Test Report: PMP31182 Isolated Bias Power Supply Reference Designs Using Four Different Topologies

Description

This reference design features four isolated bias power supply designs using different topologies such as PSR flyback, push-pull, LLC resonant, and isolated DCDC module. These topologies provide specific benefits but at the same time the topologies come with trade-offs. An ample comparison of these topologies is done using four hardware designs while keeping the electrical parameters as similar as possible. The input and output voltage of these designs are 15V and the maximum load current is 100mA.

Features

- Isolated bias power supply design using different topologies like PSR-flyback, push-pull, isolated DCDC module, and LLC resonant
- An ample comparison of different isolated bias power supply topologies
- Comparative analysis using similar electrical parameters in circuit designs for different topologies

Applications

- Auxiliary-power supplies
- Unidirectional 400V and 800V to LV
- Bidirectional 400V and 800V to LV
- Traction inverter-high voltage
- Traction inverter-low voltage
- 1-phase AC-digital control
- 3-phase AC-analog control
- 1-phase AC-analog control
- 3-phase AC-digital control
- OBC-wireless charging

Bottom of Board

Top of Board

Project Block Diagram

1.1 Voltage and Current Requirements

Parameter	Specifications						
V _{IN}	15V						
V _{OUT}	15V						
Ι _{ΟUT}	100mA						
F _{SW}	20kHz–350kHz for LM25180-Q1 500kHz for SN6507-Q1 and UCC25800-Q1 11–15MHz for UCC14130-Q1						

Table 1-1. Voltage and Current Requirements

1.2 Considerations

- To do comparative analysis, a device designed for each of the following topologies was chosen:
 - PSR-flyback: LM25180-Q1
 - Push-pull: SN6507-Q1
 - Isolated DCDC module: UCC14130-Q1
 - LLC resonant: UCC25800-Q1
- All the electrical parameters kept as similar as possible.
- As shown in the project bock diagram, these isolated bias power supply devices are used in a distributed kind of architecture. Each device is used to supply one GaN switch with integrated driver. In each design, two isolated bias power supply circuits are used for a GaN half bridge.
- Measurements, including efficiency, were taken at room temperature.
- Efficiency reading was taken running one isolated bias power supply circuit only, while the other power supply circuit was disabled.
- Efficiency measurement was done without EMI filter circuit.

1.3 Dimensions

Board	Dimensions ⁽¹⁾			
PMP31182-LM25180 PCB	125.02mm × 57.56mm			
PMP31182-SN6507 PCB	125.02mm × 57.56mm			
PMP31182-UCC14130 PCB	125.02mm × 60.94mm			
PMP31182-UCC25800 PCB	125.02mm × 57.56mm			

Table 1-2. Board Dimensions

(1) The length of the portion of the BNC connector outside of the PCB was not included in these dimensions.

2 Testing and Results

2.1 Efficiency Graphs

2.1.1 LM25180-Q1 Efficiency Graph

Figure 2-1. LM25180-Q1 Efficiency at 15 V_{IN}

2.1.2 SN6507-Q1 Efficiency Graph

Figure 2-2. SN6507-Q1 Efficiency at 15 V_{IN}

Note

The efficiency graph shows only up to 100mA load current. The SN6507-Q1 device has 0.5A rated power switches. Maximum efficiency of this device can be achieved in the range of 250mA–300mA load current.

2.1.3 UCC14130-Q1 Efficiency Graph

2.1.4 UCC25800-Q1 Efficiency Graph

Figure 2-4. UCC25800-Q1 Efficiency at 15 VIN

2.1.5 Efficiency Comparison

Efficiency comparison of the four different topologies is shown in the following figure.

Figure 2-5. Efficiency Comparison

2.2 Efficiency Data

Efficiency data is shown in the following tables.

2.2.1 LM25180-Q1 Efficiency Data

V _{IN} (V)	I _{IN} (mA)	P _{IN} (W)	V _{OUT} (V)	I _{OUT} (mA)	P _{OUT} (W)	Losses (W)	Efficiency (%)
15.00	12.9	0.194	15.20	10.0	0.152	0.042	78.31
14.98	24.4	0.366	15.19	20.0	0.304	0.062	83.08
14.96	36.0	0.538	15.19	30.1	0.457	0.081	84.97
14.93	47.3	0.705	15.19	40.0	0.608	0.098	86.13
14.91	58.7	0.876	15.18	50.1	0.761	0.115	86.85
14.88	69.8	1.038	15.18	60.2	0.914	0.124	88.02
14.86	81.9	1.217	15.17	70.3	1.066	0.151	87.62
14.83	92.8	1.376	15.16	80.2	1.216	0.161	88.34
14.81	103.6	1.534	15.16	90.2	1.367	0.167	89.12
14.78	116.0	1.714	15.15	100.2	1.518	0.196	88.56

Table 2-1. LM25180-Q1 Efficiency Data

2.2.2 SN6507-Q1 Efficiency Data

V _{IN} (V)	I _{IN} (mA)	P _{IN} (W)	V _{OUT} (V)	I _{OUT} (mA)	P _{OUT} (W)	Losses (W)	Efficiency (%)
15.89	33.1	0.526	15.35	10.0	0.154	0.372	29.21
15.88	43.1	0.684	15.29	20.0	0.306	0.378	44.72
15.87	53.2	0.844	15.25	30.0	0.458	0.386	54.22
15.87	63.4	1.006	15.21	40.1	0.610	0.396	60.60
15.85	73.5	1.165	15.17	50.1	0.760	0.405	65.20
15.84	83.7	1.326	15.14	60.1	0.910	0.416	68.62
15.83	93.9	1.486	15.10	70.0	1.057	0.429	71.11
15.82	104.4	1.652	15.07	80.2	1.208	0.443	73.17
15.82	114.6	1.813	15.04	90.2	1.356	0.457	74.81
15.82	124.9	1.976	15.00	100.2	1.503	0.473	76.07

Table 2-2. SN6507-Q1 Efficiency Data

2.2.3 UCC14130-Q1 Efficiency Data

Table 2-3. UCC14130-Q1 Efficiency Data

V _{IN} (V)	I _{IN} (mA)	P _{IN} (W)	V _{OUT} (V)	I _{OUT} (mA)	P _{OUT} (W)	Losses (W)	Efficiency (%)
15.03	42.0	0.631	15.01	10.0	0.151	0.481	23.85
15.03	50.9	0.765	15.01	20.0	0.301	0.464	39.32
15.02	69.3	1.041	15.00	30.0	0.450	0.590	43.28
15.02	88.7	1.332	14.99	40.1	0.601	0.731	45.11
15.01	108.6	1.630	14.98	50.1	0.750	0.880	46.01
15.01	128.9	1.935	14.97	60.1	0.900	1.034	46.53
15.01	149.2	2.239	14.97	70.1	1.049	1.191	46.84
15.00	170.1	2.552	14.96	80.2	1.199	1.352	46.99
15.00	191.4	2.871	14.95	90.3	1.350	1.521	47.02
15.00	211.8	3.177	14.95	100.3	1.500	1.677	47.22

2.2.4 UCC25800-Q1 Efficiency Data

Table 2-4. UCC25800-Q1 Efficiency Data

V _{IN} (V)	I _{IN} (mA)	P _{IN} (W)	V _{OUT} (V)	I _{OUT} (mA)	P _{OUT} (W)	Losses (W)	Efficiency (%)
15.49	18.4	0.285	16.31	10.0	0.163	0.122	57.19
15.46	29.2	0.451	16.00	20.0	0.320	0.131	70.96
15.44	39.8	0.614	15.81	30.0	0.474	0.139	77.28
15.41	50.7	0.781	15.69	40.1	0.629	0.152	80.59
15.39	61.5	0.946	15.58	50.1	0.781	0.166	82.48
15.37	72.3	1.111	15.47	60.2	0.931	0.180	83.83
15.34	83.0	1.274	15.36	70.2	1.078	0.196	84.65
15.32	93.9	1.439	15.24	80.5	1.227	0.212	85.25
15.30	104.3	1.595	15.13	90.2	1.365	0.231	85.55
15.28	115.0	1.757	15.01	100.3	1.506	0.251	85.70

2.3 Load Regulation

2.3.1 LM25180-Q1 Load Regulation

An 18V Zener diode is used to clamp the output voltage in case of no load condition.

2.3.2 SN6507-Q1 Load Regulation

An 18V Zener diode is used to clamp the output voltage in case of no load condition.

Figure 2-7. SN6507-Q1 Load Regulation at 15 V_{IN}

2.3.3 UCC14130-Q1 Load Regulation

An 18V Zener diode is used to clamp the output voltage in case of no load condition.

Figure 2-8. UCC14130-Q1 Load Regulation at 15 V_{IN}

Figure 2-9. UCC25800-Q1 Load Regulation at 15 V_{IN}

2.3.5 Load Regulation Comparison

Load regulation comparison of four different topologies is shown in the following figure.

Figure 2-10. Load Regulation Comparison

2.4 Thermal Images

2.4.1 LM25180-Q1 Thermal Image

Figure 2-11 shows the thermal image captured with a thermal camera. The image shows that the transformer is the hottest component of this PCB. The thermal image was captured while running both power supplies in parallel at $15 V_{IN}$ and 100mA full load current.

Figure 2-11. Thermal Image – Top Side of PCB at 15 VIN and 100mA Full Load Current

2.4.2 SN6507-Q1 Thermal Image

Figure 2-12 shows the thermal image captured with a thermal camera. The image shows that the transformer is the hottest component of this PCB. The thermal image was captured while running both power supplies in parallel at 15 V_{IN} and 100mA full load current.

Figure 2-12. Thermal Image – Top Side of PCB at 15 VIN and 100mA Full Load Current

2.4.3 UCC14130-Q1 Thermal Image

Figure 2-13 shows the thermal image captured with a thermal camera. The image shows that the integrated transformer isolated DCDC modules are the hottest component of this PCB. The thermal image was captured while running both power supplies in parallel at 15 V_{IN} and 100mA full load current.

Figure 2-13. Thermal Image – Top Side of PCB at 15 VIN and 100mA Full Load Current

2.4.4 UCC25800-Q1 Thermal Image

Figure 2-14 shows the thermal image captured with a thermal camera. The image shows that the transformer is the hottest component of this PCB. The thermal image was captured while running both power supplies in parallel at 15 V_{IN} and 100mA full load current.

Figure 2-14. Thermal Image – Top Side of PCB at 15 VIN and 100mA Full Load Current

2.5 Common-Mode Current (CMI)

Common-Mode Current (CMI) tests were done while running both isolated bias power supply converter circuits at 15V output and switching the GaN half-bridge at 400V. Common-mode current flows from the high-voltage side to the low-voltage side through the parasitic capacitance across the isolation barrier. Common mode current is generated due to switching of the high- and low-side GaN half bridge switches at a high slew rate. During the measurements, high- and low-voltage grounds were shorted using a wire (shown in Figure 2-15) to minimize the length of the common-mode current loop from high-voltage side to low-voltage side. This can be considered as a worst-case scenario for common-mode current and results in the highest possible common-mode current through the isolation barrier. CMI current measurements are taken on two different high slew rate values: 40V/ns and 100V/ns. CMI measurements are taken while bypassing the input filter. Using a potentiometer at the RDRV pin of the LMG3525R030Q, the slew rate can be varied with reference to the selected resistor value. Figure 2-15 shows the CMI test setup.

Figure 2-15. Common-Mode Current (CMI) Test Setup

2.5.1 LM25180-Q1 CMI

The LM25180-Q1 CMI waveforms are illustrated in the following images.

Channel 1: HV switch node, [scale: 200V/div, 100ns/div] Channel 3: CMI current, [scale: 500mA/div, 100ns/div]

Figure 2-17. Common-Mode Current at 100V/ns Slew Rate

2.5.2 SN6507-Q1 CMI

The SN6507-Q1 CMI waveforms are illustrated in the following images.

Channel 1: HV switch node, [scale: 200V/div, 100ns/div] Channel 3: CMI current, [scale: 500mA/div, 100ns/div]

Figure 2-19. Common-Mode Current at 100V/ns Slew Rate

2.5.3 UCC14130-Q1 CMI

The UCC14130-Q1 CMI waveforms are illustrated in the following images.

Channel 1: HV switch node, [scale: 200V/div, 100ns/div] Channel 3: CMI current, [scale: 500mA/div, 100ns/div]

Figure 2-21. Common-Mode Current at 100V/ns Slew Rate

2.5.4 UCC25800-Q1 CMI

The UCC25800-Q1 CMI waveforms are illustrated in the following images.

Channel 1: HV switch node, [scale: 200V/div, 100ns/div] Channel 3: CMI current, [scale: 500mA/div, 100ns/div]

Figure 2-23. Common-Mode Current at 100V/ns Slew Rate

2.5.5 Common-Mode Current Comparison

The CMI comparison waveforms of the four topologies are illustrated in the following images.

LM25180-Q1	Parasitic cap. ~ 21 pF	Peak: 935 mA	SN6507-Q1	Parasitic cap. ~ 6.5 pF	Peak: 440 mA
	_{sw} (200V/div)		e V _{SW}	, (200V/div)	
 Ic		100ns/div	•/I _{CN}	(500mA/div)	100ns/div
Measure P1 man(C2) value 835 mA status C1 200 MBh 212 0 V ofts -400 mA stat	P2min(C3) P3mar(C1) P4min(C1) -013mA 428V	P6> P6> Timebase 344 m Topper Calcor 100 notion State 15419 500 kS 50 0501 Edge Positive	Measure P1 max(C3) value 400 mA stabus C1 Cost 200 Vide 500 mAlon 212 0 V ofts -680 mAlon	P2min(C3) P3max(C1) P4min(C) -440 mA 428 V	1) P5 PE Timebase 344 m 100 mstan Stop 92V 6.0043 50.05/s Edge Pestine
UCC25800-Q1	Parasitic cap. ~ 2.6 pF	Peak: 197 mA	UCC14130-Q1	Parasitic cap. ~ 3.5 pF	Peak: 393 mA
T VSI	w (200V/div)		sV_sw	(200V/div)	
I _{CI}	_M (500mA/div)	100ns/div		(500mA/div)	100ns/div
Measure P1:max(C2) value 197 mA status C1 00400 200 Visto 212.0 V ofst 400 mA cfs2	P2 min(C3) P3 mai(C1) P4 min(C1 -188 mA 429 V	P5 P6: <u>Unnetwo 355 m</u> (Goyer Calcor 100 nativ Sto Calv 5.00 kS 5.0 Calv Ecyer Postwe	Measure P1.max(C3) value 293 mA stabus 0 00 vister -1 000 A crist	P2min(C3) P3max(C5) P4min(C -393 mA 401 V	PS PS PS tringpar topskid Stop 165 Soo ks 50 GStal Equ Postere
	CH 1: H	V switch node	CH 2: Common mo	de current	

Channel 1: HV switch node, [scale: 200V/div, 100ns/div] Channel 3: CMI current, [scale: 500mA/div, 100ns/div]

Figure 2-24. Common-Mode Current Comparison at 40V/ns Slew Rate

3 Waveforms

3.1 Switching

3.1.1 LM25180-Q1 Switching

The LM25180-Q1 switching waveform is shown in the following figure.

Channel 2: Switching node at 15 V_{OUT} and 100mA load current [scale: 10.0V/div, 2.0 μ s/div]

Figure 3-1. LM25180-Q1 Switch Node Voltage

3.1.2 SN6507-Q1 Switching

The SN6507-Q1 switching waveform is shown in the following figure.

Channel 2: Switching node at 15 V_{OUT} and 100mA load current [scale: 10.0V/div, 4.0 μ s/div]

Figure 3-2. SN6507-Q1 Switch Node Voltage

3.1.3 UCC25800-Q1 Switching

The UCC25800-Q1 switching waveform is shown in the following figure.

Channel 2: Switching node at 15 V_{OUT} and 100mA load current [scale: 5.0V/div, 2.0µs/div]

Figure 3-3. UCC25800-Q1 Switch Node Voltage

3.2 Output Voltage Ripple

3.2.1 LM25180-Q1 Output Voltage Ripple

The LM25180-Q1 output voltage ripple waveform is shown in the following figure.

Channel 2: AC coupled output voltage ripple at 15 V_{OUT} and 100mA load current, bandwidth limited (20MHz), [scale: 10mV/div, 10.0μs/ div]. The output voltage ripple was measured at output capacitor C34.

Figure 3-4. LM25180-Q1 Output Voltage Ripple

3.2.2 SN6507-Q1 Output Voltage Ripple

The SN6507-Q1 output voltage ripple waveform is shown in the following figure.

Channel 2: AC coupled output voltage ripple at 15 V_{OUT} and 100mA load current, bandwidth limited (20MHz), [scale: 10mV/div, 4.0µs/ div]. The output voltage ripple was measured at output capacitor C34.

Figure 3-5. SN6507-Q1 Output Voltage Ripple

3.2.3 UCC14130-Q1 Output Voltage Ripple

The UCC14130-Q1 output voltage ripple waveform is shown in the following figure.

Channel 2: AC coupled output voltage ripple at 15 V_{OUT} and 100mA load current, bandwidth limited (20MHz), [scale: 50mV/div, 40.0µs/ div]. The output voltage ripple was measured at output capacitor C36.

The isolated DCDC module uses an ON-OFF control scheme that results in larger input ripple or output ripple

Figure 3-6. UCC14130-Q1 Output Voltage Ripple

3.2.4 UCC25800-Q1 Output Voltage Ripple

The UCC25800-Q1 output voltage ripple waveform is shown in the following figure.

Channel 2: AC coupled output voltage Ripple at 15 V_{OUT} and 100mA load current, bandwidth limited (20MHz), [scale: 10mV/div, 4.0 μ s/div]. The output voltage ripple was measured at output capacitor C64.

Figure 3-7. UCC25800-Q1 Output Voltage Ripple

3.2.5 Output Voltage Ripple Comparison

The output voltage ripple comparison waveforms are shown in the following figure.

The isolated DCDC module uses an ON-OFF control scheme that results in larger input ripple and output ripple.

Figure 3-8. Output Voltage Ripple Comparison

3.3 Input Voltage Ripple

3.3.1 LM25180-Q1 Input Voltage Ripple

The LM25180-Q1 input voltage ripple waveform is shown in the following figure.

Channel 2: AC coupled input voltage ripple at 15 V_{OUT} and 100mA load current, bandwidth limited (20MHz), [scale: 10mV/div, 10.0μs/ div]. The input voltage ripple was measured at input capacitor C35.

Figure 3-9. LM25180-Q1 Input Voltage Ripple

3.3.2 SN6507-Q1 Input Voltage Ripple

The SN6507-Q1 input voltage ripple waveform is shown in the following figure.

Channel 2: AC coupled Input Voltage Ripple at 15 V_{OUT} and 100mA load current, bandwidth limited (20MHz), [scale: 10mV/div, 4.0µs/ div]. The input voltage ripple was measured at input capacitor C31.

Figure 3-10. SN6507-Q1 Input Voltage Ripple

3.3.3 UCC14130-Q1 Input Voltage Ripple

The UCC14130-Q1 input voltage ripple waveform is shown in the following figure.

Channel 2: AC coupled Input Voltage Ripple at 15 V_{OUT} and 100mA load current, bandwidth limited (20MHz), [scale: 50mV/div, 40.0µs/ div]. The input voltage ripple was measured at input capacitor C33.

Figure 3-11. UCC14130-Q1 Input Voltage Ripple

3.3.4 UCC25800-Q1 Input Voltage Ripple

The UCC25800-Q1 input voltage ripple waveform is shown in the following figure.

Channel 2: AC coupled input voltage ripple at 15 V_{OUT} and 100mA load current, bandwidth limited (20MHz), [scale: 10mV/div, 4.0μs/ div]. The input voltage ripple was measured at input capacitor C61.

Figure 3-12. UCC25800-Q1 Input Voltage Ripple

3.3.5 Input Voltage Ripple Comparison

The following image shows a comparison of input voltage ripple waveforms.

The isolated DCDC module uses an ON-OFF control scheme that results in larger input ripple and output ripple.

Figure 3-13. Input Voltage Ripple Comparison

3.4 Load Transients

3.4.1 LM25180-Q1 Load Transients

LM25180-Q1 load transient waveforms are shown in the following figure.

Channel 2: AC-coupled output voltage at 15 V_{OUT}, bandwidth limited (20MHz), [scale: 100mV/div, 2ms/div] Channel 4: Load transient from 50mA to 100mA and 100mA to 50mA, slew rate 0.25A/µs [scale: 50mA/div, 2ms/div]

Figure 3-14. LM25180-Q1 Load Transient

3.4.2 SN6507-Q1 Load Transients

SN6507-Q1 load transient waveforms are shown in the following figure.

 $\label{eq:channel 2: AC-coupled output voltage at 15 V_{OUT}, bandwidth limited (20MHz), [scale: 100mV/div, 2ms/div] \\ Channel 4: Load transient from 50mA to 100mA and 100mA to 50mA, slew rate 0.25A/µs [scale: 50mA/div, 2ms/div] \\ \end{tabular}$

3.4.3 UCC14130-Q1 Load Transients

UCC14130-Q1 load transient waveforms are shown in the following figure.

Channel 2: AC-coupled output voltage at 15 V_{OUT}, bandwidth limited (20MHz), [scale: 100mV/div, 2ms/div] Channel 4: Load transient from 50mA to 100mA and 100mA to 50mA, slew rate 0.25A/µs [scale: 50mA/div, 2ms/div]

Figure 3-16. UCC14130-Q1 Load Transient

3.4.4 UCC25800-Q1 Load Transients

UCC25800-Q1 load transient waveforms are shown in the following figure.

 $\label{eq:channel 2: AC-coupled output voltage at 15 V_{OUT}, bandwidth limited (20MHz), [scale: 10mV/div, 1ms/div] \\ Channel 4: Load transient from 50mA to 100mA and 100mA to 50mA, slew rate 0.25A/\mus [scale: 50mA/div, 1ms/div] \\ \end{tabular}$

Figure 3-17. UCC25800-Q1 Load Transient

3.5 Start-Up Sequence

3.5.1 LM25180-Q1 Start-Up Sequence

LM25180-Q1 start-up sequence waveforms are shown in the following figure.

Channel 1: Start-up with input voltage of 15V at full load of 100mA, [scale: 5V/div, 10ms/div] Channel 3: Output voltage at start-up with 15 V_{OUT} at full load of 100mA, [scale: 5V/div, 10ms/div]

Figure 3-18. LM25180-Q1 Start-Up at Full Load

3.5.2 SN6507 Q1 Start Up Sequence

SN6507 Q1 start up sequence waveforms are shown in the following figure.

 $\label{eq:channel 1: Start-up with input voltage of 15V at full load of 100mA, [scale: 5V/div, 10ms/div] \\ Channel 3: Output voltage at start-up with 15 V_{OUT} at full load of 100mA, [scale: 5V/div, 10ms/div] \\ \end{tabular}$

3.5.3 UCC14130-Q1 Start-Up Sequence

UCC14130-Q1 start-up sequence waveforms are shown in the following figure.

Channel 1: Start-up with input voltage of 15V at full load of 100mA, [scale: 5V/div, 10ms/div] Channel 3: Output voltage at start up with 15 V_{OUT} at full load of 100mA, [scale: 5V/div, 10ms/div]

Figure 3-20. UCC14130-Q1 Start-Up at Full Load

3.5.4 UCC25800-Q1 Start-Up Sequence

UCC25800-Q1 start-up sequence waveforms are shown in the following figure.

 $\label{eq:channel 1: Start-up with input voltage of 15V at full load of 100mA, [scale: 5V/div, 10ms/div] \\ Channel 3: Output voltage at start-up with 15 V_{OUT} at full load of 100mA, [scale: 5V/div, 10ms/div] \\ \end{tabular}$

Figure 3-21. UCC25800-Q1 Start-Up at Full Load

3.6 Shutdown Sequence

3.6.1 LM25180-Q1 Shutdown Sequence

LM25180-Q1 shutdown sequence waveforms are shown in the following figure.

Channel 1: Start-up with input voltage of 15V at full load of 100mA, [scale: 5V/div, 10ms/div] Channel 3: Output voltage at start-up with 15 V_{OUT} at full load of 100mA, [scale: 5V/div, 10ms/div]

Figure 3-22. LM25180-Q1 Shutoff at Full Load

3.6.2 SN6507-Q1 Shutdown Sequence

SN6507-Q1 shutdown sequence waveforms are shown in the following figure.

 $\label{eq:channel 1: Shutoff with input voltage of 15V at full load of 100mA, [scale: 5V/div, 10ms/div] \\ Channel 3: Output voltage at shutoff with 15 V_{OUT} at full load of 100mA, [scale: 5V/div, 10ms/div] \\ \end{tabular}$

Figure 3-23. SN6507-Q1 Shutoff at Full Load

3.6.3 UCC14130-Q1 Shutdown Sequence

UCC14130-Q1 shutdown sequence waveforms are shown in the following figure.

Figure 3-24. UCC14130-Q1 Shutoff at Full Load

3.6.4 UCC25800-Q1 Shutdown Sequence

UCC25800-Q1 shutdown sequence waveforms are shown in the following figure.

Channel 1: Shutoff with input voltage of 15V at full load of 100mA, [scale: 5V/div, 10ms/div] Channel 3: Output voltage at shutoff with 15 V_{OUT} at full load of 100mA, [scale: 5V/div, 10ms/div]

Figure 3-25. UCC25800-Q1 Shutoff at Full Load

3.7 Undervoltage Protection

3.7.1 LM25180-Q1 Undervoltage Protection

LM25180-Q1 undervoltage protection waveforms are shown in the following figures.

Channel 1: Input voltage at start-up with UVLO protection at full Load, [scale: 5V/div, 400ms/div] Channel 3: Output voltage at start-up with UVLO protection at full Load, [scale: 5V/div, 400ms/div]

Channel 1: Input voltage at shutoff with UVLO protection at full Load, [scale: 5V/div, 400ms/div] Channel 3: Output voltage at shutoff with UVLO protection at full Load, [scale: 5V/div, 400ms/div]

Figure 3-27. LM25180-Q1 UVLO Protection at Falling Input Voltage

3.7.2 SN6507-Q1 Undervoltage Protection

SN6507-Q1 undervoltage protection waveforms are shown in the following figures.

Channel 1: Input voltage at start-up with UVLO protection at full load, [scale: 5V/div, 400ms/div] Channel 3: Output voltage at start-up with UVLO protection at full load, [scale: 5V/div, 400ms/div]

Figure 3-28. SN6507-Q1 UVLO Protection at Rising Input Voltage

Channel 1: Input voltage at shutoff with UVLO protection at full load, [scale: 5V/div, 400ms/div] Channel 3: Output voltage at shutoff with UVLO protection at full load, [scale: 5V/div, 400ms/div]

Figure 3-29. SN6507-Q1 UVLO Protection at Falling Input Voltage

3.7.3 UCC14130-Q1 Undervoltage Protection

UCC14130-Q1 undervoltage protection waveforms are shown in the following figures.

Channel 1: Input voltage at start-up with UVLO protection at no load, [scale: 5V/div, 400ms/div] Channel 3: Output voltage at start-up with UVLO protection at no load, [scale: 5V/div, 400ms/div]

Figure 3-30. UCC14130-Q1 UVLO Protection at Rising Input Voltage

Channel 1: Input voltage at shutoff with UVLO protection at no load, [scale: 5V/div, 400ms/div] Channel 3: Output voltage at shutoff with UVLO protection at no load, [scale: 5V/div, 400ms/div]

Figure 3-31. UCC14130-Q1 UVLO Protection at Falling Input Voltage

3.7.4 UCC25800-Q1 Undervoltage Protection

UCC25800-Q1 undervoltage protection waveforms are shown in the following figures.

Channel 1: Input voltage at start-up with UVLO protection at full load, [scale: 5V/div, 400ms/div] Channel 3: Output voltage at start-up with UVLO protection at full load, [scale: 5V/div, 400ms/div]

Figure 3-32. UCC25800-Q1 UVLO Protection at Rising Input Voltage

Channel 1: Input voltage at shutoff with UVLO protection at full load, [scale: 5V/div, 400ms/div] Channel 3: Output voltage at shutoff with UVLO protection at full load, [scale: 5V/div, 400ms/div]

Figure 3-33. UCC25800-Q1 UVLO Protection at Falling Input Voltage

4 Summary

Table 4-1 lists a summary of benefits and trade-offs by topology.

Topology	Devices	Benefits	Trade-offs
Push-Pull Transformer Driver	SN6507-Q1	 Wide Vin range Low EMI Power range up to 7.5W⁽¹⁾ Good line regulation by duty control 	 Low to moderate efficiency, especially in case of low output current (<50 mA) Moderate load regulation accuracy
LLC Transformer Driver, Half- bridge Resonant Converter	UCC25800-Q1	 High efficiency Power range up to 9W⁽⁽¹⁾⁾ Low CM current Low EMI 	 Low load regulation accuracy Requirement of pre-regulator and/or post-regulator Large Transformer size, especially in low switching frequency range
PSR Flyback DCDC Converter	LM25180-Q1	 Wide Vin range High efficiency Power range up to 15W⁽⁽¹⁾⁾ High load & line regulation accuracy 	• High EMI • High CMI current
Integrated Transformer, Magneto-MV, Isolated DCDC Module	UCC14130-Q1	 No need of external transformer Robustness to vibration Small size including low height High load regulation accuracy Low CM current 	 High EMI Low efficiency Requirement of Pre-regulator⁽⁽²⁾⁾

(1) Depends on design parameters and variant of the device.

(2) Depends on the variant of the device.

5 References

- 1. Texas Instruments, LMG3522EVM-042 Tool Folder
- 2. Texas Instruments, LM25180-Q1 Product Folder
- 3. Texas Instruments, SN6507-Q1 Product Folder
- 4. Texas Instruments, UCC14130-Q1 Product Folder
- 5. Texas Instruments, UCC25800-Q1 Product Folder

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated