

bq2435x DSG EVM for Li-Ion Charger Front-End Protection IC

This user's guide describes the features, setup, and operation of the bq2435xEVM evaluation module. Included are the bill of materials, board layout, and schematic.

Contents

1	Introdu	iction	2
	1.1	General Description	2
	1.2	EVM Features	
	1.3	I/O Description	2
	1.4	Controls and Key Parameters Setting	
	1.5	Recommended Operating Conditions	
2	Test S	ummary	
	2.1	Definitions	3
	2.2	Equipment	
	2.3	Equipment Setup	
	2.4	Procedure	5
3	PCB L	ayout Guideline	6
4		Materials, Board Layout, and Schematic	
	4.1	Bill of Materials	6
	4.2	Board Layout	7
	4.3	Schematic	10

List of Figures

1	Original Test Setup for HPA398 (bq2435x DSG EVM)	5
2	Top Layer	7
	Bottom Layer	
	Top Silk Screen	
5	Top Assembly	9
	bq243550 Schematic	

List of Tables

1	Bill of Materials	6
---	-------------------	---

1

Introduction

1 Introduction

1.1 General Description

The bq2435x evaluation module (EVM) is a complete charger module for evaluating a charger front-end protection and charger solution using the bq2435x and bq2057C devices. It is designed to deliver up to 560 mA of charge current to Li-ion or Li-polymer applications. The charger front-end protection current is designed to 1.2 A.

The bq2435x protects the charging system against three types of failures: input overvoltage when the ac adapter fails to regulate its voltage, load overcurrent when failures such as a short circuit occur in the charging system, and battery overcharge.

For details, see the bq2435x data sheet (SLUS943).

1.2 EVM Features

- Evaluation module for bq2435x DSG
- Evaluation module for bq2057C charger integrated circuit (IC)
- Input operating range for bq2435x 4.5 V–26 V
- Input operating range for bq24080 4.5 V–6.5 V
- Input overvoltage protection.
- Input overcurrent protection.
- Battery overvoltage protection.
- LED Indication for status signals.
- Test points for key signals available for testing purpose. Easy probe hook-up
- · Jumpers available. Easy to change connections

1.3 I/O Description

Jack	Description
J1–DC+	AC adapter, positive output
J1-DC-	AC adapter, negative output, ground
J2–FAULT	bq24355 FAULT pin
J2–VBAT	bq2435x VBAT pin
J2–GATDRV	bq2435x GATDRV pin
J2–CHGIN	bq2435x CHGIN pin
J3–BATEN	bq24355 BATEN pin
J3–OUT	bq2435x OUT pin
J3–BAT+	Battery positive output
J3–GND	Ground
J4–BAT+	Connect to battery positive output
J4–BAT–	Connect to battery negative output, ground

1.4 Controls and Key Parameters Setting

Jack ⁽¹⁾	Description	Factory Setting
JP1	If on, high-side current sensing resistor is disabled	Jumper on
JP2	bq24355 BATEN pin logic input, pull low to enable	Jumper (BATEN, GND) on
JP3	bq2435x GATDRV pin	Jumper off
JP4	bq2057C BAT pin connection to bq2435x	Jumper on

⁽¹⁾ Short JP1, JP4, JP5, and JP6, and disconnect JP7 to use on board bq2057C as charger; to use external charger to control bq2435x, disconnect JP1, JP4, JP5, and JP6 and short JP7.

Jack ⁽¹⁾	Description	Factory Setting
JP5	bq2057C VCC pin connection to bq2435x	Jumper on
JP6	bq2057C CC pin connection to bq2435x	Jumper on
JP7	If on, low-side current sensing resistor is disabled	Jumper off

1.5 Recommended Operating Conditions

Symbol	Description	Minim um	Typical	Maxim um	Unit
Supply voltage, V _{IN}	Input voltage from ac adapter input	4.5	5	26	V
Battery voltage, V _{BAT}	Voltage applied at VBAT terminal of J4	0	3–4.2	5	V
Supply current, I _{AC}	Maximum input current from ac adapter input	0		1.5	А
Charge current, I _{chrg}	Battery charge current	0.05	0.56	1	А
Operating junction temperature range, T_J		0		125	°C

2 Test Summary

2.1 Definitions

This procedure details how to configure the evaluation board. On the test procedure, the following naming conventions are followed. See the schematic for details.

VXXX	External voltage supply name (VIN, VBAT, VOUT)
LOADW:	External load name (LOADR, LOADI)
V(ТРууу) :	Voltage at internal test point TPyyy. For example, V(TP1) means the voltage at TP1.
V(Jxx):	Voltage at jack terminal Jxx.
V(TP(XXXXX)):	Voltage at test point "XXXXX". For example, V(ACDET) means the voltage at the test point which is marked as "ACDET".
V(XXX, YYY):	Voltage across point XXX and YYY.
I(JXX(YYY)):	Current going out from the YYY terminal of jack XX.
Jxx(BBB):	Terminal or pin BBB of jack xx
Jxx ON :	Internal jumper Jxx terminals are shorted
Jxx OFF:	Internal jumper Jxx terminals are open
Jxx (-YY-) ON:	Internal jumper Jxx adjacent terminals marked as "YY" are shorted
Measure: \rightarrow A,B	Check specified parameters A, B. If measured values are not within specified limits the unit under test has failed.
$Observe \to A, B$	Observe if A, B occur. If they do not occur, the unit under test has failed.

Assembly drawings have location for jumpers, test points and individual components

2.2 Equipment

2.2.1 Power Supplies

Power Supply 1 (PS 1): a power supply capable of supplying 10 V at 2 A is required.

Test Summary

2.2.2 Load 1

A 10-V (or above), 2-A (or above) electronic load that can operate at constant current mode.

2.2.3 Load 2

A 10-V (or above), 2-A (or above) electronic load that can operate at constant voltage mode.

2.2.4 Meters

Four Fluke 75 multimeters (equivalent or better)

Or:

Three equivalent voltage meters and one equivalent current meter The current meter must be capable of measuring 2-A+ current.

2.2.5 Wire Gauge

All wires connected to the EVM input power supply and output load must use at least AWG 22. The maximum current is up to 1 A.

2.3 Equipment Setup

- 1. Set the PS 1 for 0 V \pm 100 mVdc, 2 \pm 0.1 A current limit, and then disable the output.
- 2. Connect the output of PS 1 to J1 (DC+, DC-).
- 3. Connect a voltage meter across J1 (DC+, DC-).
- 4. Connect the output of the Load 1 in series with a current meter (multimeter) to J2 (CHGIN) and J3 (GND). Turn on the power of the Load 1. Set the load current to 1.5 A ±50 mA but disable the output.
- 5. Connect output of the Load 2 in series with a current meter (multimeter) to J4 (BAT+, BAT-).
- 6. Connect a voltage meter across J4 (BAT+, BAT-).
- 7. Set the voltage of Load 2 to 3.6 V \pm 0.1 V, and disable output of Load 2.
- 8. JP1: ON, JP2 (BATEN, GND): ON, JP3: OFF, JP4: ON, JP5: ON, JP6: ON, JP7: OFF.

After the preceding steps have been taken, the test setup for HPA398 (bq2435x DSG EVM) appears as is shown in Figure 1.

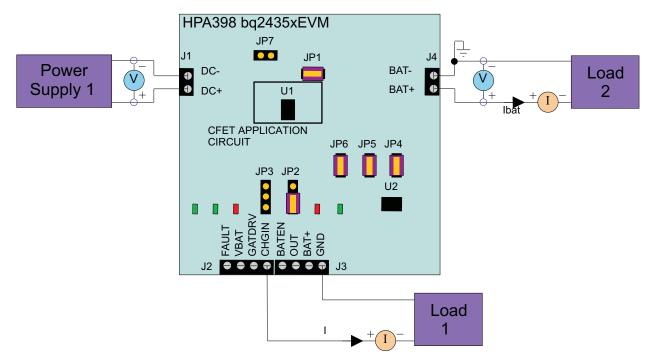


Figure 1. Original Test Setup for HPA398 (bq2435x DSG EVM)

2.4 Procedure

2.4.1 Charger Current and Voltage Regulation

- 1. Ensure that steps in Section 2.3 are followed.
- 2. Enable output of PS 1.
- 3. Increase the output voltage of PS 1 to 5 V ± 0.1 V.
- Enable output of Load 2.
 Measure → V(J2(OUT)) = 3.6 V ±200 mV
 Measure → Ibat = 560 mA ±70 mA
 Observe → D2 on, D3 on, D6 off, D7 on.

2.4.2 CFET Input Overvoltage Protection

- 1. Increase the voltage of PS 1 to 8 V \pm 0.1 V. *Observe* \rightarrow D2 on, D3 off, D6 off, D7 off.
- 2. Decrease the voltage of PS 1 to 5 V \pm 0.1 V. *Observe* \rightarrow D2 on, D3 on, D6off, D7 on.

2.4.3 CFET Load Overcurrent Protection

- 1. Enable the output of the Load 1. Observe \rightarrow D2 on, D3 off, D6 off, D7 off.
- 2. Disable the output of the Load 1. *Observe* \rightarrow D2 on, D3 on, D6 off, D7 on.
- 3. Decrease the voltage of PS 1 to 0 V \pm 0.1 V.

3 PCB Layout Guideline

- 1. It is critical that the exposed power pad on the backside of the bq2435x package be soldered to the printed-circuit board (PCB) ground. Ensure that sufficient thermal vias are located underneath the IC, connecting to the ground plane on the other layers.
- 2. The high-current charge paths into ACIN and from CHGIN, OUT pins must be sized appropriately for the maximum charge current in order to avoid voltage drops in these traces.
- 3. Decoupling capacitors for ACIN, CHGIN must be placed and make the interconnections to the IC as short as possible.
- 4. Resistors for VBAT pin must be placed close to the corresponding IC pins and make the interconnections to the IC as short as possible.

4 Bill of Materials, Board Layout, and Schematic

4.1 Bill of Materials

bq24350 -001	bq24352 - 002	bq24355 - 003	RefDes	Value	Description	Size	Part Number	MFR
1	1	1	C1	1uF	Capacitor, Ceramic, 35V, X5R, 10%	603	Std	Std
3	3	3	C2, C3, C5	1uF	Capacitor, Ceramic, 10V, X7R, 10%	603	Std	Std
1	1	1	C4	0.1uF	Capacitor, Ceramic, 16V, X7R, 10%	805	Std	Std
1	1	1	C6	0.1uF	Capacitor, Ceramic, 10V, X7R, 10%	603	Std	Std
1	1	1	C7	220uF	Capacitor, Electrolytic, 25V, 20%	0.327 X 0.327 inch	UUD1E221MNL1GS	Nichicon
1	1	1	D1	BZT52C6V8S	Diode, Zener, 200mW, 6.8V	SOD-323	BZT52C6V8S	General
3	3	3	D2, D3, D6	Green	Diode, LED, Green, 2.1-V, 20-mA, 6-mcd	603	LTST-C190GKT	Lite On
2	2	2	D4, D7	Red	Diode, LED, Red, 2.1-V, 20-mA, 6-mcd	603	LTST-C190CKT	Lite On
1	1	1	D5	BAT54C	Diode, Dual Schottky, 200-mA, 30-V	SOT23	BAT54C	Vishay- Liteon
2	2	2	J1, J4	ED1514/2DS	Terminal Block, 2-pin, 6-A, 3.5mm	0.27 x 0.25 inch	ED1514/2DS	OST
2	2	2	J2, J3	ED1516/4DS	Terminal Block, 4-pin, 6-A, 3.5mm	0.55 x 0.25 inch	ED1516/4DS	OST
5	5	5	JP1, JP4, JP5, JP6, JP7	PEC02SAAN	Header, 2-pin, 100mil spacing	0.100 inch x 2	PEC02SAAN	Sullins
2	2	2	JP2, JP3	PTC03SAAN	Header, Male 3-pin, 100mil spacing, (36-pin strip)	0.100 inch x 3	PTC03SAAN	Sullins
5	5	5	JP1, JP2, JP4, JP5, JP6	929950-00	Shorting jumpers, 2-pin, 100mil spacing,		929950-00	3M/ESD
2	2	0	R1, R2	0	Resistor, Chip, 1/16W, 1%	402	Std	Std
0	0	2	R3, R4	0	Resistor, Chip, 1/16W, 1%	402	Std	Std
2	2	2	R5, R6	200k	Resistor, Chip, 1/16W, 5%	402	Std	Std
2	2	2	R7, R8	200k	Resistor, Chip, 1/16-W, 5%	603	Std	Std
2	2	2	R9, R10	0.2	Resistor, Metal Film, 1/4 watt, 1%	1206	Std	Std
1	1	1	R11	20k	Resistor, Chip, 1/16-W, 5%	603	Std	Std
1	1	1	R12	1k	Resistor, Chip, 1/16-W, 5%	603	Std	Std
1	1	1	R13	100	Resistor, Chip, 1/16-W, 5%	603	Std	Std
1	1	1	R14	6.2k	Resistor, Chip, 1/16-W, 5%	603	Std	Std
4	4	4	R15, R16, R17, R18	1.5k	Resistor, Chip, 1/16-W, 5%	603	Std	Std

Table 1. Bill of Materials

bq24350 -001	bq24352 - 002	bq24355 - 003	RefDes	Value	Description	Size	Part Number	MFR
1	1	1	R19	51	Resistor, Chip, 1/16-W, 5%	603	Std	Std
4	4	4			6-32 NYL nuts	NY HN 632	H620-ND	Building Fasteners
4	4	4	ST1,ST2,S T3,ST4	4816	STANDOFF M/F HEX 6-32 NYL .500"	sf_thvt_325_rn d	4816	Keystone
8	8	8	TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8	white	Test Point, White, Thru Hole Color Keyed	0.100 x 0.100 inch	5002	Keystone
1	1	1	TP9	white	Test Point, White, Thru Hole Color Keyed	0.100 x 0.100 inch	5001	Keystone
1	0	0	U1	bq24350DSG	IC, OVER-VOLTAGE AND OVER-CURRENT CHARGER FRONT-END	SON-8	BQ24350DSG	TI
0	1	0	U1	bq24352DSG	IC, OVER-VOLTAGE AND OVER-CURRENT CHARGER FRONT-END	SON-8	BQ24352DSG	ТІ
0	0	1	U1	bq24355DSG	IC, OVER-VOLTAGE AND OVER-CURRENT CHARGER FRONT-END	SON-8	BQ24355DSG	TI
1	1	1	U2	BQ2057CSN	IC, Charge Management, One or Two Cell Li-Ion or Li-Pol Charger	S0-8	BQ2057CSN	TI
1	1	1		HPA398	PCB, 2.8 ln x 2.8 ln x 0.062 In		PCB	Any

Table 1. Bill of Materials (continued)

2. OPEN in value column means do not use this component.

3. Std in part number column means standard manufacturer's part number.

4. Std in MFR column means standard manufacturer.

4.2 Board Layout

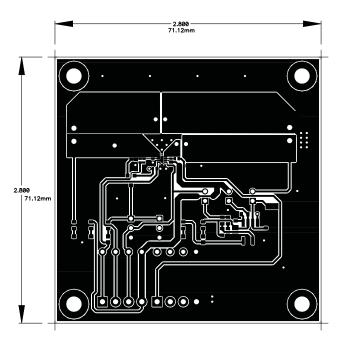


Figure 2. Top Layer

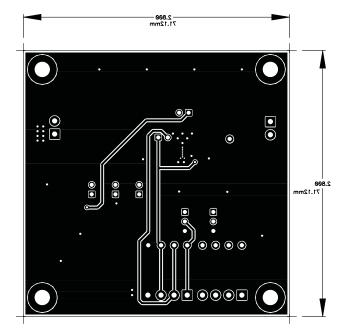


Figure 3. Bottom Layer

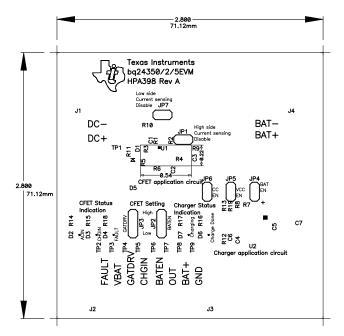


Figure 4. Top Silk Screen

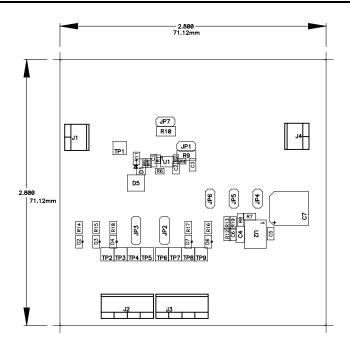
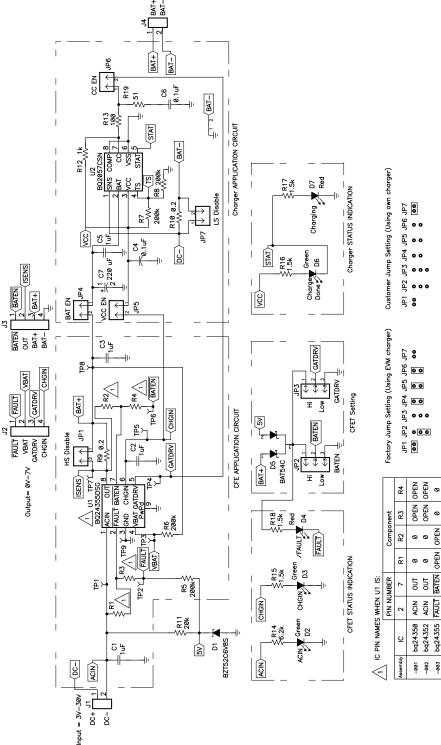



Figure 5. Top Assembly

4.3 Schematic

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit <u>www.ti.com/esh</u>.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 4.5 V to 26 V and the output voltage range of 0 V to 4.2 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 70°C. The EVM is designed to operate properly with certain components above 125°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated