
# Test Report: PMP21842 12-V/500-W resonant converter reference design with HV GaN FET

# 🤄 Texas Instruments

#### Description

This high-frequency resonant converter reference design regulates a 12-V output from a 380-V to 400-V input voltage range using a resonant tank with 500 kHz resonant frequency. A peak efficiency of 96.0% (bias supply included) is achieved with this design using our high-voltage GaN device along with UCD3138A and UCD7138 to optimize the dead time and synchronous rectifier (SR) conduction.



An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

12-V/500-W resonant converter reference design with HV GaN FET Copyright @ 2019, Texas Instruments Incorporated



## **1** System Specification

#### 1.1 Board Dimension:

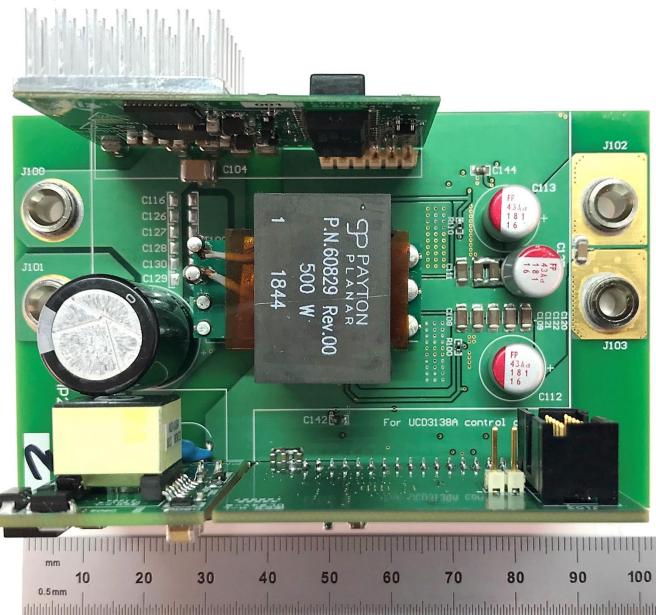
2.5" x 4" x 1.4"

## 1.2 Input Characteristics

| Minimum | Nominal | Maximum |     |
|---------|---------|---------|-----|
| 380     | 390     | 400     | VDC |

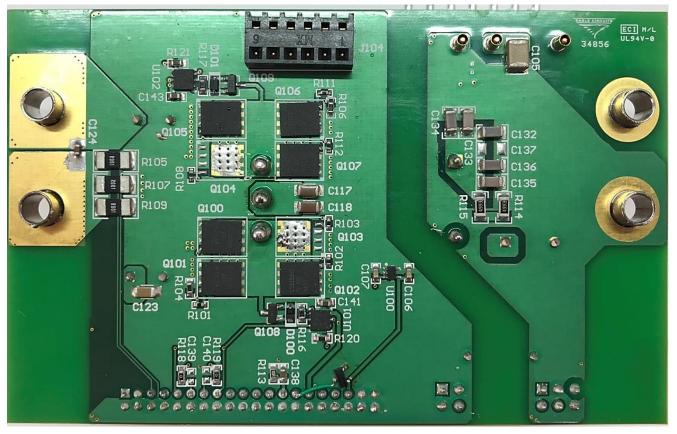
## 1.3 Output Characteristics

The power supply unit should be able to supply 12V+/-5% with 500W maximum output power.




## 2 Testing and Results

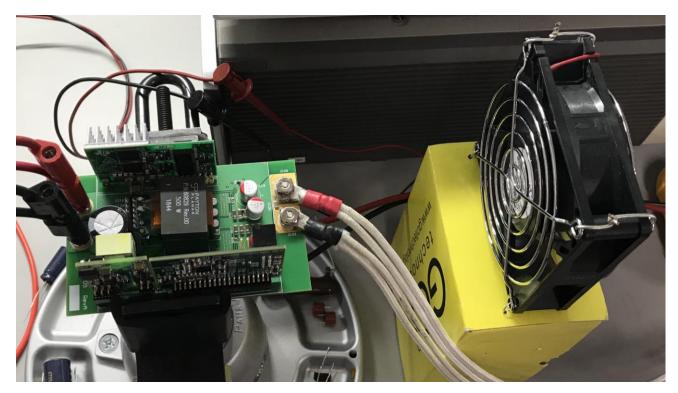
#### 2.1 Board Photos


The photographs below show the top and bottom view of the PMP21842 Rev A board. Notice that PMP21842 circuit was built on PMP21309 RevA PCB.

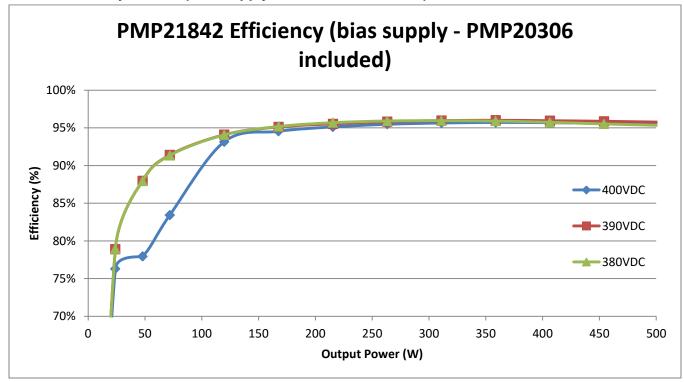
## 2.1.1 Top Side






#### 2.1.2 Bottom Side






## 2.2 Efficiency Data

The efficiency curves are shown in the tables and graphs below with the set up shown in the figure below. A 12V fan (NMB Technologies Model # 3610VL-04W-B50) is applied to provide air cooling to the board from the output side.





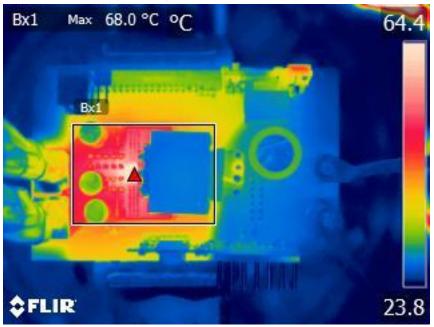


2.2.1 Efficiency Curves (bias supply – PMP20306 included)



## 2.2.2 Efficiency Curves (bias supply – PMP20306 included)

| 2.2.2 Efficiency Curves (bias supply – PMP20306 included) |         |          |          |          |          |            |         |  |  |
|-----------------------------------------------------------|---------|----------|----------|----------|----------|------------|---------|--|--|
| Vin (V)                                                   | lin (A) | Pin (W)  | Vout (V) | lout (A) | Pout (W) | Losses (W) | Eff (%) |  |  |
| 399.96                                                    | 1.3138  | 525.4674 | 11.947   | 42.0080  | 501.8699 | 23.5976    | 95.51%  |  |  |
| 399.97                                                    | 1.1880  | 475.1644 | 11.951   | 38.0059  | 454.2085 | 20.9559    | 95.59%  |  |  |
| 399.97                                                    | 1.0622  | 424.8481 | 11.955   | 34.0033  | 406.5092 | 18.3390    | 95.68%  |  |  |
| 399.98                                                    | 0.9371  | 374.8213 | 11.959   | 30.0007  | 358.7778 | 16.0435    | 95.72%  |  |  |
| 399.99                                                    | 0.8130  | 325.1919 | 11.963   | 26.0000  | 311.0384 | 14.1535    | 95.65%  |  |  |
| 399.99                                                    | 0.6894  | 275.7531 | 11.967   | 22.0004  | 263.2789 | 12.4742    | 95.48%  |  |  |
| 400.00                                                    | 0.5663  | 226.5200 | 11.972   | 17.9988  | 215.4815 | 11.0385    | 95.13%  |  |  |
| 400.01                                                    | 0.4433  | 177.3244 | 11.975   | 14.0002  | 167.6520 | 9.6724     | 94.55%  |  |  |
| 400.01                                                    | 0.3215  | 128.6032 | 11.979   | 10.0006  | 119.7966 | 8.8066     | 93.15%  |  |  |
| 400.02                                                    | 0.2155  | 86.20431 | 11.983   | 6.0019   | 71.9212  | 14.2831    | 83.43%  |  |  |
| 400.02                                                    | 0.1538  | 61.52308 | 11.985   | 4.0016   | 47.9594  | 13.5636    | 77.95%  |  |  |
| 400.03                                                    | 0.0786  | 31.44236 | 11.987   | 2.0013   | 23.9897  | 7.4526     | 76.30%  |  |  |
| 400.03                                                    | 0.0044  | 1.760132 | 11.989   | 0        | 0        | 1.7601     | 0.00%   |  |  |
| 389.98                                                    | 1.3437  | 524.0161 | 11.945   | 42.0120  | 501.8337 | 22.1824    | 95.77%  |  |  |
| 389.98                                                    | 1.2148  | 473.7477 | 11.949   | 38.0119  | 454.2043 | 19.5434    | 95.87%  |  |  |
| 389.99                                                    | 1.0865  | 423.7241 | 11.954   | 34.0108  | 406.5650 | 17.1592    | 95.95%  |  |  |
| 389.99                                                    | 0.9584  | 373.7664 | 11.958   | 30.0087  | 358.8436 | 14.9228    | 96.01%  |  |  |
| 389.99                                                    | 0.8313  | 324.1987 | 11.963   | 26.0070  | 311.1222 | 13.0764    | 95.97%  |  |  |
| 390.00                                                    | 0.7047  | 274.8330 | 11.968   | 22.0064  | 263.3728 | 11.4602    | 95.83%  |  |  |
| 390.01                                                    | 0.5785  | 225.6208 | 11.972   | 18.0038  | 215.5414 | 10.0793    | 95.53%  |  |  |
| 390.02                                                    | 0.4520  | 176.2890 | 11.975   | 14.0042  | 167.7000 | 8.5890     | 95.13%  |  |  |
| 390.02                                                    | 0.3265  | 127.3415 | 11.979   | 10.0026  | 119.8206 | 7.5209     | 94.09%  |  |  |
| 390.02                                                    | 0.2018  | 78.7060  | 11.983   | 6.0034   | 71.9392  | 6.7669     | 91.40%  |  |  |
| 390.03                                                    | 0.1398  | 54.5262  | 11.985   | 4.0021   | 47.9655  | 6.5607     | 87.97%  |  |  |
| 390.03                                                    | 0.0779  | 30.3833  | 11.987   | 1.9998   | 23.9717  | 6.4116     | 78.90%  |  |  |
| 390.03                                                    | 0.0175  | 6.8255   | 11.989   | 0        | 0        | 6.8255     | 0.00%   |  |  |
| 379.97                                                    | 1.3845  | 526.0685 | 11.940   | 42.0055  | 501.5459 | 24.5226    | 95.34%  |  |  |
| 379.98                                                    | 1.2508  | 475.2790 | 11.945   | 38.0064  | 453.9865 | 21.2925    | 95.52%  |  |  |
| 379.98                                                    | 1.1170  | 424.4377 | 11.950   | 34.0058  | 406.3691 | 18.0686    | 95.74%  |  |  |
| 379.99                                                    | 0.9843  | 374.0242 | 11.955   | 30.0042  | 358.6997 | 15.3245    | 95.90%  |  |  |
| 380.00                                                    | 0.8529  | 324.1020 | 11.960   | 26.0035  | 311.0023 | 13.0997    | 95.96%  |  |  |
| 380.01                                                    | 0.7223  | 274.4812 | 11.965   | 22.0039  | 263.2769 | 11.2044    | 95.92%  |  |  |
| 380.01                                                    | 0.5926  | 225.1939 | 11.970   | 18.0018  | 215.4815 | 9.7125     | 95.69%  |  |  |
| 380.02                                                    | 0.4636  | 176.1773 | 11.975   | 14.0032  | 167.6880 | 8.4892     | 95.18%  |  |  |
| 380.03                                                    | 0.3351  | 127.3481 | 11.979   | 10.0011  | 119.8026 | 7.5455     | 94.07%  |  |  |
| 380.03                                                    | 0.2072  | 78.7422  | 11.983   | 6.0024   | 71.9272  | 6.8150     | 91.35%  |  |  |
| 380.03                                                    | 0.1435  | 54.5343  | 11.985   | 4.0016   | 47.9594  | 6.5749     | 87.94%  |  |  |
| 380.04                                                    | 0.0799  | 30.3652  | 11.987   | 2.0003   | 23.9777  | 6.3875     | 78.96%  |  |  |
| 380.04                                                    | 0.0171  | 6.4987   | 11.989   | 0        | 0        | 6.4987     | 0.00%   |  |  |

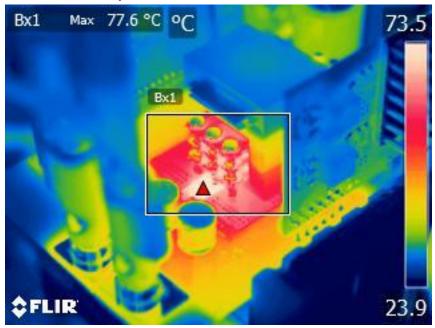

7



## 2.3 Thermal Images

The thermal images below show a top view and bottom view of the board. The board is placed vertically during the test, where the input and output connecters are at the bottom side. The ambient temperature was 25°C with forced air flow (The same set up as efficiency measurement). The output was loaded with 12V/42A.

## 2.3.1 390V<sub>DC</sub> Input, Top View




2.3.2 390V<sub>DC</sub> Input, Bottom View





# $\textbf{2.3.3} \quad \textbf{390V}_{\text{DC}} \text{ Input, Side View}$



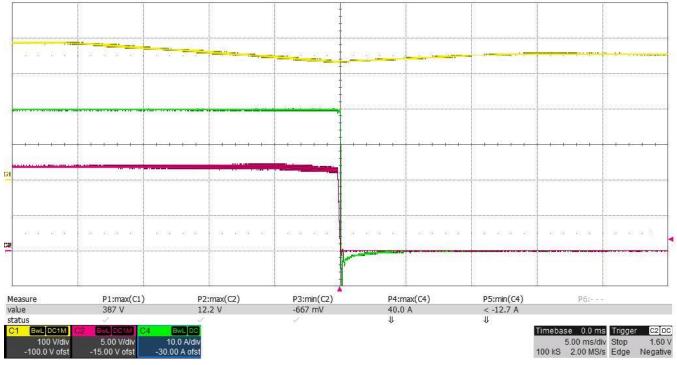


#### 2.4 Start Up Waveforms

The voltages at startup are shown in the images below with 390VDC input where <u>C1 is input voltage</u>, <u>C2 is output voltage</u>, and <u>C4 is output current</u>.

#### 2.4.1 No Load

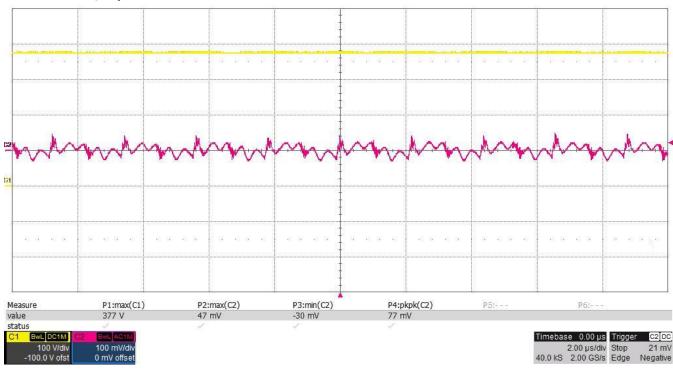



#### 2.4.2 12V/42A

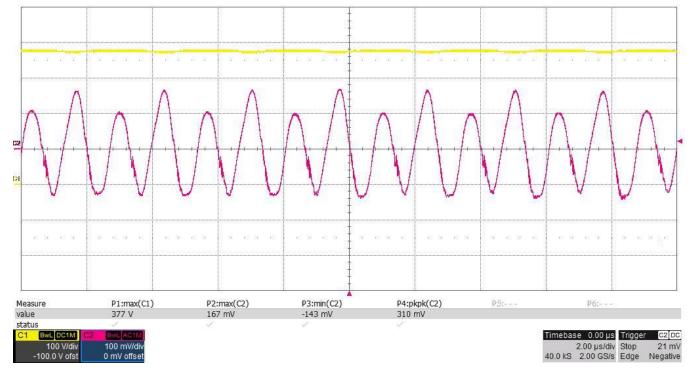




## 2.5 Turn Off


The voltage at turn off transient at 42A load is shown in the images below with 390VDC input where <u>C1 is input</u> voltage, <u>C2 is output voltage</u>, and <u>C4 is output current</u>.

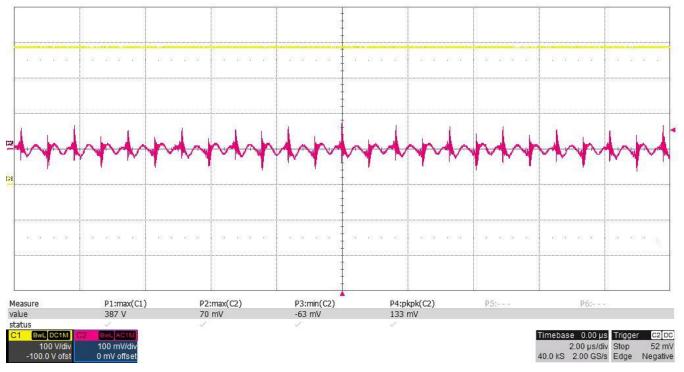




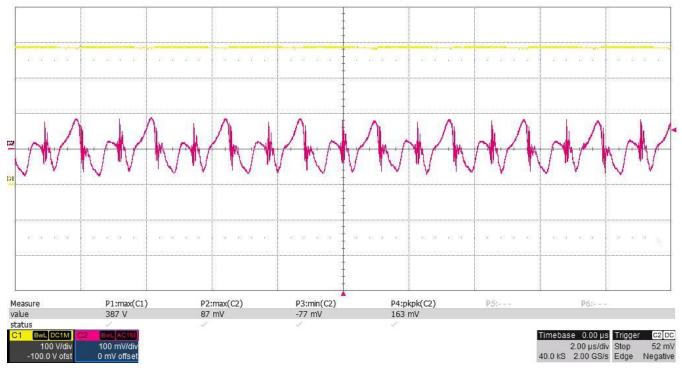

#### 2.6 Output Ripple Voltages

Ripple voltages are shown in the images below, where <u>C1 is the input voltage</u> and <u>C2 is output voltage in AC level.</u>




## 2.6.1 380V<sub>DC</sub> Input, No Load



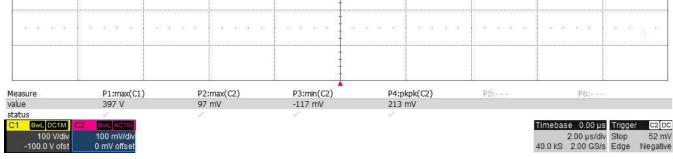

## 2.6.2 380V<sub>DC</sub> Input, 42A Load



#### 2.6.3 390V<sub>DC</sub> Input, No Load



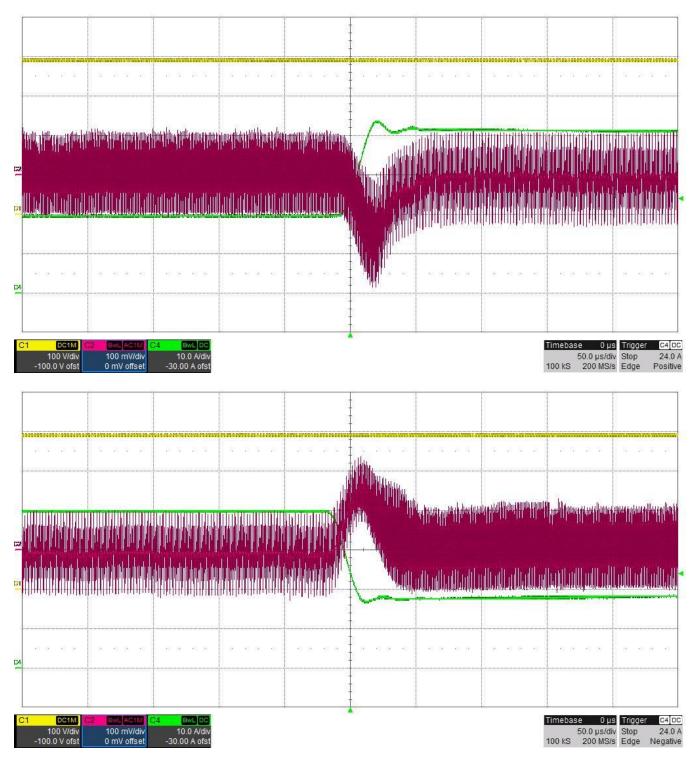
#### 2.6.4 390V<sub>DC</sub> Input, 42A Load





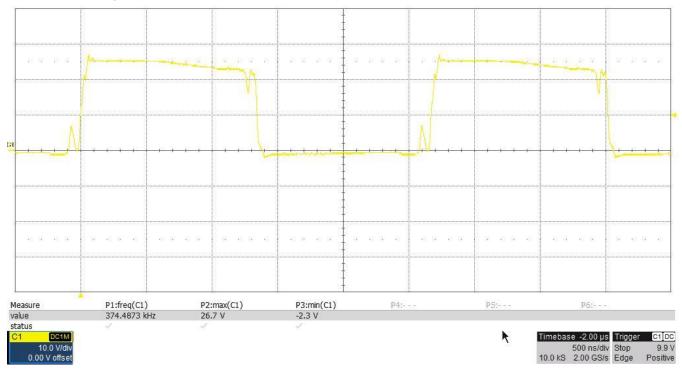

C2 DC

# 22 61 P3:min(C2) Measure P1:max(C1) P2:max(C2) P4:pkpk(C2) P5:--P6:---27 mV 53 mV value 397 V 27 mV status Timebase 0.00 µs Trigger BwL DC1M 100 mV/div 0 mV offset 100 V/div -100.0 V ofst 2.00 µs/div Stop 52 mV 40.0 kS 2.00 GS/s Edge Negative 400V<sub>DC</sub> Input, 42A Load 2.6.6 ..... 131

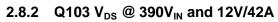

#### 2.6.5 400V<sub>DC</sub> Input, No Load

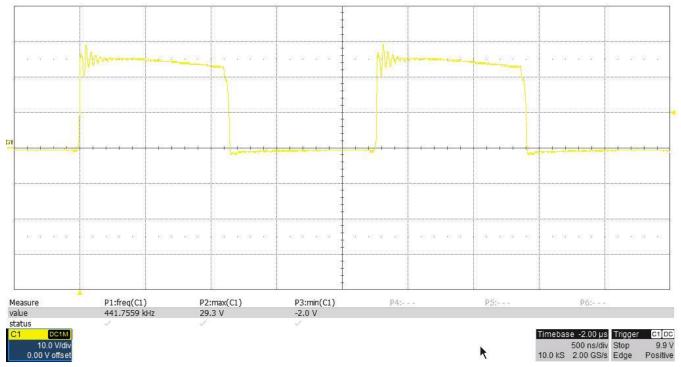





#### 2.7 Load Response

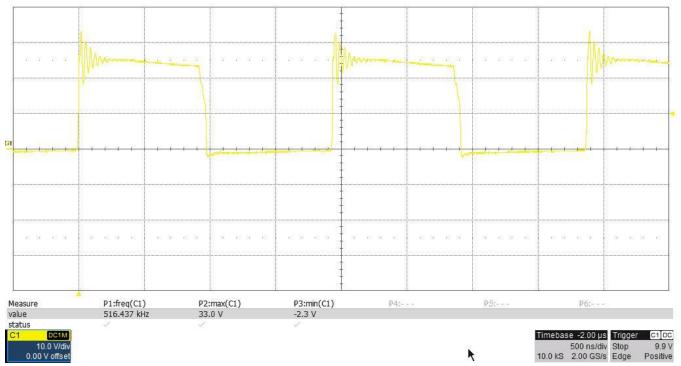
Load response is tested at 390V input with 20A to 42A load transient, where <u>C1 is the input voltage</u>, <u>C2 is output voltage in AC level</u> and <u>C4 is output current</u>.




#### 2.8 Synchronous Rectifier Conduction




#### 2.8.1 Q103 $V_{DS}$ @ 380V<sub>IN</sub> and 12V/42A







## 2.8.3 Q103 $V_{\text{DS}}$ @ 400V\_{IN} and 12V/42A



## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated