Test Report: PMP23365

Class 8 PoE PD Reference Design (24V, 3A) with External Hotswap and Telemetry

Description

This reference design implements a Power-over-Ethernet (PoE) power device (PD) active-clamp forward converter with 24V and 3A output. A TPS23730 PD with integrated pulse-width modulator (PWM) controller provides all the necessary functions to implement the PoE PD control and the PWM control for the active-clamp forward converter. This design uses secondary-side regulation (SSR) with an optocoupler feedback. An external hot swap is added to enable Class-7,8 PD applications. INA237 is used on the primary side to monitor the DC/DC input voltage and current, and the power information is sent to the secondary side by either I2C isolator or optocoupler-based circuits.

Top of Board

Features

- IEEE802.3bt Type 3 compliant PoE PD
- Integrated PWM controller for flyback or active clamp forward configuration
- · Frequency dithering for EMI reduction
- Soft-start control with advanced start-up and hiccup mode overload protection
- · Soft-stop shutdown
- Optional adapter input

Applications

- IP network camera
- · WLAN, Wi-Fi® access point
- · Barcode reader

Bottom of Board

INSTRUMENTS Test Prerequisites www.ti.com

1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1-1. Voltage and Current Requirements

Parameter	Specifications		
Input voltage	37V–57V (48V nominal)		
Output voltage	24V		
Output current	3A		
Nominal switching frequency	250kHz		

1.2 Required Equipment

- Type 4 PoE Power Source Equipment (PSE)
- Isolated DC power source, 0V to 57V, 2.5A minimum
- 24V, 3A electronic load

1.3 Considerations

All measurements were taken under the following conditions:

- Approximately 25°C ambient
- 48V input and 3A load unless noted
- Using CAT5E 1ft Ethernet cable

www.ti.com Testing and Results

2 Testing and Results

2.1 Efficiency Graphs

Efficiency is shown in the following figure.

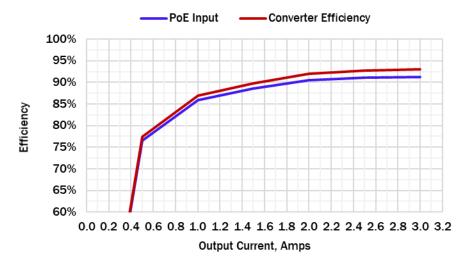


Figure 2-1. Efficiency Graph

2.2 Load Voltage Regulation

Load voltage regulation is shown in the following graph.

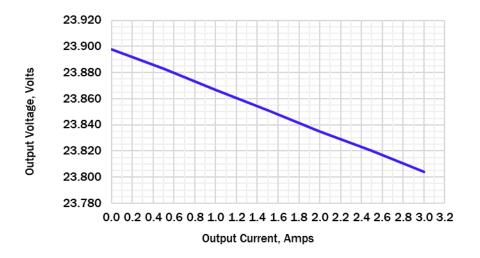


Figure 2-2. Load Voltage Regulation Curve

Testing and Results www.ti.com

2.3 Efficiency Data

Efficiency and power telemetry data is shown in the following tables.

Table 2-1. Efficiency Data

Table 2 1. Emolency Bata						
POE Input Voltage (V)	PoE Input Current (A)	DC/DC Input Voltage (V)	Output Voltage (V)	Output Current (A)	PoE Efficiency	DC/DC Efficiency
48	0.078	47.630	23.898	0.000	0.0%	0.0%
48	0.325	47.500	23.883	0.500	76.5%	77.4%
48	0.579	47.444	23.867	1.000	85.9%	86.9%
48	0.842	47.318	23.851	1.500	88.5%	89.8%
48	1.098	47.228	23.835	2.000	90.4%	91.9%
48	1.362	47.180	23.820	2.500	91.1%	92.7%
48	1.630	47.113	23.804	3.000	91.3%	93.0%

Table 2-2. Telemetry Table

Output Current (A)	DC/DC Input Voltage by Telemetry (Hex)	DC/DC Input Voltage by Telemetry (V)	Shunt Voltage by Telemetry (Hex)	Current by Telemetry (A)	Telemetry Compares to Measured Input Current	Telemetry Compares to Measured DC/DC Input Voltage
0.000	3B92	47.66	0096	0.075	-3.85%	+0.06%
0.500	3B96	47.67	0290	0.328	+0.92%	+0.36%
1.000	3B56	47.47	0495	0.587	+1.30%	+0.05%
1.500	3B2E	47.34	06A4	0.850	+0.95%	+0.05%
2.000	3B10	47.25	08B8	1.116	+1.64%	+0.05%
2.500	3B00	47.20	0AD9	1.389	+1.95%	+0.04%
3.000	3AE9	47.13	0CF6	1.659	+1.78%	+0.03%

www.ti.com Testing and Results

2.4 Thermal Images

Thermal images are shown in the following figures.

Bx1	Max	71.1 °C
Sp1		67.5 °C
Sp2		70.3 °C
Sp3		63.6 °C
Sp4		62.3 °C
Sp5		56.8 °C
Sp6		63.5 °C
Paramete	rs	
Emissivity		0.95
Refl. temp.		20 °C

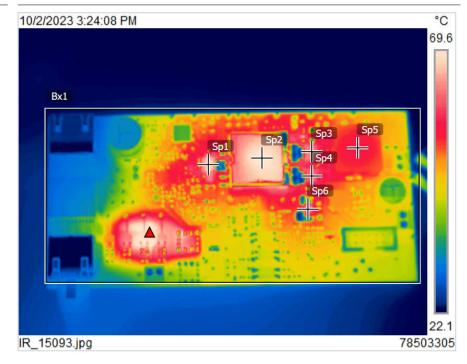


Figure 2-3. Top Thermal Image, 48V Input, 3A Load

Bx1	Max	77.6 °C
Sp1		73.6 °C
Sp2		70.9 °C
Sp3		73.8 °C
Sp4		57.0 °C
Sp5		58.6 °C
Paramete	ers	
Emissivity		0.95
Refl. temp.		20 °C

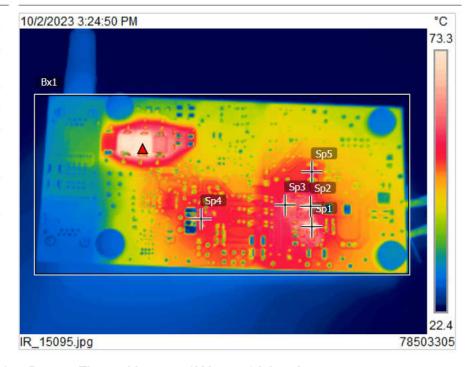


Figure 2-4. Bottom Thermal Image, 48V Input, 3A Load

2.5 Bode Plots

Bode plots are shown in the following figures.

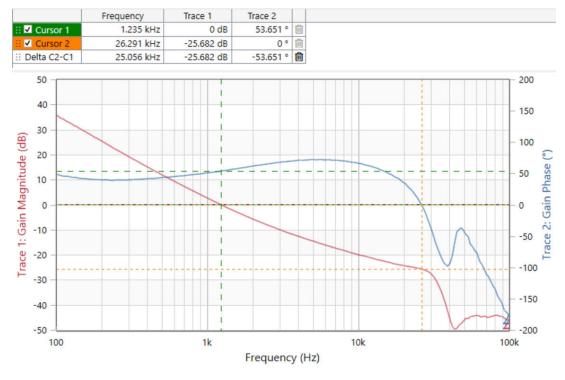


Figure 2-5. 0A Load Bandwidth = 1.235kHz, Phase Margin = 53.651Degrees, Gain Margin = 25.682dB

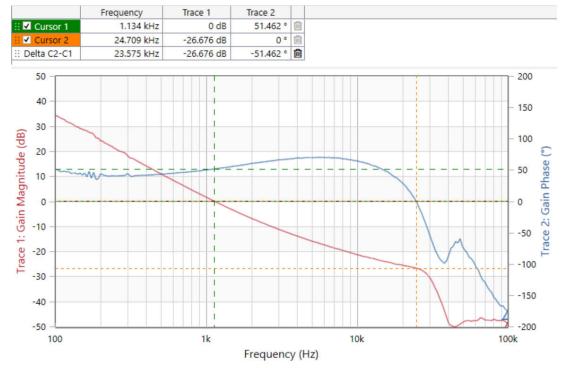


Figure 2-6. 3A Load Bandwidth = 1.134kHz, Phase Margin = 51.462Degrees, Gain Margin = 26.676dB

6

www.ti.com Waveforms

3 Waveforms

3.1 Switching

Switching behavior is shown in the following figures.

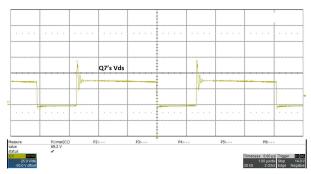


Figure 3-1. Voltage Drain-to-Source, Q7, 37V Input, 3A Load, Measured 69.2V V_{peak}

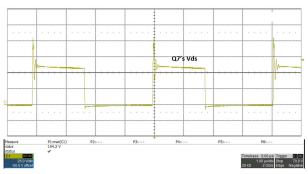


Figure 3-2. Voltage Drain-to-Source, Q7, 57V Input, 3A Load, Measured 104.2V V_{peak}

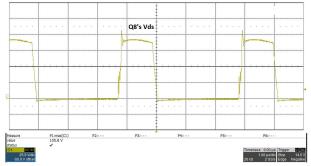


Figure 3-3. Voltage Drain-to-Source, Q8, 37V Input, 3A Load, Measured 105.8V V_{peak}

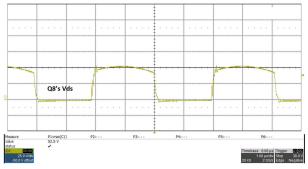


Figure 3-4. Voltage Drain-to-Source, Q8, 57V Input, 3A Load, Measured 52.5V V_{peak}

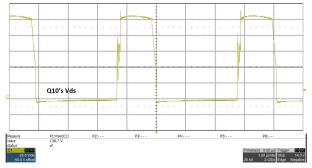


Figure 3-5. Voltage Drain-to-Source, Q10, 37V Input, 3A Load, Measured 136.7V V_{peak}

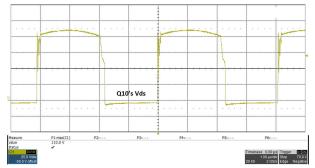


Figure 3-6. Voltage Drain-to-Source, Q10, 57V Input, 3A Load, Measured 110.0V V_{peak}

Waveforms www.ti.com

3.2 Voltage Ripple

Voltage ripple is shown in the following figures.

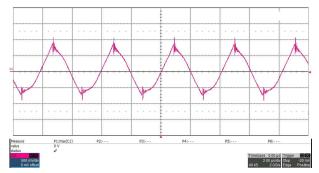


Figure 3-7. DC/DC Converter Input Voltage Ripple

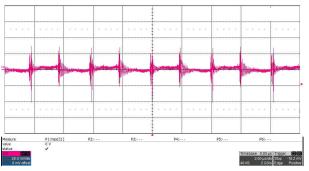


Figure 3-8. Output Voltage Ripple

8

www.ti.com Waveforms

3.3 Load Transients

Load transient response is shown in the following figures.

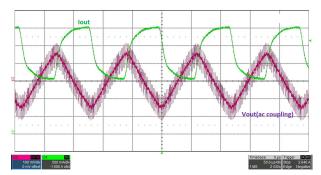


Figure 3-9. Output Load Step Response, 1.5A to 3.0A Load Step

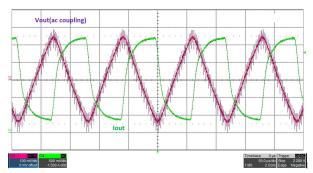


Figure 3-10. Output Load Step Response, 0.3A to 2.7A Load Step


Waveforms Superior Instruments

Waveforms Superior Instruments

Www.ti.com

3.4 Start-Up Sequence

Start-up behavior is shown in the following figures.

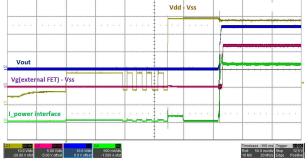
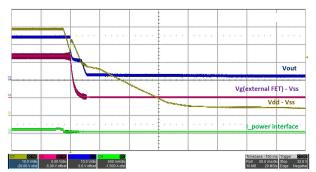
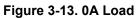


Figure 3-11. 0A Load


Figure 3-12. 3A Load


10

www.ti.com Waveforms

3.5 Power-Down Sequence

Power-down behavior is shown in the following figures.

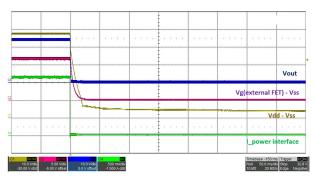


Figure 3-14. 3A Load

Instruments Waveforms www.ti.com

3.6 PoE-to-Adapter Transient

PoE-to-adapter transient behavior is shown in the following figures.

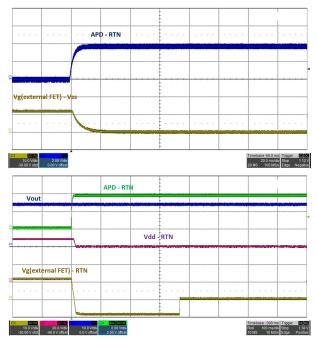


Figure 3-15. PSE Voltage = 48V, Adapter Voltage = 40V, Load = 3A

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated