

TIDA-00761 Test Report

Abstract

TI design TIDA-00761 is a high-performance, easy-to-use development kit for the design of a compact, flexible, high-efficiency, lower power management solution for single-cell, Li-ion and Li-polymer batteries used in wearables and low-power portable applications.

It features terminal blocks and standard headers for IN, SYS, BAT, LDO, PMID and VINLS. The battery voltage, systems output voltage, charge current, input current limit, and VIN_DPM thresholds are programmable via I²C interface. Status signals are indicated by LEDs.

Figure 1. Board Photo

Document History

Version	Date	Author	Notes
1.0	August 28 th , 2015	Wenjia Liu	First release

TIDA-00761

1. Board Setup

1.1 Schematic

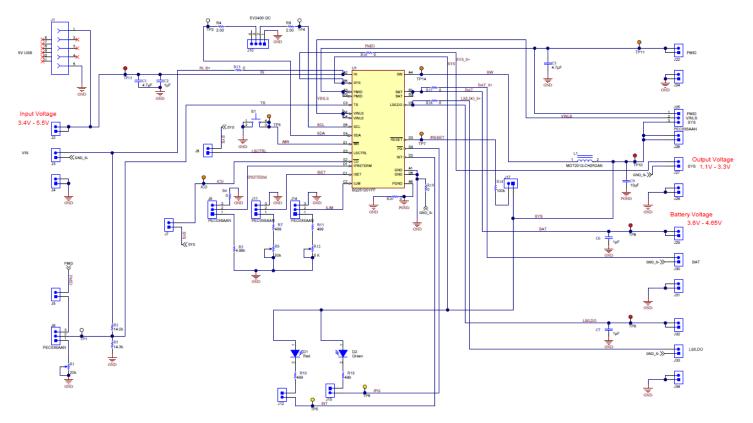


Figure 2. TIDA-00761 Schematic

1.2 I/O Description

Table 1.	Description of the IO connectors on PCB

Header or Terminal Block	Description
J1 - USB Power Input	Micro USB connector for USB input power
J2 - IN (Force line)	Headers for extra connections to IN-Force
J3 - IN/GND (Sense line)	Headers for IN-Sense and GND
J4 - GND	Headers for extra connections to GND
J5 - TS to PMID	Headers for TS pin to be pulled up to PMID
J6 - TS	Headers for TS pin to be connected either to PMID or external resistor
J7 - CD	Headers for /CD pin to be pulled up to SYS pin
J8 - LS/CTRL	Headers for LS/CTRL pin to be pulled up to SYS pin
J9 - IPRETERM	Headers for IPRETERM pin to be connected to an external resistor or shorted to GND
J10 - EV2400	The 4-wire connector for EV2400 Communication interface
J11 - ISET	Headers for ISET pin to be connected to an external resistor or shorted to GND
J12 - INT	Headers for INT pin to be pulled up to SYS pin through a LED light
J14 - ILIM	Headers for ILIM pin to be connected to an external resistor or shorted to GND
J15 - /PG	Headers for /PG pin to be pulled up to SYS pin through a LED light
J17 - /RESET	Headers for /RESET pint o be pulled up to SYS pin through a 100k resistor
J22 - PMID	Headers for extra connections to PMID
J24 - GND	Headers for extra connections to GND
J25 - PMID/VINLS/SYS	Headers for PMID/VINLS/SYS connections
J26 - SYS	Headers for extra connections to SYS-Force
J27 - SYS/GND (Sense line)	Headers for SYS-Sense and GND
J28 - GND	Headers for extra connections to GND
J29 - BAT	Headers for extra connections to BAT-Force
J30 - BAT/GND (Sense	
line)	Headers for BAT-Sense and GND
J31 - GND	Headers for extra connections to GND
J32 - LS/LDO	Headers for extra connections to LS/LDO-Force
J33 - LS/LDO (Sense line)	Headers for LS/LDO-Sense and GND
J34 - GND	Headers for extra connections to GND

1.3 Test points

Test	
Points	Description
TP1	TS pin
TP2	SDA pin
TP3	/MR pin
TP4	SCL pin
TP5	INT pin
TP6	/PG pin
TP7	/RESET pin
TP8	BAT pin
TP9	LS/LDO pin
TP10	SYS pin
TP11	PMID pin
TP13	IN pin
TP14	SW pin
TP /CD	/CD pin

Table 2. Test Points Description

1.4 Default Settings

Bq25120EVM-731 module has provided the capability of changing key parameters using I^2C and EV2400 communication interface. However, I^2C communication is not required for this device to operate. The module is programmed to the default settings as is described below. Table 3 describes the default parameter values and table 4 shows the initial jumper positions on the PCB.

Parameter	Options	BQ25120
BAT_UVLO	2.2 V to 3.4 V (200mV step)	3.0 V
VSYS	1.1 V to 3.3 V (100mV step)	1.8 V
LS/LDO	LS, 0.8 V to 3.3 V (100mV step)	LS
VBREG	3.6 V to 4.65 V (10mV step)	4.2 V
ICHG	5mA to 300mA	10 mA
IPRETERM	500uA to 50mA	2 mA
Input ILIM	50mA to 400mA (50mA step)	100 mA
VIN_DPM_ON	On or Off	On
VIN_DPM		
Threshold	4.2 V to 4.9 V	4.6 V
Auto Charge	On or Off	On
Safety Timer	30min, 3hr, 9hr, Disabled	3 hr

Table 3.Default Settings

ſ	J6	J9	J11	J12	J14	J15	J25
	TS = TS_Pot	ITERM = GND	ISET= GND	Installed	ILIM = GND	Installed	VINLS = PMID

Table 4.Initial Jumper Position

1.5 Recommended Operating Conditions

		min	nom	max	unit
V _{IN}	IN voltage range	3.4	5	20	v
• IN	IN operating voltage range, recommended	3.4	5	5.5	
V _{BAT}	V _{BAT} operating voltage range			5.5 ⁽¹⁾	V
V _{VINLS}	VINLS voltage range for Load Switch	0.8		5.5 ⁽²⁾	V
V _{VINLS}	VINLS voltage range for LDO	2.2		5.5	V
I _{IN}	Input Current, IN input			400	mA
Isw	Output Current from SW, DC			300	mA
I _{PMID}	Output Current from PMID, DC			300	mA
I _{LS/LDO}	Output Current from LS/LDO			100	mA
I _{bat} , I _{sys}	Charging and discharging using internal battery FET			300	mA
TJ	Operating junction temperature range	-40		125	°C

 Table 5.
 Recommended Operating Conditions

- (1) Any voltage greater than shown should be a transient event.
- (2) These inputs will support 6.6 V for less than 10% of the lifetime at $V_{(BAT)}$ or VIN, with a reduced current and/or performance.

2 Test Summary

This procedure describes the test configuration of the bq25120EVM-731 evaluation module for bench evaluation.

2.1 Recommended Test Equipment

2.1.1 Power Supplies

- 1. Power Supply #1 (PS#1): a power supply capable of supplying 5-V @ 1-A is required.
- 2. Power Supply #2 (PS#2): a power supply capable of supplying 5-V @ 1-A is required.

2.1.2 Load

Testing with an actual battery is the best way to verify operation in the system. If a battery is unavailable, then a source meter likes a Keithley 2420, capable of both sourcing and sinking current, or a circuit similar to the one shown in Figure 2 can simulate a battery when connected to PS#2.

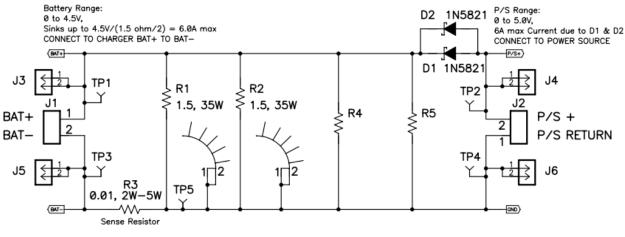


Figure 3. BAT Load (PR1010) Schematic

2.1.3 Meters

Three voltage meters and two current meters. The current meters must be able to measure at least 0.5-A current.

2.1.4 Tool/Software GUI (Optional)

1. EV2400 Communication Interface Board

http://www.ti.com/tool/EV2400

2. BqStudio Software GUI

http://www.ti.com/tool/BQSTUDIO

2.2 Recommended Test Equipment Setup

- 1. Set power supply #1 (PS#1) for 5V+/-100mV DC, 1 A current limit and then turn off supply. Set power supply #2 (PS#2) for 3.5V and then turn off supply.
- 2. Connect the positive output of power supply #1 (PS#1) through a current meter (CM#2) to IN (J2) and negative output to GND (J34).
- 3. Connect a voltage meter (VM#1) across J2 and J34.
- Connect the PR1010 BAT+ terminal of PR1010 in series with a current meter (CM#1) to BAT (J29). Connect PR1010 BAT – to GND (J34). Connect the P/S+ and P/S return side of PR1010 to PS#2, set the voltage to 3.5V <u>+</u> 50mV then disable PS#2.

- 5. Connect a voltage meter (VM#2) across BAT (J29) and GND (J34).
- 6. Connect a DMM (VM#3) across SYS (SYS_S+ of J27) and GND (GND_S- of J27).
- 7. Configure jumpers as shown in Table 1.

After the preceding steps are accomplished, the test setup for PWR731 is as shown in Figure 3.

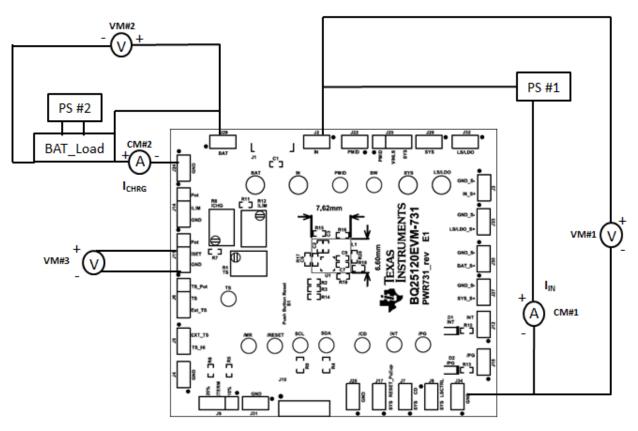
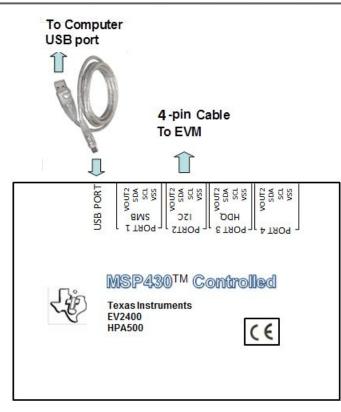
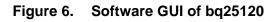



Figure 4. Test Setup for TIDA-00761 (bq25120EVM-731)


- 2.3 Software GUI (When I²C communication is used)
- 2.3.1 Install the bqStudio software GUI
- 2.3.2 Connect EV2400 Interface board to the EVM (as is shown in Figure 4)
 <u>http://www.ti.com/tool/EV2400</u>
- 2.3.3 Open Software GUI and go to "Field View" page (as is shown in Figure 5)
- 2.3.4 Change the parameters in the pull down menu or check/uncheck the selection box.

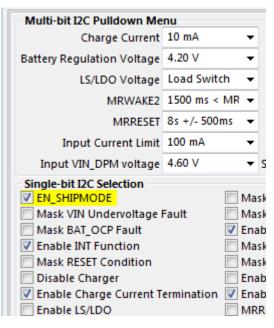
dvanced Comm Charger Errors bq25120 Default View & bq25120 Field View & aad Registers Save Registers Read Write Auto Read: OFF Upda	e Mode Immediate • I2C Address D4(6A) • Default View Device		attery Mana
Multi-bit I2C Puildown Meru Termination Current 2 mA • Charge Current 10 mA • Termination Current 2 mA • attery Regulation Voltage Load Switch • SYS_VOUT 1.80 V • LSJLDO Voltage Load Switch • MRWAKE 50 ms < MR < • MRWAKE SYS_VOUT 1.80 V • Input Current Limit 100 mA • MRREX Hs.* / 500ms • MRREX Hs.* / 500ms • BUVIO 3.2 V • Input Current Limit 100 mA • Safety Timer Time Limit 3 hour fast ch • Single-bit D2 Section Mask VIN Overvoltage Fault Mask RAT_OCP Fault Safety Timer Time Limit 3 hour fast ch • Mask RAT_OCP Fault Mask Kat VIN Overvoltage Fault Mask Kat Condition Mask Kat Condition • Mask RAT_OCP Fault Enable Ts Function Mask Kat Condition Mask Kat Condition • • Gnable Ling Current Termination Mask Kat Condition Mask RESET (VIN • • • easet Register V VBMON, READ • • • • • Isable VINDPM En	Status Charger Status Safety Timer VINDOP Status CD Status CD Status CD Status CD Status SW enabled VIN_UV Fault Status Normal BAT_UVLO Fault Status BAT_UVLO Fault Status BAT_UVLO Fault Status SNormal TS Fault Mode Normal TS Fault Mode Normal TS Fault Mode Normal TS Fault Mode Normal TS Fault Mode Normal TS Fault Mode Normal Norm	A 7 6 5 4 3 2 1 0 D W R 01 0 1 0 0 0 0 0 1 41 W R 01 0 1 1 1 0	

3 Test Procedure

3.1 Set the Potentiometers

- 1. Set VM#3 DMM to measure resistance.
- 2. Install J11 to POT
- 3. Install J14 to POT
- 4. Turn the potentiometer R8 until
- 5. Measure on VM#3 \rightarrow R[J11 (ISET), J11(GND)] = 2 kohm.
- 6. Move the positive side of VM#3 DMM to J14 (ILIM).
- 7. Turn the potentiometer R12 until
- 8. Measure on VM#3 \rightarrow R[J14(ILIM), J14(GND)] = 499 ohm.
- 9. Move the positive side of VM#3 DMM to J6 (TS).
- 10. Turn the potentiometer R1 until
- 11. Measure on VM#3 \rightarrow R[J6 (TS), J14(GND)] = 5.5 kohm − 6.5kohm.
- 12. Move the positive side of VM#3 DMM to J27 (SYS_S+)
- 13. Set VM#3 DMM to measure voltage.

3.2 Charge Disabled


- 1. Install the jumper on J7 Connect CD to SYS.
- 2. Enable PS#1 and PS#2.
- 3. Observe D2 is on, D1 is off.
- 4. Measure on VM#3→ V[J27(SYS_S+) J14(GND)] = 1.8V ± 50mV
- 5. Measure on CM#2 → ICHRG <= 0 1mA
- 6. Measure on CM#1 \rightarrow IIN < 1 mA
- 7. Disable PS#1 and PS#2.
- 8. Charge Current Regulation
- 9. Remove the jumper on J7 Disconnect CD to SYS.
- 10. Enable PS#1 and PS#2.
- 11. Observe D2 is on, D1 is on.
- 12. Adjust PS#2 so that the voltage measured by VM#2, across BAT and GND, measures 3.5V.
- 13. Adjust the PS#1 so that VM#1 still reads 5.0V + 100mV.
- 14. Measure on VM#3 \rightarrow V[J27(SYS_S+) J14(GND)] = 1.8V \pm 50mV
- 15. Measure on CM#2 \rightarrow ICHRG = 90 110 mA

- 16. Measure on CM#1 \rightarrow IIN = 93 mA 113 mA
- 17. 3.3.6 Disable PS#1 and PS#2.

3.3 Ship Mode (Optional if I2C control is not used)

- 1. Enable PS#1 and PS#2.
- 2. Open the software GUI.
- 3. Go to Field View of the GUI and then read all the registers. All the default register values should be shown in the register map. (As shown in Figure 3)
- 4. Measure on CM#2 \rightarrow ICHRG = 9 11 mA
- 5. Install the jumper on J7 Connect CD to SYS.
- 6. Disable PS#1
- 7. Measure on CM#2 \rightarrow ICHRG = 5 7 uA
- 8. Check the box in front of "EN_SHIPMODE" in the software GUI.

- 9. Measure on CM#2 \rightarrow ICHRG < 100 nA
- 10. Disable PS#2.
- 11. Remove the jumper on J7 Disconnect CD to SYS.

TIDA-00761

4 Test Data

4.1 Efficiency

• Figure 7 shows the system efficiency across the different battery voltage with Vsys=1.8V.

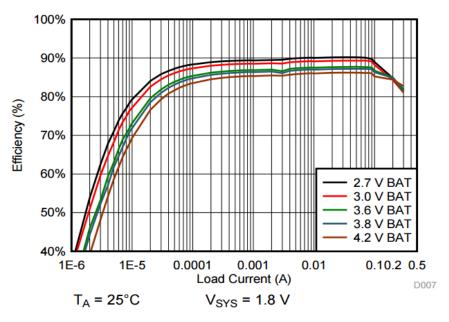


Figure 7. TIDA-00761 System Efficiency vs Battery Voltage (V_{SYS}=1.8V)

• Figure 8 shows the system efficiency across the different battery voltage with Vsys=3.3V.

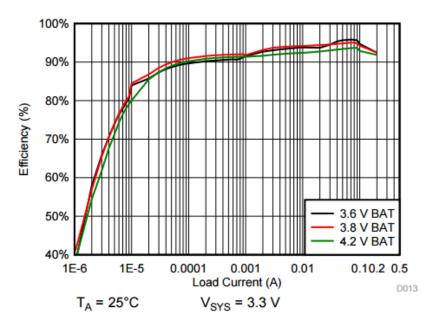


Figure 8. TIDA-00761 System Efficiency vs Battery Voltage (V_{SYS}=3.3V)

4.2 Load Transient

• Figure 9 shows the load transient of V_{LSLDO} from 0 to 100 mA. V_{LSLDO} =3.3V.

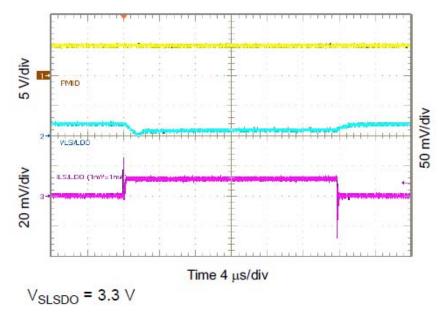
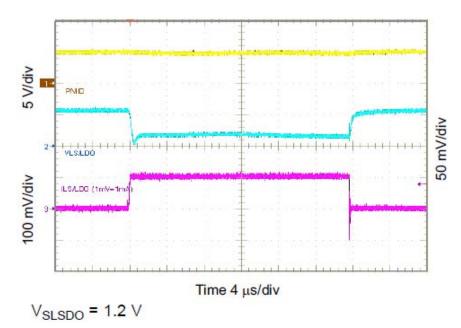



Figure 9. 3.3V VLSLDO Load Transient from 0 to 100mA

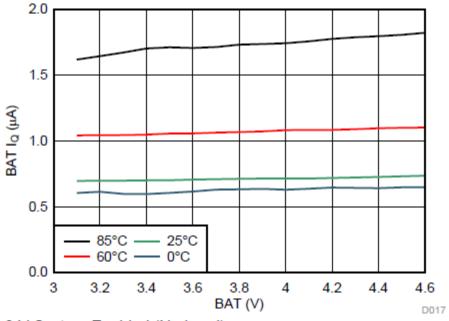

• Figure 10 shows the load transient of VLSLDO from 0 to 100 mA. VLSLDO =1.2V.

Figure 10. 1.2V VLSLDO Load Transient from 0 to 100mA

4.3 Battery Leakage Current

• Figure 11 shows the battery leakage current in HiZ mode.

1.8 V System Enabled (No Load)

Figure 11. Hi-Z BAT, I_{Q}

• Figure 12 shows the battery leakage current in ship mode.

Figure 12. Ship Mode BAT, I_{Q}

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. **TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.** TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have **not** been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated