 2 1 0

34567 2 1 0

RAM or ROM

34567 2 1 0

Parallel-to-Serial
Buffer

A Register

Parallel-to-Serial
Register

If the number of valid bits in the P/S register is less than the specified number
of bits, the contents of the P/S buffer are loaded on the fly to the P/S register
and the contents of the P/S buffer are refreshed from the data source the next
time that a GET instruction is executed and the status bit is set. If the buffer
did not need to be reloaded, the status bit is cleared.

Note that because the data is shifted out of the LSB of the P/S register and into
the LSB of the A register, there is a byte reflection of the data in this process
as illustrated in Figure 6–9. This figure shows the state of the P/S register and
the A register both before and after a GET 5 instruction. Prior to the GET 5,
the P/S register contains 0B7h, and the A register contains all zeros. After the
instruction, the least significant five bits of the P/S register are shifted into the
A register. Because of the bit flip, the A register contains 01Dh after the shift
operation. The P/S register has only three valid bits left after the operation. If
more than three bits are requested in the next GET operation, the P/S register
is reloaded from the P/S buffer.

The source for the data is controlled by the EXTROM and RAMROM bits in the
mode register as shown in Table 6–11.

 Use of the GET Instruction

6-61 TSP50C0x/1x Applications

Table 6–11. Mode Register Control of GET Data Source

Mode Register Bits

RAMROM EXTROM Data Source

0 0 Internal ROM

0 1 External ROM

1 0 Internal RAM

1 1 Internal RAM

Figure 6–9. Parallel-to-Serial Operation for GET 5 Instruction

0 0 0 0 0 0 11000 1 0 1

––––– 1 0 1

A Register

Parallel-to-Serial
Register

Prior to GET 5 Instruction

0 0 0 0 0 0 00000 0 0 0

01101 1 1 1

A Register

Parallel-to-Serial
Register

After GET 5 Instruction

Note:

Timing problems may cause data to be fetched from the data source twice
in a row the first two times the GET instruction is executed. Unless special
precautions are taken, do not initialize the GET intruction while the LPC bit
of the mode register is set.

Specifically, if the LPC bit is set and the first GET instruction is a
GET 4 from external ROM or a GET 8 from internal ROM or RAM, the P/S
is loaded with the same data twice in a row. To avoid this problem, either do
a double GET in this situation, or, more simply, never be in LPC mode during
the interval between the LUAPS instruction and the first GET instruction.

Use of the GET Instruction

 6-62

6.9.1 GET From Internal ROM

If both the RAMROM and EXTROM bits of the mode register are zero, the data
source for GET instructions is the internal ROM. As detailed in
Section 6.9, Use of the GET Instruction, the data is read into the A register in
a byte-flipped form referenced to the value stored in ROM, meaning that the
LSB of the ROM data byte is shifted into the A register first. The recommended
sequence for preparing to GET from internal ROM is as follows:

Step 1: Load the starting address of the first desired GET source into the A
register.

Step 2: Execute a LUAPS instruction, which performs all required initializa-
tion. The processor is now ready to execute a GET instruction start-
ing at the address loaded in Step 1.

Step 3: If a nonsequential address is desired for a GET, repeat Step 1 and
Step 2 for the new address.

6.9.2 GET From External ROM

If the RAMROM bit is cleared and the EXTROM bit is set in the mode register,
the data source for GET instructions is the external ROM. Unlike GETs from
internal ROM, GETs from external ROM do not byte flip the data. Because the
external ROM needs to be initialized in addition to the TSP50C0x/1x, the
procedure is somewhat more complicated than that for the internal ROM case.
See Section 6.8, TSP60C18/81 Interface, for details on interfacing a
TSP60C18/81 to the TSP50C0x/1x.

 Use of the GET Instruction

6-63 TSP50C0x/1x Applications

The recommended sequence for preparing to GET from external ROM is as
follows:

Step 1: Configure all control lines as outputs.

Step 2: Place the TSP50C0x/1x in external ROM mode.

Step 3: Execute LUAPS to initialize the counters in the TSP50C0x/1x. When
preparing to execute a GET from external ROM, the value in the A
register during the LUAPS is unimportant.

Step 4: Initialize the external ROM. The processor is now ready to execute
a GET instruction starting at the address loaded to the ROM in this
step.

Step 5: If a nonsequential address is desired for a GET, repeat steps 3 and
4 for the new address.

Step 6: Be very careful not to disturb the value on the control lines when not
doing GET instructions.

Note:

When in external ROM mode, only four or fewer bits may be fetched at a time.
While GET 5, GET 6, GET 7, and GET 8 may work, the results are not guar-
anteed to be accurate because only four bits are fetched from the ROM at
a time. If more than four bits are required, the preferred solution is to execute
multiple GET instructions.

6.9.3 GET From Internal RAM

If the RAMROM bit is set in the mode register, the data source for GET
instructions is the internal RAM. As detailed in Section 6.9, Use of the GET
Instruction, the data is read into the A register in a byte-flipped form from the
value stored in RAM, meaning that the LSB of the RAM data byte is shifted into
the A register first.

The usage of the GET instruction while in RAM mode is somewhat more
complicated than when the data source is from ROM because the burden of
providing the address used to refresh the P/S buffer falls on the software.

If a GET instruction exhausts the P/S register, the value stored in the P/S buffer
is loaded into the P/S register, and the GET instruction returns with status set.
When the next GET instruction is executed, the P/S buffer is loaded with the
value stored in the RAM location pointed to by the X register.

Use of the GET Instruction

 6-64

The recommended sequence for preparing to GET from RAM is as follows:

Step 1: Place the TSP50C0x/1x in internal RAM mode.

Step 2: Place the RAM address of the first desired GET source in the
X register.

Step 3: Execute LUAPS to initialize the counters in the TSP50C0x/1x and to
load the first byte from RAM into the P/S register. When preparing
to GET from RAM, the value in the A register during the LUAPS is
unimportant. After this, the P/S buffer is empty and the P/S register
is full.

Step 4: Execute a dummy GET 8 instruction.

Step 5: Load the X register with the RAM address of the second desired GET
source.

The following sequence occurs when the first GET is executed:

1) The P/S buffer is empty, so it is loaded with the value stored in
the RAM location pointed to by the X register.

2) The number of bits specified by the operand of the GET instruc-
tion is shifted into the A register.

On all subsequent GET operations, the status at completion should be tested
by software. If status is set, then the P/S buffer is empty and the software
should ensure that the X register contains the next desired address before the
next GET is executed.

 Use of the GET Instruction

6-65 TSP50C0x/1x Applications

The following code is a sample program that uses the GET from RAM:

* SAMPLE PROGRAM USING RAM GET

DTA EQU #10

*

TCX DTA SET X REG TO POINT TO DTA

TCA #020 SET TO RAM MODE

TAMODE

LUAPS SET UP PARALLEL TO SERIAL REG

GET 8 DUMMY GET

CALL UPX

.

.

.

BR LOOP

*

UPX IXC

RETN

Generating Tones Using PCM

 6-66

6.10 Generating Tones Using PCM

The TSP50C0x/1x can generate speech and tones using pulse code
modulation (PCM) as well as LPC. When using PCM, a periodically sampled
waveform may be loaded directly into the DAC, providing the ability to
synthesize arbitrary waveforms. The value that is loaded into the DAC can be
derived using a calculation, a table look-up, or a combination of the two
methods. Smoothing between the data points is provided by the external
low-pass filter.

PCM mode is enabled by setting the PCM bit in the mode register high and the
LPC bit in the mode register low. Once PCM mode is enabled, the software
must load the DAC with a value every 30 or 60 instruction cycles using the
TASYN instruction.

6.10.1 Operation of the TASYN Instruction in PCM Mode

While in PCM mode, executing the TASYN instruction transfers the contents
of the A register to the input of the DAC as shown in Figure 6–10. TASYN
transfers the data in the A register to a temporary buffer register whose
contents are periodically transferred to the DAC once every 30 instruction
cycles.

Figure 6–10. Operation of TASYN in PCM Mode

A Register Temporary DAC

The data in the A register should be in a modified two’s complement format,
described as follows:

The A register is 14 bits long. When the contents of the A register are
transferred to the DAC, the bits are interpreted as shown in Figure 6–11. The
least significant bits (bits A.0 and A.1) are ignored and normally set to zero.
The two most significant bits (bits A.12 and A.13) are the sign bits. If they are
both 1, then the value loaded to the DAC is negative. The remaining 10 bits
of the A register (bits A.2 – A.11) contain magnitude data. The greatest
magnitude is ± 480. Any greater magnitude is clipped. The relative weights of
the magnitude bits are listed in Table 6–12.

Figure 6–11. Format of Data in A Register Before TASYN

13 12 11 10 9 8 34567 2 1 0A Register

Magnitude

Sign Bits Zero Bits

 Generating Tones Using PCM

6-67 TSP50C0x/1x Applications

Table 6–12.Relative Weights of DAC Magnitude Bits

Bit Position 11 10 9 8 7 6 5 4 3 2

Relative Weight 256 128 64 32 16 8 4 2 1 1

6.10.2 Timing Considerations in PCM Mode

While in PCM mode, the contents of the DAC are refreshed every 30
instruction cycles. The new data must be loaded with TASYN instructions at
an integer multiple of this rate. If the new data is not synchronous with the
30-cycle refresh rate, samples may be missed or doubled, resulting in tone
deterioration.

There are two approaches to keeping the TASYN instruction synchronous with
the DAC refresh. The first (and normally preferred) approach is to use the
level-1 interrupt to synchronize the program. When the mode register is set
with the PCM bit high, the LPC bit low, and the ENA1 bit high, a level-1 interrupt
is generated every 30 instruction cycles. If the interrupt-service routine is
longer than 30 instruction cycles, the interrupt is generated every 60
instruction cycles. The second approach is to program a tight loop using
exactly 30 or 60 instruction cycles per loop. This method works and avoids the
instruction-cycle overhead associated with the interrupt but is more difficult to
program reliably.

6.10.3 DTMF Program Walk-Through

This section contains a walk-through of the DTMF (dual-tone multifrequency
or touch-tone) program found in Appendix D, DTMF Program. The program
generates a series of DTMF tones triggered by PA0 going high and terminated
by PA0 going low.

The following code fragment shows the RAM locations used in the program.
For each of the two sine waves that are added together to make the DTMF
tone, a register that contains the angular difference between each data point
(PERIOD1 and PERIOD2) and a register that contains the current angle for
each frequency (TIME1 and TIME2) are required. Additionally, a temporary
buffer is required to hold the intermediate result (PCMBUF).

In this application, each of these registers must be twelve bits long to maintain
sufficient accuracy, which means that they must be in the lower 16 locations
of RAM. These are the same registers that are used in the LPC routines, which
is acceptable because the LPC can not be executed at the same time as PCM.

Generating Tones Using PCM

 6-68

0061 *
0062 * PCM register variables
0063 *
0064 0000 PERIOD1 EQU #00 –Period of 1st Wave
0065 0001 TIME1 EQU #01 –Cumulative angle of 1st wave
0066 0002 PERIOD2 EQU #02 –Period of 2nd Wave
0067 0003 TIME2 EQU #03 –Cumulative angle of 2nd wave
0068 0004 PCMBUF EQU #04 –Intermediate data buffer
0069 *
0070 *
0071 * LPC status variable locations
0072 *
0073 0010 MODE_BUF EQU #10 ;Mode register buffer
0074 *
0075 * Device Constants
0076 *
0077 007F MAX_RAM EQU #7F –Highest RAM location
0078 *
0079 * MODE Register Bit Definitions
0080 *
0081 0001 ENA1 EQU #01 –Enable Level 1 interrupt
0082 0002 LPC EQU #02 –Enable LPC synthesis
0083 0004 PCM EQU #04 –Enable PCM synthesis
0084 0008 ENA2 EQU #08 –Enable Level 2 interrupt
0085 0010 EXTROM EQU #10 –Set external ROM mode
0086 0020 RAMROM EQU #20 –Enable GETs from RAM
0087 0040 MASTER EQU #40 –Master/Slave Toggle
0088 0080 UNV EQU #80 –Enable Unvoiced excitation

Next are the DTMF frequency definition table and the sine wave look-up table.
Each line in the DTMF frequency definition table contains four bytes, two bytes
for each of the two frequencies that make up a DTMF tone. These two-byte
numbers represent the angular interval by which the sine wave must be
incremented between samples. For example, if the sample rate is
10,000 samples per second, the sine-wave table must be accessed at
intervals of 25.092 degrees in order to produce a 697-Hz sine wave.

697 cycles�second� 360 degrees�cycle
10, 000 samples�second

� 25.092 degrees�sample

 Generating Tones Using PCM

6-69 TSP50C0x/1x Applications

Note that 10,000 samples per second assumes a 9.6-MHz crystal and a
level-1 interrupt code length of between 30 and 60 instruction cycles.
Table 6–13 contains sample rates based on different assumptions:

Table 6–13.Sample Rates

Level-1 Interrupt Code Length

Crystal < 30 Instruction Cycles < 60 Instruction Cycles

7.68 MHz 16,000 samples/second 8,000 samples/second

9.6 MHz 20,000 samples/second 10,000 samples/second

The sine-wave table contains information for 32 points of a sine wave, spaced
11.25 degrees apart. Therefore, the number that was calculated is divided by
11.25 degrees to determine the number of sine-wave table entries to skip
between samples.

25.092 degrees�sample
11.25 degrees�entry

� 2.230 entries�sample

Finally, the number is normalized, truncated, and converted to a two-byte
hexadecimal value before placing it in the DTMF frequency definition table.

TRUNC (2.230� 128) � 285� 011Dh

The first byte on each line of the sine wave table is an amplitude and the
second byte is an amplitude offset. The offset byte is multiplied by a fractional
value and added to the amplitude byte to allow interpolation of the sine-wave
values. Because of the way the interpolation is performed, the fractional value
for odd-numbered table entries is negative and the fractional value for
even-numbered table entries is positive. Therefore, the first line of the table
has a positive fractional value that is multiplied by the offset byte and then
added to the amplitude byte to allow sin(0°� up through sin(11.25°� to be
represented. The second line of the table has a negative fractional value that
is multiplied by the offset byte and then added to the amplitude byte to allow
sin(22.5°) down through sin(11.25°) to be represented.

Generating Tones Using PCM

 6-70

0102 0024 80 DTMF RBYTE #01,#81,#02,#23 –zero = 941 Hz+1336 Hz
0103 0028 80 RBYTE #01,#1D,#01,#EF –One = 697 Hz+1209 Hz
0104 002C 80 RBYTE #01,#1D,#02,#23 –two = 697 Hz+1336 Hz
0105 0030 80 RBYTE #01,#1D,#02,#5D –three= 697 Hz+1477 Hz
0106 0034 80 RBYTE #01,#3B,#01,#EF –four = 770 Hz+1209 Hz
0107 0038 80 RBYTE #01,#3B,#02,#23 –five = 770 Hz+1336 Hz
0108 003C 80 RBYTE #01,#3B,#02,#5D –six = 770 Hz+1477 Hz
0109 0040 80 RBYTE #01,#5D,#01,#EF –seven= 852 Hz+1209 Hz
0110 0044 80 RBYTE #01,#5D,#02,#23 –eight= 852 Hz+1336 Hz
0111 0048 80 RBYTE #01,#5D,#02,#5D –nine = 852 Hz+1477 Hz
0112 *
0113 * Digitized sine wave table
0114 *
0115 004C 00 SINEW BYTE #00,#19 0 degrees––>11.25 degrees
0116 004E 31 BYTE #31,#18 11.25 degrees––>22.5 degrees
0117 0050 31 BYTE #31,#16 22.5 degrees––>33.75 degrees
.
.
.
0144 0086 CF BYTE #CF,#16 326.25 degrees––>337.5 degrees
0145 0088 CF BYTE #CF,#18 337.5 degrees––>348.75 degrees
0146 008A 00 BYTE #00,#19 348.75 degrees––>360 degrees

The executable code follows. The code that is used to clear RAM and the mode
register is not shown. After initializing the device, the program invokes the
subroutine that generates the tone, passing the table index that defines the
tone in the A register.

 Generating Tones Using PCM

6-71 TSP50C0x/1x Applications

0150 008C 6E GOGO TCA 0 –Tone ’Zero’
008D 00

0151 008E 00 CALL DO_PCM
008F B5

0152 *
0153 0090 6E TCA 1 –Tone ’One’

0091 01
0154 0092 00 CALL DO_PCM

0093 B5
.
.
.
0174 00AC 6E TCA 8 –Tone ’Eight’

00AD 08
0175 00AE 00 CALL DO_PCM

00AF B5
0176 *
0177 00B0 6E TCA 9 –Tone ’Nine’

00B1 09
0178 00B2 00 CALL DO_PCM

00B3 B5
0179 *
0180 00B4 3F SETOFF

The following code is used to wait until DTMF tone generation is requested.
The program loops until PA0 goes high.

0192 00B5 62 DO_PCM TCX #80 –Point to port A
00B6 80

0193 00B7 66 TSTCM #01 –Loop until A(0)
00B8 01

0194 00B9 40 BR GO_PCM goes high
00BA BD

0195 00BB 40 BR DO_PCM
00BC B5

Since each table entry in the DTMF definition table is four bytes long, the value
of the table index is quadrupled by left shifting it twice. Then the address of the
start of the table is added, and a LUAPS is executed to point the speech
address register to the desired table entry. The program uses two GET 8
instructions to fetch each number.

Generating Tones Using PCM

 6-72

0197 00BD 2E GO_PCM SALA –Adjust value to
0198 00BE 2E SALA table index
0199 00BF 70 ACAAC DTMF –Add offset of table

00C0 24
0200 00C1 6C LUAPS –Point to table entry
0201
0202 00C2 37 GET 8 –Get first frequency
0203 00C3 37 GET 8 period
0204 00C4 6A TAMD PERIOD1 –Store it away

00C5 00
0205
0206 00C6 37 GET 8 –Get second frequency
0207 00C7 37 GET 8 period
0208 00C8 6A TAMD PERIOD2 –Store it away

00C9 02

The program initializes other necessary RAM locations and sets the mode
register to enable PCM and level-1 interrupt.

0210 00CA 2F CLA –Clear cumulative data
0211 00CB 6A TAMD TIME1

00CC 01
0212 00CD 6A TAMD TIME2

00CE 03
0213
0214 00CF 62 TCX MODE_BUF –Turn on PCM and INT1

00D0 10
0215 00D1 64 ORCM PCM

00D2 04
0216 00D3 64 ORCM ENA1

00D4 01
0217 00D5 11 TMA
0218 00D6 1D TAMODE

The actual PCM code is in the interrupt-service routine. When the program is
not executing PCM code, PA0 is continually polled. When PA0 goes low, the
program disables PCM and returns for the next tone.

 Generating Tones Using PCM

6-73 TSP50C0x/1x Applications

0220 00D7 62 L1 TCX #80 –Loop until A(0)
00D8 80

0221 00D9 66 TSTCM #01 goes low
00DA 01

0222 00DB 40 BR L1
00DC D7

0223
0224 00DD 62 TCX MODE_BUF –Turn off PCM and INT1

00DE 10
0225 00DF 65 ANDCM ~PCM

00E0 FB
0226 00E1 65 ANDCM ~ENA1

00E2 FE
0227 00E3 11 TMA
0228 00E4 1D TAMODE
0229 00E5 3D RETN

The following code is the level-1 interrupt-service routine, INTPCM. This code
performs the actual PCM calculations, which are done twice, once for each of
the two sine waves. Then the results are summed together and transferred to
the DAC buffer with the TASYN instruction. Because the interrupt-service
routine is longer than 30 instruction cycles but less than 60 instruction cycles,
it is invoked every 60 instruction cycles.

First the delta angle is added to the cumulative angle to generate a new
cumulative angle.

0234 00E6 3B INTPCM INTGR
0235 00E7 20 CLX
0236
0237 00E8 14 TMAIX –Add delta angle to
0238 00E9 28 AMAAC cumulative angle
0239
0240 00EA 16 TAM –Save cumulative angle
0241 00EB 11 TMA –Discard high bits of cum

The cumulative angle is shifted right seven bits in order to strip off its fractional
part. The result is shifted left one bit to adjust for the two-byte size of each sine
wave table entry. The address of the start of the table is then added to get the
address of the desired table entry.

Generating Tones Using PCM

 6-74

0242
0243 00EC 68 AXCA 01 –right shift 7 bits

00ED 01
0244 00EE 2E SALA –Left 1 bit
0245 00EF 70 ACAAC SINEW –Add table offset

00F0 4C

The sine-wave amplitude byte is put into the B register and the offset byte is
put into the A register. The offset byte is multiplied by the fractional part of the
cumulative angle and the result is added to the amplitude byte to interpolate
between points. The SALA4 instruction correctly positions the value in the A
register for transfer to the DAC buffer. This intermediate value is scaled for
twist and then saved in PCMBUF before calculating the other wave.

0247 00F1 3C EXTSG
0248 00F2 6D LUAB –get data point
0249 00F3 3A IAC
0250 00F4 6B LUAA –get slope between points
0251 00F5 39 AXMA –interpolate slope
0252 00F6 2C ABAAC –add interpolated slope
0253 00F7 1B SALA4 and scale for DAC
0254 00F8 68 AXCA #78 –Scale value for twist

00F9 78
0255
0256 00FA 6A TAMD PCMBUF –Save intermediate data

00FB 04

The only difference between the calculation of the first wave and the second
wave is that the second wave is not scaled for twist. After both waves have
been calculated, the result for the second wave is placed in the B register, the
result for the first wave is retrieved to the A register, and the two values are
added together. The result is divided by two to correctly scale it. TASYN is used
to transfer the result to the DAC.

0279 010E 1A TAB –Store 2nd data point
0280
0281 010F 21 IXC –Retrieve 1st data point
0282 0110 11 TMA
0283
0284 0111 2C ABAAC –Sum two waves together
0285 0112 15 SARA and normalize
0286 0113 1C TASYN –transfer data to D/A
0287 0114 3E RETI

 TSP50C19 Programming

6-75 TSP50C0x/1x Applications

6.11 TSP50C19 Programming

The TSP50C19 is identical to the TSP50C14 except for those changes
necessary to expand the internal ROM to 32K bytes. These changes are
summarized as:

� Add bits B2 and B3 to port B.

� Modify initialization of bits B2 and B3 of port B so that the bits initialize to
totempole outputs programmed low.

� Add additional ROM paged by bits B2 and B3 of the port B.

6.11.1 Memory Block Selection

Addressing the internal ROM of the TSP50C19 is very different than addres-
sing the internal ROM of the TSP50C14. Table 6–14 shows the two 8K-byte
blocks of memory addressed by the TSP50C14.

Table 6–14.TSP50C14 Memory Blocks

Address 0K – 8K Address 8K – 16K

Block 1 Block 2

When the most significant bit of the register that is addressing ROM, (which
may be either the program counter, the A register, or the speech address
register) is high, then block 2 is selected. Otherwise, block 1 is selected.

For the TSP50C19, two additional 8K-byte blocks of ROM were added. To
address these additional blocks, two bits were added to the port B. Table 6–15
shows these two additional bits combined with the ROM address data and how
they select the additional blocks of ROM.

Table 6–15.TSP50C19 ROM Block Selection

B Port Bits

B3 B2 Address 0K – 8K Address 8K – 16K

0 0 Block1 Block2

0 1 Block1 Block3

1 0 Block1 Block4

1 1 Block1 Not Addressed

When bit 13 of the address is low, block 1 is selected regardless of the state
of the port B. When bit 13 is high, the value in port B bits 2 and 3 control the
block selected.

TSP50C19 Programming

 6-76

Setting both port B bits 2 and 3 to 1 selects a nonexistent block of memory. On
the EVM50C19 and the SEB50C19 attempts to read the data in the range of
2000h to 3FFFh with these two bits set to 1 reads data in the range of 0000h
to 1FFFh. On the production part itself, the result of such a read is all 1s.

When initialized with INIT, bits 2 and 3 of the port B are programmed to the
output state with the output data set to zero.

6.11.2 Data Block Selection

Although the production device initializes port B bits 2 and 3 to the output
mode; the development tools do not necessarily do this. Therefore, it is better
to use software commands that explicitly put the bits in the correct state. The
following example shows how to set the bits in block 4 to zero:

TCX #86 –Make B2 and B3

ORCM #C both outputs

TCX #87 –Set B3 high to

ORCM 8 select block 4

ANDCM #FB –Clear B2 to zero

The data from the selected block is available in the address range from 2000h
to 3FFFh. To access data in other blocks, select the appropriate block setting
or clear the appropriate bits in port B.

6.11.3 Preparing the Source Code

The ASM50C1x Assembler (version 1.09 or greater) does correctly prepare
files for the TSP50C19. The code is loaded into the different blocks that are
determined by the relative address. Table 6–16 lists the relative addresses and
the block accessed by that address.

Table 6–16.ASM50C1x Assembler Relative Address and Block Selected

Decimal Address
Hexadecimal

Address Block Addressed

0000 – 8191 0000 – 1FFF Block 1

8192 – 16383 2000 – 3FFFF Block 2

16384 – 24575 4000 – 5FFF Block 3

24576 – 32767 6000 – 7FFF Block 4

32768 – 33791 8000 – 83FF Excitation Function

 TSP50C19 Programming

6-77 TSP50C0x/1x Applications

6.11.4 Program Location in ROM

The assumption in the TSP50C19 design is that all program code is to be
located in block 1. If this is not the case, care should be taken that selection
of blocks is not changed unless the program is currently executing out of
block 1, unless completely duplicate program code is contained in all blocks.

A common practice is setting or clearing bits in the port B as a broadside load.
For example, to set bits 1 and 2 of the port B output buffer, the following code
could be executed:

TCA 3

TAMD #87

This assumes that port B bits 2 – 7 do not exist. On the TSP50C19, bits 2 and
3 do exist and this results in the page select being corrupted. Care should be
taken to not disturb the upper bits of the B register when setting or clearing the
lower bits. For example, the code could be rewritten to read:

TCX #87

ORCM 3

To clear the same bits, the following code works:

TCX #87

ANDCM~3

After changing the block selected, the GETn counter and the parallel-to-serial
register needs to be reinitialized before executing any GET instruction that
accesses data from any address above 8191 or 1FFFh.

 6-78

 Running Title—Attribute Reference

7-1 Chapter Title—Attribute Reference

Customer Information

Customer information on development cycle organization, development and
production sequence, mechanical information and packaging availability,
ordering information, and example ordering forms are included in this chapter.

Topic Page

7.1 Development Cycle 7-2.

7.2 Summary of Speech Development/Production Sequence 7-3.

7.3 Mechanical Information 7-4.

7.4 Ordering Information 7-11.

7.5 New Product Release Forms (TSP50C0x/1x) 7-11.

Chapter 7

Development Cycle

 7-2

7.1 Development Cycle

The TSP50C0x/1x development cycle is more complex than microprocessor
development, because it adds speech development to the normal
microprocessor development cycle. (Figure 7–1). The software design cycle
is similar to that for other microprocessors. Speech development is discussed
in Appendix A, Script Preparation and Speech Development Tools.

Figure 7–1. Speech Development Cycle

Speech Specification

Speech Recording

Speech Analysis

Speech Editing

Speech Evaluation

Software Debugging

System Evaluation

Prototype
Construction

Recording Script
Preparation

Speaker
Selection

Software
Design

Hardware
Design

Software
Writing

 Summary of Speech Development/Production Sequence

7-3 Customer Information

7.2 Summary of Speech Development/Production Sequence

The following is a summary of the speech development/production sequence:

1) For the speech development group at TI to accept a custom device pro-
gram, the customer must submit a new product release form (NPRF). This
form describes the custom features of the device (e.g., customer informa-
tion, prototype and production qualities, symbolization, etc.). A copy of the
NPRFs can be found in Section 7.5, New Product Release Forms.

2) TI generates the prototype photomask and processes, manufactures, and
tests 25 packaged or 196 die initial prototype devices for shipment to the
customer. Limited quantities of prototype devices in addition to the initial
prototypes may be purchased for use in customer evaluation. All prototype
devices are shipped against the following disclaimer: “It is understood
that, for expediency purposes, the initial prototype devices (and any addi-
tional prototype devices purchased) were assembled on a prototype (i.e.,
not production-qualified) manufacturing line whose reliability has not been
characterized. Therefore, the anticipated inherent reliability of these de-
vices cannot be expressly defined.”

3) The customer verifies the operation and quality of these prototypes and
responds with either written customer prototype approval or disapproval.

4) A nonrecurring mask charge that includes the initial prototype devices is
incurred by the customer.

5) A minimum purchase may be required during the first year of production.

Note:

Texas Instruments recommends that prototype devices not be used in pro-
duction systems because their expected end-use failure rate is undefined
but is predicted to be greater than standard qualified production.

Mechanical Information

 7-4

7.3 Mechanical Information

Most of the TSP50C0x/1x family is available in either a 16-pin, plastic,
dual-in-line N package (DIP) or a 20-pin plastic small-outline wide-body
(SOWB) DW package. The TSP50C12, because of its additional features, is
available only in a 68-pin plastic chip carrier package (PLCC) or in die form.

7.3.1 N016 300-Mil Plastic Dual-In-Line Package

The dual-in-line package of the TSP50C04/06/10/11/13/14/19 (Figure 7–2)
consists of a circuit mounted in a lead frame and encapsulated within an
electrically nonconductive plastic compound. The compound withstands
soldering temperature with no deformation, and circuit performance
characteristics remain stable when operated in high-humidity conditions.
Once the leads are compressed and inserted, sufficient tension is provided to
secure the package in the board during soldering. Leads require no additional
cleaning or processing when used in soldered assembly.

 Mechanical Information

7-5 Customer Information

Figure 7–2. TSP50C04/06/10/11/13/14/19 16-Pin N Package

N/R-PDIP-T** Plastic Dual-In-Line Package

4040049/A–10/93

0.020 (0,51) MIN

0.200 (5,08) MAX

0.125 (3,18) MIN

0.070 (1,778) MAX

0.035 (0,89) MAX

0.100 (2,54) TYP

1 8

916

A

0°–15°

PINS**
DIM

20

0.975
(24,77)

(23,88)
0.940

16

0.775
(19,69)

(18,92)
0.7450.745

(18,92)A MIN

A MAX (19,69)
0.775

14

16-PIN SHOWN

0.240 (6,10)
0.260 (6,60)

Seating Plane

(see Note C)

0.014 (0,356)
0.010 (0,254)0.010 (0,254)

0.014 (0,356)

0.310 (7,87)
0.290 (7,37)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Each lead centerline is located within 0.010 (0,254) of its true longitudinal position.

Mechanical Information

 7-6

7.3.2 DW020 Plastic Small-Outline Wide-Body (SOWB) Package

The DW020 plastic SOWB package of the TSP50C04/06/10/11/13/14/19 (Figure 7–3) consists
of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound
withstands soldering temperature with no deformation, and circuit performance characteristics
remain stable when operated in high-humidity conditions. Leads require no additional cleaning or
processing when used in soldered assembly.

 Mechanical Information

7-7 Customer Information

Figure 7–3. TSP50C04/06/10/11/13/14/19 20-Pin DW Package

DW/R-PDSO-G** Plastic Wide-Body Small-Outline Package
20-PIN SHOWN

0.419 (10,65)
0.400 (10,15)

0.293 (7,45)
0.299 (7,59)

0.093 (2,35)
0.104 (2,65)

0.012 (0,30)
0.004 (0,10)

0.009 (0,23)
0.012 (0,30)

0.050 (1,27)
0.016 (0,40)0.020 (0,51)

0.014 (0,35)

16

0.400
(10,16)A MIN

A MAX (10,41)
0.410 0.510

(12,95)

(12,70)
0.500

20

0.610
(15,49)

(15,24)
0.600

24

0.710
(18,03)

(17,78)
0.700

28
DIM

 PINS**

4040000/A–10/93

20 11

1 10

0.338 (8,58)
0.364 (9,24)

A

(see Note C)

Seating Plane

0.004 (0,10)

0°–8°

0.050 (1,27)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Leads are within 0.005 (0,127) radius of true position at maximum material condition.
D. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

Mechanical Information

 7-8

7.3.3 FN068 68-Lead Plastic Leaded Chip Carrier (PLCC) Package

The 68-lead plastic chip carrier package, which is available only for the
TSP50C12, consists of a circuit mounted on a lead frame and encapsulated
within an electrically nonconductive plastic compound. The compound
withstands soldering temperatures with no deformation, and circuit
performance characteristics remain stable when the device is operated in
high-humidity conditions. The package is intended for surface mounting on
solder lands with 1,27 (0.050) centers. Leads require no additional cleaning
or processing when used in soldered assembly.

When reflow soldering is required, refer to subsection 7.3.4,
TSP50C12 (PLCC) Reflow Soldering Precautions , on page 7–10 for
special handling instructions.

 Mechanical Information

7-9 Customer Information

Figure 7–4. TSP50C12 68-Lead PLCC Package

FN/S-PQCC-J** Plastic J-Leaded Chip Carrier

4040005/A–10/93

20-PIN SHOWN

JEDEC
OUTLINE PINS

NO.
OF

D/E

MIN MAX

MO-047AA 20 0.385 (9,78) 0.395 (10,03) 0.350 (8,89) 0.356 (9,04)

MIN MAX

0.456 (11,58)0.450 (11,43)0.495 (12,57)0.485 (12,32)28MO-047AB

44MO-047AC

52MO-047AD

0.048 (1,22)
0.042 (1,07)

X 45°

13 19

4

8

9 13

14

18

MAX

0.390 (9,91) 0.430 (10,92) 0.300 (7,62)

TYP

0.200 (5,08)0.330 (8,38)0.290 (7,34)

MAXMIN

0.890 (22,61) 0.930 (23,62) 0.800 (20,32)

1.000 (25,40)1.130 (28,70)1.090 (27,69)MO-047AF 84 1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41)

0.956 (24,28)0.950 (24,13)0.995 (25,27)0.985 (25,02)68MO-047AE

0.500 (12,70)0.630 (16,00)0.590 (14,99)0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)

0.600 (15,24)0.730 (18,54)0.690 (17,53)0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)

D3/E3

D2/E2

0.020 (0,51) MIN

0.120 (3,05) MAX

0.180 (4,57)

0.050 (1,27) TYP

D

D1

E1E

D2/E2 D3/E3D1/E1

Seating Plane

0.004 (0,10)

0.037 (0,94)
0.023 (0,58)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-047.

Mechanical Information

 7-10

7.3.4 TSP50C12 (PLCC) Reflow Soldering Precautions

Recent tests have identified an industry-wide problem experienced by surface
mounted devices exposed to reflow soldering temperatures. The problem
involves a package cracking phenomenon sometimes experienced by large
(e.g., 68-lead) plastic-leaded chip carrier (PLCC) packages during surface
mount manufacturing. This phenomenon can occur if the TSP50C12 is
exposed to uncontrolled levels of humidity prior to reflow solder. The moisture
can flash to steam during solder reflow, causing sufficient stress to crack the
package and compromise device integrity. If the TSP50C12 is being socketed,
no special handling precautions are required. In addition, once the device is
soldered into the board, no special handling precautions are required.

In order to minimize moisture absorption, TI ships the TSP50C12 in dry pack
shipping bags with an RH indicator card and moisture absorbing desiccant.
These moisture-barrier shipping bags adequately block moisture transmission
to allow shelf storage for 12 months from date of seal when stored at less than
60% relative humidity (RH) and less than 30°C. Devices may be stored outside
the sealed bags indefinitely if stored at less than 25% RH and 30°C.

Once the bag seal is broken, the devices should be stored at less than
60% RH and 30°C as well as reflow-soldered within two days of removal. In
the event that either of the above conditions is not met, TI recommends these
devices be baked in a clean oven at 125°C and 10% maximum RH for
24 hours. This restores the devices to their dry packed moisture level.

Note:

Shipping tubes will not withstand the 125°C baking process. Devices should
be transferred to a metal tray or tube before baking. Standard ESD precau-
tions should be followed.

In addition, TI recommends that the reflow process not exceed two solder
cycles and the temperature not exceed 220°C.

If you have any additional questions or concerns, please contact your local TI
representative.

 Ordering Information

7-11 Customer Information

7.4 Ordering Information

Because the TSP50C0x/1x are custom devices, they receive a distinct
identification as follows:

7.5 New Product Release Forms (TSP50C0x/1x)
The new product release form is used to track and document all the steps
involved in implementing a new speech code onto one of the parent speech
devices. Blank forms are provided in subsections 7.5.1 through 7.5.8 (note
that the addresses on these forms are subject to change). Copy the new
product release forms (NPRF) provided or get one from your TI field sales
office to initiate the implementation process. The next step is to complete
Section 1. As seen on the blank forms, Section 1 allows you to choose the
options pertinent to the parent device you wish to use. Section 1 also allows
you to choose your own customer part number used for ordering your parts.
If no customer part number is indicated, then TI defaults to the CSM1xxxxxx
part number for ordering purposes. Completion of the company name, project
name, and option fields is mandatory. Completion of all other fields in Section
1 is optional. After completion of Section 1, you must submit the NPRF (along
with your speech code) to the speech products group via your local TI field
sales office.

Once the speech products group receives the speech code and the NPRF, you
have completed the initial steps involved in implementing this code onto
production devices. Since all parent speech devices are mask programmable,
the speech code must first be converted into a format that the speech products
mask vendor can use to generate this new mask. This format is called a PG
output. Once this PG output is generated, the original speech code is
reconstructed from the PG output file and sent back to you for recheck. This
recheck ensures that the PG output file was generated correctly. Along with
the reconstructed speech code, the NPRF is also returned to you with Section
2 completed by TI. In this section, TI assigns your own CSMxxxxxx part
number and, in the case of packaged devices, TI also proposes a symbol
format to you. If you wish to deviate from the suggested symbol format, you
must consult TI for requested changes.

After you verify the reconstructed speech code and accept the proposed
symbol format, you are required to sign section 3 as authorization for TI to
generate the mask, prototypes, and risk units in accordance with the pertinent
purchase order. You then need to send or fax the NPRF to the speech products
group via the local TI field sales office. TI should have the prototypes shipped
to you approximately six weeks after receiving the NPRF with section 3 signed.
Once you receive these prototypes, you need to verify the functionality of the
prototypes, sign section 4, and send the NPRF (with section 4 signed) back
to TI. At this point, you can start ordering production units.

New Product Release Forms (TSP50C0x/1x)

 7-12

7.5.1 New Product Release Form for TSP50C04

 NEW PRODUCT RELEASE FORM
 FOR TSP50C04

SECTION 1. OPTION SELECTION
 This section is to be completed by the customer and sent to TI along with
 the microprocessor code and speech data.

Company:_____________________________ Division:_____________________________
Project Name:________________________ Purchase Order #:_____________________
Management Contact: _______________________________ Phone:(___) _____________
Technical Contact : _______________________________ Phone:(___) _____________
Customer Part Number:_____________________________

D/A Output (check one):
 ___ 2 pin push–pull (2D)
 ___ single pin single ended (1D) (not recommended)

Internal RC Oscillator (check one)
 ___ 9.6 Mhz (9.1Mhz – 10.1Mhz)
 ___ 7.68 Mhz (7.18Mhz – 8.18Mhz)
 ___ Mhz (+5% OR –5%)

Pulse width modulation (check one)
 ___ PW1
 ___ PW2

Package Type (check one):
 ___ N (16 Pin)
 ___ die
 ___ SOWB (20 Pin)
 ___ Tube
 ___ Reel

**
SECTION 2. ASSIGNMENT OF TI PRODUCTION PART NUMBER
 The TI Part Number is to be completed by TI.

TI Part Number: _____________

SECTION 2B. PACKAGE UNIT SYMBOLIZATION
 This section is to be completed by the customer.
 The first line of the symbolization is fixed. Except EIA#/Logo.
 The second and third lines are to be filled in by the customer.

Top Side Symbolization (16pin ’N’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | ??? YMLLLLT | YM: DATE CODE
 | <optional 13 char> | T: ASSY SITE
 | <optional 11 char> | ???: TI EIA NO. or
 +–––––––––––––––––––––––+ TI LOGO

For ’16N’ packages, the customer may choose between 980 or the TI LOGO on the
first line.

Top Side Symbolization (20pin ’SOWB’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | \T/ YMLLLLT | YM: DATE CODE
 | <optional 10 char> | T: ASSY SITE
 | <optional 6 char> | \T/: TI LOGO
 +–––––––––––––––––––––––+

 New Product Release Forms (TSP50C0x/1x)

7-13 Customer Information

**
SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS
 This section is to be completed by the customer and sent to TI after
 after the following data has been met:

 1) The customer has verified that the TI computer generated data
 matches the original data.

 2) The customer approves of the symbolization format in Section 2B.
 (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and
found to be correct, and I authorize TI to generate masks, prototypes, and
risk units in accordance with purchase order in section 1. above. In addition, in
the instance that this is a packaged device, I also authorize TI to use the sym-
bolization format illustrated in section 2B on all devices.

By:___ Title:________________________
Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

**
SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION
 This section is to be completed by the customer after prototype devices
 have been received and tested.

I hereby certify that the prototype devices have been received and tested and
found to be acceptable, and I authorize TI to start normal production in
accordance with purchase order #______________________.

By:___ Title:______________
Date:_____________________

**
Return to: Texas Instruments, Inc.
 Attn: Code Release Team
 P.O. Box 660199, M/S 8718
 Dallas, TX 75266–0199

OR Fax to: (214)480–7301
 Attn: Code Release Team

Have Questions?:
CALL: Code Release Team
 (214)480–4444

OR E–MAIL: code–rel@msp.sc.ti.com

New Product Release Forms (TSP50C0x/1x)

 7-14

7.5.2 New Product Release Form for TSP50C06

 NEW PRODUCT RELEASE FORM
 FOR TSP50C06

SECTION 1. OPTION SELECTION
 This section is to be completed by the customer and sent to TI along with
 the microprocessor code and speech data.

Company:_____________________________ Division:_____________________________
Project Name:________________________ Purchase Order #:_____________________
Management Contact: _______________________________ Phone:(___) _____________
Technical Contact : _______________________________ Phone:(___) _____________
Customer Part Number:_____________________________

D/A Output (check one):
 ___ 2 pin push–pull (2D)
 ___ single pin single ended (1D) (not recommended)

Internal RC Oscillator (check one)
 ___ 9.6 Mhz (9.1Mhz – 10.1Mhz)
 ___ 7.68 Mhz (7.18Mhz – 8.18Mhz)
 ___ Mhz (+5% OR –5%)

Pulse width modulation (check one)
 ___ PW1
 ___ PW2

Package Type (check one):
 ___ N (16 Pin)
 ___ die
 ___ SOWB (20 Pin)
 ___ Tube
 ___ Reel

**
SECTION 2. ASSIGNMENT OF TI PRODUCTION PART NUMBER
 The TI Part Number is to be completed by TI.

TI Part Number: _____________

SECTION 2B. PACKAGE UNIT SYMBOLIZATION
 This section is to be completed by the customer.
 The first line of the symbolization is fixed. Except EIA#/Logo.
 The second and third lines are to be filled in by the customer.

Top Side Symbolization (16pin ’N’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | ??? YMLLLLT | YM: DATE CODE
 | <optional 13 char> | T: ASSY SITE
 | <optional 11 char> | ???: TI EIA NO. or
 +–––––––––––––––––––––––+ TI LOGO

For ’16N’ packages, the customer may choose between 980 or the TI LOGO on the
first line.

Top Side Symbolization (20pin ’SOWB’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | \T/ YMLLLLT | YM: DATE CODE
 | <optional 10 char> | T: ASSY SITE
 | <optional 6 char> | \T/: TI LOGO
 +–––––––––––––––––––––––+

 New Product Release Forms (TSP50C0x/1x)

7-15 Customer Information

**
SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS
 This section is to be completed by the customer and sent to TI after
 after the following data has been met:

 1) The customer has verified that the TI computer generated data
 matches the original data.

 2) The customer approves of the symbolization format in Section 2B.
 (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and
found to be correct, and I authorize TI to generate masks, prototypes, and
risk units in accordance with purchase order in section 1. above. In addition, in
the instance that this is a packaged device, I also authorize TI to use the sym-
bolization format illustrated in section 2B on all devices.

By:___ Title:________________________
Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

**
SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION
 This section is to be completed by the customer after prototype devices
 have been received and tested.

I hereby certify that the prototype devices have been received and tested and
found to be acceptable, and I authorize TI to start normal production in
accordance with purchase order #______________________.

By:___ Title:______________
Date:_____________________

**
Return to: Texas Instruments, Inc.
 Attn: Code Release Team
 P.O. Box 660199, M/S 8718
 Dallas, TX 75266–0199

OR Fax to: (214)480–7301
 Attn: Code Release Team

Have Questions?:
CALL: Code Release Team
 (214)480–4444

OR E–MAIL: code–rel@msp.sc.ti.com

New Product Release Forms (TSP50C0x/1x)

 7-16

7.5.3 New Product Release Form for TSP50C10A

 NEW PRODUCT RELEASE FORM
FOR TSP50C10A

SECTION 1. OPTION SELECTION
 This section is to be completed by the customer and sent to TI along with
 the microprocessor code and speech data.

Company:_____________________________ Division:_____________________________
Project Name:________________________ Purchase Order #:_____________________
Management Contact: _______________________________ Phone:(___) _____________
Technical Contact : _______________________________ Phone:(___) _____________
Customer Part Number:_____________________________

D/A Output (check one):
 ___ 2 pin push–pull (2D)
 ___ single pin single ended (1D) (not recommended)
 ___ single pin double ended (1A)

Package Type (check one):
 ___ N (16 Pin)
 ___ die
 ___ SOWB (20 Pin)
 ___ Tube
 ___ Reel

**
SECTION 2. ASSIGNMENT OF TI PRODUCTION PART NUMBER
 The TI Part Number is to be completed by TI.

TI Part Number: _____________

SECTION 2B. PACKAGE UNIT SYMBOLIZATION
 This section is to be completed by the customer.
 The first line of the symbolization is fixed. Except EIA#/Logo.
 The second and third lines are to be filled in by the customer.

Top Side Symbolization (16pin ’N’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | ??? YMLLLLT | YM: DATE CODE
 | <optional 13 char> | T: ASSY SITE
 | <optional 11 char> | ???: TI EIA NO. or
 +–––––––––––––––––––––––+ TI LOGO

For ’16N’ packages, the customer may choose between 980 or the TI LOGO on the
first line.

Top Side Symbolization (20pin ’SOWB’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | \T/ YMLLLLT | YM: DATE CODE
 | <optional 10 char> | T: ASSY SITE
 | <optional 6 char> | \T/: TI LOGO
 +–––––––––––––––––––––––+

 New Product Release Forms (TSP50C0x/1x)

7-17 Customer Information

**
SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS
 This section is to be completed by the customer and sent to TI after
 after the following data has been met:

 1) The customer has verified that the TI computer generated data
 matches the original data.

 2) The customer approves of the symbolization format in Section 2B.
 (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and
found to be correct, and I authorize TI to generate masks, prototypes, and
risk units in accordance with purchase order in section 1. above. In addition, in
the instance that this is a packaged device, I also authorize TI to use the sym-
bolization format illustrated in section 2B on all devices.

By:___ Title:________________________
Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

**
SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION
 This section is to be completed by the customer after prototype devices
 have been received and tested.

I hereby certify that the prototype devices have been received and tested and
found to be acceptable, and I authorize TI to start normal production in
accordance with purchase order #______________________.

By:___ Title:______________
Date:_____________________

**
Return to: Texas Instruments, Inc.
 Attn: Code Release Team
 P.O. Box 660199, M/S 8718
 Dallas, TX 75266–0199

OR Fax to: (214)480–7301
 Attn: Code Release Team

Have Questions?:
CALL: Code Release Team
 (214)480–4444

New Product Release Forms (TSP50C0x/1x)

 7-18

7.5.4 New Product Release Form for TSP50C11A

 NEW PRODUCT RELEASE FORM
FOR TSP50C11A

SECTION 1. OPTION SELECTION
 This section is to be completed by the customer and sent to TI along with
 the microprocessor code and speech data.

Company:_____________________________ Division:_____________________________
Project Name:________________________ Purchase Order #:_____________________
Management Contact: _______________________________ Phone:(___) _____________
Technical Contact : _______________________________ Phone:(___) _____________
Customer Part Number:_____________________________

D/A Output (check one):
 ___ 2 pin push–pull (2D)
 ___ single pin single ended (1D) (not recommended)
 ___ single pin double ended (1A)

Package Type (check one):
 ___ N (16 Pin)
 ___ die
 ___ SOWB (20 Pin)
 ___ Tube
 ___ Reel

**
SECTION 2. ASSIGNMENT OF TI PRODUCTION PART NUMBER
 The TI Part Number is to be completed by TI.

TI Part Number: _____________

SECTION 2B. PACKAGE UNIT SYMBOLIZATION
 This section is to be completed by the customer.
 The first line of the symbolization is fixed. Except EIA#/Logo.
 The second and third lines are to be filled in by the customer.

Top Side Symbolization (16pin ’N’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | ??? YMLLLLT | YM: DATE CODE
 | <optional 13 char> | T: ASSY SITE
 | <optional 11 char> | ???: TI EIA NO. or
 +–––––––––––––––––––––––+ TI LOGO

For ’16N’ packages, the customer may choose between 980 or the TI LOGO on the
first line.

Top Side Symbolization (20pin ’SOWB’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | \T/ YMLLLLT | YM: DATE CODE
 | <optional 10 char> | T: ASSY SITE
 | <optional 6 char> | \T/: TI LOGO
 +–––––––––––––––––––––––+

 New Product Release Forms (TSP50C0x/1x)

7-19 Customer Information

**
SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS
 This section is to be completed by the customer and sent to TI after
 after the following data has been met:

 1) The customer has verified that the TI computer generated data
 matches the original data.

 2) The customer approves of the symbolization format in Section 2B.
 (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and
found to be correct, and I authorize TI to generate masks, prototypes, and
risk units in accordance with purchase order in section 1. above. In addition, in
the instance that this is a packaged device, I also authorize TI to use the sym-
bolization format illustrated in section 2B on all devices.

By:___ Title:________________________
Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

**
SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION
 This section is to be completed by the customer after prototype devices
 have been received and tested.

I hereby certify that the prototype devices have been received and tested and
found to be acceptable, and I authorize TI to start normal production in
accordance with purchase order #______________________.

By:___ Title:______________
Date:_____________________

**
Return to: Texas Instruments, Inc.
 Attn: Code Release Team
 P.O. Box 660199, M/S 8718
 Dallas, TX 75266–0199

OR Fax to: (214)480–7301
 Attn: Code Release Team

Have Questions?:
CALL: Code Release Team
 (214)480–4444

New Product Release Forms (TSP50C0x/1x)

 7-20

7.5.5 New Product Release Form for TSP50C12

 NEW PRODUCT RELEASE FORM
 FOR TSP50C12

SECTION 1. OPTION SELECTION
 This section is to be completed by the customer and sent to TI along with
 the microprocessor code and speech data.

Company:_____________________________ Division:_____________________________
Project Name:________________________ Purchase Order #:_____________________
Management Contact: _______________________________ Phone:(___) _____________
Technical Contact : _______________________________ Phone:(___) _____________
Customer Part Number:_____________________________

D/A Option:
 ___ 2 pin push–pull (2D)
 ___ single pin single ended (1D)
 ___ single pin double ended (1A)

LCD Drive:
 ___ Type A, Fast
 ___ Type B, Slow

Oscillator:
 ___ RC (Resistor/Capacitor)
 ___ CR (Ceramic Resonator)

Pulse width modulation (check one):
 ___ PW1
 ___ PW2

**
SECTION 2. ASSIGNMENT OF TI PRODUCTION PART NUMBER
 The TI Part Number is to be completed by TI.

TI Part Number: _____________

**
SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS
 This section is to be completed by the customer and sent to TI after
 after the following data has been met:

 1) The customer has verified that the TI computer generated data
 matches the original data.

I hereby certify that the TI generated verification data has been checked and
found to be correct, and I authorize TI to generate masks, prototypes, and
risk units in accordance with purchase order in section 1. above.

By:___ Title:________________________
Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

 New Product Release Forms (TSP50C0x/1x)

7-21 Customer Information

**
SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION
 This section is to be completed by the customer after prototype devices
 have been received and tested.

I hereby certify that the prototype devices have been received and tested and
found to be acceptable, and I authorize TI to start normal production in
accordance with purchase order #______________________.

By:___ Title:______________
Date:_____________________

**

Return to: Texas Instruments, Inc.
 Attn: Code Release Team
 P.O. Box 660199, M/S 8718
 Dallas, TX 75266–0199

OR Fax to: (214)480–7301
 Attn: Code Release Team

Have Questions?:
CALL: Code Release Team
 (214)480–4444

OR E–MAIL: code–rel@msp.sc.ti.com

New Product Release Forms (TSP50C0x/1x)

 7-22

7.5.6 New Product Release Form for TSP50C13

 NEW PRODUCT RELEASE FORM
 FOR TSP50C13D
SECTION 1. OPTION SELECTION
 This section is to be completed by the customer and sent to TI along with
 the microprocessor code and speech data.

Company:_____________________________ Division:_____________________________
Project Name:________________________ Purchase Order #:_____________________
Management Contact: _______________________________ Phone:(___) _____________
Technical Contact : _______________________________ Phone:(___) _____________
Customer Part Number:_____________________________

D/A Output (check one):
 ___ 2 pin push–pull (2D)
 ___ single pin single ended (1D) (not recommended)

Internal RC Oscillator (check one)
 ___ 9.6 Mhz (9.1Mhz – 10.1Mhz)
 ___ 7.68 Mhz (7.18Mhz – 8.18Mhz)
 ___ Mhz (+5% OR –5%)

Pulse width modulation (check one)
 ___ PW1
 ___ PW2
Package Type (check one):
 ___ N (16 Pin)
 ___ die
 ___ SOWB (20 Pin)
 ___ Tube
 ___ Reel

**
SECTION 2. ASSIGNMENT OF TI PRODUCTION PART NUMBER
 The TI Part Number is to be completed by TI.

TI Part Number: _____________

SECTION 2B. PACKAGE UNIT SYMBOLIZATION
 This section is to be completed by the customer.
 The first line of the symbolization is fixed. Except EIA#/Logo.
 The second and third lines are to be filled in by the customer.

Top Side Symbolization (16pin ’N’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | ??? YMLLLLT | YM: DATE CODE
 | <optional 13 char> | T: ASSY SITE
 | <optional 11 char> | ???: TI EIA NO. or
 +–––––––––––––––––––––––+ TI LOGO

For ’16N’ packages, the customer may choose between 980 or the TI LOGO on the
first line.

Top Side Symbolization (20pin ’SOWB’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | \T/ YMLLLLT | YM: DATE CODE
 | <optional 10 char> | T: ASSY SITE
 | <optional 6 char> | \T/: TI LOGO
 +–––––––––––––––––––––––+

 New Product Release Forms (TSP50C0x/1x)

7-23 Customer Information

**
SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS
 This section is to be completed by the customer and sent to TI after
 after the following data has been met:

 1) The customer has verified that the TI computer generated data
 matches the original data.

 2) The customer approves of the symbolization format in Section 2B.
 (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and
found to be correct, and I authorize TI to generate masks, prototypes, and
risk units in accordance with purchase order in section 1. above. In addition, in
the instance that this is a packaged device, I also authorize TI to use the sym-
bolization format illustrated in section 2B on all devices.

By:___ Title:________________________
Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

**
SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION
 This section is to be completed by the customer after prototype devices
 have been received and tested.

I hereby certify that the prototype devices have been received and tested and
found to be acceptable, and I authorize TI to start normal production in
accordance with purchase order #______________________.

By:___ Title:______________
Date:_____________________

**
Return to: Texas Instruments, Inc.
 Attn: Code Release Team
 P.O. Box 660199, M/S 8718
 Dallas, TX 75266–0199

OR Fax to: (214)480–7301
 Attn: Code Release Team

Have Questions?:
CALL: Code Release Team
 (214)480–4444

OR E–MAIL: code–rel@msp.sc.ti.com

New Product Release Forms (TSP50C0x/1x)

 7-24

7.5.7 New Product Release Form for TSP50C14

 NEW PRODUCT RELEASE FORM
 FOR TSP50C14D
SECTION 1. OPTION SELECTION
 This section is to be completed by the customer and sent to TI along with
 the microprocessor code and speech data.

Company:_____________________________ Division:_____________________________
Project Name:________________________ Purchase Order #:_____________________
Management Contact: _______________________________ Phone:(___) _____________
Technical Contact : _______________________________ Phone:(___) _____________
Customer Part Number:_____________________________

D/A Output (check one):
 ___ 2 pin push–pull (2D)
 ___ single pin single ended (1D) (not recommended)

Internal RC Oscillator (check one)
 ___ 9.6 Mhz (9.1Mhz – 10.1Mhz)
 ___ 7.68 Mhz (7.18Mhz – 8.18Mhz)
 ___ Mhz (+5% OR –5%)

Pulse width modulation (check one)
 ___ PW1
 ___ PW2
Package Type (check one):
 ___ N (16 Pin)
 ___ die
 ___ SOWB (20 Pin)
 ___ Tube
 ___ Reel

**
SECTION 2. ASSIGNMENT OF TI PRODUCTION PART NUMBER
 The TI Part Number is to be completed by TI.

TI Part Number: _____________

SECTION 2B. PACKAGE UNIT SYMBOLIZATION
 This section is to be completed by the customer.
 The first line of the symbolization is fixed. Except EIA#/Logo.
 The second and third lines are to be filled in by the customer.

Top Side Symbolization (16pin ’N’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | ??? YMLLLLT | YM: DATE CODE
 | <optional 13 char> | T: ASSY SITE
 | <optional 11 char> | ???: TI EIA NO. or
 +–––––––––––––––––––––––+ TI LOGO

For ’16N’ packages, the customer may choose between 980 or the TI LOGO on the
first line.

Top Side Symbolization (20pin ’SOWB’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | \T/ YMLLLLT | YM: DATE CODE
 | <optional 10 char> | T: ASSY SITE
 | <optional 6 char> | \T/: TI LOGO
 +–––––––––––––––––––––––+

 New Product Release Forms (TSP50C0x/1x)

7-25 Customer Information

**
SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS
 This section is to be completed by the customer and sent to TI after
 after the following data has been met:

 1) The customer has verified that the TI computer generated data
 matches the original data.

 2) The customer approves of the symbolization format in Section 2B.
 (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and
found to be correct, and I authorize TI to generate masks, prototypes, and
risk units in accordance with purchase order in section 1. above. In addition, in
the instance that this is a packaged device, I also authorize TI to use the sym-
bolization format illustrated in section 2B on all devices.

By:___ Title:________________________
Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

**
SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION
 This section is to be completed by the customer after prototype devices
 have been received and tested.

I hereby certify that the prototype devices have been received and tested and
found to be acceptable, and I authorize TI to start normal production in
accordance with purchase order #______________________.

By:___ Title:______________
Date:_____________________

**
Return to: Texas Instruments, Inc.
 Attn: Code Release Team
 P.O. Box 660199, M/S 8718
 Dallas, TX 75266–0199

OR Fax to: (214)480–7301
 Attn: Code Release Team

Have Questions?:
CALL: Code Release Team
 (214)480–4444

OR E–MAIL: code–rel@msp.sc.ti.com

New Product Release Forms (TSP50C0x/1x)

 7-26

7.5.8 New Product Release Form for TSP50C19

 NEW PRODUCT RELEASE FORM
 FOR TSP50C19
SECTION 1. OPTION SELECTION
 This section is to be completed by the customer and sent to TI along with
 the microprocessor code and speech data.

Company:_____________________________ Division:_____________________________
Project Name:________________________ Purchase Order #:_____________________
Management Contact: _______________________________ Phone:(___) _____________
Technical Contact : _______________________________ Phone:(___) _____________
Customer Part Number:_____________________________

D/A Output (check one):
 ___ 2 pin push–pull (2D)
 ___ single pin single ended (1D) (not recommended)

Internal RC Oscillator (check one)
 ___ 9.6 Mhz (9.1Mhz – 10.1Mhz)
 ___ 7.68 Mhz (7.18Mhz – 8.18Mhz)
 ___ Mhz (+5% OR –5%)
Pulse width modulation (check one)
 ___ PW1
 ___ PW2
Package Type (check one):
 ___ N (16 Pin)
 ___ die
 ___ SOWB (20 Pin)
 ___ Tube
 ___ Reel

**
SECTION 2. ASSIGNMENT OF TI PRODUCTION PART NUMBER
 The TI Part Number is to be completed by TI.

TI Part Number: _____________

SECTION 2B. PACKAGE UNIT SYMBOLIZATION
 This section is to be completed by the customer.
 The first line of the symbolization is fixed. Except EIA#/Logo.
 The second and third lines are to be filled in by the customer.

Top Side Symbolization (16pin ’N’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | ??? YMLLLLT | YM: DATE CODE
 | <optional 13 char> | T: ASSY SITE
 | <optional 11 char> | ???: TI EIA NO. or
 +–––––––––––––––––––––––+ TI LOGO

For ’16N’ packages, the customer may choose between 980 or the TI LOGO on the
first line.

Top Side Symbolization (20pin ’SOWB’)
 +–––––––––––––––––––––––+ LLLL: LOT TRACE CODE
 | \T/ YMLLLLT | YM: DATE CODE
 | <optional 10 char> | T: ASSY SITE
 | <optional 6 char> | \T/: TI LOGO
 +–––––––––––––––––––––––+

 New Product Release Forms (TSP50C0x/1x)

7-27 Customer Information

**
SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS
 This section is to be completed by the customer and sent to TI after
 after the following data has been met:

 1) The customer has verified that the TI computer generated data
 matches the original data.

 2) The customer approves of the symbolization format in Section 2B.
 (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and
found to be correct, and I authorize TI to generate masks, prototypes, and
risk units in accordance with purchase order in section 1. above. In addition, in
the instance that this is a packaged device, I also authorize TI to use the sym-
bolization format illustrated in section 2B on all devices.

By:___ Title:________________________
Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

**
SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION
 This section is to be completed by the customer after prototype devices
 have been received and tested.

I hereby certify that the prototype devices have been received and tested and
found to be acceptable, and I authorize TI to start normal production in
accordance with purchase order #______________________.

By:___ Title:______________
Date:_____________________

**
Return to: Texas Instruments, Inc.
 Attn: Code Release Team
 P.O. Box 660199, M/S 8718
 Dallas, TX 75266–0199

OR Fax to: (214)480–7301
 Attn: Code Release Team

Have Questions?:
CALL: Code Release Team
 (214)480–4444

OR E–MAIL: code–rel@msp.sc.ti.com

 7-28

 Running Title—Attribute Reference

A-1

Appendix A

Script Preparation and
Speech Development Tools

Script preparation and speech development can be done either by the
customer or TI. The following are major considerations during the process.

Topic Page

A.1 Script Generation A-2.

A.2 Speech Development Tools A-5.

Appendix A

Script Generation

A-2

A.1 Script Generation

The first step in designing a system using LPC is the generation of a system
specification, including a script. A coding table that yields the best data rate
for the voice selected at the level of quality required needs to be selected. The
voice that is selected needs to be tested to verify that it synthesizes well. TI
can recommend voices, or new voices can be auditioned. Each coding table
and voice has its characteristic data rate. This can be used with a word count
to determine the amount of memory required to store the speech for the
system.

There are three approaches to word use in a speech script: maximal reuse,
partial concatenation, and no concatenation. The original synthetic products
tended to use maximal reuse because memory was expensive and quality
expectations were low. In maximal reuse systems, only one sample of each
word is used regardless of the context in which the word occurs. The speech
sounds robotic; it is flat with no inflection and there are delays between words.
This yields good intelligibility at low data rates but does not provide natural
quality. Natural speech has different inflections depending on the position of
the word in a sentence and on whether the sentence is a question, statement,
or an order. Additionally, all the words are run together; each word is changed
by the last sound of the word before it and the first sound of the word after it.

Recording and synthesizing each phrase separately is the easiest way to get
natural speech, but memory constraints often force compromises. An expert
speech editor can look at a script that lists each word in each context in which
it occurs and determine what contexts are similar enough to permit reuse.

Once a system script is defined and the coding table selected, a recording
script must be generated. For systems with partial reuse, this script must
include a recording of each word in all necessary contexts. The other two
approaches are more straightforward with a word list or a phrase list being all
that is required.

A.1.1 Speaker Selection

While the scripts are being generated, a speaker should be selected to read
the script. If possible, several voices should be recorded and analyzed, as all
voices do not analyze equally well.

A.1.2 Speech Collection

Collecting speech for any medium, be it LPC or digital tape, requires significant
effort. For high-quality speech, a recording studio and a professional speaker

 Script Generation

A-3 Script Preparation and Speech Development Tools

are required. It is possible to achieve acceptable quality with a professional
speaker and a quiet room. Nonprofessional speakers have trouble
maintaining uniform levels, speaking properly, and providing the expression
and inflection required. Additionally, the strain of speaking for long periods of
time in a controlled manner is considerable. Nonprofessional speakers are
best used only for prototyping.

During the session, it may be necessary to experiment with inflection and
expression to find the best approach. Ideally, the person making the final
decision on product content and esthetics should be at the recording session.
Leaving this task to others leads to repeat visits to the studio.

There are various techniques that can be used to ensure that the speech
analyzes and synthesizes properly. Certain consonants need to be
emphasized and spoken more clearly than they are in normal speech. The TI
SDS5000 development tool (see Figure A–1) provides immediate feedback
for synthetic speech making, making the collecting process much easier for
inexperienced users.

The actual collection process is fairly simple. The speech is converted into
digital form and then analyzed with a computationally intensive algorithm. The
SDS5000 uses a TMS32020 digital signal processing chip to permit very rapid
analysis. It consists of two boards that fit into an IBM PC ,software, and a
documentation package. One of the boards contains the TMS32020 and
related circuitry, and the other contains an analog-to-digital converter, a
digital-to-analog converter, digital filters, amplifiers, and speech synthesizers
to record and play digitized and synthetic speech. The software supports
speech collection, analysis, and editing with extensive use of menus,
windows, and other user-friendly interfaces. TI uses an algorithm that provides
high quality but that requires low levels of phase distortion. For this reason,
audio tape should not be used to collect speech. However, digital audio tape
can be used.

A.1.3 LPC Editing

The speech often needs to be edited, both to define the boundaries of the
words and to mask imperfections in the model, the analysis, and the speaker.
Limited changes can be made to change inflection and emphasis, but the best
quality is achieved by having the desired sound and inflection well recorded.
Skillful editors can also reduce data rates significantly from those of analyzed
speech. Good editing is a difficult skill to learn, requiring a good ear, linguistic
knowledge, and a familiarity with computers. TI offers the SDS5000 speech
development system, which eases many of these tasks by analyzing the
speech immediately to provide quick feedback and to permit rerecording if the
synthetic speech does not offer the desired quality.

Script Generation

A-4

A.1.4 Pitfalls

All speech interfaces, LPC or not, are human interfaces, so they are hard to
design. Building a prototype system is often useful. The SDS5000 supports
quick prototyping.

LPC provides very-low-data-rate speech by virtue of its close modeling of the
human vocal tract. Other sounds may or may not be modeled accurately by
this model. The best way to find out is to try recording and analyzing the sound
on the SDS5000.

 Speech Development Tools

A-5 Script Preparation and Speech Development Tools

A.2 Speech Development Tools

The following figures show the various development tools and the lists the fea-
tures of each.

Figure A–1.SDS5000

SDS5000
IBM PC/XT/AT

SDS5000 Features

� High-speed speech analysis (2× real time)
� Graphical and numerical speech editing
� Microphone and line-level inputs
� Headphone outputs
� Supports TSP5220, TSP50C4X, TSP50C1x devices
� Requires IBM PC/XT, PC/AT, or compatible with CGA, EGA, or VGA card
� Uses TMS32020 digital signal processor

Note:

A hard disk drive and tape backup system are strongly suggested for the
SDS5000 development system.

Speech Development Tools

A-6

Figure A–2.EVM50C1X

EVM50C1x

IBM PC/XT/AT

EVM50C1X Features

� In-circuit emulation
� Hardware breakpoints
� Single step
� Examine/modify registers/memory
� Includes assembler
� Requires 1 card slot in IBM PC, PC/XT, PC/AT, and compatibles

Figure A–3.SEB50C1X

EPROM
Programmer

SEB50C1x

SEB50C1X Features

� In-circuit emulation
� Small size, low power consumption
� Ideal for demonstration and field test
� Requires industry-standard EPROM (TMS27C256)

Figure A–4.SEB60CXX

EPROM
Programmer

SEB60Cxx

SEB60CXX Features

� In-circuit emulation of up to four TSP60CXXs
� Small size, low power consumption
� Ideal for debugging, demonstration, and field test
� Requires industry-standard EPROMs (TMS27C256)

 Speech Development Tools

A-7 Script Preparation and Speech Development Tools

Figure A–5.ADP50C12

EVM50C1x

IBM PC/XT/AT
ADP50C12

EPROM
Programmer

ADP50C12

~

ADP50C12 Features

� Emulation of TSP50C12 for development purposes possible when using
ADP50C12 and EVM50C1x

� Emulation of TSP50C12 for demonstration and field test purposes
possible when using the ADP50C12 with an EPROM

Speech Development Tools

A-8

Figure A–6.FAB50C1x

EVM50C1x

IBM PC/XT/AT
FAB50C1x

SDS5000
IBM PC/XT/AT

FAB50C1x

EPROM
Programmer

SEB50C1x
FAB50C1x

FAB50C1x Features

� Emulation of TSP50C04/06/13/14/19 DAC output
� Can be connected to the SDS5000, EVM50C1x, SEB50C1x

 Running Title—Attribute Reference

B-1 Chapter Title—Attribute Reference

Appendix A

TSP50C0x/1x Sample Synthesis Program

This chapter contains the code for a sample synthesis program that runs on
the TSP50C0x/1x family of speech synthesizers. It has the TSP50C0x/1x
device speak numbers from one to five.

Appendix B

TSP50C0x/1x Sample Synthesis Program

B-2

0001 OPTION BUNLIST,DUNLIST,PAGEOF

0002 *––*
0003 * TSP50C1x LPC SYNTHESIS PROGRAM *

0004 * *
0005 * This is a sample speech synthesis program *
0006 * which runs on the TSP50C1x family of speech *

0007 * synthesis microprocessors. It simply speaks the *
0008 * numbers from one to five. *

0009 * *
0010 * This program uses the D6 Coding table format. *
0011 * *

0012 *––*
0013 * COPYRIGHT 1989, 1992 TI – SPEECH PRODUCTS *

0014 *––*
0015 * RAM MAP *
0016 *+–––*

0017 * +––––+––––+––––+––––+––––+––––+––––+––––+
0018 * | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |

0019 * +––––+––––+––––+––––+––––+––––+––––+––––+
0020 * | | EN | K12| K11| K10| K9 | K8 | K7 |
0021 * | | | | | | | | |

0022 * +––––+––––+––––+––––+––––+––––+––––+––––+
0023 * | 08 | 09 | 0A | 0B | 0C | 0D | 0E | 0F |
0024 * +––––+––––+––––+––––+––––+––––+––––+––––+

0025 * | K6 | K5 | K4 | K3 | K2 | K1 | C1 | C2 |
0026 * | | | | | | | | |

0027 * +––––+––––+––––+––––+––––+––––+––––+––––+
0028 * | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
0029 * +––––+––––+––––+––––+––––+––––+––––+––––+

0030 * | EN | EN | PH | PH | K1 |
0031 * | V2 | V1 | V2 | V1 | V2 |

0032 * +––––+––––+––––+––––+––––+––––+––––+––––+
0033 * | 18 | 19 | 1A | 1B | 1C | 1D | 1E | 1F |
0034 * +––––+––––+––––+––––+––––+––––+––––+––––+

0035 * | K1 | K2 | K2 | K3 |
0036 * | V1 | V2 | V1 | V2 |

0037 * +––––+––––+––––+––––+––––+––––+––––+––––+
0038 * | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
0039 * +––––+––––+––––+––––+––––+––––+––––+––––+

0040 * | K3 | K4 | K4 | K5 | K5 |
0041 * | V1 | V2 | V1 | V2 | V1 |

0042 * +––––+––––+––––+––––+––––+––––+––––+––––+
0043 * | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F |
0044 * +––––+––––+––––+––––+––––+––––+––––+––––+

0045 * | K6 | K6 | K7 | K7 | K8 | K8 | K9 | K9 |
0046 * | V2 | V1 | V2 | V1 | V2 | V1 | V2 | V1 |
0047 * +––––+––––+––––+––––+––––+––––+––––+––––+

 TSP50C0x/1x Sample Synthesis Program

B-3 TSP50C0x/1x Sample Synthesis Program

0048 * | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |

0049 * +––––+––––+––––+––––+––––+––––+––––+––––+
0050 * | K10| K10| K11| K11| K12| K12|TIMR|SCAL|

0051 * | V2 | V1 | V2 | V1 | V2 | V1 | | |
0052 * +––––+––––+––––+––––+––––+––––+––––+––––+
0053 * | 38 | 39 | 3A | 3B | 3C | 3D | 3E | 3F |

0054 * +––––+––––+––––+––––+––––+––––+––––+––––+
0055 * |FLAG|FLAG|MODE|ADR |ADR | | | |

0056 * | | 1 |BUF |MSB |LSB | | | |
0057 * +––––+––––+––––+––––+––––+––––+––––+––––+
0058 * | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

0059 * +––––+––––+––––+––––+––––+––––+––––+––––+
0060 * | | | | | | | | |

0061 * | | | | | | | | |
0062 * +––––+––––+––––+––––+––––+––––+––––+––––+
0063 * | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F |

0064 * +––––+––––+––––+––––+––––+––––+––––+––––+
0065 * | | | | | | | | |

0066 * | | | | | | | | |
0067 * +––––+––––+––––+––––+––––+––––+––––+––––+
0068 * | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |

0069 * +––––+––––+––––+––––+––––+––––+––––+––––+
0070 * | | | | | | | | |
0071 * | | | | | | | | |

0072 * +––––+––––+––––+––––+––––+––––+––––+––––+
0073 * | 58 | 59 | 5A | 5B | 5C | 5D | 5E | 5F |

0074 * +––––+––––+––––+––––+––––+––––+––––+––––+
0075 * | | | | | | | | |
0076 * | | | | | | | | |

0077 * +––––+––––+––––+––––+––––+––––+––––+––––+
0078 * | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |

0079 * +––––+––––+––––+––––+––––+––––+––––+––––+
0080 * | | | | | | | | |
0081 * | | | | | | | | |

0082 * +––––+––––+––––+––––+––––+––––+––––+––––+
0083 * | 68 | 69 | 6A | 6B | 6C | 6D | 6E | 6F |

0084 * +––––+––––+––––+––––+––––+––––+––––+––––+
0085 * | | | | | | | | |
0086 * | | | | | | | | |

0087 * +––––+––––+––––+––––+––––+––––+––––+––––+
0088 * | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 |

0089 * +––––+––––+––––+––––+––––+––––+––––+––––+
0090 * | | | | | | | | |
0091 * | | | | | | | | |

0092 * +––––+––––+––––+––––+––––+––––+––––+––––+
0093 * | 78 | 79 | 7A | 7B | 7C | 7D | 7E | 7F |
0094 * +––––+––––+––––+––––+––––+––––+––––+––––+

TSP50C0x/1x Sample Synthesis Program

B-4

0095 * | | | | | | | | |

0096 * | | | | | | | | |
0097 * +––––+––––+––––+––––+––––+––––+––––+––––+

0098 *
0099 *––*
0100 * ADDRESS LABELS FOR SYNTHESIS ROUTINE *

0101 *––*
0102 **

0103 * SYNTHESIZER RAM LOCATIONS
0104 **
0105 * NOTE – NEVER CHANGE LOCATIONS #01 TO #0F

0106 *
0107 0001 EN EQU #01 –Energy working value

0108 0002 K12 EQU #02 –K12 Working Value
0109 0003 K11 EQU #03 –K11 Working Value
0110 0004 K10 EQU #04 –K10 Working Value

0111 0005 K9 EQU #05 –K9 Working Value
0112 0006 K8 EQU #06 –K8 Working Value

0113 0007 K7 EQU #07 –K7 Working Value
0114 0008 K6 EQU #08 –K6 Working Value
0115 0009 K5 EQU #09 –K5 Working Value

0116 000A K4 EQU #0A –K4 Working Value
0117 000B K3 EQU #0B –K3 Working Value
0118 000C K2 EQU #0C –K2 Working Value

0119 000D K1 EQU #0D –K1 Working Value
0120 000E C1 EQU #0E –C1 Parameter

0121 000F C2 EQU #0F –C2 Parameter
0122 0010 ENV2 EQU #10 –ENERGY New Value MSB
0123 0011 ENV1 EQU #11 –ENERGY Current Value MSB

0124 0012 PHV2 EQU #12 –PITCH New Value MSB
0125 0014 PHV1 EQU #14 –PITCH Current Value MSB

0126 0016 K1V2 EQU #16 –K1 New Value MSB
0127 0018 K1V1 EQU #18 –K1 Current Value MSB
0128 001A K2V2 EQU #1A –K2 New Value MSB

0129 001C K2V1 EQU #1C –K2 Current Value MSB
0130 001E K3V2 EQU #1E –K3 New Value MSB

0131 0020 K3V1 EQU #20 –K3 Current Value MSB
0132 0022 K4V2 EQU #22 –K4 New Value MSB
0133 0024 K4V1 EQU #24 –K4 Current Value MSB

0134 0026 K5V2 EQU #26 –K5 New Value
0135 0027 K5V1 EQU #27 –K5 Current Value

0136 0028 K6V2 EQU #28 –K6 New Value
0137 0029 K6V1 EQU #29 –K6 Current Value
0138 002A K7V2 EQU #2A –K7 New Value

0139 002B K7V1 EQU #2B –K7 Current Value
0140 002C K8V2 EQU #2C –K8 New Value
0141 002D K8V1 EQU #2D –K8 Current Value

 TSP50C0x/1x Sample Synthesis Program

B-5 TSP50C0x/1x Sample Synthesis Program

0142 002E K9V2 EQU #2E –K9 New Value

0143 002F K9V1 EQU #2F –K9 Current Value
0144 0030 K10V2 EQU #30 –K10 New Value

0145 0031 K10V1 EQU #31 –K10 Current Value
0146 0032 K11V2 EQU #32 –K11 New Value
0147 0033 K11V1 EQU #33 –K11 Current Value

0148 0034 K12V2 EQU #34 –K12 New Value
0149 0035 K12V1 EQU #35 –K12 Current Value

0150 *
0151 *
0152 * LPC status variable locations

0153 *
0154 0036 TIMER EQU #36 –Stored Timer value for update

0155 0037 SCALE EQU #37 –Interpolation factor INTP
0156 0038 FLAGS EQU #38 –Flags used in LPC synthesis
0157 0039 FLAG1 EQU #39 –Flags used in LPC synthesis

0158 003A MODE_BUF EQU #3A –Stored value of Mode register
0159 003B ADR_MSB EQU #3B –MSB of address

0160 003C ADR_LSB EQU #3C –LSB of address
0161 **
0162 * Constant Definitions

0163 **
0164 *
0165 * Bit Size of Speech parameters

0166 *
0167 0004 EBITS EQU 4 –Number of Energy Bits

0168 0007 PBITS EQU 7 –Number of Pitch Bits
0169 0001 RBITS EQU 1 –Number of Repeat Bits
0170 0006 K1BITS EQU 6 –Number of K1 Bits

0171 0006 K2BITS EQU 6 –Number of K2 Bits
0172 0005 K3BITS EQU 5 –Number of K3 Bits

0173 0005 K4BITS EQU 5 –Number of K4 Bits
0174 0004 K5BITS EQU 4 –Number of K5 Bits
0175 0004 K6BITS EQU 4 –Number of K6 Bits

0176 0004 K7BITS EQU 4 –Number of K7 Bits
0177 0003 K8BITS EQU 3 –Number of K8 Bits

0178 0003 K9BITS EQU 3 –Number of K9 Bits
0179 0003 K10BITS EQU 3 –Number of K10 Bits
0180 0000 K11BITS EQU 0 –Number of K11 Bits

0181 0000 K12BITS EQU 0 –Number of K12 Bits
0182 *

0183 * Prescale Values
0184 *
0185 * PSvalue = TRUNC(Samples * 2 * 30/256)

0186 *
0187 * This comes from the fact that samples come every 30
0188 * instruction cycles in LPC mode. The factor of 2

TSP50C0x/1x Sample Synthesis Program

B-6

0189 * accounts for the cycle steal that happens in

0190 * LPC mode. When not in LPC mode, samples come
0191 * every 60 instruction cycles, so it comes out the

0192 * same. The 256 divider is the full scale Timer
0193 * register value.
0194 *

0195 *
0196 00C8 SAMPLES EQU 200 –Samples per frame

0197 002E PSVALUE EQU (SAMPLES*60/256) –Prescale Value
0198 *
0199 * Device Constants

0200 *
0201 0F61 C1_Value EQU #F61 –C1 Value

0202 0B67 C2_Value EQU #B67 –C2 Value
0203 007F MAX_RAM EQU #7F –Highest RAM location
0204 *

0205 * Special Energy Values
0206 *

0207 000F ESTOP EQU 15 –Stop code
0208 0000 ESILENCE EQU 0 –Silence Code
0209 *

0210 * Special Pitch Value
0211 *
0212 0000 PUnVoiced EQU 0 –UnVoiced Frame Code

0213 *
0214 *

0215 * End of sentence signal
0216 *
0217 00FF StopWord EQU #FF

0218 *
0219 * FLAGS bit usage (and Set Masks)

0220 *
0221 0001 STOPFLAG EQU #01 –Stop frame reached = 1
0222 0002 R_FLAG EQU #02 –Repeat Frame = 1

0223 0004 Update_Flg EQU #04 –Set high on update
0224 0008 Sil_Flg1 EQU #08 –New frame is silent = 1

0225 0010 Unv_Flg1 EQU #10 –New frame is unvoiced = 1
0226 0020 Int_Inh EQU #20 –Inhibit interpolation = 1
0227 0040 Sil_Flg2 EQU #40 –Current frame silent = 1

0228 0080 Unv_Flg2 EQU #80 –Current frame unvoiced = 1
0229 *

0230 * FLAG1 bit usage (and Set Masks)
0231 *
0232 0001 Int_Off EQU #01 –Disable INTP routine = 1

0233 *
0234 * MODE Register Bit Definitions
0235 *

 TSP50C0x/1x Sample Synthesis Program

B-7 TSP50C0x/1x Sample Synthesis Program

0236 0001 INT1 EQU #01 –Enable Level 1 interrupt

0237 0002 LPC EQU #02 –Enable LPC synthesis
0238 0004 PCM EQU #04 –Enable PCM synthesis

0239 0008 INT2 EQU #08 –Enable Level 2 interrupt
0240 0010 EXTROM EQU #10 –Set external ROM mode
0241 0020 RAMROM EQU #20 –Enable GETs from RAM

0242 0040 MASTER EQU #40 –Master/Slave Toggle
0243 0080 UNV EQU #80 –Enable Unvoiced excitation

0244 ***
0245 * Start of program
0246 ***

0247 0000 AORG #0000
0248 0000 69 TMAD 0

0001 00
0249
0250 *––––––––––Initialize mode register–––––––––––––––––––––––*

0251
0252 0002 2F CLA

0253 0003 1D TAMODE
0254
0255 *––––––––––Clear all ram to zero––––––––––––––––––––––––––*

0256
0257 0004 20 CLX –Start at bottom of RAM
0258 0005 13 RAM_LOOP TAMIX –Clear RAM, increment pointer

0259 0006 61 XGEC MAX_RAM+1 –Finished all RAM?
0007 80

0260 0008 40 BR GO yes, skip vector tables
0009 24

0261 000A 40 BR RAM_LOOP no, loop back

000B 05
0262 *

0263 ***
0264 * Interrupt vectors
0265 ***

0266 0010 AORG #0010
0267 0010 A2 SBR INT2_01 –Timer Underflow, PCM=0, LPC=1

0268 0011 A2 SBR INT2_01 –Timer Underflow, PCM=0, LPC=1
0269 0012 A2 SBR INT2_00 –Timer Underflow, PCM=0, LPC=0
0270 0013 A2 SBR INT2_00 –Timer Underflow, PCM=0, LPC=0

0271 0014 A2 SBR INT2_11 –Timer Underflow, PCM=1, LPC=1
0272 0015 A2 SBR INT2_11 –Timer Underflow, PCM=1, LPC=1

0273 0016 A2 SBR INT2_10 –Timer Underflow, PCM=1, LPC=0
0274 0017 A2 SBR INT2_10 –Timer Underflow, PCM=1, LPC=0
0275 0018 A0 SBR INT1_01 –PPC < 200 hex interrupt

0276 0019 A0 SBR INT1_01 –PPC < 200 hex interrupt
0277 001A A2 SBR INT1_00 –Pin (B1) goes low interrupt
0278 001B A2 SBR INT1_00 –Pin (B1) goes low interrupt

TSP50C0x/1x Sample Synthesis Program

B-8

0279 001C A2 SBR INT1_11 –10 kHz Clock interrupt

0280 001D A2 SBR INT1_11 –10 kHz Clock interrupt
0281 001E A2 SBR INT1_10 –20 kHz Clock interrupt

0282 001F A2 SBR INT1_10 –20 kHz Clock interrupt
0283 *
0284 0020 40 INT1_01 BR INTP –PPC < 200 hex interrupt

0021 B4
0285 *

0286 0022 INT2_00
0287 0022 INT2_01
0288 0022 INT2_10

0289 0022 INT2_11
0290 0022 INT1_00

0291 0022 INT1_10
0292 0022 2F INT1_11 CLA
0293 0023 3E RETI

0294 ***
0295 * Speak phrases

0296 ***
0297 0024 6E GO TCA 0 –Speak 1st phrase

0025 00

0298 0026 00 CALL SPEAK
0027 31

0299 *

0300 0028 6E TCA 1 –Speak 2nd phrase
0029 01

0301 002A 00 CALL SPEAK
002B 31

0302 *

0303 002C 6E TCA 2 –Speak 3rd phrase
002D 02

0304 002E 00 CALL SPEAK
002F 31

0305 *

0306 0030 3F SETOFF –Quit program
0307 ***

0308 * Speak Utterance – Phrase number in A register
0309 ***
0310 0031 3B SPEAK INTGR

0311 0032 2E SALA –Double index to get offset
0312 0033 75 ACAAC SENTENCE –Add base of table

0034 BF
0313 0035 6D LUAB –get address MSB
0314 0036 3A IAC

0315 0037 6B LUAA –Get address LSB
0316 0038 12 XBA
0317 0039 1B SALA4 –Combine MSB and LSB

 TSP50C0x/1x Sample Synthesis Program

B-9 TSP50C0x/1x Sample Synthesis Program

0318 003A 1B SALA4

0319 003B 2C ABAAC
0320

0321 003C 1A TAB –Save address
0322 003D 6A TAMD ADR_LSB –Save LSB of address

003E 3C

0323
0324 003F 68 AXCA 1 –Shift address right

0040 01
0325 0041 15 SARA by 8 bits
0326

0327 0042 6A TAMD ADR_MSB –Save MSB of address
0043 3B

0328 0044 12 XBA
0329 0045 40 BR SPEAK2

0046 59

0330
0331 0047 69 SPEAK1 TMAD ADR_LSB –Fetch and combine

0048 3C
0332 0049 1A TAB address
0333 004A 69 TMAD ADR_MSB

004B 3B
0334 004C 1B SALA4
0335 004D 1B SALA4

0336 004E 2C ABAAC
0337

0338 004F 3A IAC –Increment address
0339
0340 0050 1A TAB –Save new address

0341 0051 6A TAMD ADR_LSB –Save LSB of address
0052 3C

0342
0343 0053 68 AXCA 1 –Shift address right

0054 01

0344 0055 15 SARA by 8 bits
0345

0346 0056 6A TAMD ADR_MSB –Save MSB of address
0057 3B

0347 0058 12 XBA

0348
0349 0059 6B SPEAK2 LUAA –Get word number

0350 005A 60 ANEC StopWord –End of phrase?
005B FF

0351 005C 40 BR SPEAK3 no, continue

005D 5F
0352 005E 3D RETN yes, exit loop
0353

TSP50C0x/1x Sample Synthesis Program

B-10

0354 005F 2E SPEAK3 SALA –Double index to get offset

0355 0060 75 ACAAC SPEECH –Add base of table
0061 D5

0356 0062 6D LUAB –Get address MSB
0357 0063 3A IAC
0358 0064 6B LUAA –Get address LSB

0359 0065 12 XBA
0360 0066 1B SALA4 –Combine LSB and MSB

0361 0067 1B SALA4
0362 0068 2C ABAAC
0363

0364 0069 6C LUAPS –Load Speech Address Register
0365

0366 006A 2F CLA –Kill K11 and K12 parameters
0367 006B 6A TAMD K11

006C 03

0368 006D 6A TAMD K12
006E 02

0369
0370 006F 6A TAMD FLAGS –Init flags for speech

0070 38

0371
0372 0071 2F CLA –Load C2 parameter
0373 0072 7B ACAAC C2_Value (a device constant)

0073 67
0374 0074 6A TAMD C2

0075 0F
0375
0376 0076 2F CLA –Load C1 parameter

0377 0077 7F ACAAC C1_Value (a device constant)
0078 61

0378 0079 6A TAMD C1
007A 0E

0379 *

0380 * Now we give an initial value to the Pitch in case the
0381 * utterance starts with a silent frame.

0382 *
0383 007B 70 ACAAC #0C

007C 0C

0384 007D 6A TAMD PHV1
007E 14

0385 007F 6A TAMD PHV2
0080 12

0386 *

0387 * Now we preload the first two frames.
0388 *
0389 0081 01 CALL UPDATE –Load first frame

 TSP50C0x/1x Sample Synthesis Program

B-11 TSP50C0x/1x Sample Synthesis Program

0082 B5

0390 0083 01 CALL UPDATE –Load 2nd frame
0084 B5

0391 *
0392 * Now we give some values to the Timer and Prescaler so
0393 * that we can do a valid interpolation on the first call to

0394 * INTP. Then we do the first call to INTP to preload the
0395 * first valid interpolation.

0396 *
0397 0085 6E TCA PSVALUE –Initialize prescale

0086 2E

0398 0087 19 TAPSC
0399 0088 6E TCA #7F –Pretend there was a previous

0089 7F
0400 008A 6A TAMD TIMER update

008B 36

0401 008C 6E TCA #FF –Set timer to max value to
008D FF

0402 008E 1E TATM disable interpolation
0403 008F 00 CALL INTP –Do first interpolation

0090 B4

0404
0405 *
0406 * Now we enable the synthesizer for speech

0407 *
0408 * We do this in two stages so that we can reset the

0409 * interrupt pending latch without it being immediately
0410 * set again by the B1(low) interrupt.
0411 *

0412 0091 62 TCX MODE_BUF –Turn on LPC synthesizer
0092 3A

0413 0093 64 ORCM LPC
0094 02

0414 0095 11 TMA

0415 0096 1D TAMODE
0416

0417 0097 3E RETI –Reset interrupt pending latch
0418
0419 0098 64 ORCM INT1 –Enable interrupt

0099 01
0420 009A 11 TMA

0421 009B 1D TAMODE
0422
0423 *

0424 * Now we loop until the utterance is complete. When the
0425 * utterance is finished, the routine UPDATE will execute a
0426 * RETN instruction which will exit this routine. In the

TSP50C0x/1x Sample Synthesis Program

B-12

0427 * meantime, this loop will poll the Timer register and

0428 * update the frame whenever it underflows.
0429 *

0430 009C SPEAK_LP
0431 009C 62 TCX FLAGS

009D 38

0432 009E 66 TSTCM Update_Flg –Is Update already done?
009F 04

0433 00A0 40 BR SPEAK_LP yes, loop
00A1 9C

0434

0435 00A2 62 TCX TIMER –Get old timer
00A3 36

0436 00A4 11 TMA register value
0437 00A5 1A TAB into B register
0438

0439 00A6 17 TTMA –Get new timer register
0440 00A7 15 SARA value and scale it.

0441
0442 00A8 16 TAM –Store new value
0443 00A9 12 XBA –Exchange new and old values

0444 00AA 2D SBAAN –Subtract new from old
0445 00AB 41 BR UPDATE –If underflowed, do an update

00AC B5

0446
0447 00AD 11 TMA –Get new timer value again.

0448 00AE 60 ANEC 0 –Is it about to underflow?
00AF 00

0449 00B0 40 BR SPEAK_LP no, loop again

00B1 9C
0450 00B2 41 BR UPDATE yes, do update now

00B3 B5
0451 * * * * *
0452 * INTERPOLATION ROUTINE

0453 * * * * *
0454 * First we need to get the current value of the timer

0455 * register and store it away. It will be divided by two
0456 * with the SARA instruction so that the most significant
0457 * bit is guaranteed to be zero so that it will always be

0458 * interpreted as a positive number during the
0459 * interpolation.

0460 * * * * *
0461 00B4 3B INTP INTGR –Ensure we are in integer mode
0462 00B5 17 TTMA –Get timer register contents

0463 00B6 15 SARA shift to make positive
0464 00B7 6A TAMD SCALE and store it

00B8 37

 TSP50C0x/1x Sample Synthesis Program

B-13 TSP50C0x/1x Sample Synthesis Program

0465 * * * * *

0466 * See if this routine is enabled. If it is not, exit
0467 * the routine.

0468 * * * * *
0469 00B9 62 TCX FLAG1 –Point to flag

00BA 39

0470 00BB 66 TSTCM Int_Off –If routine disabled...
00BC 01

0471 00BD 41 BR IRETI ...branch to exit point
00BE B3

0472 * * * * *

0473 * Next we need to see if the frame type has changed between
0474 * voiced and unvoiced frames. If it has, we do not want to

0475 * interpolate between them; we just want to use the current
0476 * frame values until we have two frames of the same type to
0477 * interpolate between.

0478 * * * * *
0479 00BF 62 TINTP TCX FLAGS –Point to status flags

00C0 38
0480 00C1 66 TSTCM Int_Inh –Is interpolation inhibited?

00C2 20

0481 00C3 40 BR NOINT yes, inhibit interpolation
00C4 C7

0482 00C5 40 BR INTPCH no, interpolate

00C6 E4
0483 * * * * *

0484 * The following code is reached if interpolation is
0485 * inhibited. It sets the stored timer value to #7F which
0486 * effectively forces the interpolation to yield the old

0487 * values for the working values, thus effectively disabling
0488 * interpolation.

0489 * * * * *
0490 00C7 6E NOINT TCA #7F –Set Scale factor to

00C8 7F

0491 00C9 6A TAMD SCALE highest value
00CA 37

0492 *
0493 * If the new frame has a voicing different from the last
0494 * frame, we want to zero the energy until the Unvoiced bit

0495 * in the mode register is changed and the K parameters are
0496 * all to the correct values. We therefore check in this

0497 * section of code to see if the frame voicing is different
0498 * from the setting in the Mode Register. If it is, we zero
0499 * the energy until after the Mode Register is modified.

0500 *
0501 00CB 62 TCX FLAGS

00CC 38

TSP50C0x/1x Sample Synthesis Program

B-14

0502 00CD 66 TSTCM Unv_Flg2 –Is current frame unvoiced?

00CE 80
0503 00CF 40 BR Uv yes, go to unvoiced branch

00D0 D9
0504
0505 00D1 62 TCX Mode_Buf –Current frame is voiced

00D2 3A
0506 00D3 66 TSTCM UNV –Has mode changed to unvoiced?

00D4 80
0507 00D5 40 BR ClrEN yes, clear the energy

00D6 DF

0508 00D7 40 BR INTPCH no, no action required
00D8 E4

0509
0510 00D9 62 Uv TCX Mode_Buf –New frame is unvoiced

00DA 3A

0511 00DB 66 TSTCM UNV –Has voicing mode changed?
00DC 80

0512 00DD 40 BR INTPCH no, no action required
00DE E4

0513

0514 00DF 2F ClrEN CLA –Zero Energy during update
0515 00E0 6A TAMD EN

00E1 01

0516 00E2 40 BR INTPCH
00E3 E4

0517
0518 *
0519 * Interpolate Pitch and write the result to the pitch

0520 * register
0521 *

0522 00E4 62 INTPCH TCX PHV2 –Combine new pitch and new
00E5 12

0523 00E6 14 TMAIX fractional pitch and

0524 00E7 1B SALA4 leave in the B register
0525 00E8 28 AMAAC

0526 00E9 21 IXC
0527 00EA 1A TAB
0528 00EB 14 TMAIX –Combine current pitch and

0529 00EC 1B SALA4 current fractional pitch
0530 00ED 28 AMAAC and leave in A register

0531
0532 00EE 2D SBAAN –(Pcurrent – Pnew)
0533 00EF 62 TCX SCALE

00F0 37
0534 00F1 39 AXMA –(Pcurrent–Pnew)*Timer
0535 00F2 2C ABAAC –Pnew+(Pcurrent–Pnew)*Timer

 TSP50C0x/1x Sample Synthesis Program

B-15 TSP50C0x/1x Sample Synthesis Program

0536 00F3 2E SALA –Adjust for 2 byte excitation

0537 00F4 1C TASYN –Write to pitch register
0538 *

0539 * Interpolate K1 and store the result in the working K1
0540 * register
0541 *

0542 00F5 3C EXTSG –Allow negative K parameters
0543 00F6 62 TCX K1V2 –Combine New K1 and New

00F7 16
0544 00F8 14 TMAIX fractional K1 and
0545 00F9 1B SALA4 leave in the B register

0546 00FA 28 AMAAC
0547 00FB 21 IXC

0548 00FC 1A TAB
0549
0550 00FD 14 TMAIX –Combine current K1 and

0551 00FE 1B SALA4 current fractional K1 and
0552 00FF 28 AMAAC leave in the A register

0553
0554 0100 2D SBAAN –(K1current – K1new)
0555 0101 62 TCX SCALE

0102 37
0556 0103 39 AXMA –(K1current – K1new) * Timer
0557 0104 2C ABAAC –K1new+(K1current–K1new)*Timer

0558 0105 6A TAMD K1 –Load interpolated K1 value
0106 0D

0559 *
0560 * Interpolate K2 and store the result in the
0561 * working K2 register

0562 *
0563 0107 62 TCX K2V2 –Combine New K2 and New

0108 1A
0564 0109 14 TMAIX fractional K2 and
0565 010A 1B SALA4 leave in the B register

0566 010B 28 AMAAC
0567 010C 21 IXC

0568 010D 1A TAB
0569
0570 010E 14 TMAIX –Combine current K2 and

0571 010F 1B SALA4 current fractional K2 and
0572 0110 28 AMAAC leave in the A register

0573
0574 0111 2D SBAAN –(K2current – K2new)
0575 0112 62 TCX SCALE

0113 37
0576 0114 39 AXMA –(K2current – K2new) * Timer
0577 0115 2C ABAAC –K2new+(K2current–K2new)*Timer

TSP50C0x/1x Sample Synthesis Program

B-16

0578 0116 6A TAMD K2 –Load interpolated K2 value

0117 0C
0579 *

0580 * Interpolate K3 and store the result in the working K3
0581 * register
0582 *

0583 0118 62 TCX K3V2 –Combine New K3 and New
0119 1E

0584 011A 14 TMAIX fractional K3 and
0585 011B 1B SALA4 leave in the B register
0586 011C 28 AMAAC

0587 011D 21 IXC
0588 011E 1A TAB

0589
0590 011F 14 TMAIX –Combine current K3 and
0591 0120 1B SALA4 current fractional K3 and

0592 0121 28 AMAAC leave in the A register
0593

0594 0122 2D SBAAN –(K3current – K3new)
0595 0123 62 TCX SCALE

0124 37

0596 0125 39 AXMA –(K3current – K3new) * Timer
0597 0126 2C ABAAC –K3new+(K3current–K3new)*Timer
0598 0127 6A TAMD K3 –Load interpolated K3 value

0128 0B
0599 *

0600 * Interpolate K4 and store the result in the working K4
0601 * register
0602 *

0603 0129 62 TCX K4V2 –Combine New K4 and New
012A 22

0604 012B 14 TMAIX fractional K4 and
0605 012C 1B SALA4 leave in the B register
0606 012D 28 AMAAC

0607 012E 21 IXC
0608 012F 1A TAB

0609
0610 0130 14 TMAIX –Combine current K4 and
0611 0131 1B SALA4 current fractional K4 and

0612 0132 28 AMAAC leave in the A register
0613

0614 0133 2D SBAAN –(K4current – K4new)
0615 0134 62 TCX SCALE

0135 37

0616 0136 39 AXMA –(K4current – K4new) * Timer
0617 0137 2C ABAAC –K4new+(K4current–K4new)*Timer
0618 0138 6A TAMD K4 –Load interpolated K4 value

 TSP50C0x/1x Sample Synthesis Program

B-17 TSP50C0x/1x Sample Synthesis Program

0139 0A

0619 *
0620 * Interpolate K5 and store the result in the working K5

0621 * register
0622 *
0623 013A 62 TCX K5V2 –Put New K5 (adjusted to

013B 26
0624 013C 14 TMAIX 12 bits) in B register

0625 013D 1B SALA4
0626 013E 1A TAB
0627 013F 14 TMAIX –Put Current K5 (adjusted to

0628 0140 1B SALA4 12 bits) in A register
0629

0630 0141 2D SBAAN –(K5current – K5new)
0631 0142 62 TCX SCALE

0143 37

0632 0144 39 AXMA –(K5current – K5new) * Timer
0633 0145 2C ABAAC –K5new+(K5current–K5new)*Timer

0634 0146 6A TAMD K5 –Load interpolated K5 value
0147 09

0635 *

0636 * Interpolate K6 and store the result in the working K6
0637 * register
0638 *

0639 0148 62 TCX K6V2 –Put New K6 (adjusted to
0149 28

0640 014A 14 TMAIX 12 bits) in B register
0641 014B 1B SALA4
0642 014C 1A TAB

0643 014D 14 TMAIX –Put Current K6 (adjusted to
0644 014E 1B SALA4 12 bits) in A register

0645
0646 014F 2D SBAAN –(K6current – K6new)
0647 0150 62 TCX SCALE

0151 37
0648 0152 39 AXMA –(K6current – K6new) * Timer

0649 0153 2C ABAAC –K6new+(K6current–K6new)*Timer
0650 0154 6A TAMD K6 –Load interpolated K6 value

0155 08

0651 *
0652 * Interpolate K7 and store the result in the working K7

0653 * register
0654 *
0655 0156 62 TCX K7V2 –Put New K7 (adjusted to

0157 2A
0656 0158 14 TMAIX 12 bits) in B register
0657 0159 1B SALA4

TSP50C0x/1x Sample Synthesis Program

B-18

0658 015A 1A TAB

0659 015B 14 TMAIX –Put Current K7 (adjusted to
0660 015C 1B SALA4 12 bits) in A register

0661
0662 015D 2D SBAAN –(K7current – K7new)
0663 015E 62 TCX SCALE

015F 37
0664 0160 39 AXMA –(K7current – K7new) * Timer

0665 0161 2C ABAAC –K7new+(K7current–K7new)*Timer
0666 0162 6A TAMD K7 –Load interpolated K7 value

0163 07

0667 *
0668 * Interpolate K8 and store the result in the working K8

0669 * register
0670 *
0671 0164 62 TCX K8V2 –Put New K8 (adjusted to

0165 2C
0672 0166 14 TMAIX 12 bits) in B register

0673 0167 1B SALA4
0674 0168 1A TAB
0675

0676 0169 14 TMAIX –Put Current K8 (adjusted to
0677 016A 1B SALA4 12 bits) in A register
0678

0679 016B 2D SBAAN –(K8current – K8new)
0680 016C 62 TCX SCALE

016D 37
0681 016E 39 AXMA –(K8current – K8new) * Timer
0682 016F 2C ABAAC –K8new+(K8current–K8new)*Timer

0683 0170 6A TAMD K8 –Load interpolated K8 value
0171 06

0684 *
0685 * Interpolate K9 and store the result in the working K9
0686 * register

0687 *
0688 0172 62 TCX K9V2 –Put New K9 (adjusted to

0173 2E
0689 0174 14 TMAIX 12 bits) in B register
0690 0175 1B SALA4

0691 0176 1A TAB
0692

0693 0177 14 TMAIX –Put Current K9 (adjusted to
0694 0178 1B SALA4 12 bits) in A register
0695

0696 0179 2D SBAAN –(K9current – K9new)
0697 017A 62 TCX SCALE

017B 37

 TSP50C0x/1x Sample Synthesis Program

B-19 TSP50C0x/1x Sample Synthesis Program

0698 017C 39 AXMA –(K9current – K9new) * Timer

0699 017D 2C ABAAC –K9new+(K9current–K9new)*Timer
0700 017E 6A TAMD K9 –Load interpolated K9 value

017F 05
0701 *
0702 * Interpolate K10 and store the result in the working K10

0703 * register
0704 *

0705 0180 62 TCX K10V2 –Put New K10 (adjusted to
0181 30

0706 0182 14 TMAIX 12 bits) in B register

0707 0183 1B SALA4
0708 0184 1A TAB

0709
0710 0185 14 TMAIX –Put Current K10 (adjusted to
0711 0186 1B SALA4 12 bits) in A register

0712
0713 0187 2D SBAAN –(K10current – K10new)

0714 0188 62 TCX SCALE
0189 37

0715 018A 39 AXMA –(K10current – K10new) * Timer

0716 018B 2C ABAAC –K10new+(K10current–K10new)*Timer
0717 018C 6A TAMD K10 –Load interpolated K10 value

018D 04

0718
0719 *

0720 * K11 and K12 are not needed for LPC 10, so they have been
0721 * commented out.
0722 *

0723 * Interpolate K11 and store the result in the working K11
0724 * register

0725 *
0726 * TCX K11V2 –Put New K11 (adjusted to
0727 * TMAIX 12 bits) in B register

0728 * SALA4
0729 * TAB

0730
0731 * TMAIX –Put Current K11 (adjusted to
0732 * SALA4 12 bits) in A register

0733
0734 * SBAAN –(K11current – K11new)

0735 * TCX SCALE
0736 * AXMA –(K11current – K11new) * Timer
0737 * ABAAC –K11new+(K11current–K11new)*Timer

0738 * TAMD K11 –Load interpolated K11 value
0739 *
0740 * Interpolate K12 and store the result in the working

TSP50C0x/1x Sample Synthesis Program

B-20

0741 * K12 register

0742 *
0743 * TCX K12V2 –Put New K12 (adjusted to

0744 * TMAIX 12 bits) in B register
0745 * SALA4
0746 * TAB

0747
0748 * TMAIX –Put Current K12 (adjusted to

0749 * SALA4 12 bits) in A register
0750
0751 * SBAAN –(K12current – K12new)

0752 * TCX SCALE
0753 * AXMA –(K12current – K12new) * Timer

0754 * ABAAC –K12new+(K12current–K12new)*Timer
0755 * TAMD K12 –Load interpolated K12 value
0756 *

0757 *
0758 * Interpolate Energy

0759 *
0760 *
0761 018E 3B INTGR –Back to integer mode for energy

0762 018F 62 TCX ENV2 –Combine new energy and
0190 10

0763 0191 14 TMAIX fractional energy and

0764 0192 1B SALA4 leave in the B register
0765 0193 1A TAB

0766 0194 14 TMAIX –Combine current energy and
0767 0195 1B SALA4 current fractional energy
0768 0196 2D SBAAN –(Ecurrent – Enew)

0769 0197 62 TCX SCALE
0198 37

0770 0199 39 AXMA –(Ecurrent – Enew) * Timer
0771 019A 2C ABAAC –Enew+(Ecurrent–Enew)*Timer
0772 019B 6A XBA –Save energy

0773 *
0774 * Set voiced/unvoiced mode according to current frame type.

0775 * This is done in a two step fashion: first the value in
0776 * the MODE_BUF register is adjusted with an AND or OR
0777 * operation, then the result is written to the synthesizer

0778 * with a TAMODE operation. We do it this way to keep a copy
0779 * of the current status of the synthesizer mode at all time.

0780 *
0781 019C 62 STMODE TCX FLAGS

019E 38

0782 019E 65 ANDCM ~Update_Flg –Signal that interp done
019F FB

0783 01A0 66 TSTCM Unv_Flg2 –Is current frame unvoiced?

 TSP50C0x/1x Sample Synthesis Program

B-21 TSP50C0x/1x Sample Synthesis Program

01A1 80

0784 01A2 41 BR SETUV –yes, set mode to unvoiced
01A3 AA

0785 01A4 62 TCX MODE_BUF no, ...
01A5 3A

0786 01A6 65 ANDCM ~UNV ...set mode to voiced

01A7 7F
0787 01A8 41 BR WRITEMODE

01A9 AE
0788
0789 01AA 62 SETUV TCX MODE_BUF –Current frame is unvoiced, so

01AB 3A
0790 01AC 64 ORCM UNV –set mode to unvoiced.

01AD 80
0791
0792 01B1 11 WRITEMODE TMA –Write mode information

0793 01AF 1D TAMODE to mode register
0794

0795 01B0 12 XBA –Write energy
0796 01B1 6A TAMD EN to filter

01B2 01

0797
0798 01B3 3E IRETI RETI –Return from interrupt
0799 01B4 3D RETN –Return from first call

0800 * Update the parameters for a new frame
0801 *

0802 * First we inhibit the operation of the interpolation
0803 * routine.
0804 *

0805 01B5 62 UPDATE TCX MODE_BUF
01B6 3A

0806 01B7 65 ANDCM ~INT1
01B8 FE

0807 01B9 11 TMA

0808 01BA 1D TAMODE
0809 *

0810 * To prevent double updates, if the stored value of the
0811 * timer register is zero, then we need to change it to #7F.
0812 * If we do not do this, then the polling routine will

0813 * discover an underflow and call Update a second time.
0814 *

0815 01BB 62 TCX TIMER –Get stored value
01BC 36

0816 01BD 11 TMA of Timer into A

0817
0818 01BE 60 ANEC 0 –Is it zero?

01BF 00

TSP50C0x/1x Sample Synthesis Program

B-22

0819 01C0 41 BR UPDT00 no, do nothing

01C1 C5
0820 01C2 6E TCA #7F yes, replace value

01C3 7F
0821 01C4 16 TAM
0822 *

0823 * First we need to test to see if a stop frame was
0824 * encountered on the last pass through the routine. If the

0825 * previous frame was a stop frame, we need to turn off the
0826 * synthesizer and stop speaking.
0827 *

0828 01C5 62 UPDT00 TCX FLAGS
01C6 38

0829 01C7 66 TSTCM STOPFLAG –Was stop frame encountered
01C8 01

0830 01C9 42 BR STOP yes, stop speaking

01CA EF
0831 *

0832 * Transfer the state of the previous frame to the Unvoiced
0833 * flag (Current).
0834 *

0835 01CB 66 TSTCM Unv_Flg1 –Was previous frame unvoiced?
01CC 10

0836 01CD 41 BR SUNVL yes, current frame=unvoiced

01CE D3
0837 01CF 65 ANDCM ~Unv_Flg2 no, current frame=voiced

01D0 7F
0838 01D1 41 BR TSIL and continue

01D2 D5

0839
0840 01D3 64 SUNVL ORCM Unv_Flg2 –Set current frame unvoiced.

01D4 80
0841 *
0842 * Transfer the state of the previous frame to the

0843 * Silence flag (Current).
0844 *

0845 01D5 66 TSIL TSTCM Sil_Flg1 –Was previous frame silent?
01D6 08

0846 01D7 41 BR SSIL yes, current frame silent

01D8 DD
0847 01D9 65 ANDCM ~Sil_Flg2 no, current frame not sil.

01DA BF
0848 01DB 41 BR ZROFLG and continue

01DC DF

0849
0850 01DD 64 SSIL ORCM Sil_Flg2 –Set current frame silent

01DE 40

 TSP50C0x/1x Sample Synthesis Program

B-23 TSP50C0x/1x Sample Synthesis Program

0851 *

0852 * Reset the Repeat Flag, new Silence Flag, new Unvoiced
0853 * Flag, and Interpolation Inhibit flag so that new

0854 * values can be loaded in this routine.
0855 *
0856 01DF 62 ZROFLG TCX FLAGS

01E0 38
0857 01E1 65 ANDCM #C5

01E2 C5
0858 *
0859 * Transfer the new frame parameters into the

0860 * storage location used for the current frame parameters.
0861 *

0862 01E3 62 TCX ENV2 –Transfer new frame energy
01E4 10

0863 01E5 14 TMAIX from new frame location

0864 01E6 13 TAMIX to current frame location
0865 *–––––PITCH–––––

0866 01E7 14 TMAIX –Transfer new frame pitch
0867 01E8 6A TAMD PHV1 to current frame location

01E9 14

0868
0869 01EA 14 TMAIX –Transfer new fractional pitch
0870 01EB 21 IXC to current frame location

0871 01EC 13 TAMIX
0872 *–––––K1–––––

0873 01ED 14 TMAIX –Transfer new frame K1 param.
0874 01EE 6A TAMD K1V1 to current frame location

01EF 18

0875 01F0 14 TMAIX –Transfer new fractional K1
0876 01F1 21 IXC to current frame location

0877 01F2 13 TAMIX
0878 *–––––K2–––––
0879 01F3 14 TMAIX –Transfer new frame K2 param.

0880 01F4 6A TAMD K2V1 to current frame location
01F5 1C

0881 01F6 14 TMAIX –Transfer new fractional K2
0882 01F7 21 IXC to current frame location
0883 01F8 13 TAMIX

0884 *–––––K3–––––
0885 01F9 14 TMAIX –Transfer new frame K3 param.

0886 01FA 6A TAMD K3V1 to current frame location
01FB 20

0887 01FC 14 TMAIX –Transfer new fractional K3

0888 01FD 21 IXC to current frame location
0889 01FE 13 TAMIX
0890 *–––––K4–––––

TSP50C0x/1x Sample Synthesis Program

B-24

0891 01FF 14 TMAIX –Transfer new frame K4 param.

0892 0200 6A TAMD K4V1 to current frame location
0201 24

0893 0202 14 TMAIX –Transfer new fractional K4
0894 0203 21 IXC to current frame location
0895 0204 13 TAMIX

0896 *–––––K5–––––
0897 0205 14 TMAIX –Transfer new frame K5 param.

0898 0206 13 TAMIX to current frame location
0899 *–––––K6–––––
0900 0207 14 TMAIX –Transfer new frame K6 param.

0901 0208 13 TAMIX to current frame location
0902 *–––––K7–––––

0903 0209 14 TMAIX –Transfer new frame K7 param.
0904 020A 13 TAMIX to current frame location
0905 *–––––K8–––––

0906 020B 14 TMAIX –Transfer new frame K8 param.
0907 020C 13 TAMIX to current frame location

0908 *–––––K9–––––
0909 020D 14 TMAIX –Transfer new frame K9 param.
0910 020E 13 TAMIX to current frame location

0911 *–––––K10–––––
0912 020F 14 TMAIX –Transfer new frame K10 param.
0913 0210 13 TAMIX to current frame location

0914 *
0915 * K11 and K12 are not used in LPC 10 synthesis. The code

0916 * has been commented out.
0917 *
0918 *–––––K11–––––

0919 * TMAIX –Transfer new frame K11 param.
0920 * TAMIX to current frame location

0921 *–––––K12–––––
0922 * TMAIX –Transfer new frame K12 param.
0923 * TAMIX to current frame location

0924 *–––––
0925 *

0926 * We have now discarded the “current” values by replacing
0927 * them with the “new” values. We now need to read in
0928 * another frame of speech data and use them as the

0929 * new “new” values.
0930 * * * * *

0931 *––––– ENERGY –––––
0932 0211 2F CLA
0933 0212 62 TCX FLAGS

0213 38
0934 0214 33 GET EBITS –Get coded energy
0935 0215 60 ANEC ESILENCE –Is it a silent frame?

 TSP50C0x/1x Sample Synthesis Program

B-25 TSP50C0x/1x Sample Synthesis Program

0216 00

0936 0217 42 BR UPDT0 No, continue
0218 1D

0937 0219 64 ORCM Sil_Flg1+Int_Inh Yes, set silence flag
021A 28

0938 021B 42 BR ZeroKs and zero K params

021C CD
0939 *

0940 021D 60 UPDT0 ANEC ESTOP –Is it a stop frame?
021E 0F

0941 021F 42 BR UPDT1 no, continue

0220 25
0942 0221 64 ORCM STOPFLAG+Sil_Flg1+Int_Inh yes, set flags

0222 29
0943 0223 42 BR ZeroKs and zero Ks

0224 CD

0944 *
0945 0225 73 UPDT1 ACAAC TBLEN –Add table offset to energy

0226 27
0946 0227 6B LUAA –Get decoded energy
0947 0228 6A TAMD ENV2 –Store the Energy in RAM

0229 10
0948 *
0949 * If this is a silent frame, we are done with the update If

0950 * the previous frame was silent, the new frame should be
0951 * spoken immediately with no ramp up due to interpolation

0952 *
0953 022A 62 TCX FLAGS

022B 38

0954 022C 66 TSTCM Sil_Flg1 –Is this a silent frame?
022D 08

0955 022E 43 BR RTN yes, exit
022F 0C

0956 *

0957 * A repeat frame will use the K parameter from the previous
0958 * frame. If it is a repeat frame, we need to set a flag.

0959 *
0960 0230 30 UPDT2 GET RBITS –Get the Repeat bit
0961 0231 67 TSTCA #01 –Is this a repeat frame?

0232 01
0962 0233 42 BR SFLG1 yes, set repeat flag

0234 37
0963 0235 42 BR UPDT3

0236 39

0964
0965 0237 64 SFLG1 ORCM R_FLAG –Set repeat flag

0238 02

TSP50C0x/1x Sample Synthesis Program

B-26

0966

0967 *––––– PITCH –––––
0968

0969 0239 2F UPDT3 CLA
0970 023A 33 GET 4 –Get coded pitch
0971 023B 32 GET 3 –Get coded pitch

0972 023C 60 ANEC PUnVoiced –Is the frame unvoiced?
023D 00

0973 023E C1 SBR UPDT3A no, continue
0974 023F 64 ORCM Unv_Flg1 yes, set unvoiced flag

0240 10

0975
0976 0241 2E UPDT3A SALA –Double coded pitch and

0977 0242 73 ACAAC TBLPH add table offset to point
0243 37

0978

0979 0244 6D LUAB –Get decoded pitch
0980 0245 3A IAC

0981 0246 6B LUAA –Get decoded fractional pitch
0982
0983 0247 62 TCX PHV2 –Store the pitch and

0248 12
0984 0249 2A TBM fractional pitch in RAM
0985 024A 21 IXC

0986 024B 16 TAM
0987 *

0988 * If the voicing has changed with the new frame, then we
0989 * need to change the voicing in the mode register.
0990 *

0991 024C 62 TCX FLAGS
024D 38

0992 024E 66 TSTCM Unv_Flg1 –Is the new frame unvoiced?
024F 10

0993 0250 D3 SBR UPDT3B yes, continue

0994 0251 42 BR VOICE no, go to voiced code
0252 5D

0995 *
0996 * The following code is reached if the new frame is
0997 * unvoiced. We inspect the flags to see if the previous

0998 * frame was either silent or voiced. If either condition
0999 * applies, then we branch to code which inhibits

1000 * interpolation.
1001 *
1002 0253 66 UPDT3B TSTCM Sil_Flg2 –Was the last frame silent?

0254 40
1003 0255 42 BR UPDT5 yes, inhibit interpolation

0256 63

 TSP50C0x/1x Sample Synthesis Program

B-27 TSP50C0x/1x Sample Synthesis Program

1004

1005 0257 66 TSTCM Unv_Flg2 –Was the last frame unvoiced
0258 80

1006 0259 42 BR UPDT4 yes, don’t change anything
025A 65

1007 025B 42 BR UPDT5 no, inhibit interpolation

025C 63
1008 *

1009 * The following code is reached if the new frame is
1010 * voiced. We inspect the flags to see if the previous
1011 * frame was also voiced. If it was not, we need to inhibit

1012 * interpolation.
1013 *

1014 025D 66 VOICE TSTCM Unv_Flg2 –Was the last frame voiced?
025E 80

1015 025F 42 BR UPDT5 no, disable interpolation

0260 63
1016 0261 42 BR UPDT4 yes, continue

0262 65
1017
1018 0263 64 UPDT5 ORCM Int_Inh –Inhibit interpolation

0264 20
1019 *
1020 * Now we test the repeat flag. If the new frame is a repeat

1021 * frame, then the current values are used for the K factors,
1022 * so new values do not need to be loaded and we can exit the

1023 * routine now.
1024 *
1025 0265 66 UPDT4 TSTCM R_FLAG –Is repeat flag set?

0266 02
1026 0267 43 BR RTN yes, exit routine

0268 0C
1027 *
1028 * Now we need to load the “new” K factors (K1 through K10).

1029 * The first four K factors are 12 bit values which will be
1030 * stored in two bytes. The most significant 8 bits in the

1031 * first byte, and the least significant 4 bits (called the
1032 * fractional value) in the second byte. For K5 through K12,
1033 * the fractional part is assumed to be zero. K11 and K12 are

1034 * not used in LPC10 synthesis, and the code loading them is
1035 * commented out. A coded factor is read into the A

1036 * register. It is then converted to a pointer to a table
1037 * element which contains the uncoded factor. Since the K1
1038 * through K4 table elements consist of two bytes, the

1039 * conversion consists of doubling the coded factor and adding
1040 * the result to the start of the table. Since the K5 through
1041 * K10 table elements consist of one byte, the coded factor is

TSP50C0x/1x Sample Synthesis Program

B-28

1042 * added directly to the start of the table. Once the pointer

1043 * has been set up, the uncoded factor is fetched and stored
1044 * into RAM.

1045 *
1046 *–––––K1–––––
1047 0269 2F CLA

1048 026A 33 GET 4 –Get coded K1
1049 026B 31 GET 2 –Get coded K1

1050 026C 2E SALA –Convert it to a
1051 026D 74 ACAAC TBLK1 pointer to table element

026E 37

1052 026F 6D LUAB –Fetch MSB of uncoded K1
1053 0270 3A IAC

1054 0271 6B LUAA –Fetch fractional K1
1055 0272 62 TCX K1V2

0273 16

1056 0274 2A TBM –Store uncoded K1
1057 0275 21 IXC

1058 0276 16 TAM –Store fractional K1
1059 *–––––K2–––––
1060 0277 2F CLA

1061 0278 33 GET 4 –Get coded K2
1062 0279 31 GET 2 –Get coded K2
1063

1064 027A 2E SALA –Convert it to a
1065 027B 74 ACAAC TBLK2 pointer to table element

027C B7
1066
1067 027D 6D LUAB –Fetch MSB of uncoded K2

1068 027E 3A IAC
1069 027F 6B LUAA –Fetch fractional K2

1070 0280 62 TCX K2V2
0281 1A

1071 0282 2A TBM –Store uncoded K2

1072 0283 21 IXC
1073 0284 16 TAM –Store fractional K2

1074 *–––––K3–––––
1075 0285 2F CLA
1076 0286 33 GET 4 –Get Index into K3 table

1077 0287 30 GET 1 –Get Index into K3 table
1078 0288 75 ACAAC TBLK3 and add offset of table

0289 37
1079
1080 028A 6B LUAA –Get uncoded K3

1081 028B 6A TAMD K3V2 –and store it in RAM
028C 1E

1082 028D 2F CLA

 TSP50C0x/1x Sample Synthesis Program

B-29 TSP50C0x/1x Sample Synthesis Program

1083 028E 6A TAMD K3V2+1

028F 1F
1084 *–––––K4–––––

1085 0290 2F CLA
1086 0291 33 GET 4 –Get Index into K4 table
1087 0292 30 GET 1 –Get Index into K4 table

1088 0293 75 ACAAC TBLK4 and add offset of table
0294 57

1089 0295 6B LUAA –Get uncoded K4
1090 0296 6A TAMD K4V2 –and store it in RAM

0297 22

1091 0298 2F CLA
1092 0299 6A TAMD K4V2+1

029A 23
1093 *
1094 * If this is an unvoiced frame, we only use four K factors,

1095 * so we load zeroes to the rest of the K factors. If this
1096 * is a voiced frame, load the rest of the uncoded factors.

1097 *
1098 029B 62 TCX FLAGS

029C 38

1099 029D 66 TSTCM Unv_Flg1 –Is this an unvoiced frame?
029E 10

1100 029F 42 BR UNVC Yes, zero rest of factors

02A0 E0
1101 *

1102 * The following code is executed if the new frame is
1103 * voiced. Since we assume that the fractional parameter is
1104 * zero for the remaining K factors, the table elements are

1105 * only one byte long. The conversion to
1106 * a table pointer consists of adding the coded factor to the

1107 * start of the table.
1108 *
1109 *–––––K5–––––

1110 02A1 2F CLA
1111 02A2 33 GET K5BITS –Get Index into K5 table

1112 02A3 75 ACAAC TBLK5 and add offset of table
02A4 77

1113

1114 02A5 6B LUAA –Get uncoded K5
1115 02A6 6A TAMD K5V2 and store it in RAM

02A7 26
1116 *–––––K6–––––
1117 02A8 2F CLA

1118 02A9 33 GET K6BITS –Get Index into K6 table
1119 02AA 75 ACAAC TBLK6 and add offset of table

02AB 87

TSP50C0x/1x Sample Synthesis Program

B-30

1120 02AC 6B LUAA –Get uncoded K6

1121 02AD 6A TAMD K6V2 and store it in RAM
02AE 28

1122 *–––––K7–––––
1123 02AF 2F CLA
1124 02B0 33 GET K7BITS –Get Index into K7 table

1125 02B1 75 ACAAC TBLK7 and add offset of table
02B2 97

1126 02B3 6B LUAA –Get uncoded K7
1127 02B4 6A TAMD K7V2 and store it in RAM

02B5 2A

1128 *–––––K8–––––
1129 02B6 2F CLA

1130 02B7 32 GET K8BITS –Get Index into K8 table
1131 02B8 75 ACAAC TBLK8 and add offset of table

02B9 A7

1132 02BA 6B LUAA –Get uncoded K8
1133 02BB 6A TAMD K8V2 and store it in RAM

02BC 2C
1134 *–––––K9–––––
1135 02BD 2F CLA

1136 02BE 32 GET K9BITS –Get Index into K9 table
1137 02BF 75 ACAAC TBLK9 and add offset of table

02C0 AF

1138 02C1 6B LUAA –Get uncoded K9
1139 02C2 6A TAMD K9V2 and store it in RAM

02C3 2E
1140 *–––––K10–––––
1141 02C4 2F CLA

1142 02C5 32 GET K10BITS –Get Index into K10 table
1143 02C6 75 ACAAC TBLK10 and add offset of table

02C7 B7
1144 02C8 6B LUAA –Get uncoded K10
1145 02C9 6A TAMD K10V2 and store it in RAM

02CA 30
1146 *

1147 * Since K11 and K12 are not used in LPC 10, the K11 and K12
1148 * code is commented out.
1149 *

1150 *–––––K11–––––
1151 * CLA

1152 * GET K11BITS –Get Index into K11 table
1153 * ACAAC TBLK11 and add offset of table
1154 * LUAA –Get uncoded K11

1155 * TAMD K11V2 and store it in RAM
1156 *–––––K12–––––
1157 * CLA

 TSP50C0x/1x Sample Synthesis Program

B-31 TSP50C0x/1x Sample Synthesis Program

1158 * GET K12BITS –Get Index into K12 table

1159 * ACAAC TBLK12 and add offset of table
1160 * LUAA –Get uncoded K12

1161 * TAMD K12V2 and store it in RAM
1162 *–––––
1163 02CB 43 BR RTN

02CC 0C
1164 *

1165 * The following code is executed if the K parameters need to
1166 * be zeroed out. If the new frame is a stop frame or a
1167 * silent frame, we zero out all K parameters and set the

1168 * energy to zero. If the new frame is an unvoiced frame,
1169 * then we need to zero out the unused upper K parameters.

1170 *
1171 *
1172 02CD 2F ZeroKs CLA

1173 02CE 6A TAMD ENV2 –Kill Energy
02CF 10

1174 02D0 6A TAMD K1V2 –Kill K1
02D1 16

1175 02D2 6A TAMD K1V2+1

02D3 17
1176 02D4 6A TAMD K2V2 –Kill K2

02D5 1A

1177 02D6 6A TAMD K2V2+1
02D7 1B

1178 02D8 6A TAMD K3V2 –Kill K3
02D9 1E

1179 02DA 6A TAMD K3V2+1

02DB 1F
1180 02DC 6A TAMD K4V2 –Kill K4

02DD 22
1181 02DE 6A TAMD K4V2+1

02DF 23

1182 02E0 2F UNVC CLA
1183 02E1 6A TAMD K5V2 –Kill K5

02E2 26
1184 02E3 6A TAMD K6V2 –Kill K6

02E4 28

1185 02E5 6A TAMD K7V2 –Kill K7
02E6 2A

1186 02E7 6A TAMD K8V2 –Kill K8
02E8 2C

1187 02E9 6A TAMD K9V2 –Kill K9

02EA 2E
1188 02EB 6A TAMD K10V2 –Kill K10

02EC 30

TSP50C0x/1x Sample Synthesis Program

B-32

1189 * TAMD K11V2 –Kill K11

1190 * TAMD K12V2 –Kill K12
1191 02ED 43 BR RTN

02EE 0C
1192 *
1193 * STOP AND RETURN

1194 *
1195 * The following code has two entry points. STOP is reached

1196 * if the stop flag has been set. It turns off
1197 * synthesis and returns to the program. RTN is the general
1198 * exit point for the UPDATE routine, it sets the Update flag

1199 * and leaves the routine.
1200 *

1201 02EF 62 STOP TCX MODE_BUF
02F0 3A

1202 02F1 65 ANDCM ~LPC –Turn off synthesis

02F2 FD
1203 02F3 65 ANDCM ~INT1 –Disable interrupt

02F4 FE
1204 02F5 65 ANDCM ~UNV –Back to voiced for next word

02F6 7F

1205 02F7 64 ORCM PCM –Enable PCM mode
02F8 04

1206 02F9 11 TMA

1207 02FA 1D TAMODE –Set mode per above setting
1208 02FB 2F CLA

1209 02FC 1C TASYN –Write a zero to the DAC
1210 02FD 6E TCA #FA

02FE FA

1211 02FF 3A BACK IAC –Wait for minimum of 30
1212 0300 43 BR out instruction cycles

0301 04
1213 0302 42 BR back

0303 FF

1214 0304 62 OUT TCX MODE_BUF –Disable PCM
0305 3A

1215 0306 65 ANDCM ~PCM
0307 FB

1216 0308 11 TMA

1217 0309 1D TAMODE –Set mode per above setting
1218 030A 40 BR SPEAK1 –Go back for next word

030B 47
1219
1220 030C 62 RTN TCX FLAGS –Set a flag indicating that

030D 38
1221 030E 64 ORCM Update_Flg the parameters are updated

030F 04

 TSP50C0x/1x Sample Synthesis Program

B-33 TSP50C0x/1x Sample Synthesis Program

1222

1223 0310 62 TCX MODE_BUF –Get mode
0311 3A

1224 0312 66 TSTCM LPC –Are we speaking yet?
0313 02

1225 0314 43 BR RTN1 yes, reenable interrupt

0315 17
1226 0316 3D RETN no, return for more data

1227
1228 0317 62 RTN1 TCX FLAG1 –Inhibit any pending

0318 39

1229 0319 64 ORCM Int_Off interpolation interrupt
031A 01

1230
1231 031B 62 TCX MODE_BUF –Reenable the interrupt

031C 3A

1232 031D 64 ORCM INT1
031E 01

1233 031F 11 TMA
1234 0320 1D TAMODE
1235

1236 0321 62 TCX FLAG1 –Reenable execution
0322 39

1237 0323 65 ANDCM ~Int_Off of the interpolation routine

0324 FE
1238 0325 40 BR SPEAK_LP –Go back to loop

0326 9C
1239 *
1240 * D6 SPEECH DECODING TABLES.

1241 *
1242 * Energy decoding table

1243 *
1244 0327 00 TBLEN BYTE #00,#01,#02,#03,#04,#05,#07,#0B
1245 032F 11 BYTE #11,#1A,#29,#3F,#55,#70,#7F,#00

1246
1247 *

1248 * Pitch period decoding table
1249 *
1250 0337 0C TBLPH BYTE #0C,#00

1251 0339 10 BYTE #10,#00
1252 033B 10 BYTE #10,#04

1253 033D 10 BYTE #10,#08
1254 033F 11 BYTE #11,#00
1255 0341 11 BYTE #11,#04

1256 0343 11 BYTE #11,#08
1257 0345 11 BYTE #11,#0C
1258 0347 12 BYTE #12,#04

TSP50C0x/1x Sample Synthesis Program

B-34

1259 0349 12 BYTE #12,#08

1260 034B 12 BYTE #12,#0C
1261 034D 13 BYTE #13,#04

1262 034F 13 BYTE #13,#08
1263 0351 14 BYTE #14,#00
1264 0353 14 BYTE #14,#04

1265 0355 14 BYTE #14,#0C
1266 0357 15 BYTE #15,#00

1267 0359 15 BYTE #15,#08
1268 035B 15 BYTE #15,#0C
1269 035D 16 BYTE #16,#04

1270 035F 16 BYTE #16,#0C
1271 0361 17 BYTE #17,#00

1272 0363 17 BYTE #17,#08
1273 0365 18 BYTE #18,#00
1274 0367 18 BYTE #18,#04

1275 0369 18 BYTE #18,#0C
1276 036B 19 BYTE #19,#04

1277 036D 19 BYTE #19,#0C
1278 036F 1A BYTE #1A,#04
1279 0371 1A BYTE #1A,#0C

1280 0373 1B BYTE #1B,#04
1281 0375 1B BYTE #1B,#0C
1282 0377 1C BYTE #1C,#04

1283 0379 1C BYTE #1C,#0C
1284 037B 1D BYTE #1D,#04

1285 037D 1D BYTE #1D,#0C
1286 037F 1E BYTE #1E,#04
1287 0381 1F BYTE #1F,#00

1288 0383 1F BYTE #1F,#08
1289 0385 20 BYTE #20,#00

1290 0387 20 BYTE #20,#0C
1291 0389 21 BYTE #21,#04
1292 038B 21 BYTE #21,#0C

1293 038D 22 BYTE #22,#08
1294 038F 23 BYTE #23,#00

1295 0391 23 BYTE #23,#0C
1296 0393 24 BYTE #24,#08
1297 0395 25 BYTE #25,#00

1298 0397 25 BYTE #25,#0C
1299 0399 26 BYTE #26,#08

1300 039B 27 BYTE #27,#04
1301 039D 28 BYTE #28,#00
1302 039F 28 BYTE #28,#0C

1303 03A1 29 BYTE #29,#08
1304 03A3 2A BYTE #2A,#04
1305 03A5 2B BYTE #2B,#00

 TSP50C0x/1x Sample Synthesis Program

B-35 TSP50C0x/1x Sample Synthesis Program

1306 03A7 2B BYTE #2B,#0C

1307 03A9 2C BYTE #2C,#08
1308 03AB 2D BYTE #2D,#04

1309 03AD 2E BYTE #2E,#04
1310 03AF 2F BYTE #2F,#00
1311 03B1 30 BYTE #30,#00

1312 03B3 30 BYTE #30,#0C
1313 03B5 31 BYTE #31,#0C

1314 03B7 32 BYTE #32,#08
1315 03B9 33 BYTE #33,#08
1316 03BB 34 BYTE #34,#08

1317 03BD 35 BYTE #35,#08
1318 03BF 36 BYTE #36,#08

1319 03C1 37 BYTE #37,#08
1320 03C3 38 BYTE #38,#08
1321 03C5 39 BYTE #39,#08

1322 03C7 3A BYTE #3A,#08
1323 03C9 3B BYTE #3B,#0C

1324 03CB 3C BYTE #3C,#0C
1325 03CD 3D BYTE #3D,#0C
1326 03CF 3F BYTE #3F,#00

1327 03D1 40 BYTE #40,#04
1328 03D3 41 BYTE #41,#04
1329 03D5 42 BYTE #42,#08

1330 03D7 43 BYTE #43,#0C
1331 03D9 45 BYTE #45,#00

1332 03DB 46 BYTE #46,#04
1333 03DD 47 BYTE #47,#08
1334 03DF 49 BYTE #49,#00

1335 03E1 4A BYTE #4A,#04
1336 03E3 4B BYTE #4B,#0C

1337 03E5 4D BYTE #4D,#00
1338 03E7 4E BYTE #4E,#08
1339 03E9 50 BYTE #50,#00

1340 03EB 51 BYTE #51,#04
1341 03ED 52 BYTE #52,#0C

1342 03EF 54 BYTE #54,#08
1343 03F1 56 BYTE #56,#00
1344 03F3 57 BYTE #57,#08

1345 03F5 59 BYTE #59,#04
1346 03F7 5A BYTE #5A,#0C

1347 03F9 5C BYTE #5C,#08
1348 03FB 5E BYTE #5E,#04
1349 03FD 60 BYTE #60,#00

1350 03FF 61 BYTE #61,#0C
1351 0401 63 BYTE #63,#08
1352 0403 65 BYTE #65,#04

TSP50C0x/1x Sample Synthesis Program

B-36

1353 0405 67 BYTE #67,#04

1354 0407 69 BYTE #69,#00
1355 0409 6B BYTE #6B,#00

1356 040B 6D BYTE #6D,#00
1357 040D 6F BYTE #6F,#00
1358 040F 71 BYTE #71,#00

1359 0411 73 BYTE #73,#04
1360 0413 75 BYTE #75,#04

1361 0415 77 BYTE #77,#08
1362 0417 79 BYTE #79,#0C
1363 0419 7C BYTE #7C,#00

1364 041B 7E BYTE #7E,#04
1365 041D 80 BYTE #80,#08

1366 041F 82 BYTE #82,#0C
1367 0421 85 BYTE #85,#04
1368 0423 87 BYTE #87,#0C

1369 0425 8A BYTE #8A,#04
1370 0427 8C BYTE #8C,#0C

1371 0429 8F BYTE #8F,#08
1372 042B 92 BYTE #92,#00
1373 042D 94 BYTE #94,#0C

1374 042F 97 BYTE #97,#08
1375 0431 9A BYTE #9A,#04
1376 0433 9D BYTE #9D,#00

1377 0435 A0 BYTE #A0,#00
1378

1379 *
1380 * K1 parameter decoding table
1381 *

1382 0437 81 TBLK1 BYTE #81,#00
1383 0439 82 BYTE #82,#04

1384 043B 83 BYTE #83,#04
1385 043D 84 BYTE #84,#08
1386 043F 85 BYTE #85,#0C

1387 0441 87 BYTE #87,#00
1388 0443 88 BYTE #88,#04

1389 0445 89 BYTE #89,#0C
1390 0447 8B BYTE #8B,#04
1391 0449 8C BYTE #8C,#0C

1392 044B 8E BYTE #8E,#04
1393 044D 90 BYTE #90,#00

1394 044F 91 BYTE #91,#0C
1395 0451 93 BYTE #93,#08
1396 0453 95 BYTE #95,#08

1397 0455 97 BYTE #97,#04
1398 0457 99 BYTE #99,#08
1399 0459 9B BYTE #9B,#08

 TSP50C0x/1x Sample Synthesis Program

B-37 TSP50C0x/1x Sample Synthesis Program

1400 045B 9D BYTE #9D,#08

1401 045D 9F BYTE #9F,#0C
1402 045F A2 BYTE #A2,#00

1403 0461 A4 BYTE #A4,#04
1404 0463 A6 BYTE #A6,#0C
1405 0465 A9 BYTE #A9,#04

1406 0467 AB BYTE #AB,#08
1407 0469 AE BYTE #AE,#00

1408 046B B0 BYTE #B0,#0C
1409 046D B3 BYTE #B3,#08
1410 046F B6 BYTE #B6,#04

1411 0471 B9 BYTE #B9,#00
1412 0473 BC BYTE #BC,#00

1413 0475 BF BYTE #BF,#04
1414 0477 C2 BYTE #C2,#04
1415 0479 C5 BYTE #C5,#08

1416 047B C8 BYTE #C8,#0C
1417 047D CC BYTE #CC,#04

1418 047F CF BYTE #CF,#0C
1419 0481 D3 BYTE #D3,#08
1420 0483 D7 BYTE #D7,#08

1421 0485 DB BYTE #DB,#04
1422 0487 DF BYTE #DF,#04
1423 0489 E3 BYTE #E3,#08

1424 048B E7 BYTE #E7,#0C
1425 048D EC BYTE #EC,#00

1426 048F F0 BYTE #F0,#04
1427 0491 F4 BYTE #F4,#0C
1428 0493 F9 BYTE #F9,#0C

1429 0495 FE BYTE #FE,#0C
1430 0497 04 BYTE #04,#04

1431 0499 09 BYTE #09,#0C
1432 049B 0F BYTE #0F,#04
1433 049D 15 BYTE #15,#08

1434 049F 1C BYTE #1C,#08
1435 04A1 23 BYTE #23,#08

1436 04A3 2A BYTE #2A,#0C
1437 04A5 32 BYTE #32,#08
1438 04A7 3A BYTE #3A,#08

1439 04A9 42 BYTE #42,#0C
1440 04AB 4B BYTE #4B,#08

1441 04AD 54 BYTE #54,#00
1442 04AF 5C BYTE #5C,#04
1443 04B1 65 BYTE #65,#00

1444 04B3 6E BYTE #6E,#00
1445 04B5 78 BYTE #78,#08
1446

TSP50C0x/1x Sample Synthesis Program

B-38

1447 *

1448 * K2 parameter decoding table
1449 *

1450 04B7 8A TBLK2 BYTE #8A,#00
1451 04B9 98 BYTE #98,#00
1452 04BB A3 BYTE #A3,#0C

1453 04BD AD BYTE #AD,#0C
1454 04BF B4 BYTE #B4,#08

1455 04C1 BA BYTE #BA,#08
1456 04C3 C0 BYTE #C0,#00
1457 04C5 C5 BYTE #C5,#00

1458 04C7 C9 BYTE #C9,#0C
1459 04C9 CE BYTE #CE,#04

1460 04CB D2 BYTE #D2,#0C
1461 04CD D6 BYTE #D6,#0C
1462 04CF DA BYTE #DA,#0C

1463 04D1 DE BYTE #DE,#08
1464 04D3 E2 BYTE #E2,#00

1465 04D5 E5 BYTE #E5,#0C
1466 04D7 E9 BYTE #E9,#04
1467 04D9 EC BYTE #EC,#0C

1468 04DB F0 BYTE #F0,#00
1469 04DD F3 BYTE #F3,#04
1470 04DF F6 BYTE #F6,#08

1471 04E1 F9 BYTE #F9,#0C
1472 04E3 FD BYTE #FD,#00

1473 04E5 00 BYTE #00,#00
1474 04E7 03 BYTE #03,#04
1475 04E9 06 BYTE #06,#04

1476 04EB 09 BYTE #09,#04
1477 04ED 0C BYTE #0C,#04

1478 04EF 0F BYTE #0F,#04
1479 04F1 12 BYTE #12,#08
1480 04F3 15 BYTE #15,#08

1481 04F5 18 BYTE #18,#08
1482 04F7 1B BYTE #1B,#08

1483 04F9 1E BYTE #1E,#08
1484 04FB 21 BYTE #21,#08
1485 04FD 24 BYTE #24,#0C

1486 04FF 27 BYTE #27,#0C
1487 0501 2A BYTE #2A,#0C

1488 0503 2D BYTE #2D,#0C
1489 0505 30 BYTE #30,#0C
1490 0507 34 BYTE #34,#00

1491 0509 37 BYTE #37,#00
1492 050B 3A BYTE #3A,#04
1493 050D 3D BYTE #3D,#00

 TSP50C0x/1x Sample Synthesis Program

B-39 TSP50C0x/1x Sample Synthesis Program

1494 050F 40 BYTE #40,#00

1495 0511 43 BYTE #43,#00
1496 0513 46 BYTE #46,#00

1497 0515 49 BYTE #49,#00
1498 0517 4C BYTE #4C,#00
1499 0519 4F BYTE #4F,#04

1500 051B 52 BYTE #52,#04
1501 051D 55 BYTE #55,#04

1502 051F 58 BYTE #58,#04
1503 0521 5B BYTE #5B,#04
1504 0523 5E BYTE #5E,#00

1505 0525 61 BYTE #61,#00
1506 0527 63 BYTE #63,#0C

1507 0529 66 BYTE #66,#08
1508 052B 69 BYTE #69,#04
1509 052D 6C BYTE #6C,#00

1510 052F 6F BYTE #6F,#00
1511 0531 72 BYTE #72,#00

1512 0533 76 BYTE #76,#04
1513 0535 7C BYTE #7C,#00
1514

1515 *
1516 * K3 parameter decoding table
1517 *

1518 0537 8B TBLK3 BYTE #8B,#9A,#A2,#A9,#AF,#B5,#BB,#C0
1519 053F C5 BYTE #C5,#CA,#CF,#D4,#D9,#DE,#E2,#E7

1520 0547 EC BYTE #EC,#F1,#F6,#FB,#01,#07,#0D,#14
1521 054F 1A BYTE #1A,#22,#29,#32,#3B,#45,#53,#6D
1522

1523 *
1524 * K4 parameter decoding table

1525 *
1526 0557 94 TBLK4 BYTE #94,#B0,#C2,#CB,#D3,#D9,#DF,#E5
1527 055F EA BYTE #EA,#EF,#F4,#F9,#FE,#03,#07,#0C

1528 0567 11 BYTE #11,#15,#1A,#1F,#24,#29,#2E,#33
1529 056F 38 BYTE #38,#3E,#44,#4B,#53,#5A,#64,#74

1530
1531 *
1532 * K5 parameter decoding table

1533 *
1534 0577 A3 TBLK5 BYTE #A3,#C5,#D4,#E0,#EA,#F3,#FC,#04

1535 057F 0C BYTE #0C,#15,#1E,#27,#31,#3D,#4C,#66
1536
1537 *

1538 * K6 parameter decoding table
1539 *
1540 0587 AA TBLK6 BYTE #AA,#D7,#E7,#F2,#FC,#05,#0D,#14

TSP50C0x/1x Sample Synthesis Program

B-40

1541 058F 1C BYTE #1C,#24,#2D,#36,#40,#4A,#55,#6A

1542
1543 *

1544 * K7 parameter decoding table
1545 *
1546 0597 A3 TBLK7 BYTE #A3,#C8,#D7,#E3,#ED,#F5,#FD,#05

1547 059F 0D BYTE #0D,#14,#1D,#26,#31,#3C,#4B,#67
1548

1549 *
1550 * K8 parameter decoding table
1551 *

1552 05A7 C5 TBLK8 BYTE #C5,#E4,#F6,#05,#14,#27,#3E,#58
1553

1554 *
1555 * K9 parameter decoding table
1556 *

1557 05AF B9 TBLK9 BYTE #B9,#DC,#EC,#F9,#04,#10,#1F,#45
1558

1559 *
1560 * K10 parameter decoding table
1561 *

1562 05B7 C3 TBLK10 BYTE #C3,#E6,#F3,#FD,#06,#11,#1E,#43
1563
1564

1565 ***
1566 * *

1567 * This is the lookup table giving the starting address *
1568 * of each concatenation list. *
1569 * *

1570 ***
1571 05BF 05C5’ SENTENCE DATA PHRASE0

1572 05C1 05CA’ DATA PHRASE1
1573 05C3 05CF’ DATA PHRASE2
1574 ***

1575 * *
1576 * This is the concatenation table giving the lists *

1577 * of word numbers that define each phrase. Each *
1578 * list is terminated by an #FF. *
1579 * *

1580 ***
1581 05C5 01 PHRASE0 BYTE 1,2,3,4,#FF

1582 05CA 04 PHRASE1 BYTE 4,3,2,1,#FF
1583 05CF 05 PHRASE2 BYTE 5,4,3,2,1,#FF
1584 ***

1585 * *
1586 * This is the lookup table for the speech stored at *
1587 * voc. *

 TSP50C0x/1x Sample Synthesis Program

B-41 TSP50C0x/1x Sample Synthesis Program

1588 * *

1589 ***
1590 05D5 0000’ SPEECH DATA #0000

1591 05D7 05E3’ DATA #0000+VOC Word 1 “One”
1592 05D9 0667’ DATA #0084+VOC Word 2 “Two”
1593 05DB 06D9’ DATA #00F6+VOC Word 3 “Three”

1594 05DD 075D’ DATA #017A+VOC Word 4 “Four”
1595 05DF 07C3’ DATA #01E0+VOC Word 5 “Five”

1596 05E1 086F’ DATA #028C+VOC Word 6 “Six”
1597 ***
1598 * *

1599 * This is the DTS speech coded with the D6 coding *
1600 * table *

1601 * *
1602 ***
1603 05E3 VOC

1604 05E3 68 BYTE #68,#89,#84,#FB,#1A,#53,#64,#B2
1605 05EB 84 BYTE #84,#87,#33,#C9,#35,#28,#9B,#A1

1606 05F3 D1 BYTE #D1,#BA,#22,#3A,#94,#8D,#08,#BD
1607 05FB BE BYTE #BE,#40,#1C,#6D,#BA,#BC,#14,#7E
1608 0603 33 BYTE #33,#CE,#4E,#75,#8D,#EE,#2F,#03

1609 060B BB BYTE #BB,#96,#4A,#46,#D7,#CF,#4A,#DD
1610 0613 4A BYTE #4A,#23,#54,#CE,#26,#B7,#74,#A5
1611 061B 9B BYTE #9B,#49,#7B,#62,#44,#B7,#32,#2D

1612 0623 95 BYTE #95,#D9,#C8,#B4,#5B,#9A,#35,#5A
1613 062B 8D BYTE #8D,#C2,#DC,#2C,#CC,#5A,#CC,#0A

1614 0633 2B BYTE #2B,#6E,#EE,#66,#19,#69,#98,#27
1615 063B 75 BYTE #75,#33,#CB,#80,#36,#AC,#94,#E6
1616 0643 A9 BYTE #A9,#85,#CE,#4B,#1B,#EC,#CD,#D4

1617 064B 2C BYTE #2C,#50,#71,#52,#F5,#76,#AA,#1B
1618 0653 9B BYTE #9B,#38,#98,#58,#33,#56,#B6,#35

1619 065B D2 BYTE #D2,#58,#A3,#99,#C8,#7B,#AE,#D5
1620 0663 A8 BYTE #A8,#5E,#FB,#01,#04,#B0,#78,#BA
1621 066B 2B BYTE #2B,#C0,#5D,#1B,#6D,#00,#F7,#65

1622 0673 BA BYTE #BA,#01,#64,#BA,#13,#29,#B7,#06
1623 067B 36 BYTE #36,#81,#C9,#FE,#92,#DB,#5C,#15

1624 0683 20 BYTE #20,#B8,#7F,#29,#AF,#8A,#CA,#10
1625 068B DC BYTE #DC,#3F,#35,#12,#56,#47,#2A,#FA
1626 0693 9F BYTE #9F,#FA,#26,#61,#97,#0C,#ED,#77

1627 069B 43 BYTE #43,#9A,#6E,#97,#9A,#F7,#8A,#01
1628 06A3 2E BYTE #2E,#CE,#8D,#29,#7B,#48,#17,#B1

1629 06AB CF BYTE #CF,#86,#B4,#4E,#64,#04,#47,#77
1630 06B3 A1 BYTE #A1,#4B,#26,#32,#83,#9B,#13,#31
1631 06BB AD BYTE #AD,#23,#59,#E3,#DA,#5E,#90,#B2

1632 06C3 85 BYTE #85,#AC,#68,#65,#0D,#70,#E9,#4D
1633 06CB 36 BYTE #36,#44,#38,#13,#87,#74,#12,#BB
1634 06D3 8D BYTE #8D,#52,#59,#90,#E4,#3D,#08,#60

TSP50C0x/1x Sample Synthesis Program

B-42

1635 06DB CA BYTE #CA,#86,#13,#40,#66,#1A,#46,#00

1636 06E3 B9 BYTE #B9,#EC,#8B,#00,#14,#59,#B7,#0A
1637 06EB 90 BYTE #90,#5A,#35,#9A,#EC,#1E,#D9,#86

1638 06F3 A4 BYTE #A4,#EA,#5C,#41,#69,#85,#B2,#A6
1639 06FB EE BYTE #EE,#21,#AF,#CC,#24,#46,#63,#F7
1640 0703 94 BYTE #94,#53,#26,#E1,#65,#B1,#7B,#C9

1641 070B 3B BYTE #3B,#A5,#77,#B8,#92,#3E,#E5,#9B
1642 0713 B4 BYTE #B4,#7B,#18,#EE,#9F,#0A,#5B,#52

1643 071B 02 BYTE #02,#B4,#EE,#4F,#8D,#23,#CF,#06
1644 0723 2A BYTE #2A,#B7,#A7,#FE,#96,#04,#0A,#DD
1645 072B DF BYTE #DF,#D2,#70,#B6,#24,#C6,#9D,#25

1646 0733 61 BYTE #61,#3C,#F0,#1C,#F3,#ED,#A4,#30
1647 073B 59 BYTE #59,#74,#8E,#70,#E7,#96,#9B,#4C

1648 0743 0A BYTE #0A,#47,#74,#3B,#D1,#CC,#07,#95
1649 074B 21 BYTE #21,#BE,#19,#65,#A6,#B3,#27,#20
1650 0753 CE BYTE #CE,#4C,#62,#93,#58,#41,#B4,#77

1651 075B 0A BYTE #0A,#3E,#80,#00,#A6,#6A,#03,#01
1652 0763 54 BYTE #54,#A6,#4F,#0C,#10,#C6,#D1,#0B

1653 076B 80 BYTE #80,#97,#D4,#E0,#12,#2A,#D7,#37
1654 0773 87 BYTE #87,#58,#09,#E9,#18,#B7,#3F,#0D
1655 077B BD BYTE #BD,#87,#74,#8A,#99,#9F,#86,#DE

1656 0783 43 BYTE #43,#D9,#26,#EA,#37,#C5,#EC,#A1
1657 078B A9 BYTE #A9,#B0,#F3,#91,#71,#FE,#30,#60
1658 0793 83 BYTE #83,#B3,#B1,#C4,#7F,#1A,#B3,#ED

1659 079B 8E BYTE #8E,#D4,#A2,#3F,#CC,#84,#AD,#4A
1660 07A3 1B BYTE #1B,#E8,#1F,#D6,#EA,#38,#A4,#1C

1661 07AB E6 BYTE #E6,#0F,#5B,#63,#49,#D4,#0F,#F3
1662 07B3 B9 BYTE #B9,#83,#B1,#7B,#E2,#87,#7B,#DD
1663 07BB D5 BYTE #D5,#BA,#A8,#E8,#C5,#5D,#0F,#00

1664 07C3 08 BYTE #08,#90,#FB,#51,#23,#80,#AB,#19
1665 07CB 4A BYTE #4A,#00,#B9,#97,#0D,#01,#34,#59

1666 07D3 49 BYTE #49,#0C,#D0,#A5,#29,#11,#80,#E5
1667 07DB 86 BYTE #86,#58,#EA,#BE,#32,#36,#27,#F5
1668 07E3 69 BYTE #69,#B5,#4C,#18,#CB,#9B,#DA,#B5

1669 07EB 7A BYTE #7A,#AA,#EC,#61,#45,#6B,#4B,#33
1670 07F3 F0 BYTE #F0,#6F,#D1,#94,#25,#A5,#ED,#15

1671 07FB 37 BYTE #37,#68,#EA,#9C,#D4,#75,#BA,#ED
1672 0803 34 BYTE #34,#6D,#4E,#19,#7B,#CD,#76,#9A
1673 080B 7A BYTE #7A,#BB,#CC,#A2,#F2,#18,#4D,#B9

1674 0813 59 BYTE #59,#96,#59,#71,#B4,#A4,#3C,#2A
1675 081B CB BYTE #CB,#BC,#5A,#5C,#52,#67,#A6,#4D

1676 0823 36 BYTE #36,#36,#AA,#61,#17,#D3,#2E,#6F
1677 082B 22 BYTE #22,#93,#F4,#05,#61,#1F,#56,#52
1678 0833 69 BYTE #69,#E7,#41,#B3,#0F,#32,#E1,#AC

1679 083B E2 BYTE #E2,#B0,#D9,#EB,#95,#34,#5C,#7E
1680 0843 52 BYTE #52,#EC,#E5,#44,#1B,#4A,#79,#C1
1681 084B F6 BYTE #F6,#3A,#6D,#1C,#9A,#76,#66,#BB

 TSP50C0x/1x Sample Synthesis Program

B-43 TSP50C0x/1x Sample Synthesis Program

1682 0853 51 BYTE #51,#32,#16,#89,#94,#99,#DD,#96

1683 085B 8F BYTE #8F,#69,#C9,#6A,#D5,#6E,#F2,#52
1684 0863 21 BYTE #21,#62,#6A,#62,#37,#24,#2D,#22

1685 086B 11 BYTE #11,#97,#07,#00,#04,#F0,#2A,#08
1686 0873 13 BYTE #13,#C0,#BF,#F9,#44,#00,#FF,#EE
1687 087B 95 BYTE #95,#00,#7C,#A5,#D3,#02,#F0,#B5

1688 0883 DA BYTE #DA,#94,#62,#C6,#17,#8D,#D9,#B7
1689 088B 4B BYTE #4B,#BE,#97,#8B,#25,#CB,#D7,#A5

1690 0893 5A BYTE #5A,#AA,#4D,#72,#F7,#DB,#D4,#2F
1691 089B BD BYTE #BD,#4C,#75,#EA,#6B,#5A,#84,#15
1692 08A3 D1 BYTE #D1,#DD,#BD,#11,#00,#80,#01,#1C

1693 08AB 6F BYTE #6F,#6B,#01,#78,#AC,#BE,#05,#E0
1694 08B3 5F BYTE #5F,#75,#62,#80,#7F,#D0,#9D,#01

1695 08BB BE BYTE #BE,#8F,#7B,#02,#78,#3B,#5D,#1E
1696 08C3 08 BYTE #08,#F0,#15,#3E,#13,#C0,#57,#F3
1697 08CB 4C BYTE #4C,#00,#7F,#CF,#38,#01,#FC,#81

1698 08D3 32 BYTE #32,#0C,#F0,#5F,#C2,#85,#62,#C5
1699 08DB 0D BYTE #0D,#85,#59,#9B,#5A,#25,#D5,#87

1700 08E3 A4 BYTE #A4,#AA,#67,#A5,#5A,#04,#5B,#62
1701 08EB D7 BYTE #D7,#DC,#52,#4B,#9A,#C9,#A9,#F2
1702 08F3 49 BYTE #49,#E9,#46,#6D,#37,#94,#FE,#C4

1703 08FB 8C BYTE #8C,#75,#B3,#58,#52,#CB,#64,#A6
1704 0903 2C BYTE #2C,#53,#23,#47,#A6,#35,#6B,#DE
1705 090B C8 BYTE #C8,#9A,#23,#6B,#A5,#55,#E0,#36

1706 0913 C9 BYTE #C9,#1A,#B7,#D2,#3E,#0E,#26,#67
1707 091B 8D BYTE #8D,#4B,#66,#AF,#26,#99,#BB,#D5

1708 0923 40 BYTE #40,#B5,#97,#2D,#36,#95,#3A,#E6
1709 092B 03 BYTE #03,#00,#A6,#2A,#5A,#BE,#D6,#45
1710 0933 E8 BYTE #E8,#50,#C9,#5C,#A9,#EC,#7A,#76

1711 093B A9 BYTE #A9,#8C,#91,#65,#B8,#FD,#B6,#54
1712 0943 D6 BYTE #D6,#3C,#52,#AC,#D9,#5A,#8A,#9B

1713 094B E9 BYTE #E9,#11,#6D,#3F,#2D,#E5,#29,#96
1714 0953 50 BYTE #50,#AE,#E7,#A6,#FE,#92,#2B,#28
1715 095B 75 BYTE #75,#AB,#DD,#A6,#8F,#29,#D4,#D9

1716 0963 59 BYTE #59,#00,#0C,#B0,#08,#D4,#0A,#C0
1717 096B 13 BYTE #13,#E6,#AE,#00,#6B,#7D,#9B,#02

1718 0973 8C BYTE #8C,#E5,#32,#0F,#A4,#25,#53,#73
1719 097B 57 BYTE #57,#50,#53,#D1,#93,#C5,#3C,#5B
1720 0983 65 BYTE #65,#99,#18,#CA,#7C,#99,#65,#BC

1721 098B CE BYTE #CE,#8D,#65,#4A,#0F,#4D,#9D,#53
1722 0993 C6 BYTE #C6,#9E,#D3,#1C,#65,#4E,#2C,#23

1723 099B 3F BYTE #3F,#3B,#52,#D2,#4F,#95,#9E,#9F
1724 09A3 1D BYTE #1D,#29,#E9,#A7,#4A,#37,#B7,#4F
1725 09AB A5 BYTE #A5,#B2,#35,#A5,#9B,#DB,#A7,#52

1726 09B3 D9 BYTE #D9,#9A,#D2,#C9,#93,#93,#A8,#74
1727 09BB 4D BYTE #4D,#E9,#96,#D9,#F2,#54,#B2,#BA
1728 09C3 8C BYTE #8C,#F2,#BA,#09,#69,#9D,#59,#46

TSP50C0x/1x Sample Synthesis Program

B-44

1729 09CB 65 BYTE #65,#1E,#99,#96,#56,#4C,#A3,#38

1730 09D3 54 BYTE #54,#CC,#5B,#0B,#B9,#91,#AD,#1B
1731 09DB 9E BYTE #9E,#C5,#45,#D9,#18,#73,#C2,#0C

1732
1733 *EXCITATION FUNCTION
1734

1735 4000 AORG #4000
1736 4000 00 BYTE #00,#A2,#00,#AF,#00,#BA,#00,#C2

1737 4008 00 BYTE #00,#C7,#00,#C9,#00,#CA,#00,#C6
1738 4010 00 BYTE #00,#C2,#00,#BC,#00,#B5,#00,#AD
1739 4018 00 BYTE #00,#A5,#00,#9E,#00,#9A,#00,#95

1740 4020 00 BYTE #00,#95,#00,#98,#00,#9F,#00,#A8
1741 4028 00 BYTE #00,#B8,#00,#CA,#00,#E3,#00,#FE

1742 4030 01 BYTE #01,#1F,#01,#41,#01,#69,#01,#91
1743 4038 01 BYTE #01,#BD,#01,#E8,#02,#16,#02,#40
1744 4040 02 BYTE #02,#6C,#02,#92,#02,#B9,#02,#D9

1745 4048 02 BYTE #02,#F8,#03,#0F,#03,#25,#03,#32
1746 4050 03 BYTE #03,#3F,#03,#43,#03,#47,#03,#45

1747 4058 03 BYTE #03,#45,#03,#3F,#03,#3D,#03,#3A
1748 4060 03 BYTE #03,#3D,#03,#41,#03,#4E,#03,#5F
1749 4068 03 BYTE #03,#7B,#03,#A0,#03,#D2,#04,#0D

1750 4070 04 BYTE #04,#57,#04,#AD,#05,#11,#05,#82
1751 4078 06 BYTE #06,#00,#06,#8A,#07,#1F,#07,#BD
1752 4080 08 BYTE #08,#64,#09,#11,#09,#C1,#0A,#74

1753 4088 0B BYTE #0B,#26,#0B,#D5,#0C,#7F,#0D,#20
1754 4090 0D BYTE #0D,#B7,#0E,#40,#0E,#BB,#0F,#24

1755 4098 0F BYTE #0F,#7A,#0F,#BC,#0F,#E9,#0F,#FF
1756 40A0 0F BYTE #0F,#FF,#0F,#E9,#0F,#BC,#0F,#7A
1757 40A8 0F BYTE #0F,#24,#0E,#BB,#0E,#40,#0D,#B7

1758 40B0 0D BYTE #0D,#20,#0C,#7F,#0B,#D5,#0B,#26
1759 40B8 0A BYTE #0A,#74,#09,#C1,#09,#11,#08,#64

1760 40C0 07 BYTE #07,#BD,#07,#1F,#06,#8A,#06,#00
1761 40C8 05 BYTE #05,#82,#05,#11,#04,#AD,#04,#57
1762 40D0 04 BYTE #04,#0D,#03,#D2,#03,#A0,#03,#7B

1763 40D8 03 BYTE #03,#5F,#03,#4E,#03,#41,#03,#3D
1764 40E0 03 BYTE #03,#3A,#03,#3D,#03,#3F,#03,#45

1765 40E8 03 BYTE #03,#45,#03,#47,#03,#43,#03,#3F
1766 40F0 03 BYTE #03,#32,#03,#25,#03,#0F,#02,#F8
1767 40F8 02 BYTE #02,#D9,#02,#B9,#02,#92,#02,#6C

1768 4100 02 BYTE #02,#40,#02,#16,#01,#E8,#01,#BD
1769 4108 01 BYTE #01,#91,#01,#69,#01,#41,#01,#1F

1770 4110 00 BYTE #00,#FE,#00,#E3,#00,#CA,#00,#B8
1771 4118 00 BYTE #00,#A8,#00,#9F,#00,#98,#00,#95
1772 4120 00 BYTE #00,#95,#00,#9A,#00,#9E,#00,#A5

1773 4128 00 BYTE #00,#AD,#00,#B5,#00,#BC,#00,#C2
1774 4130 00 BYTE #00,#C6,#00,#CA,#00,#C9,#00,#C7
1775 4138 00 BYTE #00,#C2,#00,#BA,#00,#AF,#00,#A2

 TSP50C0x/1x Sample Synthesis Program

B-45 TSP50C0x/1x Sample Synthesis Program

1776 4140 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80
1777 4148 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80
1778 4150 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80
1779 4158 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80
1780 4160 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80
1781 4168 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80
1782 4170 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80
1783 4178 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80
1784 4180 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
1785 4188 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
1786 4190 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
1787 4198 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
1788 41A0 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
1789 41A8 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
1790 41B0 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
1791 41B8 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
1792 41C0 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
1793 41C8 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF

B-46

 Running Title—Attribute Reference

C-1 Chapter Title—Attribute Reference

Appendix A

External ROM Initialization

This chapter contains the code for a sample program that initializes the
TSP60C18 speech ROM.

Appendix C

External ROM Initialization

C-2

0001 ***
0002 * This is the TSP50C10/11 assembler source for the
0003 * initialization routine for the TSP60C18 speech ROM.
0004 * It assumes that the desired starting byte address
0005 * is located at an arbitrary point in RAM. For
0006 * purposes of checkout, this routine uses the memory
0007 * location #10 for the most significant byte of the
0008 * address and the memory location #11 for the least
0009 * significant byte of the address.
0010 *
0011 * In actual use, the values given for Addr_MSB and
0012 * Addr_LSB in the equate block should be replaced so
0013 * as to point to the actual location in RAM used in
0014 * the program.
0015 *
0016 * The following interconnections are assumed by the
0017 * routine:
0018 *
0019 * TSP50C10/11 TSP60C18
0020 *
0021 * B(0) –––––––––––– STR
0022 * B(1) –––––––––––– R/W
0023 * A(0) –––––––––––– C(0)
0024 * A(1) –––––––––––– C(1)
0025 * A(2) –––––––––––– C(2)
0026 * A(3) –––––––––––– C(3)
0027 * A(7) –––––––––––– SCLK
0028 *
0029 * A0 and CEB on the TSP60C18 should be tied low.
0030 * HCLB on the TSP60C18 should be tied high.
0031 *
0032 * After calling this program, use the standard
0033 * synthesis routine.
0034 *
0035 * To use internal speech afterwards, clear the
0036 * EXTROM bit of the mode register.
0037 *
0038 * The strategy used in this routine is as follows:
0039 *
0040 * Put the TSP50C10/11 in external ROM mode.
0041 * Do a dummy write.
0042 * Load the 16–bit starting ROM address four
0043 * bits at a time. For each nibble of the
0044 * address, present the nibble to the
0045 * TSP60C18 by outputting it on the TSP50C10/11
0046 * ports A(0) to A(3) and then pulsing B(0)
0047 * low.
0048 * Do a dummy read to ensure that the internal
0049 * pointers in the TSP60C18 are OK.
0050 * Burn eight instruction cycles.
0051 * Perform two GET 2 instructions.
0052 * If the 16–bit address is odd, then do a GET 8.
0053 *

 External ROM Initialization

C-3 External ROM Initialization

0054 *
0055 * Although the TSP60C18 is internally organized on
0056 * word (16–bit) boundaries, the address that this
0057 * subroutine uses is expressed in byte (8–bit)
0058 * boundaries. The address located at Addr_MSB and
0059 * Addr_LSB is therefore right–shifted one bit before
0060 * being loaded to the TSP60C18. If the original
0061 * address contains a one in the least significant bit
0062 * position, a GET8 instruction is executed at the
0063 * end of the program to move one byte further
0064 * (halfway between word boundaries) in memory.
0065 *
0066 * When this routine is used to address an external
0067 * ROM, both pins of Port B and A(0,1,2,3,7) are
0068 * dedicated for use in addressing the ROM. The Port
0069 * B pins and A(7) need to be maintained as outputs
0070 * in their initialized state when not in this routine
0071 * or the address loaded in the ROM may be lost.
0072 *
0073 * This routine is reached by a
0074 *
0075 * CALL INIT
0076 *
0077 * instruction.
0078 *
0079 *
0080 ***
0081 *
0082 * EQUATE BLOCK
0083 *
0084 ***
0085 *
0086 * Data Address
0087 *
0088 0010 Addr_MSB EQU #10 Most significant byte of addr
0089 0011 Addr_LSB EQU #11 Least significant byte of addr
0090 *
0091 * Mode Buffer – Because the contents of the mode
0092 * register cannot be read and because other bits in
0093 * the mode register need to be maintained when a bit
0094 * is set or cleared, a copy of the mode register
0095 * is maintained in RAM. The copy is first changed
0096 * and then the copy is written to the mode register.
0097 *
0098 0012 Mode_buf EQU #12 Address of copy of mode register
0099 *
0100 * Temp – A scratch working register to
0101 * use for massaging the address.
0102 *
0103 0013 Temp EQU #13 Temporary working register
0104 *
0105 * The following data is used to set or clear the
0106 * EXTROM bit in the MODE Register.

External ROM Initialization

C-4

0107 *
0108 0010 ExtRom EQU #10 Logically OR mode with this
0109 00EF IntRom EQU #EF Logically AND mode with this
0110 *
0111 * Output port definitions
0112 *
0113 0080 Input_A EQU #80 Read here for Port A input
0114 0081 Special_A EQU #81 Set to 1 for open drain
0115 0082 IO_A EQU #82 Set to 0 for input, 1 for output
0116 0083 Output_A EQU #83 Write here for Port A output
0117 0084 Input_B EQU #84 Read here for Port B input
0118 0085 Special_B EQU #85 Set to 1 for open drain
0119 0086 IO_B EQU #86 Set to 0 for input, 1 for output
0120 0087 Output_B EQU #87 Write here for Port B output
0121 **
0122 *
0123 * Start Routine
0124 *
0125 **
0126 *
0127 * In general, when A(0,1,2,3,7) are used as outputs,
0128 * the other Port A pins should not be disturbed, so
0129 * the required bits are masked. An OR is performed
0130 * in the required high states.
0131 *
0132 *
0133 0000 62 INIT TCX IO_A Set up Port A7 to output

0001 82
0134 0002 65 ANDCM #7F

0003 7F
0135 0004 64 ORCM #80

0005 80
0136 0006 62 TCX Output_A Set Port A7 to 1

0007 83
0137 0008 65 ANDCM #7F

0009 7F
0138 000A 64 ORCM #80

000B 80
0139 *
0140 *
0141 * The B port is simpler because all Port B pins
0142 * are changed.
0143 *
0144 000C 6E TCA #03 Set Port B output data

000D 03
0145 000E 6A TAMD Output_B bits high

000F 87
0146 0010 6A TAMD IO_B Set Port B to output state

0011 86
0147 *
0148 * Set external ROM mode by ORing the correct bit in
0149 * the RAM location that is used to maintain a copy of
0150 * the current state of the mode register. Then

 External ROM Initialization

C-5 External ROM Initialization

0151 * write the result to the mode register.
0152 *
0153 0012 62 TCX Mode_buf Point to local copy

0013 12
0154 0014 64 ORCM ExtRom Set bit to local copy

0015 10
0155 0016 11 TMA Copy local copy
0156 0017 1D TAMODE to mode register
0157 * Do a dummy write
0158 0018 62 TCX Output_B B1 B0

0019 87
0159 001A 65 ANDCM #FD R/W_ = 0 STRB = 1

001B FD
0160 001C 65 ANDCM #FE R/W_ = 0 STRB = 0

001D FE
0161 001E 64 ORCM #01 R/W_ = 0 STRB = 1

001F 01
0162 0020 64 ORCM #03 R/W_ = 1 STRB = 1

0021 03
0163 *
0164 * Intialize the internal registers of the TSP50C10/11
0165 * for new input by performing a LUAPS.
0166 *
0167 0022 6C LUAPS
0168 *
0169 * Set up A0–A3,A7 as output.
0170 *
0171 0023 62 TCX IO_A

0024 82
0172 0025 64 ORCM #8F

0026 8F
0173 *
0174 *
0175 * Present lower nibble of LSB of address to ROM.
0176 *
0177 0027 69 TMAD Addr_LSB Get LSB

0028 11
0178 0029 15 SARA Divide address by 2
0179 002A 62 TCX TEMP

002B 13
0180 002C 16 TAM Move to working register
0181 002D 65 ANDCM #0F Mask off upper nibble

002E 0F
0182 002F 64 ORCM #80 Ensure A(7) high

0030 80
0183 0031 11 TMA Move nibble through A reg
0184 0032 6A TAMD Output_A to output

0033 83
0185 *
0186 * Latch first nibble of address to ROM.
0187 *
0188 0034 6E TCA #00 Str Low

0035 00

External ROM Initialization

C-6

0189 0036 6A TAMD Output_B
0037 87

0190 *
0191 0038 6E TCA #01 Str High

0039 01
0192 003A 6A TAMD Output_B

003B 87
0193 *
0194 * Present upper nibble of LSB of address to ROM.
0195 *
0196 003C 69 TMAD Addr_LSB Get LSB

003D 11
0197 003E 15 SARA Position 2nd
0198 003F 15 SARA nibble
0199 0040 15 SARA
0200 0041 15 SARA
0201 0042 15 SARA
0202 0043 16 TAM Move to working register
0203 0044 65 ANDCM #0F Mask off high bits

0045 0F
0204 0046 64 ORCM #88 Ensure A(7), high bit of

0047 88 nibble set high
0205 *
0206 * If lower bit of MSB is low, then transfer
0207 * that to upper bit of upper LSB nibble.
0208 *
0209 0048 62 TCX Addr_MSB Look at MSB of address

0049 10
0210 004A 66 TSTCM #01 Is lower bit high?

004B 01
0211 004C 40 BR INIT_1 yes, do nothing

004D 52
0212 004E 62 TCX TEMP no, reset bit in working

004F 13
0213 0050 65 ANDCM #F7 register to same state

0051 F7
0214 *
0215 0052 69 INIT_1 TMAD TEMP Move nibble through A reg

0053 13
0216 0054 6A TAMD Output_A to output

0055 83
0217 *
0218 * Latch second nibble of address to ROM.
0219 *
0220 0056 6E TCA #00 Str Low

0057 00
0221 0058 6A TAMD Output_B

0059 87
0222 *
0223 005A 6E TCA #01 Str High

005B 01
0224 005C 6A TAMD Output_B

005D 87

 External ROM Initialization

C-7 External ROM Initialization

0225 *
0226 * Present lower nibble of MSB of address to ROM.
0227 *
0228 005E 69 TMAD Addr_MSB Get MSB

005F 10
0229 0060 62 TCX Temp

0061 13
0230 0062 15 SARA Divide address by 2
0231 0063 16 TAM Move to working register
0232 0064 65 ANDCM #0F Mask off upper nibble

0065 0F
0233 0066 64 ORCM #80 Ensure A(7) high

0067 80
0234 0068 11 TMA Move nibble through A reg
0235 0069 6A TAMD Output_A to output

006A 83
0236 *
0237 * Latch third nibble of address to ROM.
0238 *
0239 006B 6E TCA #00 Str Low

006C 00
0240 006D 6A TAMD Output_B

006E 87
0241 *
0242 006F 6E TCA #01 Str High

0070 01
0243 0071 6A TAMD Output_B

0072 87
0244 *
0245 * Present upper nibble of MSB of address to ROM.
0246 *
0247 0073 69 TMAD Addr_MSB Get MSB

0074 10
0248 0075 15 SARA Position most significant
0249 0076 15 SARA nibble for
0250 0077 15 SARA output
0251 0078 15 SARA
0252 0079 15 SARA
0253 007A 16 TAM Move to working register
0254 007B 65 ANDCM #0F Mask off upper nibble

007C 0F
0255 007D 64 ORCM #80 Ensure A(7) high

007E 80
0256 007F 11 TMA Move nibble through A reg
0257 0080 6A TAMD Output_A to output

0081 83
0258 *
0259 * Latch fourth nibble of address to ROM.
0260 *
0261 0082 6E TCA #00 Str Low

0083 00
0262 0084 6A TAMD Output_B

0085 87

External ROM Initialization

C-8

0263 *
0264 0086 6E TCA #01 Str High

0087 01
0265 0088 6A TAMD Output_B

0089 87
0266 *
0267 * Place Port A0–A3 in the high–impedance state.
0268 *
0269 008A 62 TCX IO_A

008B 82
0270 008C 65 ANDCM #F0

008D F0
0271 *
0272 * Set R/W_ to 1.
0273 *
0274 008E 62 TCX Output_B

008F 87
0275 0090 64 ORCM #03

0091 03
0276 *
0277 * Burn 8 instruction cycles.
0278 *
0279 0092 2F CLA
0280 0093 2F CLA
0281 0094 2F CLA
0282 0095 2F CLA
0283 0096 2F CLA
0284 0097 2F CLA
0285 0098 2F CLA

CLA
0286 *
0287 * Do 2 GET2s.
0288 *
0289 0099 31 GET 2
0290 009A 31 GET 2
0291 *
0292 * As the above address was loaded, it was divided
0293 * to change it from the byte address that
0294 * was loaded in RAM into the word address that
0295 * the ROM expects. If the original address
0296 * was odd, get 8 bits from the ROM to
0297 * move one byte further into the ROM to get to the
0298 * correct byte boundary.
0299 *
0300 009B 62 TCX Addr_LSB Look at MSB of address

009C 11
0301 009D 66 TSTCM #01 Is address odd?

009E 01
0302 009F 40 BR INIT_2 yes, get another byte

00A0 A2
0303 00A1 3D RETN no, do nothing
0304 00A2 31 INIT_2 GET 2 Get a byte in 3 stages
0305 00A3 31 GET 2

 External ROM Initialization

C-9 External ROM Initialization

0306 00A4 33 GET 4
0307 00A5 3D RETN
0308 ***

C-10

 Running Title—Attribute Reference

D-1 Chapter Title—Attribute Reference

Appendix A

DTMF Program

This chapter contains the code for a sample program that generates a dual-
tone multifrequency (DTMF) tone.

Appendix D

DTMF Program

D-2

DTMF.asm TSP50C10 Assembler Version 1.08

0001 OPTION BUNLIST,DUNLIST,PAGEOF
0002 ***
0003 * *
0004 * DTMF_GEN – This is a sample program which generates *
0005 * a DTMF tone. In this sample, tones are *
0006 * generated in sequence, triggered by *
0007 * bit 0 of port A going high, and stopped *
0008 * by that bit going low. *
0009 * *
0010 ***
0011 0000 AORG #0000
0012 0000 69 GO TMAD 0

0001 00
0013
0014 0002 2F CLA –Initialize mode register
0015 0003 1D TAMODE
0016
0017 0004 20 CLX
0018 0005 13 RAM_LOOP TAMIX –Initialize All RAM to zeros
0019 0006 61 XGEC MAX_RAM+1

0007 80
0020 0008 40 BR GOGO

0009 8C
0021 000A 40 BR RAM_LOOP

000B 05
0022 ***
0023 * Interrupt vectors
0024 ***
0025 0010 AORG #0010
0026
0027 0010 A2 SBR INT2_01 –Timer Underflow, PCM=0, LPC=1
0028 0011 A2 SBR INT2_01 –Timer Underflow, PCM=0, LPC=1
0029
0030 0012 A2 SBR INT2_00 –Timer Underflow, PCM=0, LPC=0
0031 0013 A2 SBR INT2_00 –Timer Underflow, PCM=0, LPC=0
0032
0033 0014 A2 SBR INT2_11 –Timer Underflow, PCM=1, LPC=1
0034 0015 A2 SBR INT2_11 –Timer Underflow, PCM=1, LPC=1
0035
0036 0016 A2 SBR INT2_10 –Timer Underflow, PCM=1, LPC=0
0037 0017 A2 SBR INT2_10 –Timer Underflow, PCM=1, LPC=0
0038
0039 0018 A2 SBR INT1_01 –PPC < 16 samples interrupt
0040 0019 A2 SBR INT1_01 –PPC < 16 samples interrupt
0041
0042 001A A2 SBR INT1_00 –Pin (B1) goes low interrupt

 DTMF Program

D-3 DTMF Program

0043 001B A2 SBR INT1_00 –Pin (B1) goes low interrupt

0044
0045 001C A2 SBR INT1_11 –10 kHz Clock interrupt

0046 001D A2 SBR INT1_11 –10 kHz Clock interrupt
0047
0048 001E A0 SBR INT1_10 –20 kHz Clock interrupt

0049 001F A0 SBR INT1_10 –20 kHz Clock interrupt
0050 *
0051 0020 40 INT1_10 BR INTPCM –PCM service routine

0021 E6

0052 *
0053 0022 INT1_01

0054 0022 INT2_00
0055 0022 INT2_01
0056 0022 INT2_10

0057 0022 INT2_11
0058 0022 INT1_00

0059 0022 2F INT1_11 CLA
0060 0023 3E RETI
0061 *

0062 * PCM register variables
0063 *
0064 0000 PERIOD1 EQU #00 –Period of 1st Wave

0065 0001 TIME1 EQU #01 –Cumulative angle of 1st wave
0066 0002 PERIOD2 EQU #02 –Period of 2nd Wave

0067 0003 TIME2 EQU #03 –Cumulative angle of 2nd wave
0068 0004 PCMBUF EQU #04 –Intermediate data buffer
0069 *

0070 *
0071 * LPC status variable locations
0072 *

0073 0010 MODE_BUF EQU #10 ;Mode register buffer
0074 *

0075 * Device Constants
0076 *
0077 007F MAX_RAM EQU #7F –Highest RAM location

0078 *
0079 * MODE Register Bit Definitions
0080 *

0081 0001 ENA1 EQU #01 –Enable Level 1 interrupt
0082 0002 LPC EQU #02 –Enable LPC synthesis

0083 0004 PCM EQU #04 –Enable PCM synthesis
0084 0008 ENA2 EQU #08 –Enable Level 2 interrupt
0085 0010 EXTROM EQU #10 –Set external ROM mode

0086 0020 RAMROM EQU #20 –Enable GETs from RAM
0087 0040 MASTER EQU #40 –Master/Slave Toggle
0088 0080 UNV EQU #80 –Enable Unvoiced excitation

DTMF Program

D-4

0089 *

0090 * DTMF tone definition table
0091 *

0092 * Program assumes a 10kHz sampling frequency and
0093 * has a spacing of 11.25 degrees between entries in
0094 * the sine wave table, so value for a frequency is

0095 *
0096 * (freq * 360 degrees)

0097 * value = ––––––––––––––––––––––– * 128
0098 * (10kHz * 11.25 degrees)
0099

0100 * The bottom 8 bits are fractional
0101 *

0102 0024 80 DTMF RBYTE #01,#81,#02,#23 –zero = 941 Hz+1336 Hz
0103 0028 80 RBYTE #01,#1D,#01,#EF –One = 697 Hz+1209 Hz
0104 002C 80 RBYTE #01,#1D,#02,#23 –two = 697 Hz+1336 Hz

0105 0030 80 RBYTE #01,#1D,#02,#5D –three= 697 Hz+1477 Hz
0106 0034 80 RBYTE #01,#3B,#01,#EF –four = 770 Hz+1209 Hz

0107 0038 80 RBYTE #01,#3B,#02,#23 –five = 770 Hz+1336 Hz
0108 003C 80 RBYTE #01,#3B,#02,#5D –six = 770 Hz+1477 Hz
0109 0040 80 RBYTE #01,#5D,#01,#EF –seven= 852 Hz+1209 Hz

0110 0044 80 RBYTE #01,#5D,#02,#23 –eight= 852 Hz+1336 Hz
0111 0048 80 RBYTE #01,#5D,#02,#5D –nine = 852 Hz+1477 Hz
0112 *

0113 * Digitized sine wave table
0114 *

0115 004C 00 SINEW BYTE #00,#19 0 degrees––>11.25 degrees
0116 004E 31 BYTE #31,#18 11.25 degrees––>22.5 degrees
0117 0050 31 BYTE #31,#16 22.5 degrees––>33.75 degrees

0118 0052 5A BYTE #5A,#13 33.75 degrees––>45 degrees
0119 0054 5A BYTE #5A,#10 45.0 degrees––>56.25 degrees

0120 0056 75 BYTE #75,#0B 56.25 degrees––>67.5 degrees
0121 0058 75 BYTE #75,#08 67.5 degrees––>78.75 degrees
0122 005A 7F BYTE #7F,#02 78.75 degrees––>90 degrees

0123 005C 7F BYTE #7F,#FE 90.0 degrees––>101.25 degrees
0124 005E 75 BYTE #75,#F8 101.25 degrees––>112.5 degrees

0125 0060 75 BYTE #75,#F5 112.5 degrees––>123.75 degrees
0126 0062 5A BYTE #5A,#F0 123.75 degrees––>135.0 degrees
0127 0064 5A BYTE #5A,#ED 135.0 degrees––>146.25 degrees

0128 0066 31 BYTE #31,#EA 146.25 degrees––>157.5 degrees
0129 0068 31 BYTE #31,#E8 157.5 degrees––>168.75 degrees

0130 006A 00 BYTE #00,#E7 168.75 degrees––>180.0 degrees
0131 006C 00 BYTE #00,#E7 180.0 degrees––>191.25 degrees
0132 006E CF BYTE #CF,#E8 191.25 degrees––>202.5 degrees

0133 0070 CF BYTE #CF,#EA 202.5 degrees––>213.75 degrees
0134 0072 A6 BYTE #A6,#ED 213.75 degrees––>225.0 degrees
0135 0074 A6 BYTE #A6,#F0 225.0 degrees––>236.25 degrees

 DTMF Program

D-5 DTMF Program

0136 0076 8B BYTE #8B,#F5 236.25 degrees––>247.5 degrees

0137 0078 8B BYTE #8B,#F8 247.5 degrees––>258.75 degrees
0138 007A 81 BYTE #81,#FE 258.75 degrees––>270.0 degrees
0139 007C 81 BYTE #81,#02 270.0 degrees––>281.25 degrees
0140 007E 8B BYTE #8B,#08 281.25 degrees––>292.5 degrees
0141 0080 8B BYTE #8B,#0B 292.5 degrees––>303.75 degrees
0142 0082 A6 BYTE #A6,#10 303.75 degrees––>315.0 degrees

0143 0084 A6 BYTE #A6,#13 315.0 degrees––>326.25 degrees
0144 0086 CF BYTE #CF,#16 326.25 degrees––>337.5 degrees
0145 0088 CF BYTE #CF,#18 337.5 degrees––>348.75 degrees
0146 008A 00 BYTE #00,#19 348.75 degrees––>360 degrees
0147 ***

0148 * Main body of program
0149 ***
0150 008C 6E GOGO TCA 0 –Tone ’Zero’

008D 00

0151 008E 00 CALL DO_PCM
008F B5

0152 *
0153 0090 6E TCA 1 –Tone ’One’

0091 01

0154 0092 00 CALL DO_PCM

0093 B5

0155 *
0156 0094 6E TCA 2 –Tone ’Two’

0095 02

0157 0096 00 CALL DO_PCM
0097 B5

0158 *
0159 0098 6E TCA 3 –Tone ’Three’

0099 03

0160 009A 00 CALL DO_PCM
009B B5

0161 *

0162 009C 6E TCA 4 –Tone ’Four’
009D 04

0163 009E 00 CALL DO_PCM
009F B5

0164 *
0165 00A0 6E TCA 5 –Tone ’Five’

00A1 05

0166 00A2 00 CALL DO_PCM
00A3 B5

0167 *
0168 00A4 6E TCA 6 –Tone ’Six’

00A5 06
0169 00A6 00 CALL DO_PCM

DTMF Program

D-6

00A7 B5

0170 *

0171 00A8 6E TCA 7 –Tone ’Seven’
00A9 07

0172 00AA 00 CALL DO_PCM
00AB B5

0173 *
0174 00AC 6E TCA 8 –Tone ’Eight’

00AD 08

0175 00AE 00 CALL DO_PCM
00AF B5

0176 *

0177 00B0 6E TCA 9 –Tone ’Nine’
00B1 09

0178 00B2 00 CALL DO_PCM
00B3 B5

0179 *
0180 00B4 3F SETOFF
0181 *
0182 ***

0183 *
0184 * DO_PCM
0185 *
0186 * This is the routine that sets up the DTMF tone.
0187 * It waits for port PA0 to go high, then plays

0188 * the DTMF tone specified by the contents of the
0189 * A register until PA0 goes low.
0190 *
0191 ***
0192 00B5 62 DO_PCM TCX #80 –Point to port A

00B6 80

0193 00B7 66 TSTCM #01 –Loop until A(0)
00B8 01

0194 00B9 40 BR GO_PCM goes high
00BA BD

0195 00BB 40 BR DO_PCM
00BC B5

0196 *
0197 00BD 2E GO_PCM SALA –Adjust value to
0198 00BE 2E SALA table index

0199 00BF 70 ACAAC DTMF –Add offset of table
00C0 24

0200 00C1 6C LUAPS –Point to table entry
0201
0202 00C2 37 GET 8 –Get first frequency
0203 00C3 37 GET 8 period
0204 00C4 6A TAMD PERIOD1 –Store it away

 DTMF Program

D-7 DTMF Program

00C5 00

0205

0206 00C6 37 GET 8 –Get second frequency
0207 00C7 37 GET 8 period
0208 00C8 6A TAMD PERIOD2 –Store it away

00C9 02

0209
0210 00CA 2F CLA –Clear cumulative data
0211 00CB 6A TAMD TIME1

00CC 01
0212 00CD 6A TAMD TIME2

00CE 03

0213
0214 00CF 62 TCX MODE_BUF –Turn on PCM and INT1

00D0 10

0215 00D1 64 ORCM PCM
00D2 04

0216 00D3 64 ORCM ENA1
00D4 01

0217 00D5 11 TMA
0218 00D6 1D TAMODE
0219

0220 00D7 62 L1 TCX #80 –Loop until A(0)
00D8 80

0221 00D9 66 TSTCM #01 goes low
00DA 01

0222 00DB 40 BR L1
00DC D7

0223
0224 00DD 62 TCX MODE_BUF –Turn off PCM and INT1

00DE 10

0225 00DF 65 ANDCM ~PCM

00E0 FB
0226 00E1 65 ANDCM ~ENA1

00E2 FE

0227 00E3 11 TMA
0228 00E4 1D TAMODE
0229 00E5 3D RETN
0230
0231 ***
0232 * PCM interrupt service routine

0233 ***
0234 00E6 3B INTPCM INTGR
0235 00E7 20 CLX
0236
0237 00E8 14 TMAIX –Add delta angle to
0238 00E9 28 AMAAC cumulative angle

DTMF Program

D-8

0239

0240 00EA 16 TAM –Save cumulative angle
0241 00EB 11 TMA –Discard high bits of cum
0242

0243 00EC 68 AXCA 01 –right shift 7 bits
00ED 01

0244 00EE 2E SALA –Left 1 bit
0245 00EF 70 ACAAC SINEW –Add table offset

00F0 4C

0246
0247 00F1 3C EXTSG
0248 00F2 6D LUAB –get data point
0249 00F3 3A IAC

0250 00F4 6B LUAA –get slope between points
0251 00F5 39 AXMA –interpolate slope
0252 00F6 2C ABAAC –add interpolated slope

0253 00F7 1B SALA4 and scale for DAC
0254 00F8 68 AXCA #78 –Scale value for twist

00F9 78

0255

0256 00FA 6A TAMD PCMBUF –Save intermediate data
00FB 04

0257
0258 00FC 3B INTGR

0259 00FD 21 IXC
0260 00FE 14 TMAIX –Add delta angle to
0261 00FF 28 AMAAC cumulative angle
0262

0263 0100 16 TAM –Save cumulative angle
0264 0101 11 TMA –Discard high bits of angle
0265

0266 0102 68 AXCA 01 –right shift 7 bits
0103 01

0267 0104 2E SALA –Left 1 bit
0268 0105 70 ACAAC SINEW –Add table offset

0106 4C

0269
0270 0107 3C EXTSG
0271 0108 6D LUAB –get data point
0272 0109 3A IAC

0273 010A 6B LUAA –get slope between points
0274 010B 39 AXMA –interpolate slope
0275

0276 010C 2C ABAAC –add interpolated slope
0277 010D 1B SALA4 and scale
0278
0279 010E 1A TAB –Store 2nd data point

 DTMF Program

D-9 DTMF Program

0280
0281 010F 21 IXC –Retrieve 1st data point
0282 0110 11 TMA
0283
0284 0111 2C ABAAC –Sum two waves together
0285 0112 15 SARA and normalize
0286 0113 1C TASYN –transfer data to D/A
0287 0114 3E RETI

D-10

 Running Title—Attribute Reference

E-1 Chapter Title—Attribute Reference

Appendix A

Sample Music Program

This chapter contains the code for a sample program that produces Mozart’s
Minuet in G.

Appendix E

Sample Music Program

E-2

0001 OPTION BUNLIST,DUNLIST,PAGEOF

0002 ***
0003 *

0004 * MINUET.ASM
0005 *
0006 * LPC can also be used to generate music. In this

0007 * program, the LPC filter is set to a narrow bandwidth
0008 * filter that will only pass a single frequency.

0009 * by appropriately varying the parameters, we play
0010 * Minuet in G by Mozart.
0011 *

0012 ***
0013 * RAM USAGE

0014 ***
0015 0001 EN EQU #01 –EN working value
0016 000C K2 EQU #0C –K2 Working Value

0017 000D K1 EQU #0D –K1 Working Value
0018 000E C1 EQU #0E –C1 Parameter

0019 000F C2 EQU #0F –C2 Parameter
0020
0021 0010 TIME EQU #10 –Note Duration

0022 0011 ENERGY EQU #11 –Temp storage for energy
0023 0012 MODE_BUF EQU #12 –Mode register Buffer
0024 0013 EndSong EQU #13 –End of song flag

0025 *
0026 * Device Constants

0027 *
0028 0F61 C1_Value EQU #F61 –C1 Value
0029 0B67 C2_Value EQU #B67 –C2 Value

0030 007F MAX_RAM EQU #7F –Highest RAM location
0031 *

0032 * MODE Register Bit Definitions
0033 *
0034 0001 ENA1 EQU #01 –Enable Level 1 interrupt

0035 0002 LPC EQU #02 –Enable LPC systhesis
0036 0004 PCM EQU #04 –Enable PCM synthesis

0037 0008 ENA2 EQU #08 –Enable Level 2 interrupt
0038 0010 EXTROM EQU #10 –Set external ROM mode
0039 0020 RAMROM EQU #20 –Enable GETs from RAM

0040 0040 MASTER EQU #40 –Master/Slave Toggle
0041 0080 UNV EQU #80 –Enable Unvoiced excitation

0042 ***
0043 * BEGINNING OF PROGRAM
0044 ***

0045 0000 AORG #0000
0046 0000 69 TMAD 0

0001 00

 Sample Music Program

E-3 Sample Music Program

0047

0048 0002 2F CLA –Initialize mode register
0049 0003 1D TAMODE

0050
0051 0004 20 CLX
0052 0005 13 RAM_LOOP TAMIX –Initialize All RAM to zeros

0053 0006 61 XGEC MAX_RAM+1
0054 0008 40 BR GOGO

0009 21
0055 000A 40 BR RAM_LOOP

000B 05

0056 ***
0057 * Interrupt vectors

0058 ***
0059 0010 AORG #0010
0060 0010 A0 SBR INT2_01 –Timer Underflow, PCM=0, LPC=1

0061 0011 A0 SBR INT2_01 –Timer Underflow, PCM=0, LPC=1
0062 0012 A0 SBR INT2_00 –Timer Underflow, PCM=0, LPC=0

0063 0013 A0 SBR INT2_00 –Timer Underflow, PCM=0, LPC=0
0064 0014 A0 SBR INT2_11 –Timer Underflow, PCM=1, LPC=1
0065 0015 A0 SBR INT2_11 –Timer Underflow, PCM=1, LPC=1

0066 0016 A0 SBR INT2_10 –Timer Underflow, PCM=1, LPC=0
0067 0017 A0 SBR INT2_10 –Timer Underflow, PCM=1, LPC=0
0068 0018 A0 SBR INT1_01 –PPC < 16 Samples interrupt

0069 0019 A0 SBR INT1_01 –PPC < 16 Samples interrupt
0070 001A A0 SBR INT1_00 –Pin (B1) goes low interrupt

0071 001B A0 SBR INT1_00 –Pin (B1) goes low interrupt
0072 001C A0 SBR INT1_11 –10 kHz Clock interrupt
0073 001D A0 SBR INT1_11 –10 kHz Clock interrupt

0074 001E A0 SBR INT1_10 –20 kHz Clock interrupt
0075 001F A0 SBR INT1_10 –20 kHz Clock interrupt

0076 0020 INT1_01
0077 *
0078 0020 INT2_00

0079 0020 INT2_01
0080 0020 INT2_10

0081 0020 INT2_11
0082 0020 INT1_00
0083 0020 INT1_10

0084 0020 3E INT1_11 RETI
0085 *

0086 ***
0087 * MAIN BODY OF PROGRAM
0088 ***

0089 0021 2F GOGO CLA –Point to start of song
0090 0022 70 ACAAC NOTES

0023 84

Sample Music Program

E-4

0091 0024 6C LUAPS

0092
0093 0025 2F CLA –Load C1 Value

0094 0026 7F ACAAC C1_VALUE
0027 61

0095 0028 6A TAMD C1

0029 0E
0096

0097 002A 2F CLA –Load C2 Value
0098 002B 7B ACAAC C2_VALUE

002C 67

0099 002D 6A TAMD C2
002E 0F

0100
0101 002F 33 GET 4 –Get song tempo
0102 0030 33 GET 4

0103 0031 19 TAPSC
0104

0105 0032 00 CALL LoadNote –Load the first note data
0033 56

0106

0107 0034 62 TCX Mode_Buf –Turn on LPC Mode
0035 12

0108 0036 64 ORCM LPC

0037 02
0109 0038 11 TMA

0110 0039 1D TAMODE
0111
0112 003A 6E TCA #ff –Start countdown timer

003B FF
0113 003C 1E TATM

0114
0115 003D 69 Loop TMAD EndSong –Test end of song flag

003E 13

0116 003F 63 AGEC 1 –Is song over?
0040 01

0117 0041 40 BR StopSong yes, turn off LPC
0042 4F

0118

0119 0043 17 TTMA –Get timer value
0120 0044 60 ANEC 0 –Time to decrement TIME?

0045 00
0121 0046 40 BR Loop no, loop back

0047 3D

0122
0123 0048 62 TCX TIME –Point to note duration

0049 10

 Sample Music Program

E-5 Sample Music Program

0124 004A 27 DECMN –Is it time to get new note?

0125 004B 00 CALL LoadNote yes, get new note
004C 56

0126 004D 40 BR Loop no, wait some more
004E 3D

0127

0128 004F 62 StopSong TCX Mode_Buf –Turn off LPC Mode
0050 12

0129 0051 65 ANDCM ~LPC
0052 FD

0130 0053 11 TMA

0131 0054 1D TAMODE
0132

0133 0055 3F SETOFF –Turn off device
0134
0135 ***

0136 * This subroutine loads in data for the next note
0137 ***

0138 0056 2F LoadNote CLA –Zero energy while we change
0139 0057 6A TAMD EN the filter parameters

0058 01

0140
0141 0059 33 GET 4 –Get the note duration
0142 005A 33 GET 4

0143 005B 6A TAMD TIME
005C 10

0144
0145 005D 60 ANEC 0 –End of song?

005E 00

0146 005F 40 BR Continue no, continue
0060 67

0147
0148 0061 6E TCA 1 –Signal...

0062 01

0149 0063 6A TAMD EndSong end of song...
0064 13

0150 0065 40 BR RelaxK2 and allow sound to die
0066 7E

0151

0152 0067 37 Continue GET 8 –Get Note Energy
0153 0068 6A TAMD ENERGY

0069 11
0154
0155 006A 37 GET 8 –Get pitch value

0156 006B 37 GET 8
0157 006C 1C TASYN
0158

Sample Music Program

E-6

0159 006D 37 GET 8 –Get first filter parameter

0160 006E 37 GET 8
0161 006F 6A TAMD K1

0070 0D
0162
0163 0071 2F CLA –Get bandwidth

0164 0072 77 ACAAC #7f8
0073 F8

0165 0074 6A TAMD K2
0075 0C

0166

0167 0076 69 TMAD ENERGY –Load energy to filter
0077 11

0168 0078 6A TAMD EN
0079 01

0169

0170 007A 60 ANEC 0 –Is note a rest?
007B 00

0171 007C 40 BR LoadNoteX no, exit routine
007D 83

0172

0173 007E 2F RelaxK2 CLA –Note is a rest,
0174 007F 77 ACAAC #780 relax filter bandwidth

0080 80

0175 0081 6A TAMD K2 so sound can die down
0082 0C

0176
0177 0083 3D LoadNoteX RETN
0178

0179
0180 0084 C8 NOTES RBYTE #13 Tempo

0181 0085 02 RBYTE #40,#06,#01,#B4,#08,#D6 note = 17, fre
0182 008B 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0183 0091 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre

0184 0097 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre
0185 009D 04 RBYTE #20,#06,#01,#EA,#08,#AA note = 15, fre

0186
0187 00A3 02 RBYTE #40,#06,#01,#B4,#08,#D6 note = 17, fre
0188 00A9 1C RBYTE #38,#06,#02,#8E,#08,#60 note = 10, fre

0189 00AF 10 RBYTE #08,#00,#02,#8E,#08,#60 REST
0190 00B5 1C RBYTE #38,#06,#02,#8E,#08,#60 note = 10, fre

0191 00BB 10 RBYTE #08,#00,#02,#8E,#08,#60 REST
0192
0193 00C1 02 RBYTE #40,#06,#01,#84,#09,#0D note = 19, fre

0194 00C7 04 RBYTE #20,#06,#01,#EA,#08,#AA note = 15, fre
0195 00CD 04 RBYTE #20,#06,#01,#B4,#08,#D6 note = 17, fre
0196 00D3 04 RBYTE #20,#06,#01,#84,#09,#0D note = 19, fre

 Sample Music Program

E-7 Sample Music Program

0197 00D9 04 RBYTE #20,#06,#01,#5A,#09,#51 note = 21, fre

0198
0199 00DF 02 RBYTE #40,#06,#01,#46,#09,#7A note = 22, fre

0200 00E5 1C RBYTE #38,#06,#02,#8E,#08,#60 note = 10, fre
0201 00EB 10 RBYTE #08,#00,#02,#8E,#08,#60 REST
0202 00F1 1C RBYTE #38,#06,#02,#8E,#08,#60 note = 10, fre

0203 00F7 10 RBYTE #08,#00,#02,#8E,#08,#60 REST
0204

0205 00FD 02 RBYTE #40,#06,#01,#EA,#08,#AA note = 15, fre
0206 0103 04 RBYTE #20,#06,#01,#B4,#08,#D6 note = 17, fre
0207 0109 04 RBYTE #20,#06,#01,#EA,#08,#AA note = 15, fre

0208 010F 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre
0209 0115 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre

0210
0211 011B 02 RBYTE #40,#06,#02,#06,#08,#99 note = 14, fre
0212 0121 04 RBYTE #20,#06,#01,#EA,#08,#AA note = 15, fre

0213 0127 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre
0214 012D 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre

0215 0133 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0216
0217 0139 02 RBYTE #40,#06,#02,#B4,#08,#56 note = 9, freq

0218 013F 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0219 0145 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre
0220 014B 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre

0221 0151 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0222

0223 ***
0224
0225 0157 02 RBYTE #40,#06,#02,#06,#08,#99 note = 14, fre

0226 015D 1C RBYTE #38,#06,#02,#46,#08,#79 note = 12, fre
0227 0163 10 RBYTE #08,#00,#02,#46,#08,#79 REST

0228 0169 1C RBYTE #38,#06,#02,#46,#08,#79 note = 12, fre
0229 016F 10 RBYTE #08,#00,#02,#46,#08,#79 REST
0230

0231 0175 02 RBYTE #40,#06,#01,#B4,#08,#D6 note = 17, fre
0232 017B 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre

0233 0181 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre
0234 0187 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre
0235 018D 04 RBYTE #20,#06,#01,#EA,#08,#AA note = 15, fre

0236
0237 0193 02 RBYTE #40,#06,#01,#B4,#08,#D6 note = 17, fre

0238 0199 1C RBYTE #38,#06,#02,#8E,#08,#60 note = 10, fre
0239 019F 10 RBYTE #08,#00,#02,#8E,#08,#60 REST
0240 01A5 1C RBYTE #38,#06,#02,#8E,#08,#60 note = 10, fre

0241 01AB 10 RBYTE #08,#00,#02,#8E,#08,#60 REST
0242
0243 01B1 02 RBYTE #40,#06,#01,#84,#09,#0D note = 19, fre

Sample Music Program

E-8

0244 01B7 04 RBYTE #20,#06,#01,#EA,#08,#AA note = 15, fre

0245 01BD 04 RBYTE #20,#06,#01,#B4,#08,#D6 note = 17, fre
0246 01C3 04 RBYTE #20,#06,#01,#84,#09,#0D note = 19, fre

0247 01C9 04 RBYTE #20,#06,#01,#5A,#09,#51 note = 21, fre
0248
0249 01CF 02 RBYTE #40,#06,#01,#46,#09,#7A note = 22, fre

0250 01D5 1C RBYTE #38,#06,#02,#8E,#08,#60 note = 10, fre
0251 01DB 10 RBYTE #08,#00,#02,#8E,#08,#60 REST

0252 01E1 1C RBYTE #38,#06,#02,#8E,#08,#60 note = 10, fre
0253 01E7 10 RBYTE #08,#00,#02,#8E,#08,#60 REST
0254

0255 01ED 02 RBYTE #40,#06,#01,#EA,#08,#AA note = 15, fre
0256 01F3 04 RBYTE #20,#06,#01,#B4,#08,#D6 note = 17, fre

0257 01F9 04 RBYTE #20,#06,#01,#EA,#08,#AA note = 15, fre
0258 01FF 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre
0259 0205 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre

0260
0261 020B 02 RBYTE #40,#06,#02,#06,#08,#99 note = 14, fre

0262 0211 04 RBYTE #20,#06,#01,#EA,#08,#AA note = 15, fre
0263 0217 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre
0264 021D 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre

0265 0223 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0266
0267 0229 02 RBYTE #40,#06,#02,#46,#08,#79 note = 12, fre

0268 022F 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre
0269 0235 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre

0270 023B 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0271 0241 04 RBYTE #20,#06,#02,#B4,#08,#56 note = 9, freq
0272

0273 0247 03 RBYTE #C0,#06,#02,#8E,#08,#60 note = 10, fre
0274

0275 *––––––––––––––
0276
0277 024D 02 RBYTE #40,#06,#01,#04,#0A,#47 note = 26, fre

0278 0253 04 RBYTE #20,#06,#01,#46,#09,#7A note = 22, fre
0279 0259 04 RBYTE #20,#06,#01,#22,#09,#D9 note = 24, fre

0280 025F 04 RBYTE #20,#06,#01,#04,#0A,#47 note = 26, fre
0281 0265 04 RBYTE #20,#06,#01,#46,#09,#7A note = 22, fre
0282

0283 026B 02 RBYTE #40,#06,#01,#22,#09,#D9 note = 24, fre
0284 0271 04 RBYTE #20,#06,#01,#B4,#08,#D6 note = 17, fre

0285 0277 04 RBYTE #20,#06,#01,#84,#09,#0D note = 19, fre
0286 027D 04 RBYTE #20,#06,#01,#5A,#09,#51 note = 21, fre
0287 0283 04 RBYTE #20,#06,#01,#B4,#08,#D6 note = 17, fre

0288
0289 0289 02 RBYTE #40,#06,#01,#46,#09,#7A note = 22, fre
0290 028F 04 RBYTE #20,#06,#01,#84,#09,#0D note = 19, fre

 Sample Music Program

E-9 Sample Music Program

0291 0295 04 RBYTE #20,#06,#01,#5A,#09,#51 note = 21, fre

0292 029B 04 RBYTE #20,#06,#01,#46,#09,#7A note = 22, fre
0293 02A1 04 RBYTE #20,#06,#01,#B4,#08,#D6 note = 17, fre

0294
0295 02A7 02 RBYTE #40,#06,#01,#CE,#08,#BF note = 16, fre
0296 02AD 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre

0297 02B3 04 RBYTE #20,#06,#01,#CE,#08,#BF note = 16, fre
0298 02B9 1C RBYTE #38,#06,#02,#46,#08,#79 note = 12, fre

0299 02BF 10 RBYTE #08,#00,#02,#46,#08,#79 REST
0300
0301 02C5 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre

0302 02CB 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre
0303 02D1 04 RBYTE #20,#06,#01,#CE,#08,#BF note = 16, fre

0304 02D7 04 RBYTE #20,#06,#01,#B4,#08,#D6 note = 17, fre
0305 02DD 04 RBYTE #20,#06,#01,#84,#09,#0D note = 19, fre
0306 02E3 04 RBYTE #20,#06,#01,#5A,#09,#51 note = 21, fre

0307
0308 02E9 5C RBYTE #3A,#06,#01,#46,#09,#7A note = 22, fre

0309 02EF 20 RBYTE #04,#00,#01,#46,#09,#7A note = 22, fre
0310 02F5 5C RBYTE #3A,#06,#01,#5A,#09,#51 note = 21, fre
0311 02FB 20 RBYTE #04,#00,#01,#5A,#09,#51 note = 21, fre

0312 0301 5C RBYTE #3A,#06,#01,#84,#09,#0D note = 19, fre
0313 0307 20 RBYTE #04,#00,#01,#84,#09,#0D note = 19, fre
0314

0315 030D 02 RBYTE #40,#06,#01,#5A,#09,#51 note = 21, fre
0316 0313 02 RBYTE #40,#06,#02,#46,#08,#79 note = 12, fre

0317 0319 02 RBYTE #40,#06,#01,#CE,#08,#BF note = 16, fre
0318
0319 031F 0D RBYTE #B0,#06,#01,#B4,#08,#D6 note = 17, fre

0320 0325 08 RBYTE #10,#00,#01,#B4,#08,#D6 REST
0321

0322 032B 02 RBYTE #40,#06,#01,#B4,#08,#D6 note = 17, fre
0323 0331 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0324 0337 04 RBYTE #20,#06,#02,#B4,#08,#56 note = 9, freq

0325 033D 02 RBYTE #40,#06,#02,#8E,#08,#60 note = 10, fre
0326

0327 0343 02 RBYTE #40,#06,#01,#84,#09,#0D note = 19, fre
0328 0349 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0329 034F 04 RBYTE #20,#06,#02,#B4,#08,#56 note = 9, freq

0330 0355 02 RBYTE #40,#06,#02,#8E,#08,#60 note = 10, fre
0331

0332 035B 1C RBYTE #38,#06,#01,#B4,#08,#D6 note = 17, fre
0333 0361 10 RBYTE #08,#00,#01,#B4,#08,#D6 note = 17, fre
0334 0367 1C RBYTE #38,#06,#01,#EA,#08,#AA note = 15, fre

0335 036D 10 RBYTE #08,#00,#01,#EA,#08,#AA note = 15, fre
0336 0373 1C RBYTE #38,#06,#02,#06,#08,#99 note = 14, fre
0337 0379 10 RBYTE #08,#00,#02,#06,#08,#99 note = 14, fre

Sample Music Program

E-10

0338

0339
0340 037F 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre

0341 0385 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0342 038B 04 RBYTE #20,#06,#02,#B4,#08,#56 note = 9, freq
0343 0391 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre

0344 0397 02 RBYTE #40,#06,#02,#46,#08,#79 note = 12, fre
0345

0346 039D 04 RBYTE #20,#06,#03,#68,#08,#37 note = 5, freq
0347 03A3 04 RBYTE #20,#06,#03,#08,#08,#45 note = 7, freq
0348 03A9 04 RBYTE #20,#06,#02,#B4,#08,#56 note = 9, freq

0349 03AF 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0350 03B5 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre

0351 03BB 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre
0352
0353 03C1 1C RBYTE #38,#06,#01,#EA,#08,#AA note = 15, fre

0354 03C7 10 RBYTE #08,#00,#01,#EA,#08,#AA note = 15, fre
0355 03CD 1C RBYTE #38,#06,#02,#06,#08,#99 note = 14, fre

0356 03D3 10 RBYTE #08,#00,#02,#06,#08,#99 note = 14, fre
0357 03D9 1C RBYTE #38,#06,#02,#46,#08,#79 note = 12, fre
0358 03DF 10 RBYTE #08,#00,#02,#46,#08,#79 note = 12, fre

0359
0360 03E5 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre
0361 03EB 04 RBYTE #20,#06,#01,#B4,#08,#D6 note = 17, fre

0362 03F1 1C RBYTE #38,#06,#02,#8E,#08,#60 note = 10, fre
0363 03F7 10 RBYTE #08,#00,#02,#8E,#08,#60 note = 10, fre

0364 03FD 1C RBYTE #38,#06,#02,#B4,#08,#56 note = 9, freq
0365 0403 10 RBYTE #08,#00,#02,#B4,#08,#56 note = 9, freq
0366

0367 0409 03 RBYTE #C0,#06,#02,#8E,#08,#60 note = 10, fre
0368 040F 08 RBYTE #10,#00,#02,#8E,#08,#60 note = 10, fre

0369 0415 00 RBYTE #00,#00,#00,#00,#00,#00 End of song
0370
0371 ***

0372 * For your reference, here is the data for a three
0373 * octave musical scale. On each line the data for

0374 * a single LPC note is given as follows:
0375 *
0376 * Byte 1 : Note Duration. Adjust this number to give

0377 * longer or shorter notes.
0378 * Byte 2 : Note volume. Different frequency notes

0379 * may need a different value for a given
0380 * volume. Adjust to taste. There will
0381 * a maximum value at which the filter will

0382 * clip.
0383 * Bytes 3,4: Pitch.
0384 * Bytes 5,6: K1

 Sample Music Program

E-11 Sample Music Program

0385 *

0386 * K2 is the bandwidth. It should be 7FF hex or below.
0387 * the closer to 7FF it is, the tighter the bandwidth

0388 * and the higher the ’Q’ of the filter. The tradeoff
0389 * is that at some point the bandwidth is so tight that
0390 * the inaccuracies of the Pitch and K1 values become

0391 * apparent. This program uses 7F8 for K2 except when
0392 * a rest is encountered and a note needs to die down,

0393 * when I use 780.
0394 *
0395 ***

0396 041B 04 NoteList RBYTE #20,#06,#04,#8C,#08,#1F note = 0, freq
0397 0421 04 RBYTE #20,#06,#04,#4A,#08,#23 note = 1, freq

0398 0427 04 RBYTE #20,#06,#04,#0C,#08,#27 note = 2, freq
0399 042D 04 RBYTE #20,#06,#03,#D2,#08,#2C note = 3, freq
0400 0433 04 RBYTE #20,#06,#03,#9C,#08,#31 note = 4, freq

0401 0439 04 RBYTE #20,#06,#03,#68,#08,#37 note = 5, freq
0402 043F 04 RBYTE #20,#06,#03,#36,#08,#3D note = 6, freq

0403 0445 04 RBYTE #20,#06,#03,#08,#08,#45 note = 7, freq
0404 044B 04 RBYTE #20,#06,#02,#DE,#08,#4D note = 8, freq
0405 0451 04 RBYTE #20,#06,#02,#B4,#08,#56 note = 9, freq

0406 0457 04 RBYTE #20,#06,#02,#8E,#08,#60 note = 10, fre
0407 045D 04 RBYTE #20,#06,#02,#68,#08,#6D note = 11, fre
0408 0463 04 RBYTE #20,#06,#02,#46,#08,#79 note = 12, fre

0409 0469 04 RBYTE #20,#06,#02,#26,#08,#88 note = 13, fre
0410 046F 04 RBYTE #20,#06,#02,#06,#08,#99 note = 14, fre

0411 0475 04 RBYTE #20,#06,#01,#EA,#08,#AA note = 15, fre
0412 047B 04 RBYTE #20,#06,#01,#CE,#08,#BF note = 16, fre
0413 0481 04 RBYTE #20,#06,#01,#B4,#08,#D6 note = 17, fre

0414 0487 04 RBYTE #20,#06,#01,#9C,#08,#EF note = 18, fre
0415 048D 04 RBYTE #20,#06,#01,#84,#09,#0D note = 19, fre

0416 0493 04 RBYTE #20,#06,#01,#6E,#09,#2E note = 20, fre
0417 0499 04 RBYTE #20,#06,#01,#5A,#09,#51 note = 21, fre
0418 049F 04 RBYTE #20,#06,#01,#46,#09,#7A note = 22, fre

0419 04A5 04 RBYTE #20,#06,#01,#34,#09,#A5 note = 23, fre
0420 04AB 04 RBYTE #20,#06,#01,#22,#09,#D9 note = 24, fre

0421 04B1 04 RBYTE #20,#06,#01,#12,#0A,#0F note = 25, fre
0422 04B7 04 RBYTE #20,#06,#01,#04,#0A,#47 note = 26, fre
0423 04BD 04 RBYTE #20,#06,#00,#F4,#0A,#91 note = 27, fre

0424 04C3 04 RBYTE #20,#06,#00,#E6,#0A,#DE note = 28, fre
0425 04C9 04 RBYTE #20,#06,#00,#DA,#0B,#2B note = 29, fre

0426 04CF 04 RBYTE #20,#06,#00,#CE,#0B,#85 note = 30, fre
0427 04D5 04 RBYTE #20,#06,#00,#C2,#0B,#ED note = 31, fre
0428 04DB 04 RBYTE #20,#06,#00,#B8,#0C,#52 note = 32, fre

0429 04E1 04 RBYTE #20,#06,#00,#AC,#0C,#DF note = 33, fre
0430 04E7 04 RBYTE #20,#06,#00,#A4,#0D,#4C note = 34, fre
0431 04ED 04 RBYTE #20,#06,#00,#9A,#0D,#E7 note = 35, fre

Sample Music Program

E-12

0432 04F3 04 RBYTE #20,#06,#00,#92,#0E,#76 note = 36, fre

0433 04F9 04 RBYTE #20,#06,#00,#8A,#0F,#17 note = 37, fre
0434 04FF 00 RBYTE #00,#00,#00,#00,#00,#00

0435
0436
0437 *EXCITATION FUNCTION

0438
0439 4000 AORG #4000

0440 4000 00 BYTE #00,#A2,#00,#AF,#00,#BA,#00,#C2
0441 4008 00 BYTE #00,#C7,#00,#C9,#00,#CA,#00,#C6
0442 4010 00 BYTE #00,#C2,#00,#BC,#00,#B5,#00,#AD

0443 4018 00 BYTE #00,#A5,#00,#9E,#00,#9A,#00,#95
0444 4020 00 BYTE #00,#95,#00,#98,#00,#9F,#00,#A8

0445 4028 00 BYTE #00,#B8,#00,#CA,#00,#E3,#00,#FE
0446 4030 01 BYTE #01,#1F,#01,#41,#01,#69,#01,#91
0447 4038 01 BYTE #01,#BD,#01,#E8,#02,#16,#02,#40

0448 4040 02 BYTE #02,#6C,#02,#92,#02,#B9,#02,#D9
0449 4048 02 BYTE #02,#F8,#03,#0F,#03,#25,#03,#32

0450 4050 03 BYTE #03,#3F,#03,#43,#03,#47,#03,#45
0451 4058 03 BYTE #03,#45,#03,#3F,#03,#3D,#03,#3A
0452 4060 03 BYTE #03,#3D,#03,#41,#03,#4E,#03,#5F

0453 4068 03 BYTE #03,#7B,#03,#A0,#03,#D2,#04,#0D
0454 4070 04 BYTE #04,#57,#04,#AD,#05,#11,#05,#82
0455 4078 06 BYTE #06,#00,#06,#8A,#07,#1F,#07,#BD

0456 4080 08 BYTE #08,#64,#09,#11,#09,#C1,#0A,#74
0457 4088 0B BYTE #0B,#26,#0B,#D5,#0C,#7F,#0D,#20

0458 4090 0D BYTE #0D,#B7,#0E,#40,#0E,#BB,#0F,#24
0459 4098 0F BYTE #0F,#7A,#0F,#BC,#0F,#E9,#0F,#FF
0460 40A0 0F BYTE #0F,#FF,#0F,#E9,#0F,#BC,#0F,#7A

0461 40A8 0F BYTE #0F,#24,#0E,#BB,#0E,#40,#0D,#B7
0462 40B0 0D BYTE #0D,#20,#0C,#7F,#0B,#D5,#0B,#26

0463 40B8 0A BYTE #0A,#74,#09,#C1,#09,#11,#08,#64
0464 40C0 07 BYTE #07,#BD,#07,#1F,#06,#8A,#06,#00
0465 40C8 05 BYTE #05,#82,#05,#11,#04,#AD,#04,#57

0466 40D0 04 BYTE #04,#0D,#03,#D2,#03,#A0,#03,#7B
0467 40D8 03 BYTE #03,#5F,#03,#4E,#03,#41,#03,#3D

0468 40E0 03 BYTE #03,#3A,#03,#3D,#03,#3F,#03,#45
0469 40E8 03 BYTE #03,#45,#03,#47,#03,#43,#03,#3F
0470 40F0 03 BYTE #03,#32,#03,#25,#03,#0F,#02,#F8

0471 40F8 02 BYTE #02,#D9,#02,#B9,#02,#92,#02,#6C
0472 4100 02 BYTE #02,#40,#02,#16,#01,#E8,#01,#BD

0473 4108 01 BYTE #01,#91,#01,#69,#01,#41,#01,#1F
0474 4110 00 BYTE #00,#FE,#00,#E3,#00,#CA,#00,#B8
0475 4118 00 BYTE #00,#A8,#00,#9F,#00,#98,#00,#95

0476 4120 00 BYTE #00,#95,#00,#9A,#00,#9E,#00,#A5
0477 4128 00 BYTE #00,#AD,#00,#B5,#00,#BC,#00,#C2
0478 4130 00 BYTE #00,#C6,#00,#CA,#00,#C9,#00,#C7

 Sample Music Program

E-13 Sample Music Program

0479 4138 00 BYTE #00,#C2,#00,#BA,#00,#AF,#00,#A2
0480 4140 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80
0481 4148 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80
0482 4150 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80
0483 4158 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80
0484 4160 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80
0485 4168 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80
0486 4170 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80
0487 4178 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80
0488 4180 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
0489 4188 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
0490 4190 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
0491 4198 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
0492 41A0 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
0493 41A8 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
0494 41B0 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
0495 41B8 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
0496 41C0 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF
0497 41C8 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF

E-14

F-1

Appendix A

TSP50P11 (OTP Version)

This appendix describes the added functions of the TSP50P11
one-time-programmable (OTP) version of the TSP50C11.

Topic Page

F.1 Introduction F-2.

F.2 Programming Modes F-3.

F.3 Special Functions Testing F-5.

F.4 Absolute Maximums Over Operating Free-Air Temperature Range F-6

F.5 Recommended Operation Conditions F-7.

F.7 Protection Bit F-9.

F.8 Programming Interface Timing F-11.

F.9 Differences Between The TSP50P11 and The TSP50C11 F-13

Note: Advance Information

Advance information concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

At the time of this writing, the TSP50P11 is still being characterized.
Certain current and voltage specifications may be altered from the
specified TSP50C11 values.

Appendix F

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

Introduction

F-2

F.1 Introduction

The TSP50P11 is functionally equivalent to the TSP50C11. The TSP50P11
differs in that it is manufactured with a one-time programmable EPROM
instead of a ROM for program and data storage. To facilitate the programming
of the EPROM device without altering the package size or pinout, the existing
device pins have taken on different functions while in programming mode (see
Figure F–1 and Table F–1).

Figure F–1. TSP50P11 Pin Assignments

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

N PACKAGE

(TOP VIEW)

OSC2

PA3/DATA-IN
PA2/DATA-CLK

PA1/ADD-INC
PA0/MODESEL

VSS

INIT
OSC1

PA4/DATA-OUT
PA5/ST1
PA6/GBAR
PA7/ST2
VDD

DA1
PB1(DA2)†

PB0/EBAR

Table F–1.TSP50P11 Terminal Functions

TERMINAL
I /O

DESCRIPTION

NAME NO.
I /O

NORMAL OPERATION MODE PROGRAMMING MODE

DA1 11 O D/A output —

DA2 10† O D/A output —

INIT 6 I Initialize input Initialize input

OSC1 7 I Clock input —

OSC2 8 – Clock return —

PA0/MODESEL 4 I /O 8-bit bidirectional I/O port Mode select (program or test)

PA1/ADD-INC 3 I /O Address increment

PA2/DATA-CLK 2 I /O Data clock

PA3/DATA-IN 1 I /O Serial data input

PA4/DATA-OUT 16 I /O Serial data output

PA5/ST1 15 I /O Special test function decode

PA6/GBAR 14 I /O Vpp

PA7/ST2 13 I /O Special test function decode

PB0/EBAR 9 I /O 2-bit bidirectional I/O port Chip enable

PB1 10† I /O —

VDD 12 – 5-V supply voltage 5-V supply voltage

VSS 5 – Ground terminal Ground terminal
† The operation of this pin depends on the D/A option selected.

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

 Programming Mode

F-3 TSP50P11 (OTP Version)

F.2 Programming Mode

To initiate the programming mode requires the use of two terminals. A logic
level of 0 V is applied to PA0 and is maintained while a high-voltage level
(12.5 V) is applied to INIT. The voltage on INIT is then pulsed to a high logic
level and back to a high voltage level. This action sets an internal latch that
places the TSP50P11 in the programming mode and redefines all the terminal
functionality (see Table F–1).

Once the programing mode has been established, the basic programing
sequence is as follows (see Figure F–2):

� For shifting data out:

� The first data byte, starting with the MSB, is serially clocked into an
internal shift register (PA2/DATA-CLK and PA3/DATA-IN).

� The PA6/GBAR terminal is used to multiplex the data clock between
data elements while they are shifting out.

� For shifting data in:

� The PA6/GBAR is at a high voltage level (12.5 V).The PB0/EBAR ter-
minal is held high to prevent accidental programming.

� After the data has been shifted in and the necessary set-up and hold
times have elapsed and with PA6/GBAR at a high voltage level, the
PB0/EBAR terminal is strobed low for 100 µs. This is the actual
programming or burn pulse that writes the data into the EPROM (see
Figure F–2).

� After PB0/EBAR has been reset high, PA6/GBAR is taken to a logic
low (0 V) and the read-back mode is established.

� PB0/EBAR is once again strobed low, PA2/DATA-CLK is strobed high,
and PB0/EBAR returns to a logic high (5 V) to load the output shift
register with the data from the EPROM location just programmed (see
Figure F–2)

� This data is then serially shifted out on rising edge of the data clock
on the serial data out terminal (PA4/DATA-OUT).

� The address increment terminal (PA1/ADD-INC) can be strobed to go
to the next location in the program or the same location can be
programmed again. Data that is to be outputed is stored in the
input-shift register and remains there until over written.

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

Programming Mode

F-4

Figure F–2. Simplified Timing Waveforms

INIT

PA0/MODESEL

PA6/GBAR

PA2/DATA-CLK

PA3/DATA1–IN

PB0/EBAR

PA4/DATA-OUT

PA1/ADD-INC

High Voltage

High Voltage

First Eighth

MSB LSB

MSB LSB

NOTE A: PB0/EBAR programming pulse
NOTE B: PB0/EBAR load pulse (read mode)

See Note A See Note B

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

 Special Functions Testing

F-5 TSP50P11 (OTP Version)

F.3 Special Functions Testing

In order to provide some reliability testing and statistical quality control, some
special test functions were incorporated into the TSP50P11 from the standard
EPROM design flow. Table F–2 shows the operation of these special testing
functions.

Table F–2.Special Testing Functions†

PA6/GBAR PB0/EBAR PA5/ST1 PA7/ST2 INPUT DATA FUNCTION/TEST

V L H L All 1s Wordline stress

V L H H All 1s Bitline stress

L L H H All 0s Inverse erase
† V = high voltage, H = logic high, L = logic low.

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

Absolute Maximum Ratings Over Operating Free-Air Temperature Range

F-6

F.4 Absolute Maximum Ratings Over Operating Free-Air Temperature
Range†

Supply voltage range, VDD (see Note 1) –0.3 V to 8 V.
Input voltage range, VI (see Note 1) –0.3 V to VDD + 0.3 V.
Output voltage range, VO (see Note 1) –0.3 V to VDD + 0.3 V.
Operating free-air temperature range, TA 0°C to 70°C.
Storage temperature range 0°C to 125°C.
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These

are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability.

NOTE 1:All voltage values are with respect to analog ground (VSS) unless otherwise noted.

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

 Recommended Operating Conditions

F-7 TSP50P11 (OTP Version)

F.5 Recommended Operating Conditions

Table F–3 lists the recommended operating conditions for the TSP50P11.

Table F–3.Recommended Operating Conditions

MIN NOM MAX UNIT

VDD Supply voltage (see Note 1) 4 6.5 V

II(standby) Standby current, INIT = 0 15 µA

IDD Supply current (see Note 2)
Digital D/A (see Note 3) 10

mAIDD Supply current (see Note 2)
Analog D/A (see Note 3) 10

mA

NOTES: 1. Voltage is with respect to VSS.
2. Supply current assumes all inputs are tied to either VSS or VDD and that no input currents due to

programming pullup resistor exist.
3. D/A output is floating.

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

TSP50P11 Electrical Characteristics

F-8

F.6 TSP50P11 Electrical Characteristics

The following table gives specifications and the following figure gives the gives
the input leakage current that applies to the TSP50P11.

Table F–4.TSP50P11 Electrical Characteristics Over Recommended Ranges of Supply
 Voltage and Operating Free-Air Temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VT
Positive-going threshold voltage VDD = 4.5 V 2.7

VVT+
g g g

(INIT) VDD = 6 V 3.65
V

VT
Negative-going threshold voltage VDD = 4.5 V 2.3

VVT–
g g g g

(INIT) VDD = 6 V 3.15
V

Vh Hysteresis (VT VT) (INIT)
VDD = 4.5 V 0.4

VVhys Hysteresis (VT+ – VT–) (INIT)
VDD = 6 V 0.5

V

IIkg Input leakage current (except for
OSC1, INIT see Figure 3–5)

1 µA

Istandby Standby current (INIT low) 15 µA

IDD† Supply current D/A option 1, 2, or 3 10 mA

VDD = 4 V, VOH = 3.5 V –4 –6

VDD = 5 V, VOH = 4.5 V –5 –7.5 mA

IOH
High-level output current VDD = 6 V, VOH = 5.5 V –6 –9.2

IOH
g

(PAx, PBx, D/A options 1, 2) VDD = 4 V, VOH = 2.67 V –8 –13

VDD = 5 V, VOH = 3.33 V –14 –20 mA

VDD = 6 V, VOH = 4 V –20 –29

VDD = 4 V, VOL = 0.5 V 8 14

VDD = 5 V, VOL = 0.5 V 10 16 mA

IOL
Low-level output current VDD = 6 V, VOL = 0.5 V 12 20

IOL (PAx, PBx, D/A options 1, 2) VDD = 4 V, VOL = 1.33 V 18 26

VDD = 5 V, VOL = 1.67 V 27 42 mA

VDD = 6 V, VOL = 2 V 40 57

Pullup resistance
Resistors selected with software and
connected between pin and VDD

15 30 60 kΩ

† Operating current assumes all inputs are tied to either VSS or VDD with no input currents due to programmed pullup resistors.
The DAC output and other outputs are open circuited.

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

 Protection Bit

F-9 TSP50P11 (OTP Version)

F.7 Protection Bit

The TSP50P11 is equipped with a protection bit that disables the read-back
feature during the program mode. This allows for complete security to be
provided for a programmer’s code. The protection bit is one-time
programmable and may be programmed at any address of the EPROM. The
method for programming is simple. During the normal programming
sequence, the data input stream must be returned to zero before the burn
pulse begins. This prevents the EPROM from protecting itself. If the data
stream input line is held high (5 V) during the burn pulse, the device protects
itself and no further reads can be performed. The protection bit does not
interfere with the writing of subsequent locations and can be programmed
retroactively by sending in an FF and a protection bit. In this way a previously
burned EPROM may be protected with no alteration of the data within it. This
allows an EPROM to be verified in the system before it is protected. Figure F–3
and Figure F–4 show the timing waveforms for the protection bit states.

Figure F–3. Normal Programming Timing Waveforms

PA6/GBAR

PA2/DATA-CLK

PA3/DATA-IN

PB0/EBAR

PA4/DATA-OUT

High Voltage

First Eighth

MSB LSB

MSB LSB

Write Sequence Read Sequence

See Note A See Note B

NOTE A: PB0/EBAR programming pulse
NOTE B: PB0/EBAR load pulse (read mode)

Note:

If PA3/DATA-IN is set low during a burn, the EPROM does not have read
protection.

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

Protection Bit

F-10

Figure F–4. Programming with Protection Set Timing Waveforms

PA6/GBAR

PA2/DATA-CLK

PA3/DATA-IN

PB0/EBAR

PA4/DATA-OUT

High Voltage

First Eighth

MSB LSB

Data Not Readable

Write Sequence Read Sequence

See Note A See Note B

NOTE A: PB0/EBAR programming pulse
NOTE B: PB0/EBAR load pulse (read mode)

Note:

If PA3/DATA-IN is set high during a burn, the EPROM does have read
protection.

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

 Programming Interface Timing

F-11 TSP50P11 (OTP Version)

F.8 Programming Interface Timing

Figure F–5 shows the timing waveforms for the TSP50P11 during the
initialization and write sequences. Table F–6 gives the specification for the
timing elements listed in Figure F–5. and Figure F–6.

Table F–5.Timing Characteristics for Initialization and Write Sequences
PARAMETER MIN MAX UNIT

tw1 Pulse duration time, INIT active at 12 V 1 µs

tw2 Pulse duration time, INIT active at 5 V 1 µs

tsu1 Setup time, PA6/GBAR active to PA2/DATA-CLK high 2 µs

tw3 Pulse duration time, PA2/DATA-CLK high 1 µs

th1 Hold time, PA2/DATA-CLK low to PB0/EBAR low (program mode) 1 µs

tsu2 Setup time, PA3/DATA-IN high until PA2/DATA-CLK high 1 µs

tsu3 Setup time, PA6/GBAR active until PA3/DATA-IN high 2 µs

tc Cycle time, PA2/DATA-CLK 2 µs

tsu4 Setup time, PA6/GBAR high until PB0/EBAR high 1 µs

th2 Hold time, PA3/DATA-IN low until PB0/EBAR low 1 µs

Figure F–5. Initialization and Write Sequence Timing Waveforms

INIT

PA6/GBAR

PA2/DATA-CLK

PA3/DATA1–IN

PB0/EBAR

PA1/ADD-INC

High Voltage

High Voltage

PA4/DATA-OUT

tw1

tw2

tsu3

tsu4

tsu1

tsu2 tc

tw3

th2

th1

See Note A

NOTE A: PB0/EBAR programming pulse

90%
90% 90%

90% 90% 90% 90%
10%

90%

90%

10%

90%

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

Programming Interface Timing

F-12

Figure F–6 shows the timing waveforms for the TSP50P11 during the
initialization and write sequences. Table F–6 gives the specification for the
timing elements listed in Figure F–6.

Table F–6.Timing Characteristics for Initialization and Write Sequences
PARAMETER MIN MAX UNIT

td1 Delay time, PB0/EBAR high to PA6/GBAR inactive (program dependent) 10 10 ns

tsu5 Setup time, PA1/ADD-INC low to PA6/GBAR active 10 10 ns

tsu6 Setup time, PA2/DATA-CLK rise to PA4/DATA-OUT valid 0.5 0.5 ns

tsu7 Setup time, PB0/EBAR low to PA2/DATA-CLK rise 1 1 ns

th3 Hold time, PA6/GBAR inactive to PB0/EBAR low 2 2 ns

tw3 Pulse duration time, PB0/EBAR low (read) 6 6 ns

tw4 Pulse duration time, PA1/ADD-INC active high 6 6 ns

tsu8 Setup time, PA2/DATA-CLK low to PA1/ADD-INC high 1 1 ns

Figure F–6. Programming and Read Sequence Timing Waveforms

INIT

PA6/GBAR

PA2/DATA-CLK

PA3/DATA1–IN

PB0/EBAR

PA4/DATA-OUT

PA1/ADD-INC

th3

tsu6

tsu7

td

tw3

tsu8

tw4

tsu5

See Note A

NOTE A: PB0/EBAR load pulse (read mode)

90%
10%

90%

90%

90%

90%
10%

90% 90%

90%

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

 Differences Between the TSP50P11 and the TSP50C11

F-13 TSP50P11 (OTP Version)

F.9 Differences Between the TSP50P11 and the TSP50C11

The TSP50P11 is functionally equivalent to the TSP50C11. The TSP50P11
differs in at least three major ways.

� The TSP50P11 uses a one-time programmable EPROM instead of ROM
for program and data storage.

� The TSP50P11 requires a slightly different excitation function from the
standard excitation function used in the TSP50C11.

� Low-level output current (IOL) for PA6/GBAR (terminal 14) is higher for
the TSP50P11 than for PA6 (terminal 14) of the TSP50C11.

� Supply current (IDD) is higher on the TSP50P11 than on the TSP50C11.

� Standby current (Istandby) is somewhat higher on the TSP50P11 than on
the TSP50C11.

At the time of this writing, the TSP50P11 is still being characterized.
Certain current and voltage specifications may be altered from the
specified TSP50C11 values.

Excitation Function Differences

Table F–7 shows the differences between the TSP50P11 excitation function
and the TSP50C11 excitation function.

Table F–7.TSP50P11 Excitation Function Differences

ROM Address TSP50P11 TSP50C11

4140h – 414Fh FF, FF, FF, FF, FF. 05, 80, 05, 80, 05, 80.

4150h – 415Fh FF, FF, FF, FF, FF, FF. 05, 80, 05, 80, 05, 80.

4160h – 416Fh 05, 80, 05, 80, 05, 80. 3A, 80, 3A, 80 3A, 80.

4170h – 417Fh 3A, 80, 3A, 80 3A, 80. 3A, 80, 3A, 80 3A, 80.

A
D

V
A

N
C

E
 IN

F
O

R
M

AT
IO

N

F-14

 Glossary

G-1 Glossary

Appendix A

Glossary

A
A (accumulator) register: The primary 14-bit register used for arithmetic

and logical operations.

ADP50C12: The development tool for emulating the TSP50C12 for
development purposes when using the EVM50C1x and for demonstration
and field test purposes when using an EPROM. See also EVM50C1x.

ASM50C1x assembler: The assembler used for all members of the
TSP50C0x/1x speech synthesizer family.

assembly binary object file: Contains binary object code and is produced
by the assembler after processing the assembler source file. See also
assembler source file.

assembly listing file: Contains the source instructions, assembled code,
and a cross-reference table and is produced by the assembler after
processing.

assembly source file: Contains the source code for the assembler.

assembly tagged object file: File produced by the assembler in tagged
object format instead of binary format.

B
B register: A 14-bit register used for temporary storage. This register can

be used to store a RAM address, exchanged with the X register using the
XBX instruction, and exchanged with the A register using the XBA
instruction. The contents of the B register are saved during level-1 interrupts
and can be restored using the RETI instruction. See also A register, B
register, and level-1 interrupt, X register.

block addressing: The switching in or paging of 8K-byte block of RAM for
use by the TSP50C19.

Appendix G

Glossary

G-2

D

D/A option 1: See two-pin push pull (option 1).

D/A option 2: See single-pin single ended (option 2).

D/A option 3: See single-pin double ended (option 3).

D/A register: Holds the D/A output. While in PCM mode, the output data is
written directly to the D/A register. See also PCM mode.

DAC (digital-to-analog converter): The DAC is pulse-width-modulated
with either 9 bits or 10 bits of resolution and a 16-kHz or 20-kHz sampling
rate. The DAC produces samples at twice the rate that data is received from
the LPC filter and is available in three pulse-width-modulated forms for the
TSP50C10/11 and two pulse-width-modulated forms for the
TSP50C04/06/12/13/14/19. See also LPC.

direct-addressing mode: Part of the TSP60C18/81. This mode presumes
the 16-bit address loaded points directly to the desired data. See also
TSP60C18, TSP60C81.

DTMF (dual-tone multifrequency): A method of coding signals used in
telephone applications in which two nonharmonically related frequencies
are added together to represent the information.

E

ENA1 bit: Bit 0 in the mode register. It enables/disables the level-1 interrupt
function. See also level-1 interrupt, mode register.

ENA2 bit: Bit 3 in the mode register. It enables/disables the level-2 interrupt
function. See also level-2 interrupt, mode register.

energy parameter: A gain used to scale the excitation function before it is
loaded to the LPC filter. See also excitation function, LPC.

EVM: See EVM50C1x.

EVM50C19: Development module for the TSP50C19.

EVM50C1x: Development module for the TSP50C1x family of speech
synthesizers.

excitation function: A digitized pulse periodically used to excite the LPC
filter. See also LPC.

 Glossary

G-3 Glossary

extended-sign mode: An arithmetic mode in which the processor
presumes all numbers to be values ranging positive or negative from zero,
with negative number represented in twos-complement notation.

external interrupt: An interrupt signal generated on the PB1 pin.

external ROM mode: In this mode the TSP50X0x/1x can address an
external speech ROM (e.g., TSP60C18 or TSP60C81). See also
TSP60C18, TSP60C81.

EXTROM bit: Bit 4 in the mode register. It enables/disables the external
ROM hardware interface.

F

FAB50C1x: A development tool that emulates the TSP50C04/06/13/14/19
DAC output and can be connected to the SDS5000, EVM50C1x, and the
SEB50C1x. See also DAC, EVM50C1x, SDS5000, SEB50C1x.

frames: Segments of speech that are from 10 ms to 25 ms long.

I

indirect-addressing mode: Part of the TSP60C18/81. When in this mode,
it presumes the 16-bit or 8-bit address loaded points to a location in ROM
that contains an address that points to the location of the desired data. See
also TSP60C18, TSP60C81.

integer mode: An arithmetic mode in which the processor presumes all
numbers to be integers ranging positive from zero.

interrupt: A condition in which the processor suspends the linear flow of the
program in order to perform some asynchronous task. The TSP50C0x/1x
device supports two levels of interrupts. See also level-1 interrupt, level-2
interrupt.

K

K parameters: Parameters (usually 10 or 12 in number) used to determine
the resonance of a digital filter that emulates the resonance of the human
vocal tract.

Glossary

G-4

L

level-1 interrupt: The higher priority of the two levels of interrupts. The
level-1 interrupt is a synthesis interrupt and is enabled or disabled by the
ENA1 bit in the mode register. A level-1 interrupt is caused by one of four
conditions depending on the state of the LPC and PCM bits of the mode
register. See also ENA1 bit, LPC, mode register, PCM, level-2 interrupt.

level-2 interrupt: Interrupt enabled or disabled by the ENA2 bit in the mode
register. A level-2 interrupt is caused by a timer overflow condition. See also
ENA2 bit, level-1 interrupt, mode register.

LPC (linear predictive coding): Uses a mathematical model of the human
vocal tract to enable efficient digital storage and recreation of realistic
speech.

LPC bit: Bit 1 in the mode register. It enables/disables the LPC processor.
See also LPC, mode register.

LPC data compression: A form of data compression that takes advantage
of a model of the human vocal tract.

LPC mode: Normal operating (speaking) mode of the TSP50C0x/1x
devices.

LPC model: Incorporates elements analogous to each of the elements of
the vocal tract. It has an excitation function generator that models both
types of restrictions: a gain-multiplication stage to model the possible levels
of pressure from the lungs, and a digital filter to model the resonance in the
oral and nasal cavities.

M

MASTER bit: Bit 6 of the mode register. It enables I/O master operation or
I/O slave operation. See also mode register.

Mode register: 8-bit write-only register controls the operating mode of the
TSP50C0x/1x.

N

NPRF (new product release form): A form required by Texas Instruments
to track and document all steps involved in implementing a new speech
code onto one of the parent speech devices.

 Glossary

G-5 Glossary

O
OTP (one-time programmable): A type of EPROM that can only be

programmed once. The TSP50P11 has a OTP EPROM in place of ROM for
program and data storage.

P
parallel-to-serial register: 8-bit register used primarily to unpack speech

data.

PC (program counter): 14-bit program counter that stores an address that
points to the next instruction to be executed.

PCM bit: Bit 2 in the mode register. It enables/disables PCM mode. See also
mode register, PCM mode.

PCM (pulse-code modulation) mode: Allows a periodically sampled
waveform to be loaded directly into the DAC and provides the ability to
synthesize arbitrary waveforms.

periodic pulse: A voiced-speech sound (e.g., |A| vowel sound). See also
voiced speech.

pitch parameter: Information required by the LPC model. It controls the
input into the LPC system by providing one of two excitation signals. See
also LPC, LPC mode, LPC model.

pitch-period counter: See PPC.

pitch register: Stores values for the PPC. See also PPC.

pitch-synchronous interpolation: Helps minimize the inevitable noise
from interpolation by making it occur at the lowest energy part of the speech
and by making it a harmonic of the fundamental frequency of the speech.

PLCC (plastic-leaded chip carrier): The TSP50C12 is available only in a
68-lead PLCC package.

plosives: Abrupt unvoiced-speech sounds (e.g., the “Phaa” in the letter |P|).
See also unvoiced speech.

port A: 8-bit I/O port is controlled by a data-direction register. Each output
bit can be programmed independently.

port B: 2-bit I/O port is controlled by a data-direction register. Each output
bit can be programmed independently.

Glossary

G-6

PPC (pitch-period counter): Controls the timing of the periodic impulse
that simulates the vocal cords and is used to synchronize the interpolation
of all speech parameters during each frame.

program counter stack: Has three levels to store three program counter
addresses for return from subroutines or interrupts. See also PC.

programming mode: TSP50P11 option that allows programming of the
EPROM in this one-time programmable device. See also OTP.

PW2 option: Causes the processor to produce a double-sized pulse width.
This results in a higher volume output, which increases the risk of clipping
the output. The PW2 option is available on the TSP50C04/06/12/13/14/19.

R
RAMROM bit: Bit 5 in the mode register. It either enables data source for the

GET instruction from internal or external ROM or from internal RAM. See
also mode register.

RELP (residual encoded linear predictive synthesis): A method of
synthesizing normal speech.

S
SDS5000: Speech development system that uses an IBM PC/XT, PC/AT, or

compatible to run high speed speech analysis.

SEB50C1X: An in-circuit emulation of speech EPROM for the TSP50C0x/1x
family of devices.

SEB60CXX: An in-circuit emulation of up to four TSP60CXXs for use as
storage for the TSP50C0x/1x devices during development.

single-pin single ended (option 2): Option accurate to 9 bits
(± 1/2 LSB) that is designed for use with a single-transistor amplifier. While
this option retains all 10 I/O pins, it also requires more power to operate.
This option is available on the TSP50C04/06/10/11/13/14/19.

single-pin double ended (option 3): Option accurate to 10 bits
(± 1/2 LSB) that is provided for use with operational amplifiers and power
amplifiers. It offers 10 bits of resolution and 10 I/O pins and is available on
the TSP50C10/11/12.

slave mode: Allows the TSP50C0x/1x to be controlled by a master
microprocessor.

 Glossary

G-7 Glossary

speech address register (SAR): 14-bit register used to point to to data in
ROM.

standby mode: The TSP50C0x/1x can be put into a low-power-dissipation
standby mode by either executing a SETOFF instruction or by taking INIT
low. When placed in standby mode, output data is cleared, the I/O pins are
placed in a high-impedance input mode, the program counter is cleared to
zero, the registers are left in an undefined state, the values stored in RAM
are retained, the clock stops running, and no instructions are executed. See
also PC.

synthesizer mode 0 (OFF mode): When the PCM and LPC bits of the mode
register are cleared, the synthesizer is disabled and all instruction cycles
are devoted to the processor. See also LPC bit, mode register, PCM bit.

synthesizer mode 1 (LPC mode): Normal speaking mode. The LPC bit of
the mode register is set high for LPC mode. When the PCM bit is set low,
the synthesizer uses 53% of the instruction cycles. When the PCM bit is set
high, the synthesizer uses 50% of the instruction cycles. See also LPC bit,
mode register, PCM bit.

synthesizer mode 2 (PCM mode): Mode used for tone and music
generation. The PCM bit of the mode register is set high for PCM mode. The
processor uses all the instruction cycles and the A register is transferred
directly to the D/A register. See also A register, D/A register, mode register,
PCM bit, PCM mode.

synthesizer mode 3 (PCM and LPC mode): When both the PCM and LPC
bits of the mode register are set high, the LPC synthesizer runs normally
with excitation function provided by software. In this mode the synthesizer
takes 50% of the instruction cycles and the A register is transferred to the
excitation function input of the synthesizer. This mode is included for use
with RELP and other similar synthesis techniques. See also A register, LPC
bit, LPC mode, mode register, PCM bit, PCM mode, RELP.

T

timer prescale register: 8-bit register that is a programmable divider
between the processor clock and the timer register. See also timer register.

timer register: 8-bit register used for generating interrupts and for counting
events.

TSP60C18: A 256K-bit ROM organized internally as a 16K-bits × 16 bits. It
can provide additional storage for the TSP50C0x/1x devices.

Glossary

G-8

TSP60C81: A 1024K-bit ROM organized internally as a 64K-bits × 16 bits.
It can provide additional storage for the TSP50C0x/1x devices.

two-pin push pull (option 1): Option accurate to 10 bits (± 1/2 LSB) and
works well with a very efficient four-transistor amplifier. It requires two pins,
which leaves only 9 pins for output.

U

UNV bit: Bit 7 of the mode register. Enables the pitch-controlled excitation
sequence in LPC mode or enables the random excitation sequence in LPC
mode. See also LPC mode, mode register.

unvoiced speech: One of two types of sound used in the LPC model,
unvoiced sounds have a white-noise-like characteristic. An example is the
|s| sound. See also LPC mode, voiced speech.

V

voiced speech: One of two types of sound used in the LPC model, voiced
sounds have tonal characteristics and when produced in humans are
created with the help of the vocal cords. An example is the |r| sound. See
also LPC mode, unvoiced speech.

X

X register: 8-bit register that can be used as a RAM index register to point
to a specific RAM location.

 Index

Index-1

&, arithmetic operators in expressions 4-14
&&, arithmetic operators in expressions 4-14
$, predefined operand field symbol 4-12
%, arithmetic operators in expressions 4-14
+, arithmetic operators in expressions 4-14
++, arithmetic operators in expressions 4-14
–, arithmetic operators in expressions 4-14
/, arithmetic operators in expressions 4-14
16-bit indirect-address initializa-

tion TSP60C18/81 6-57
2s complement arithmetic mode 6-39
8-bit indirect-address initializa-

tion TSP60C18/81 6-56
990 option OPTION directive 4-22

A
A register

I/O port registers 2-13
port B 2-13
RETI instruction 2-8
synthesizer mode 0 2-17
synthesizer mode 2 2-17
synthesizer mode 3 2-17
TASYN instruction 2-12
transferring to pitch register 2-12
TSP50C0x/1x 2-8

A0 pin description 6-49
ABAAC (add B register to A register) instruction E-7
absolute maximum ratings

TSP50C0x/1x 3-2
TSP50P11 F-6

ACAAC (add constant to A register) instruction E-8
ACAAC instruction

arithmetic mode 6-41
extended-sign mode 6-41
integer mode 6-41

addressing modes TSP60C18/81 6-51
ADP50C12

features A-7
speech development tool A-7

AGEC (A register greater than or equal to constant)
instruction E-9

ALU
EXTSG instruction 2-8
INTGR instruction 2-8
TSP50C0x/1x 2-8

AMAAC (add memory to A register) instruction E-10
AMAAC instruction arithmetic mode 6-41
ANDCM (add a constant with memory) instruc-

tion E-11
ANEC (A register not equal to constant) instruc-

tion E-12
AORG directive

description 4-16
syntax 4-16

applications TSP50C0x/1x 1-2
arithmetic logic unit. See ALU
arithmetic modes 6-39

2s complement 6-39
ACAAC instruction 6-41
AMAAC instruction 6-41
EXTSG instruction 6-39
integer mode 6-40
INTGR instruction 6-39
LUAA instruction 6-41
LUAB instruction 6-41
SMAAN instruction 6-41
TCA instruction 6-41
TMA instruction 6-41
TMAD instruction 6-41
TMAIX instruction 6-41
TXA instruction 6-40 6-41
XBX instruction 6-41

ASM10 invoking the assembler 4-3
ASM50C1x assembler TSP50C19 6-76
assembler

$ 4-12
AORG directive 4-16
arithmetic operators in expressions 4-14
assembly binary object file 4-7
assembly listing file 4-8
assembly source file 4-7
assembly tagged object file 4-8
binary-code file-disable switch 4-6
BYTE directive 4-16
BYTE unlist option 4-4
character string 4-13
command-line options 4-4
COPY directive 4-16
DATA directive 4-17
DATA unlist option 4-5
directives 4-15
directives summery 4-15
END directive 4-18
EQU directive 4-17

Index

Index-2

assembler (continued)
error-to-screen switch 4-6
expressions 4-14
IDT directive 4-18
input files 4-7
instruction count switch 4-6
invoking 4-3
label field symbols 4-12
LIST directive 4-19
listing file switch 4-5
NARROW directive 4-19
object mode switch 4-5
operand field predefined symbols 4-12
operand field symbols 4-12
OPTION directive 4-19

990 option 4-22
BUNLST option 4-20
DUNLST option 4-20
FUNLST option 4-20
I COUNT option 4-20
LSTUNL option 4-21
OBJUNL option 4-21
PAGEOF option 4-21
RXREF option 4-21
SCRNOF option 4-21
TUNLST option 4-21
WARNOFF option 4-21
XREF option 4-21

output files 4-7
PAGE directive 4-22
page-eject disable switch 4-6
parentheses in expressions 4-14
program.bin 4-7
program.lst 4-8
program.mpo 4-8
program.src 4-7
RBYTE directive 4-22
RDATA directive 4-23
relative ROM address for TSP50C19 6-76
RTEXT directive 4-23
source-statement format 4-9
TEXT directive 4-24
TEXT unlist option 4-5
TITL directive 4-24
TSP50C19 6-76
UNL directive 4-25
WARNING unlist option 4-5
WIDE directive 4-25
XREF switch 4-5
XREF unlist option 4-5

assembly binary object file
assembler 4-7
program.bin 4-7

assembly instruction
opcode table 5-6
syntax 5-2

assembly instructions summary 5-3
assembly listing file

assembler 4-8
program.lst 4-8

assembly source file
assembler 4-7
program.src 4-7

assembly tagged object file
assembler 4-8
program.mpo 4-8

assembly-time constants source-statement for-
mat 4-11

AXCA (A register times to constant) instruction E-13

AXCA instruction multiplication scheme 6-42
AXMA (A register times memory) instruction E-14
AXMA instruction multiplication scheme 6-42
AXTM (A register times timer) instruction E-15

AXTM instruction multiplication scheme 6-42

B
B register

RETI instruction 2-9
TSP50C0x/1x 2-9
XBX instruction 2-9

B2 bit TSP50C19 6-75

B3 bit TSP50C19 6-75
binary integer constants source-statement for-

mat 4-10
binary-code file-disable switch command-line op-

tion 4-6
block addressing TSP50C19 ROM 2-4
BR (branch if status set) instruction E-16

BR instruction
program counter 2-5
status flag 2-9

BRA (branch always to address in A register)
instruction E-17

BRA instruction program counter 2-5
BUNLST option OPTION directive 4-20

 Index

Index-3

BYTE directive
description 4-16
syntax 4-16

BYTE unlist command-line option 4-4

C
C0 pin description 6-49

C1 pin description 6-49

C2 pin description 6-49

C3 pin description 6-49

CALL (call subroutine if status set) instruction E-18

CALL instruction
program counter 2-5
status flag 2-9

CE pin description 6-49

CEB pin description 6-49

character constants source-statement format 4-11

character strings assembler 4-13

CLA (clear A register) instruction E-19

CLB (clear B register) instruction E-20

clock TSP50C12 customer options 2-29

CLX (clear X register) instruction E-21

command field source-statement format 4-9

command line
binary-code file-disable switch 4-6
BYTE unlist option 4-4
DATA unlist option 4-5
error-to-screen switch 4-6
instruction count switch 4-6
listing file switch 4-5
object mode switch 4-5
options 4-4
page-eject disable switch 4-6
TEXT unlist option 4-5
WARNING unlist option 4-5
XREF switch 4-5
XREF unlist option 4-5

comment field source-statement format 4-10

constants source-statement format 4-10

contrast adjustment LCD 2-28

COPY directive
description 4-16
syntax 4-16

customer option
LCD drive type A 2-24

LCD drive type A diagram 2-25
LCD drive type B 2-26
LCD drive type B diagram 2-27

customer options TSP50C12 clock 2-29

D
D/A options timing requirements 3-4
D6 parameter

energy parameter 6-2
frame decoding 6-3
PITCH parameter 6-2
REPEAT parameter 6-2
speech coding 6-2

DAC
sample rates 2-19
single-pin double-ended mode 2-19
single-pin single-ended mode 2-19
TASYN instruction 2-19
two-pin double-ended mode 2-19

data block selection TSP50C19 6-76
data compression LPC-12 1-20
data direction register. See DDR
DATA directive

description 4-17
syntax 4-17

data input register. See DIR
data output register. See DOR
DATA unlist command-line option 4-5
DDR I/O register 2-14
decimal integer constants source-statement for-

mat 4-10
DECMN (decrement memory) instruction E-22
DECXN (decrement X register) instruction E-23
development cycle 7-2
digital-to-analog converter. See DAC
digital-to-analog options

option 1 1-7
four-transistor waveform circuit 1-8
operational amplifier circuit 1-9
power amplifier interface circuit 1-9
waveform 1-8

option 2 1-9
one-transistor amplifier circuit 1-11
waveform 1-10

option 3 1-11
operational amplifier interface circuit 1-12
waveform 1-12

Index

Index-4

digital-to-analog options (continued)
single-pin double-ended option 1-11

operational amplifier interface circuit 1-12
waveform 1-12

single-pin single-ended option 1-9
one-transistor amplifier circuit 1-11
waveform 1-10

TSP50C04 1-7
TSP50C06 1-7
TSP50C12 1-7
TSP50C13 1-7
TSP50C14 1-7
TSP50C19 1-7
TSP50Cox/1x 1-7
two-pin push pull option 1-7

four-transistor amplifier circuit 1-8
operational amplifier circuit 1-9
power amplifier interface circuit 1-9
waveform 1-8

DIR I/O register 2-14

direct-address initialization TSP60C18/81 6-55

direct-addressing mode TSP60C18/81 6-51

directives
assembler 4-15
summery 4-15

DOR I/O register 2-14

DTMF program D-1 to D-11

DTMF sample program walkthrough 6-67

DUNLST option OPTION directive 4-20

DW package
mechanical information 7-6
TSP50C04 pin assignments 1-18
TSP50C06 pin assignments 1-18
TSP50C10 pin assignments 1-13
TSP50C11 pin assignments 1-13
TSP50C13 pin assignments 1-18
TSP50C14 pin assignments 1-18
TSP50C19 pin assignments 1-18

E
electrical characteristics

TSP50C04 3-10
TSP50C06 3-10
TSP50C10 3-6
TSP50C11 3-6
TSP50C12 3-8
TSP50C13 3-10

TSP50C14 3-10
TSP50C19 3-10
TSP50P11 F-8

ENA1 mode register bit 2-16

ENA2
enable/disable level-2 interrupt 2-16
interrupt 2-16
mode register bit 2-16

END directive
description 4-18
syntax 4-18

EPROM protection bit TSP50P11 F-9

EQU directive
description 4-17
syntax 4-17

error-to-screen switch command-line option 4-6

EVM timer register 2-10

EVM50C19 ROM block selection 6-76

EVM50C1x
features A-6
speech development tool A-6

excitation sequence
pitch-controlled

enabled 2-16
MASTER mode register bit 2-16

random
enabled 2-16
MASTER mode register bit 2-16

expression
& arithmetic operator 4-14
&& arithmetic operator 4-14
% arithmetic operator 4-14
+ arithmetic operator 4-14
++ arithmetic operator 4-14
– arithmetic operator 4-14
/ arithmetic operator 4-14
x arithmetic operator 4-14

expressions
arithmetic operators 4-14
assembler 4-14
parentheses 4-14

extended-sign mode 6-40
ACAAC instruction 6-41

external interrupt
timing diagram 3-5
timing requirements 3-5

external ROM initialization program C-1 to C-11

 Index

Index-5

external ROM mode
PA0 pin 2-15
PA1 pin 2-15
PA2 pin 2-15
PA3 pin 2-15
PA7 pin 2-15
PB0 pin 2-15
TSP50C0x/1x 2-15
TSP60C18 2-15
TSP60C81 2-15

EXTROM
external ROM enable/disable 2-16
GET instruction 6-61
mode register bit 2-16
parallel-to-serial register 2-13
slave mode 6-44

EXTSG (change to extended-sign mode) instruc-
tion E-24

EXTSG instruction
ALU 2-8
arithmetic modes 6-39
integer mode flag 2-10

F

FAB50C1x
features A-8
speech development tool A-8

features
TSP50C04 1-5
TSP50C06 1-5
TSP50C0x/1x 1-5
TSP50C10 1-5
TSP50C11 1-5
TSP50C12 1-6
TSP50C13 1-5
TSP50C14 1-5
TSP50C19 1-5

FLAGS bit used by sample program 6-7

forms new product release 7-12

frame decoding D6 parameter 6-3

frame-length control prescale register 2-18

frame-update routine sample program 6-10

functional block diagram
TSP50C04 1-4
TSP50C06 1-4
TSP50C10 1-3
TSP50C11 1-3
TSP50C12 1-4
TSP50C13 1-4
TSP50C14 1-4
TSP50C19 1-4

functional description TSP50C0x/1x 2-2
FUNLST option OPTION directive 4-20

G
generating tones PCM 6-66
GET (get data from RAM/ROM) instruction E-25
GET instruction

bit stream from memory 6-60
data source enable 2-16
external ROM 6-62
EXTROM mode register bit 6-61
internal RAM 6-63
internal ROM 6-62
parallel-to-serial register 2-13
parallel-to-serial register and RAM 2-13
RAMROM mode register bit 2-16, 6-61
SAR 2-12

H
hardware initialization TSP60C18/81 6-54
HCLB pin description 6-49
hexadecimal integer constants source-statement

format 4-11

I
I COUNT option OPTION directive 4-20
I/O configuration

TSP50C10 1-15
TSP50C11 1-15

I/O master operation
enable 2-16
MASTER mode register bit 2-16

I/O port registers A register 2-13
I/O register

PER 2-14
slave mode 2-15

Index

Index-6

I/O registers
DDR 2-14
DIR 2-14
DOR 2-14

IAC (increment A register) instruction E-27
IBC (increment B register) instruction E-28
IDT directive

description 4-18
syntax 4-18

INCMC (increment memory) instruction E-29
indirect-addressing mode TSP60C18/81 6-52
INIT pin

input leakage current graph 3-7
mode register 2-15
standby mode 6-43

initialization
16-bit indirect-address TSP60C18/81 6-57
8-bit indirect-address TSP60C18/81 6-56
direct-address TSP60C18/81 6-55
hardware TSP60C18/81 6-54
software TSP60C18/81 6-54

initialization sequence timing TSP50P11 F-11
initialization timing

diagram 3-4
requirements 3-4

input leakage current
on INIT graph TSP50C10 3-7
on INIT graph TSP50C11 3-7

input ports TSP50C0x/1x 2-13
instruction count switch command-line option 4-6
integer mode 6-40

ACAAC instruction 6-41
integer mode flag

EXTSG instruction 2-10
INTGR instruction 2-10
RETI instruction 2-10
TSP50C0x/1x 2-10

Interrupt
external. timing diagram 3-5
external. timing requirements 3-5

interrupt
ENA1 mode register bit 2-16
ENA2 mode register bit 2-16
interrupt-1 vectors 2-20
interrupt-2 vectors 2-21
level-1 2-17
level-2 enable/disable 2-16
level-1 enable/disable 2-16

interrupt (continued)
mode register status 2-21
PB1 pin 2-15
synthesizer mode 0 2-17
synthesizer mode 3 2-17
when not to take 2-21

interrupt service routine sample program 6-10

Interrupt-1 vectors
LPC mode register bit 2-20
PCM mode register bit 2-20

Interrupt-2 vectors
LPC mode register bit 2-21
PCM mode register bit 2-21

interrupts
level-1 2-20
level-2 2-20
TSP50C0x/1x 2-20

INTGR (change to integer mode) instruction E-30

INTGR instruction
ALU 2-8
arithmetic modes 6-39
integer mode flag 2-10

IXC (increment X register) instruction E-31

K
K parameters

fixed RAM location 6-5
speech coding 6-2

L
label field

source-statement format 4-9
symbols 4-12

LCD
contrast adjustment 2-28
drive type A 2-24
drive type A diagram 2-25
drive type B 2-26
drive type B diagram 2-27
driver 2-22
functional description 2-22
LCD drive type customer option 2-24 to 2-28
RAM map 2-23
reference voltage 2-28

linear predictive coding. See LPC

 Index

Index-7

LIST directive
description 4-19
syntax 4-19

listing file switch command-line option 4-5

low-power standby condition TSP60C18/81 6-58

LPC
editing speech A-3
interrupt-1 vectors 2-20
interrupt-2 vectors 2-21
K parameters 6-2
linear predictive coding 1-19
LPC-12 vocal tract model diagram 1-20
LPC-12 vocal tract model 1-20
mode register bit 2-16
synthesizer mode 0 2-17
synthesizer mode 1 2-17

LPC mode-register bit PB1 interrupt 2-15

LPC processor
enable/disable 2-16
mode register bits 2-16

LPC-12
data compression 1-20
diagram 1-20
vocal tract model 1-20

LSTUNL option OPTION directive 4-21

LUAA (look-up with A register) instruction E-32

LUAA instruction arithmetic mode 6-41

LUAB (look-up with B register) instruction E-33

LUAB instruction arithmetic mode 6-41

LUAPS (indirect look-up with A register) instruc-
tion E-34

LUAPS instruction
parallel-to-serial register 2-13
SAR 2-12

M
MASTER

I/O master operation enable 2-16
mode register bit 2-16
slave mode enable 2-16

mechanical information 7-4
DW package 7-6
N package 7-4
PLCC package 7-8
PLCC reflow soldering precautions 7-10

mode
direct-addressing TSP60C18/81 6-51
external ROM 6-48
indirect-addressing TSP60C18/81 6-52
PCM 6-66
programming TSP50P11 F-3
slave 6-44
standby 6-43

mode register
INIT pin 2-15
status during interrupt 2-21
TSP50C0x/1x 2-15

mode register bits
ENA1 2-16
ENA2 2-16
EXTROM 2-16
INIT pin 2-15
level-1 interrupt enable/disable 2-16
LPC 2-16
LPC processor enable/disable 2-16
MASTER 2-16
PCM 2-16
RAMROM 2-16
slave mode 6-44
UNV 2-16

multiplication scheme AXCA AXMA AXTA instruc-
tions 6-42

music program E-1 to E-11

N

N package
mechanical information 7-4
TSP50C04 pin assignments 1-18
TSP50C06 pin assignments 1-18
TSP50C10 pin assignments 1-13
TSP50C11 pin assignments 1-13
TSP50C13 pin assignments 1-18
TSP50C14 pin assignments 1-18
TSP50C19 pin assignments 1-18
TSP50P11 pin assignments F-2

NARROW directive
description 4-19
syntax 4-19

new product release form. See NPRF

Index

Index-8

NPRF
TSP50C04 7-13
TSP50C06 7-15
TSP50C10 7-17
TSP50C11 7-19
TSP50C12 7-21
TSP50C13 7-23
TSP50C14 7-25
TSP50C19 7-27

O
object mode switch command-line option 4-5

OBJUNL option OPTION directive 4-21

opcode assembly instruction table 5-6

operand field
$ 4-12
predefined symbols 4-12
source-statement format 4-10
symbols 4-12

option 1 digital-to-analog options 1-7
four-transistor waveform circuit 1-8
operational amplifier circuit 1-9
power amplifier interface circuit 1-9
waveform 1-8

option 2 digital-to-analog options 1-9
one-transistor amplifier circuit 1-11
waveform 1-10

option 3 digital-to-analog options 1-11
operational amplifier interface circuit 1-12
waveform 1-12

OPTION directive
990 option 4-22
BUNLST option 4-20
description 4-19
DUNLST option 4-20
FUNLST option 4-20
I COUNT option 4-20
LSTUNL option 4-21
OBJUNL option 4-21
PAGEOF option 4-21
RXREF option 4-21
SCRNOF option 4-21
syntax 4-19
TUNLST option 4-21
WARNOFF option 4-21
XREF option 4-21

ORCM (OR constant with memory) instruction E-35

ordering information 7-11

oscillator circuit
TSP50C10 1-15
TSP50C11 1-15

output ports TSP50C0x/1x 2-13

P
PA0 external ROM mode 2-15

PA1 pin external ROM mode 2-15

PA2 pin external ROM mode 2-15

PA3 pin external ROM mode 2-15

PA7 pin
external ROM mode 2-15
slave mode 2-15

PAGE directive
description 4-22
syntax 4-22

page-eject disable switch command-line option 4-6

PAGEOF option OPTION directive 4-21

parallel-to-serial register
EXTROM mode register bit 2-13
GET instruction 2-13
GET instruction and RAM 2-13
LUAPS instruction 2-13
RAMROM mode-register bit 2-13
SAR 2-13
TSP50C0x/1x 2-13
TSP60C18 2-13
TSP60C81 2-13
X register 2-13

parentheses assembler expressions 4-14

PB0 pin slave mode 2-15

PB1 slave mode 2-15

PB1 interrupt
LPC mode-register bit 2-15
PCM mode-register bit 2-15

PB1 pin
interrupt 2-15
synthesizer mode 0 2-17
TSP50C10 2-15
TSP50C11 2-15
TSP50C12 2-15
two-pin push pull option 2-15

 Index

Index-9

PCM
generating tones 6-66
interrupt-1 vectors 2-20
interrupt-2 vectors 2-21
mode register bit 2-16
PCM mode enable/disable 2-16
synthesizer mode 0 2-17
synthesizer mode 2 2-17
synthesizer mode 3 2-17

PCM mode
enable/disable bit 2-16
TASYN instruction 6-66
timing considerations 6-67

PCM mode-register bit PB1 interrupt 2-15

PER I/O register 2-14

pin assignment diagram
TSP50C04 1-18
TSP50C06 1-18
TSP50C10 1-13
TSP50C11 1-13
TSP50C12 1-16
TSP50C13 1-18
TSP50C14 1-18
TSP50C19 1-18
TSP50P11 F-2

pin assignment table
TSP50C04 1-18
TSP50C06 1-18
TSP50C10 1-14
TSP50C11 1-14
TSP50C12 1-17
TSP50C13 1-18
TSP50C14 1-18
TSP50C19 1-18
TSP50P11 F-2

pin assignments
TSP50C04 1-18
TSP50C06 1-18
TSP50C10 1-13
TSP50C11 1-13
TSP50C12 1-16
TSP50C13 1-18
TSP50C14 1-18
TSP50C19 1-18

pin description TSP60C18/81 6-49

pin description table
TSP50C04 1-18
TSP50C06 1-18
TSP50C10 1-14
TSP50C11 1-14
TSP50C12 1-17
TSP50C13 1-18
TSP50C14 1-18
TSP50C19 1-18
TSP50P11 F-2

pin descriptions
TSP50C04 1-18
TSP50C06 1-18
TSP50C10 1-13
TSP50C11 1-13
TSP50C12 1-16
TSP50C13 1-18
TSP50C14 1-18
TSP50C19 1-18

pitch register
TASYN instruction 2-11
transferring from A register 2-12
TSE chip 2-12
TSP50C0x/1x 2-11
unvoiced frames 2-12
voiced frames 2-12

pitch-period counter. See PPC

pitfalls speech development A-4

PLCC (68-pin) package TSP50C12 pin assign-
ments 1-16

PLCC package
mechanical information 7-8
reflow soldering precautions 7-10

port A
slave mode 2-15
TSP50C0x/1x 2-13

port B
A register 2-13
TSP50C04 2-13
TSP50C06 2-13
TSP50C10 2-13
TSP50C11 2-13
TSP50C12 2-13
TSP50C13 2-13
TSP50C14 2-13
TSP50C19 2-13 2-14

Index

Index-10

power-up initialization circuit
TSP50C10 1-15
TSP50C11 1-15

PPC TSP50C0x/1x 2-11
predefined symbols assembler operand field 4-12
prescale register frame-length control 2-18
program counter

BR instruction 2-5
BRA instruction 2-5
CALL instruction 2-5
RETI instruction 2-5
RETN instruction 2-5
SBR instruction 2-5
stack 2-5
TSP50C0x/1x 2-5

program interface timing TSP50P11 F-11
program mode protection bit TSP50P11 F-9
program.bin

assembler 4-7
assembly binary object file 4-7

program.lst
assembler 4-8
assembly listing file 4-8

program.mpo
assembler 4-8
assembly tagged object file 4-8

program.src
assembler 4-7
assembly source file 4-7

programming mode TSP50P11 F-3
programming sequence timing TSP50P11 F-12
protection bit TSP50P11 F-9
pullup enable register. See PER
pullup/down resistors TSP60C18/81 6-59
pulse code modulation. See PCM

R
R/W pin description 6-49
RAM

during speech generation 2-18
GET instruction data source enable 2-16
internal GET instruction 6-63
location of parameters 6-5
locations used in sample program 6-6
map of TSP50C04 2-8
map of TSP50C06 2-8

RAM (continued)
map of TSP50C10 2-6
map of TSP50C11 2-6
map of TSP50C12 2-7
map of TSP50C13 2-8
map of TSP50C14 2-8
map of TSP50C19 2-8
RAMROM mode register bit 2-16
speech decoding 6-4
TSP50C04 2-7
TSP50C06 2-7
TSP50C10 2-6
TSP50C11 2-6
TSP50C12 2-6
TSP50C13 2-7
TSP50C14 2-7
TSP50C19 2-7

RAM map
LPC-12 values location during speech genera-

tion 2-18
speech generation 2-18

RAMROM
GET instruction 6-61
GET instruction data source 2-16
mode register bit 2-16
parallel-to-serial register 2-13

RBYTE directive
description 4-22
syntax 4-22

RDATA directive
description 4-23
syntax 4-23

read operation
slave mode 6-47
waveform 6-47

read sequence timing TSP50P11 F-12

read timing
diagram (slave mode) 3-5
requirements (slave mode) 3-5

recommended operating conditions
TSP50C0x/1x 3-3
TSP50P11 F-7

reference voltage LCD 2-28

reflow soldering precautions PLCC package 7-10

RELPS synthesizer mode 3 2-18

residual encoded linear predictive synthesis. See
RELPS

RETI (return from interrupt) instruction E-36

 Index

Index-11

RETI instruction
A register 2-8
B register 2-9
integer mode flag 2-10
program counter 2-5
status flag 2-9

RETN (return from subroutine) instruction E-37

RETN instruction program counter 2-5

ROM
data source enable 2-16
enable/disable 2-16
EVM50C19 block selection 6-76
external initialization program C-1 to C-11
external GET instruction 6-62
EXTROM mode register bit 2-16
internal GET instruction 6-62
RAMROM mode register bit 2-16
SEB50C19 block selection 6-76
TSP50C04 2-2 2-4
TSP50C04 reserved locations 2-4
TSP50C06 2-2 2-4
TSP50C06 reserved locations 2-4
TSP50C10 2-2 2-4
TSP50C10 reserved locations 2-4
TSP50C11 2-2 2-4
TSP50C11 reserved locations 2-4
TSP50C12 2-2 2-4
TSP50C12 reserved locations 2-4
TSP50C13 2-2 2-4
TSP50C13 reserved locations 2-4
TSP50C14 2-2 2-4
TSP50C14 reserved locations 2-4
TSP50C19 2-2 2-4
TSP50C19 block addressing 2-4
TSP50C19 block selection 6-75
TSP50C19 program location 6-77
TSP50C19 reserved locations 2-4
used by sample program 6-8

RTEXT directive
description 4-23
syntax 4-23

RXREF option OPTION directive 4-21

S
SALA (shift A register) instruction E-38

SALA4 (shift A register left four bits) instruction E-39

sample music program E-1 to E-11

sample program
DTMF walkthrough 6-67
FLAGS bits 6-7
frame-update routine 6-10
initialization 6-9
level-1 interrupt service routine 6-10
overview 6-9
phrase selection 6-9
RAM locations 6-6
ROM used 6-8
speech initialization 6-9
walk-through 6-11

sample rates DAC 2-19

sample synthesis program B-1 to B-47

SAR
GET instruction 2-12
LUAPS instruction 2-12
parallel-to-serial register 2-13
TSP50C0x/1x 2-12

SARA (shift A register right one bit) instruction E-40

SBAAN (subtract B register from A register) instruc-
tion E-41

SBR (short branch if status set) instruction E-42

SBR instruction
program counter 2-5
status flag 2-9

script generation speech development A-2

SCRNOF option OPTION directive 4-21

SDS5000
features A-5
speech development tool A-5

SEB50C19 ROM block selection 6-76

SEB50C1X
features A-6
speech development tool A-6

SEB60CXX
features A-6
speech development tool A-6

SETOFF (set processor to OFF mode) instruc-
tion E-43

SETOFF instruction
pullup/down resistors for TSP60C18/81 6-59
standby mode 6-43

single-pin double-ended mode DAC 2-19

single-pin single-ended mode DAC 2-19

single-pin double-ended option digital-to-analog op-
tions 1-11

Index

Index-12

single-pin single-ended option digital-to-analog op-
tions 1-9

slave mode 6-44
enable 2-16
I/O registers 2-15
MASTER mode register bit 2-16
PA7 pin 2-15
PB0 pin 2-15
PB1 2-15
port A 2-15
read operation 6-47
read operation waveform 6-47
read timing diagram 3-5
read timing requirements 3-5
write operation 6-45
write operation waveform 6-46
write timing diagram 3-4
write timing requirements 3-4

SMAAN (subtract memory from A register) instruc-
tion E-44

SMAAN instruction arithmetic mode 6-41

software initialization TSP60C18/81 6-54

source code TSP50C19 6-76

source-statement format
assembler 4-9
assembly-time constants 4-11
binary integer constants 4-10
character constants 4-11
command field 4-9
comment field 4-10
constants 4-10
decimal integer constants 4-10
hexadecimal integer constants 4-11
label field 4-9
operand field 4-10

speaker selection speech development A-2

special functions testing TSP50P11 F-5

speech address register. See SAR

speech coding 6-2
D6 parameter 6-2
K parameters 6-2

speech collection speech development A-2

speech decoding 6-2 6-4
D6 parameter frame decoding 6-3
parameter unpacking 6-4
RAM usage 6-4

speech development
ADP50C12 A-7
EVM50C1x A-6
FAB50C1x A-8
LPC editing A-3
pitfalls A-4
script generation A-2
SDS5000 A-5
SEB50C1X A-6
SEB60CXX A-6
speaker selection A-2
speech collection A-2
tools A-5

speech development sequence summary 7-3
speech generation

LPC-12 values location in RAM 2-18
RAM 2-18
RAM map 2-18

speech production sequence summary 7-3
speech synthesizer modes 2-17
SRCK pin description 6-49
standby condition low-power TSP60C18/81 6-58
standby mode 6-43
status flag

BR instruction 2-9
CALL instruction 2-9
RETI instruction 2-9
SBR instruction 2-9
TSP50C0x/1x 2-9

STR pin description 6-49
symbols

$ 4-12
assembler label field 4-12
assembler operand field 4-12
predefined assembler operand field 4-12

syntax
assembly instruction 5-2
description 4-2

synthesizer control TSP50C0x/1x 6-2
synthesizer mode 0

A register 2-17
level-1 interrupt 2-17
LPC mode register bit 2-17
PB1 pin 2-17
PCM mode register bit 2-17
TASYN instruction 2-17

synthesizer mode 1
LPC 2-17
TASYN instruction 2-17

 Index

Index-13

synthesizer mode 2
A register 2-17
PCM 2-17
TASYN instruction 2-17

synthesizer mode 3
A register 2-17
level-1 interrupt 2-17
PCM 2-17
RELPS 2-18
TASYN instruction 2-17

system block diagram TSP50C0x/1x 2-3

T
TAB (transfer A register to B register) instruc-

tion E-45

TAM (transfer A register to memory) instruction E-46

TAMD (transfer A register to memory direct) instruc-
tion E-47

TAMD instruction X register 2-9

TAMIX (transfer A register to memory and increment
X register) instruction E-48

TAMODE (transfer A register to mode register)
instruction E-49

TAPSC (transfer A register to prescale register)
instruction E-50

TAPSC instruction timer prescale register 2-11

TASYN (transfer A register to synthesizer register)
instruction E-51

TASYN instruction
A register 2-12
DAC 2-19
PCM mode 6-66
pitch register 2-11
synthesizer mode 0 2-17
synthesizer mode 1 2-17
synthesizer mode 2 2-17
synthesizer mode 3 2-17

TATM (transfer A register to timer register) instruc-
tion E-53

TATM instruction
timer prescale register 2-11
timer register 2-10

TAX (transfer A register to X register) instruc-
tion E-54

TBM (transfer B register to memory) instruction E-55

TCA (transfer constant to A register) instruction E-56

TCA instruction arithmetic mode 6-41

TCP50C12 PLCC package mechanical informa-
tion 7-8

TCX (transfer constant to X register) instruction E-57

testing special functions on TSP50P11 F-5

TEXT directive
description 4-24
syntax 4-24

TEXT unlist command-line option 4-5

timer prescale register
TAPSC instruction 2-11
TATM instruction 2-11
TSP50C0x/1x 2-11

timer register
EVM development tool 2-10
TATM instruction 2-10
TSP50C0x/1x 2-10
TTMA instruction 2-10

timing requirements D/A options 3-4

TITL directive
description 4-24
syntax 4-24

TMA (transfer memory to A register) instruction E-58

TMA instruction arithmetic mode 6-41

TMAD (transfer memory to A register) instruc-
tion E-59

TMAD instruction
arithmetic mode 6-41
X register 2-9

TMAIX (transfer memory to A register and increment
X register) instruction E-60

TMAIX instruction arithmetic mode 6-41

TMXD (transfer memory directly to X register)
instruction E-61

TMXD instruction X register 2-9

tools
ADP50C12 A-7
EVM50C1x A-6
FAB50C1x A-8
SDS5000 A-5
SEB50C1X A-6
SEB60CXX A-6
speech development A-5

TRNDA (transfer random number into A register)
instruction E-62

TSE chip pitch register 2-12

Index

Index-14

TSP50C04
DAC forms 2-19
digital-to-analog options 1-7
DW package mechanical information 7-6
electrical characteristics 3-10
features 1-5
functional block diagram 1-4
N package mechanical information 7-4
new product release form 7-13
pin assignment diagram 1-18
pin assignment table 1-18
pin assignments 1-18
pin description table 1-18
pin descriptions 1-18
port B 2-13
RAM 2-7
RAM map 2-8
ROM reserved locations 2-4
ROM size 2-2 2-4
ROM usage for sample program 6-8

TSP50C06
DAC forms 2-19
digital-to-analog options 1-7
DW package mechanical information 7-6
electrical characteristics 3-10
features 1-5
functional block diagram 1-4
N package mechanical information 7-4
new product release form 7-15
pin assignment diagram 1-18
pin assignment table 1-18
pin assignments 1-18
pin description table 1-18
pin descriptions 1-18
port B 2-13
RAM 2-7
RAM map 2-8
ROM reserved locations 2-4
ROM size 2-2 2-4
ROM usage for sample program 6-8

TSP50C0x/1x
A register 2-8
absolute maximum ratings 3-2
ALU 2-8
Applications 1-2
B register 2-9
control of TSP60C18/81 6-53
D/A options timing requirements 3-4
development cycle 7-2
digital-to-analog options 1-7

TSP50C0x/1x (continued)
DTMF program D-1 to D-11
external interrupt timing diagram 3-5
external interrupt timing requirements 3-5
external ROM initialization program C-1 to C-11
external ROM mode 2-15
external ROM mode and TSP60C18/81 6-48
features 1-5
functional description 2-2
initialization timing diagram 3-4
initialization timing requirements 3-4
input/output ports 2-13
integer mode flag 2-10
interrupts 2-20
introduction 1-2
mode register 2-15
new product release forms 7-12
parallel-to-serial register 2-13
pitch register 2-11
port A 2-13
PPC 2-11
program counter 2-5
program counter stack 2-5
read timing diagram (slave mode) 3-5
read timing requirements (slave mode) 3-5
recommended operating conditions 3-3
sample music program E-1 to E-11
sample synthesis program B-1 to B-47
SAR 2-12
speech coding and decoding 6-2
status flag 2-9
synthesizer control 6-2
system block diagram 2-3
timer prescale register 2-11
timer register 2-10
write timing diagram (slave mode) 3-4
write timing requirements (slave mode) 3-4
X register 2-9

TSP50C10
DAC forms 2-19
DW package mechanical information 7-6
electrical characteristics 3-6
features 1-5
functional block diagram 1-3
I/O configurations 1-15
input leakage current on INIT graph 3-7
N package mechanical information 7-4
new product release form 7-17
oscillator circuit 1-15
PB1 pin 2-15

 Index

Index-15

TSP50C10 (continued)
pin assignment diagram 1-13
pin assignment table 1-14
pin assignments 1-13
pin description table 1-14
pin descriptions 1-13
port B 2-13
power-up initialization circuit 1-15
RAM 2-6
RAM map 2-6
ROM reserved locations 2-4
ROM size 2-2 2-4
ROM usage for sample program 6-8
two-pin push pull option 2-15

TSP50C11
DAC forms 2-19
DW package mechanical information 7-6
electrical characteristics 3-6
features 1-5
functional block diagram 1-3
I/O configurations 1-15
input leakage current on INIT graph 3-7
N package mechanical information 7-4
new product release form 7-19
oscillator circuit 1-15
PB1 pin 2-15
pin assignment diagram 1-13
pin assignment table 1-14
pin assignments 1-13
pin description table 1-14
pin descriptions 1-13
port B 2-13
power-up initialization circuit 1-15
RAM 2-6
RAM map 2-6
ROM reserved locations 2-4
ROM size 2-2 2-4
ROM usage for sample program 6-8
two-pin push pull option 2-15

TSP50C12
clock options 2-29
DAC forms 2-19
digital-to-analog options 1-7
electrical characteristics 3-8
features 1-6
functional block diagram 1-4
LCD contrast adjustment 2-28
LCD drive type A 2-24
LCD drive type A diagram 2-25
LCD drive type B 2-26

TSP50C12 (continued)
LCD drive type B diagram 2-27
LCD driver 2-22
LCD functional description 2-22
LCD RAM map 2-23
LCD voltage reference 2-28
new product release form 7-21
PB1 pin 2-15
pin assignment diagram 1-16
pin assignment table 1-17
pin assignments 1-16
pin description table 1-17
pin descriptions 1-16
port B 2-13
RAM 2-6
RAM map 2-7
ROM reserved locations 2-4
ROM size 2-2 2-4
ROM usage for sample program 6-8
two-pin push pull option 2-15
voltage doubler diagram 2-28

TSP50C13
DAC forms 2-19
digital-to-analog options 1-7
DW package mechanical information 7-6
electrical characteristics 3-10
features 1-5
functional block diagram 1-4
N package mechanical information 7-4
new product release form 7-23
pin assignment diagram 1-18
pin assignment table 1-18
pin assignments 1-18
pin description table 1-18
pin descriptions 1-18
port B 2-13
RAM 2-7
RAM map 2-8
ROM reserved locations 2-4
ROM size 2-2 2-4
ROM usage for sample program 6-8

TSP50C14
DAC forms 2-19
digital-to-analog options 1-7
DW package mechanical information 7-6
electrical characteristics 3-10
features 1-5
functional block diagram 1-4
N package mechanical information 7-4
new product release form 7-25

Index

Index-16

TSP50C14 (continued)
pin assignment diagram 1-18
pin assignment table 1-18
pin assignments 1-18
pin description table 1-18
pin descriptions 1-18
port B 2-13
RAM 2-7
RAM map 2-8
ROM reserved locations 2-4
ROM size 2-2 2-4
ROM usage for sample program 6-8

TSP50C19
ASM50C1x assembler 6-76
bits B2 and B3 6-75
DAC forms 2-19
data block selection 6-76
digital-to-analog options 1-7
DW package mechanical information 7-6
electrical characteristics 3-10
EVM50C19 ROM block selection 6-76
features 1-5
functional block diagram 1-4
N package mechanical information 7-4
new product release form 7-27
pin assignment diagram 1-18
pin assignment table 1-18
pin assignments 1-18
pin description table 1-18
pin descriptions 1-18
port B 2-13 2-14
program location in ROM 6-77
programming 6-75
RAM 2-7
RAM map 2-8
relative ROM address and block selected 6-76
ROM block addressing 2-4
ROM block selection 6-75
ROM reserved locations 2-4
ROM size 2-2 2-4
ROM usage for sample program 6-8
SEB50C19 ROM block selection 6-76
source code 6-76

TSP50P11
absolute maximum ratings F-6
differences from TSP50C11 F-13
electrical characteristics F-8
initialization sequence timing F-11
introduction F-2

TSP50P11 (continued)
pin assignment diagram F-2
pin assignment table F-2
pin description table F-2
program interface timing F-11
programming mode F-3
programming sequence timing F-12
protection bit F-9
read sequence timing F-12
recommended operating conditions F-7
shifting data in F-3
shifting data out F-3
special functions testing F-5
write sequence timing F-11

TSP60C18
16-bit indirect-address initialization 6-57
8-bit indirect-address initialization 6-56
addressing 6-50
addressing modes 6-51
control by TSP50C0x/1x 6-53
direct-address initialization 6-55
direct-addressing mode 6-51
external ROM mode 2-15 6-48
hardware initialization 6-54
I/O signals 6-48
indirect-addressing mode 6-52
interface 6-48
low-power standby condition 6-58
parallel-to-serial register 2-13
pin description 6-49
pinout 6-50
pullup/down resistors 6-59
software initialization 6-54

TSP60C81
16-bit indirect-address initialization 6-57
8-bit indirect-address initialization 6-56
addressing 6-50
addressing modes 6-51
control by TSP50C0x/1x 6-53
direct-address initialization 6-55
direct-addressing mode 6-51
external ROM mode 2-15 6-48
hardware initialization 6-54
I/O signals 6-48
indirect-addressing mode 6-52
interface 6-48
low-power standby condition 6-58
parallel-to-serial register 2-13
pin description 6-49

 Index

Index-17

TSP60C81 (continued)
pinout 6-50
software initialization 6-54

TSTCA (test constant with A register) instruc-
tion E-63

TSTCM (test constant with memory) instruction E-64

TTMA (transfer timer register to A register) instruc-
tion E-65

TTMA instruction timer register 2-10

TUNLST option OPTION directive 4-21

two-pin double-ended mode DAC 2-19

two-pin push pull option
PB1 pin 2-15
TSP50C10 2-15
TSP50C11 2-15
TSP50C12 2-15

two-pin push pull option
digital-to-analog options 1-7

four-transistor amplifier circuit 1-8
operational amplifier circuit 1-9
power amplifier interface circuit 1-9
waveform 1-8

single-pin double-ended option
operational amplifier interface circuit 1-12
waveform 1-12

single-pin single-ended option
one-transistor amplifier circuit 1-11
waveform 1-10

TXA (transfer X register to A register) instruc-
tion E-66

TXA instruction
arithmetic mode 6-41
arithmetic modes 6-40

U
UNL directive

description 4-25
syntax 4-25

UNV
mode register bit 2-16
pitch-controlled excitation sequence en-

abled 2-16
random excitation sequence enabled 2-16

unvoiced frames pitch register 2-12

unvoiced speech defined 1-19

V
vocal tract 1-19

voiced frames pitch register 2-12

voiced speech defined 1-19

voltage doubler TSP50C12 diagram 2-28

W
WARNING unlist command-line option 4-5

WARNOFF option OPTION directive 4-21

WIDE directive
description 4-25
syntax 4-25

write operation
slave mode 6-45
waveform 6-46

write sequence timing TSP50P11 F-11

write timing
diagram (slave mode) 3-4
requirements (slave mode) 3-4

X
x arithmetic operators in expressions 4-14

X register
parallel-to-serial register 2-13
TAMD instruction 2-9
TMAD instruction 2-9
TMXD instruction 2-9
TSP50C0x/1x 2-9

XBA (exchange contents of B register and A regis-
ter) instruction E-67

XBX (exchange contents of B register and X regis-
ter) instruction E-68

XBX instruction
arithmetic mode 6-41
B register 2-9

XGEC (X register greater than or equal to constant)
instruction E-69

XREF option OPTION directive 4-21

XREF switch command-line option 4-5

XREF unlist command-line option 4-5

Index-18

