
Test Report: PMP30750 3.5-W Automotive Dual Output PSR Flyback Regulator Reference Design

🔱 Texas Instruments

Description

This reference design showcases a dual output primary-side regulated flyback converter, which covers an input voltage range of 8.0 V to 36 V. The output voltage of the two isolated outputs is 17.5V each with a maximum load current of 100 mA.

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

1 Test Prerequisites

1.1 Voltage and Current Requirements

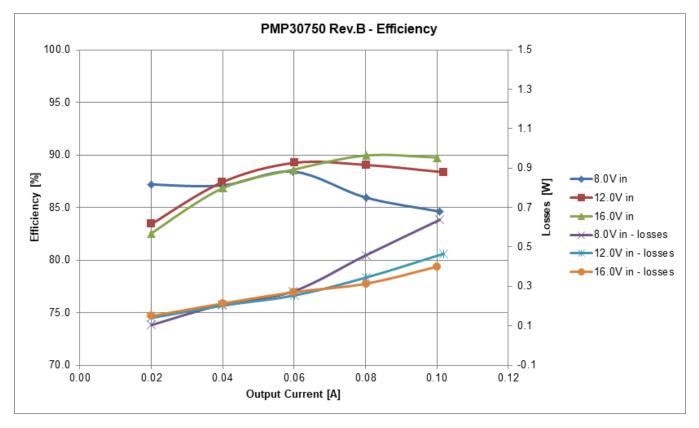

PARAMETER	SPECIFICATIONS					
VIN	8-16V, 12V nom., 36V peak					
VOUT1	17.5V @ 100mA					
VOUT2	17.5V @ 100mA					
FSW	12-350kHz					

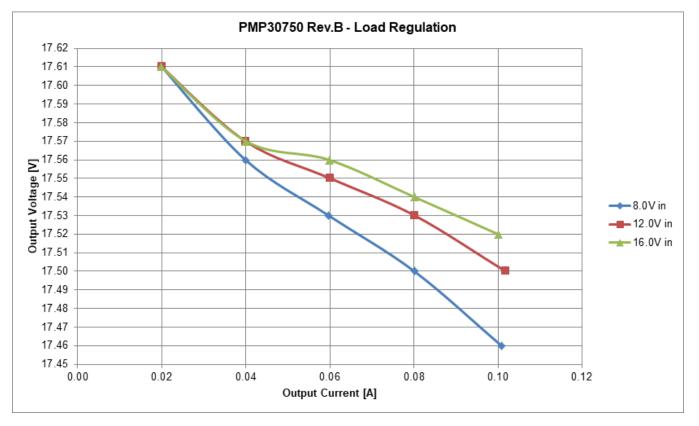
Table 1. Voltage and Current Requirements

2 Testing and Results

2.1 Efficiency Graphs

Efficiency at 8.0V, 12.0V and 16.0V in

2.2 Efficiency Data


Input			Output 1			Output 2				
Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Losse s [W]	Efficien cy [%]
8.052	0.515	4.147	17.460	0.101	1.760	17.470	0.100	1.749	0.638	84.6
8.034	0.406	3.262	17.500	0.080	1.402	17.500	0.080	1.402	0.458	85.9
8.038	0.295	2.371	17.530	0.060	1.047	17.530	0.060	1.050	0.275	88.4
8.026	0.201	1.613	17.560	0.040	0.701	17.570	0.040	0.705	0.208	87.1
8.021	0.101	0.810	17.610	0.020	0.352	17.620	0.020	0.354	0.104	87.2

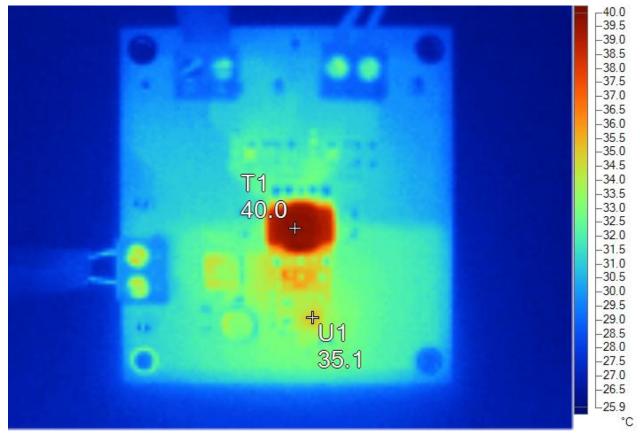
Input			Output 1			Output 2				
Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Losse s [W]	Efficien cy [%]
12.031	0.332	3.998	17.500	0.102	1.782	17.510	0.100	1.751	0.465	88.4
12.039	0.262	3.155	17.530	0.080	1.406	17.530	0.080	1.404	0.345	89.1
12.056	0.196	2.364	17.550	0.060	1.055	17.560	0.060	1.055	0.254	89.3
12.012	0.134	1.608	17.570	0.040	0.701	17.580	0.040	0.705	0.202	87.4
12.024	0.070	0.844	17.610	0.020	0.352	17.610	0.020	0.352	0.140	83.4

Input			Output 1			Output 2				
Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Voltage [V]	Current [A]	Power [W]	Losse s [W]	Efficien cy [%]
15.998	0.244	3.907	17.520	0.100	1.752	17.530	0.100	1.755	0.400	89.8
16.011	0.195	3.119	17.540	0.080	1.405	17.550	0.080	1.400	0.313	89.9
16.012	0.148	2.376	17.560	0.060	1.050	17.560	0.060	1.055	0.271	88.6
16.033	0.101	1.621	17.570	0.040	0.703	17.580	0.040	0.705	0.213	86.8
16.034	0.053	0.851	17.610	0.020	0.350	17.610	0.020	0.352	0.149	82.5



2.3 Load Regulation

Load regulation of output 1 at 8.0V, 12.0V and 16.0V in



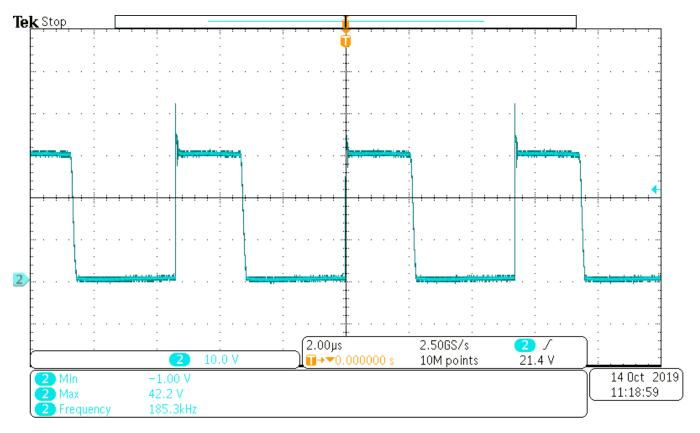
Load regulation of output 2 at 8.0V, 12.0V and 16.0V in

Thermal Images

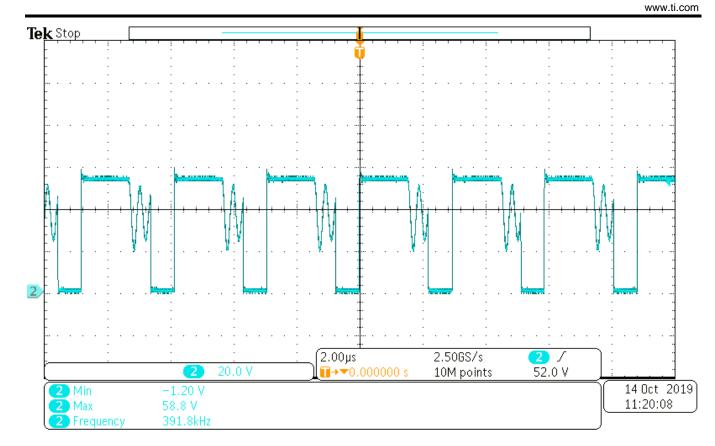
Thermal image of the PCB's top side at 12.0V in and 0.1A load current on both outputs.

-44.6 -44 -43 -42 -41 -40 -39 -38 -37 -36 44.6 -35 -34 -33 -32 -31 U1 40.9 -30 -29 -28 -27 -26.0 °C

Thermal image of the PCB's top side at 8.0V in and 0.1A load current on both outputs.

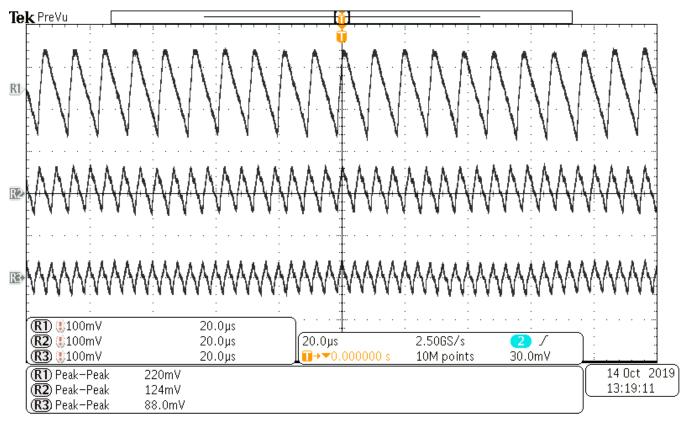

2.4 Dimensions

PCB: 55.9 mm x 60.1 mm

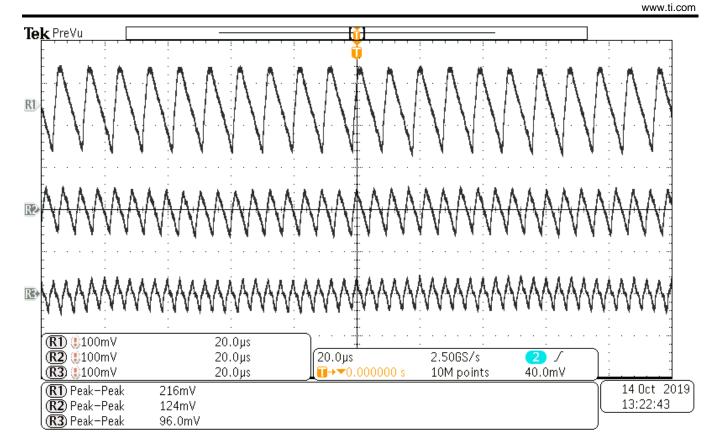

3 Waveforms

3.1 Switching

• CH2: Switching node at 12.0V in and 0.1A load current on both outputs [scale: 10.0V/div, 2.0us/div]

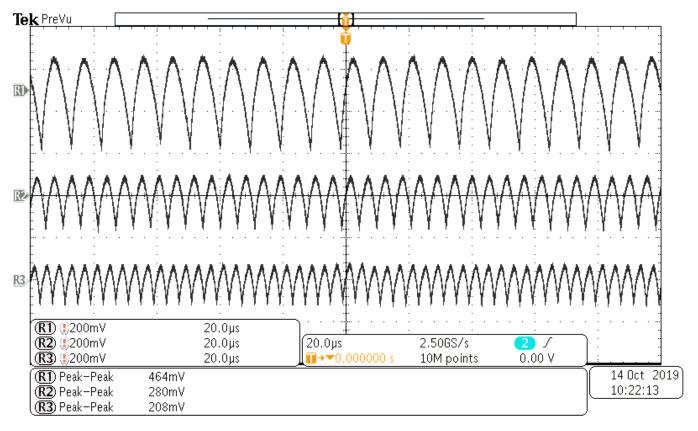


• CH2: Switching node at 36.0V in and 0.1A load current on both outputs [scale: 20.0V/div, 2.0us/div]

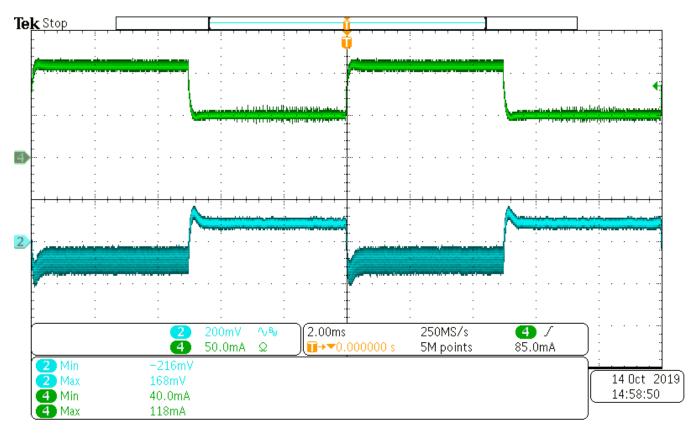


3.2 Output Voltage Ripple

- R1: AC-coupled output voltage 1 at 8.0V in and 0.1A load current on both outputs [scale: 100mV/div, 20us/div]
- R2: AC-coupled output voltage 1 at 12.0V in and 0.1A load current on both outputs [scale: 100mV/div, 20us/div]
- R3: AC-coupled output voltage 1 at 16.0V in and 0.1A load current on both outputs [scale: 100mV/div, 20us/div]

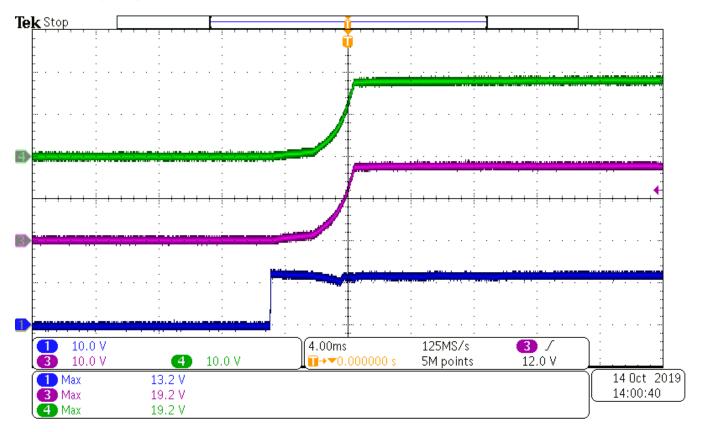


- R1: AC-coupled output voltage 2 at 8.0V in and 0.1A load current on both outputs [scale: 100mV/div, 20us/div]
- R2: AC-coupled output voltage 2 at 12.0V in and 0.1A load current on both outputs [scale: 100mV/div, 20us/div]
- R3: AC-coupled output voltage 2 at 16.0V in and 0.1A load current on both outputs [scale: 100mV/div, 20us/div]



3.3 Input Voltage Ripple

- R1: AC-coupled input voltage at 8.0V in and 0.1A load current on both outputs [scale: 200mV/div, 20us/div]
- R2: AC-coupled input voltage at 12.0V in and 0.1A load current on both outputs [scale: 200mV/div, 20us/div]
- R3: AC-coupled input voltage at 16.0V in and 0.1A load current on both outputs [scale: 200mV/div, 20us/div]



3.4 Load Transients

- CH2: AC-coupled output voltage 2 at 12.0V in and 0.1A load current on output 1, bw limited (20MHz) [scale: 200mV/div, 2ms/div]
- CH4: Load transient from 0.05A to 0.1A on output 2 at 12.0V in and 0.1A load current on output 1 [scale: 50mA/div, 2ms/div]

3.5 Start-up Sequence

- CH1: Input voltage at 12.0V in and no load on both outputs [scale: 10.0V/div, 4ms/div]
- CH3: Output voltage 1 at 12.0V in and no load on both outputs [scale: 10.0V/div, 4ms/div]
- CH4: Output current 2 at 12.0V in and no load on both outputs [scale: 10.0V/div, 4ms/div]

3.6 Undervoltage Protection

• CH1: Input voltage at 12.0V in and 0.1A load current on both outputs [scale: 10.0V/div, 10ms/div]

• CH3: Output voltage 1 at 12.0V in and 0.1A load current on both outputs [scale: 10.0V/div, 10ms/div]

• CH4: Output current 2 at 12.0V in and 0.1A load current on both outputs [scale: 10.0V/div, 10ms/div]

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated