
Power Supply Design Seminar

Power Seminar topics and online power-
training modules are available at:

power.ti.com/seminars

Topic 1 Presentation:

Under the Hood of Flyback  
SMPS Designs

Reproduced from
2010 Texas Instruments Power Supply Design Seminar 

SEM1900, Topic 1
TI Literature Number: SLUP254

© 2010, 2011 Texas Instruments Incorporated



SLUP254

Topic 1

Under the Hood of 
Flyback SMPS DesignsFlyback SMPS Designs

Jean Picard



SLUP254

Agenda

1. Basics of Flyback Topology

2 Impact of Transformer Design on Power Supply2. Impact of Transformer Design on Power Supply 
Performance

3. Power Supply Current Limiting

4. Summary4. Summary

Texas Instruments—2010 Power Supply Design Seminar 1-2



SLUP254

Transfer of Energy
• FET turns ON

– Voltage across primary 
magnetizing inductance ≅ Vi

E i t d i fl b k

IP
• Energy is stored in flyback 

transformer: Function of L, 
D and Ts

– Secondary diode in blocking state +Vi

Io

y g

• FET turns OFF
– During commutation: Leakage 

energy absorbed by clamp circuit
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IPenergy absorbed by clamp circuit
– Stored energy transferred to output 

through diode
– If DCM operation all the stored

C
la

Vdrain

Iout+P

If DCM operation, all the stored 
energy is transferred

• Pulsating input and output 
t
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Transfer of Energy
O• FET turns ON

– Voltage across primary 
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Transfer of Energy
• FET turns ON

– Voltage across primary 
magnetizing inductance ≅ Vi

• Energy is stored in flyback transformer: 
Function of L, D and Ts

– Secondary diode in blocking state 1:n2

+Vi

Vo

• FET turns OFF
– During commutation: Leakage energy 

absorbed by clamp circuit

C
la

m
p

Vdrain

Iout

– Stored energy transferred to output 
through diode

– If DCM operation, all the stored 
energ is transferred

drain

energy is transferred

• Pulsating input and output current
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CCM versus DCM
• Continuous conduction mode (CCM)

T

VContinuous conduction mode (CCM)
– Small ripple and rms current
– Lower MOSFET conduction and 

turn-off loss

Primary
MOSFET

I
Primary
C

Vdrain

D x Ts
(1 – D) x TsVo + Vin2

– Lower core loss
– Lower capacitors loss
– Can have better “full load” efficiency

S ll EMI d t t filt

IpkIpkmin
Current

m2SSecondary
Current

I
Io_avg

IP ΔIL

ΔILS– Smaller EMI and output filters

• Discontinuous conduction mode 
(DCM)

Time (t)

Io
_ gS

Vdrain

Ts

V– No diode reverse recovery loss
– Lower inductance value

• May result in a smaller transformer
Better “no load” efficiency

drain
D × Ts

Vi

Ipk

(1 D) × T

Primary
MOSFET

Primary
Current

Vo + Vin2

– Better no load  efficiency
– First-order system

• Inherently stable
– No RHPZ problem

IP
(1 – D) × TsCurrent

Secondary

Idle
Period

Texas Instruments—2010 Power Supply Design Seminar 1-7

p
– Slope compensation not needed 

in CMC
Time (t)

Io_avgIo

Secondary
Current
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+Vi

Right-Half-Plane Zero, CCM Operation

1:n2

+Vi

Vo

la
m

p

Iout
-

+-
IP

• Energy is delivered during 1 – D
– Effect of control action during ON 

time is delayed until next switch 

Cl

Vdrain

out+
y

turn OFF

• Initial reaction is in opposite 
direction of desired correction

1
+Vi Io

direction of desired correction

⇒ RHP Zero

Phase decreases with increasing

FET ON

1:n2 Vo

Cl
am

p

Iout
+
-

o– Phase decreases with increasing 
gain

( )2 o1 D V− ×
Vdrain

( ) o
RPHZ 2

out 2

1 D V
f

2 L D I n
×

=
π × × ×

FET OFF
D M i it h d t l
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RCD Clamp Circuit
• During commutation primary to• During commutation primary-to-

secondary, the leakage energy 
is absorbed by the clamp circuit

R dissipates the leakage

+Vi

Diode or
Synchronous

Rectifier VoN1:N2– Rclamp dissipates the leakage 
energy and some magnetizing 
energy 

– The clamp capacitor ensures a

Rclamp Vclamp+

–
Vo

IP

N1:N2

The clamp capacitor ensures a 
low voltage ripple

– Use short connection with 
minimum loop area

Vdrain

RS

• Vclamp is maximum at full load 
and minimum input voltage
– Rclamp selected for a maximum 

S

V V

Clamp-Diode
Forward Recovery Leakage-Inductance

Demagnetization
Vclamp

drain voltage in worst case
– Tradeoff between efficiency, 

peak drain voltage, output 

Vdrain
Primary
MOSFET 

V + Vi clamp V  
+V n

o
i

Texas Instruments—2010 Power Supply Design Seminar 1-9

current limit and cross regulation 
(see ringing effect)



SLUP254

Agenda

1. Basics of Flyback Topology

2 Impact of Transformer Design on Power2. Impact of Transformer Design on Power 
Supply Performance

3. Power Supply Current Limiting

4. Summary4. Summary
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Transformer’s Leakage Inductance
• Transformer’s leakage

Lleak2N1:N2
IS

During Primary-to-
Secondary Commutation• Transformer s leakage 

inductance represented by Lleak2
– Primary winding is the closest to 

center gap

Clamp
+

ø
Vi

IP

+

+–
+

+–

–

–
Vmag1 Vmag2Lm

VD
Vleak2

FET

Vout

+

–
W1

W2

Secondary Commutation

• When FET turns OFF
– Lleak2 opposes to IP decrease and 

IS increase

W2

Clamp Diode
Forward Recovery

Leakage
Inductance

Demagnetization

Current Circulates in
Secondary Winding(s) Vi + Vclamp

Leakage Inductance
Resonates with Drain

Capacitance

– Magnetizing inductance works to 
maintain magnetizing current 

• Voltage spike on FET during 

Vi + Vclamp

VclampVFET

Cl C it V lt

y g( )

VFET Clamp
Capacitor

commutation

• Rate of rise of current is 
influenced by leakage inductance

0 V

Vmag2 – VD – Vout

Vmag2

Vleak2

Clamp Capacitor Voltage Voltage

Reduction in Magnetizing Current
Due to Faster Commutationy g

• Commutation primary-to-
secondary is not instantaneous 
and depends on Vclamp

IP

IS

IP

IS

Due to Faster Commutation
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– Loss of volt-seconds Lost Volt-Seconds

Low Clamp Voltage High Clamp Voltage
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Effects of Leakage Inductance

• Clamp circuits and snubbers needed for primary FET and 
secondary rectifier(s)

• Lower power-supply efficiency

• Impact on gate-drive strategy if synchronous rectifier is p g gy y
used

• Higher duty cycle and magnetizing current than expectedg y y g g p

• Higher H-field radiated emission

Hi h i t l ti• High impact on cross-regulation

Texas Instruments—2010 Power Supply Design Seminar 1-12
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How Leakage Can Be Minimized
• Leakage inductance is a function of winding geometry number of turns• Leakage inductance is a function of winding geometry, number of turns 

and separation between primary and secondary
– Minimize the separation between the primary and main secondary 

winding(s)winding(s) 
– Interleave the primary and main secondary
– Select a core with a long and narrow window

L L

W2 W1
W1 W2
W2 W2
W1 W1

W1 W1
W2 W2
W1 W2
W2 W1

• Leakage inductance is not lowered with a high permeability core
Option 1 Option 2

Texas Instruments—2010 Power Supply Design Seminar 1-13

• Having the winding tightly coupled to the core will not reduce it 



SLUP254

Cross-Regulation – Overview

• Multiple-output flyback topology is popular because of its 
simplicity and  low cost

• If the coupling is perfect, the turns ratio directly defines 
output voltages

• In the real world, “perfect” coupling is not possible

• This often results in poor cross-regulation

Texas Instruments—2010 Power Supply Design Seminar 1-14
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Cross-Regulation Physical Model

• Transformer windings cannot all be equally well coupled to 
the gap because of physical separation between them 

• Magnetic energy stored between the windings represented 
as leakage inductances 

• Model not applicable to any transformer geometry 

C b l if i t l i i d if lti l• Can become complex if interleaving is used, or if multiple 
secondary windings are wound simultaneously (multifilar) 

• Not accurate in situation of lightly loaded secondary outputs 

• Good tool to understand how the common flyback 

Texas Instruments—2010 Power Supply Design Seminar 1-15
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Cross-Regulation Physical Model
lW4

+

+
–

+
–
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lW3

W
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ar
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4

N4 V4

N3 V3

+
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+
–

–

V2

Basic Flyback Circuit Transformer Construction

Clamp

Vi

FET

N1:N2

lW2

W
Pr

i W W W

+

–

lp Lleak12 Lleak23 Lleak34

+

Basic Flyback Circuit Transformer Construction

LmVmag1
Vi

Clamp
N2:N3 N2:N4

I2
I3

IW3
IW4

I4
i

V2
FET

N1:N2

+

–

+

–

+

–

3

V3 V4

• This circuit is only applicable to the transformer windings stackup shown

Each leakage inductance considered is between two consecutive secondaries

Transformer Physical Model
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• Each leakage inductance considered is between two consecutive secondaries

• Also  called “Ladder model”
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Flux Lines during Commutation
Each Secondary Winding with Nominal Load

• φm decreases during commutation

• dφ/dt (decreasing) in each secondary 
winding is limited by its output voltage

φm

d g s ted by ts output o tage
– Increasing current 

induced in W2 to 
W4 to maintain 
φm in the gap

mde N
dt
φ= − ×

W1 W3 W4

W2

L

m

• Leakage between W2 and W1
– W1’s voltage limited by clamp 

• W1 closest to gap
During Primary-to-Secondary Commutation

Current in All Windings• W1 closest to gap
– Vclamp limits dφm/dt in the gap during 

commutation

• W2 is next to W1 I

I2lp

W2 is next to W1
– W2 limits the dφ/dt seen by W3 and W4
– W3 and W4 output voltage lower than 

without leakage

I4

I3

Secondary Currents During
C t ti B d Ph i l M d l

Texas Instruments—2010 Power Supply Design Seminar 1-17

• Current commutates progressively from 
near to remote secondary windings 

Commutation Based on Physical Model
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Ringing Effect
Hi h dV/dt h i it h t ff if i t t i h il l d d• High dV/dt when main switch turns off if main output is heavily loaded

• Transformer leakage inductance and parasitic capacity ⇒ auxiliary 
secondary voltage tends to “ring” y g g

• If auxiliary output fully loaded ⇒ this ringing is clamped 

• If lightly loaded ⇒ voltage overshoot with peak detector effectIf lightly loaded ⇒ voltage overshoot with peak detector effect

• Much higher (sometimes > 2 x nominal value!) auxiliary output voltage at 
light load 
– Primary clamp voltage has high impact on result

• Most existing transformer models fail to predict this

• This effect can be mitigated (but not eliminated)
– Minimize leakage inductance between secondary windings
– Locate the highest power secondary(ies) closest to the primary

Texas Instruments—2010 Power Supply Design Seminar 1-18

• Other solutions include a post-regulator, series resistor or minimum load 



SLUP254

Cross-Regulation Example
Auxiliary Output Lightly Loaded

• W2 (high current output) heavily loaded, 
W4 lightly loaded

– W4’s output received too much energy during 

IW4

I4_pk

I3_pkIW3gy g
Phase 1 due to ringing

– W2’s output did not receive enough energy

• At end of commutation (Phase 1): 

Effect of V3
Capacitors ESR

I2_pk
IW2

V3

( )
– Σ{reflected secondary currents} magnetizing 

current

• V4 went too high IP_pk
IP

Vmag1

g
– Phase 2:  high dφ/dt (decreasing) in W4 

• IW4 ⇒ 0 A rapidly
– IW2 increases to maintain φm in the gap

Time (t)Phase
1

Phase
2

Phase
3

IP

φm

• After IW4 crosses 0 A, W2’s and W3’s di/dt
change to maintain the downslope of the 
magnetizing current and flux

φ

W1 W3 W4

W2

Texas Instruments—2010 Power Supply Design Seminar 1-19

mH N I
A
φ×δ = ×δ = ×
×μ ∑

Phase 2: No Primary Current
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Test Results
10 
R

Ω I  W6

Current Probe
V6VDD

V I 100 1
Current Transformer

6.8 µFW6
(9T)

W3
(9T)

RW3
W6

I

Current
Probe

V4

DD

R6VAW3

W
3

W
1A

W
1B W
2

W
4

W
6

V_Iprim 100:1

+Vi

6.8 µFW4
(14T)

I  W4 V4

R4
36 Ω

300 Ω

5 V

W2
(4T)W1

(21T)

I  W2I  P
MURS120

0.1 µF
R
15 k

clamp
Ω Vclamp

V_Isec1:100
Current Transformer

6.8 Ω
249 Ω

• Input voltage: 48 V

5 V t t l d 0 A t 5 A

To 5-V Filter
and Load 

Primary MOSFET

Sync
Rectifier

To CS Input
I5 V

• 5-V output load: 0 A to 5 A

• Auxiliary outputs: 
V6 (10 V at 0 to 140 mA) and 

Rectifier

• Switching frequency:  250 kHz

• Primary magnetizing

Texas Instruments—2010 Power Supply Design Seminar 1-20

( )
V4 (18 V at 0 to 200 mA)

Primary magnetizing 
inductance: 70 µH
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Cross-Regulation Test Results with 
Main Output Fully Loadedp y

2

IW6
(0.5 A/div)

2

IW6 (0.5 A/div)

4

2

IW4 (1 A/div)
4

2

IW4 (1 A/div)

IW2
(2.94 A/div)

IW2
(2.94 A/div)

V6 at 1 6 W V4 at 2 5 W

1

Time (0.5 µs/div)

1

Time (0.5 µs/div)

V6 at 0 5 W V4 at 3 6 WV6 at 1.6 W, V4 at 2.5 W, 
I5 V = 5 A

• The two auxiliary outputs operate in DCM

V6 at 0.5 W, V4 at 3.6 W, 
I5 V = 5 A
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• Notice the change of slope of IW2 when IW4 or IW6 crosses 0 A
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Cross-Regulation Test Results: Lightly Loaded 
Auxiliary with Main Output Fully Loadedy p y

12.4 V
V6 (10 V/div)I5 V = 5 A,

V4 at 0.3 W,
Vclamp = 70 V

20.6 V
I5 V = 5 A,
V4 at 0.3 W,
Vclamp = 70 V

V6 (10 V/div)

VW6

clamp p

VW6
(10 V/di )(10 V/div) (10 V/div)

Time (1 µs/div)Time (1 µs/div)

IW6
(200 mA/div)

• At minimum load V6 (10 V nominal) goes up to 20 6 V

V6 at 0.5 W V6 at < 5 mW

( µ )( µ )
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• At minimum load, V6 (10 V nominal) goes up to 20.6 V
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Cross-Regulation Test Results with Main Output 
Fully Loaded : Impact of Clamp Voltage

26 V14.4 V
V6 (10 V/div)I5 V = 5 A,

V4 at 0.3 W,
Vclamp = 83 V

V6 (10 V/div)I5 V = 5 A,
V4 at 0.3 W,

V l = 83 V

VW6
(10 V/di )

VW6
(10 V/div)

Vclamp = 83 V

(10 V/div)

IW6

(10 V/div)

Time (1 µs/div)Time (1 µs/div)

IW6
(200 mA/div)

• RCD resistor has been increased for higher Vclamp: 70 V ⇒ 83 V

V6 at 0.5 W V6 at < 5 mW

Texas Instruments—2010 Power Supply Design Seminar 1-23

⇒V6 increased significantly in both cases
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Overload Test at Auxiliary Output: 
Impact of Leakagep g

• There was no hiccup I5 V = 0 A,There was no hiccup 
mode even at more 
than 3 A!

Th l d d i di

4

3

IW4 (1 A/div)
5 V
V4 at 2.5 W,
R6 = 1 Ω

• The overloaded winding 
is unable to take all the 
energy because of 
leakage W3 having in

3
VAW3 (20 V/div)

IW6 (2 A/div) 6.2-A Peakleakage, W3 having in 
fact a better coupling to 
primary than W6

Enough energy

2

IW6 (2 A/div)

– Enough energy 
delivered by W3 to VDD
to maintain switching

Time (0.5 µs/div)
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Benefits of Good Cross-Regulation

• Good control of auxiliary outputs in spite of load variations

Better control of gate drive voltage amplitude less gate• Better control of gate drive voltage amplitude, less gate 
drive losses

• Lower rms current in output capacitors, lower dissipation

• May allow the controller to reach hiccup mode more easilyMay allow the controller to reach hiccup mode more easily 
when the main output is short-circuited for better protection
– Not necessarily true if the short-circuit is applied to an auxiliary

output!

Texas Instruments—2010 Power Supply Design Seminar 1-25
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How Cross-Regulation can be Improved
• The high current winding must have the best coupling to primary

• Minimize leakage between all secondary windings 

• Optimize, not minimize, the leakage inductance of auxiliary windings to primaryp , , g y g p y

• Use winding placement to control leakage inductance
– Winding stackup
– Spread each winding over the full width of the bobbin for better coupling 

Pr
im

ar
y

A

Pr
im

ar
y

A

Pr
im

ar
y

A

Pr
im

ar
y

B

Pr
im

ar
y

B

Pr
im

ar
y

B

W
2A

W
2A

W
2A

W
2B

W
2B

W
2BW
3

W
3

W
3or Better

than

If W3 is lightly
loaded and W2

is the high-
current main

• Operate main output in CCM

• Try to avoid operating the auxiliary outputs in DCM. In some cases, consider 
using resistance in series with the diode

output.

using resistance in series with the diode

• Consider winding more than one auxiliary secondary simultaneously (multifilar)

• Lower clamp voltage may help
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– Trade-off between cross regulation, efficiency, peak drain voltage and current limit
– Some other types of clamp circuits may provide better results than the RCD clamp
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Impact of Transformer Design on Flyback Efficiency
Th f ll i id li b d d i t f• The following guidelines can be used during transformer 
design to optimize the converter efficiency
– Minimize leakage inductance from primary 

to main (high current) secondary

300

275

250

300

d 
  (A

)2

d 
  (A

)2

Secondary RMSto main (high-current) secondary
– Minimize transformer high frequency 

conduction loss
• Multifilar or Litz wires when necessary

225

200

175

150

125

200

M
S 

C
ur

re
nt

 S
qu

ar
ed

S 
C

ur
re

nt
 S

qu
ar

ed

Secondary RMS
Current Squared 

at 48 V

Good Duty-Cycle
Trade-Off with

48-V Inputy
• Interleaving
• Select core shape for minimum number of layers

– Optimize the transformer turns ratio for

125

100

75

50

25

100

20
x 

Pr
im

ar
y 

R
M

S
ec

on
da

ry
 R

M
S

20 x Primary RMS
Current Squared at 48 V

p

best efficiency
– Select CCM operation

0 0
0 20 80 10040 60

Duty Cycle (%)

• Other factors also have an indirect impact on efficiency• Other factors also have an indirect impact on efficiency
– Cross-regulation 

• VDD rail used for gate drive
• Output capacitors rms current
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– Impact of fringing flux from gap
• Worse with planar transformers

Flyback and EMI
• Flyback ⇒ IP and IS pulsate ICMFlyback ⇒ IP and IS pulsate

– Use low Z caps, minimize loop areas 
– Output filter often required

• Interwinding capacitance ⇒ CM CE
–+

Vi VoutIDM

ICM
2

P S

N1:N2

IP IS

• Interwinding capacitance ⇒ CM CE

• Transformer and diode configuration 
impact effective capacitance

Less if facing indings at same AC

+
+––

Clamp VD
DM

ICM
2

FET
Output to

Chassis CM– Less if facing windings at same AC 
potential

– Diode versus synchronous rectifier
– Flyback ≠ Forward

+Vi

Chassis CM

ec
on

da
ry

nd
ar

y
B

nd
ar

y
A

y

m
ar

y
C

m
ar

y
B

m
ar

y
A

• Better to start with end connected to primary 
MOSFET
– Shields Vdrain E-field

R d i t i di it ff t CE

O
th

er
S

Se
co

n

Se
co

n

Pr
im

Pr
im

Pr
im– Reduces interwinding capacity effect on CE

• Minimize leakage for low H-field RE

• Interleaving reduces H-field RE but may increase 
ff ti P S i t i di it

Texas Instruments—2010 Power Supply Design Seminar 1-28

FET

VD +

–
Vout

effective P-S interwinding capacitance

• Center-gap transformer
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Flyback and EMI
• Flyback ⇒ IP and IS pulsate ICMFlyback ⇒ IP and IS pulsate

– Use low Z caps, minimize loop areas 
– Output filter often required

• Interwinding capacitance ⇒ CM CE
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effective P-S interwinding capacitance

• Center-gap transformer
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Agenda

1. Basics of Flyback Topology

2 Impact of Transformer Design on Power Supply2. Impact of Transformer Design on Power Supply 
Performance

3. Power Supply Current Limiting

4. Summary4. Summary
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Power Supply Current Limiting – Overview

• Current-limiting characteristic of power supply 
defines:
– Output power beyond which output voltage falls out 

of regulation. Corresponds to the “output load-current 
li it” (I )limit” (Iout_LIM)

– Output current in overload situations
• including short-circuitsincluding short circuits

• Current-limiting characteristic is influenced by 
parasiticsparasitics
– Turn-off delays, leakage inductance,…

Texas Instruments—2010 Power Supply Design Seminar 1-30
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Understanding Current Limit –
Flyback Power Supply with Peak CMC in CCM

Ipk_LIM
IA _LIM

Primary
Current

ΔIL
D x Ts

Clock Ramp

+Vi Io

Iout

Vo

Clamp
Slope Comp

R

1:n2

Time (t)

m2S

Secondary
Current Io_avg(1 – D) x Ts

Power Supply Controller

PWM

COMP
(From Error 

I_SENSE

VC R s

R

C

RSC

+

–

I i th i k

Just at Current Limit, Output Begins 
to Fall Out of Regulation

Ipk_LIMPrimary
Current D x T

(
Amp) VC_LIM Current-

Sense
Filter

• Ipk_LIM is the primary peak 
current limit

• Io avg is the output current
Secondary

Current
Io_avg

(1 – D) x Ts

D x Ts

o_avg p

• If short-circuit, Io_avg can be 
much higher than when 
current limit has just been

Output Short Circuit
Time (t)

( )AII I 1 D×
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current  limit has just been 
reached

( )A
out o _ avg

2
I I 1 D

n
= = × −
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Current-Limit Model – Basic Representation
• Peak CMC in CCM, fixed switching frequency

VCI

ΔIL

m2

m1

I  (Average 
Magnetizing
Current)

A

I
Rpk

S
=

Gate Control

ΔIL

D × Ts

)

Gate Control

Neglecting DC voltage drops:

( )
oL

2
VIm

1 D T L
Δ= ≈ oVD

V V
=

Neglecting DC voltage drops:
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Influence of Input DC Voltage on Output Load 
Current Limit – Impact of Feedforward

im
it 

(A
)

10

9
Without FeedforwardClock Ramp

+Vi Io

Iout

Vo

Clamp

Slope Comp

1:n2

Feedforward
Rff

ad
 C

ur
re

nt
 L

8

7

Without Feedforward
Power Supply Controller

PWM

COMP

Clock Ramp

I_SENSE

VC R s

R

C

RSC

+

–

O
ut

pu
t L

oa

6
With Feedforward

COMP
(From Error 

Amp) VC_LIM

20 25 3530 40 45 50 55
Input Voltage (V)

5

• With feedforward, output load current limit becomes almost independent of 

If Vi ↑  ⇒ (1 – D) ↑ ⇒ Iout_LIM increases

input voltage
⇒ Better control during overload, less stress on power circuitry 
⇒ Power limit

C t d/ i d ti
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⇒ Cost and/or size reduction

• Feedforward also improves line noise rejection
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Current Limit Model – With Feedforward

K  × Vff i

VC

R  × 
Magnetizing

S

R  × mS 2
R  ×  IpkS

R  ×  IASR × mS 1

ff i

Gate Control

D × Ts

g g
Current)

• Kff x Vi is the feedforward contribution

Gate Control

ff i
– Subtracting it from Vc is identical to adding it to current feedback
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Current Limit Model – Adding Slope Compensation

VCm0 K   Vff i×

Slope Compensation 
(Clock Ramp)

m x0 2
(T – T )s dis

R  × mS 2 R × m

R  ×  IAS

2

D × T
2

s

S 2 R × mS 1

D × Ts

Tdis

R  ×  IL_pkminS

• Slope compensation to avoid subharmonic oscillation at duty-cycle close to or

Gate Control

s

Slope compensation to avoid subharmonic oscillation at duty cycle close to or 
higher than 50%

• For easier understanding, slope compensation contribution subtracted from Vc.
– Equivalent to slope compensation added to current feedback
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– Equivalent to slope compensation added to current feedback
– In that circuit representation, the slope compensation is capacitively-coupled
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Current Limit Model – With all Delays, Slope 
Compensation and Feedforwardp

• For a more accurate, parasitics must be included in the 
analysisanalysis

• Parasitic delays
RC filter time delay– RC filter time delay

– Turn off delay, including current comparator and gate drive 
– FET turn-on delay from onset of slope compensation ramp

• See Topic 1, Appendix A, in the Seminar Manual for 
detailed equations
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Influence of Transformer Leakage on 
Output Load Current Limitp

• Rate of rise of current is influenced 
by leakage, commutation primary-to-
secondary is not instantaneous

Lleak2

+– +– –
Vmag1 VL

VD
Vleak2 +

Ideal Xfmr
N1:N2

IS

secondary is not instantaneous
⇒ Loss of volt-seconds (also influenced 

by the clamp voltage)
⇒ Duty-cycle and average magnetizing

Clamp
+Vi

IP

+ + –
Vmag1 Vmag2Lm

FET

Vout

–

⇒ Duty-cycle and average magnetizing 
current have to increase to maintain 
the output voltage

⇒ Higher conduction loss

FET

g
⇒ Higher transformer peak current than 

expected
-> Iout_LIM lower than expected 

IP

IS

• Leakage inductance helps 
however to keep control of 
the output current in output ( )oVV D V D 1 D D

Lost Volt-Seconds
Dtr
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the output current in output 
short-circuit situation ( )o

i new clamp tr new tr
2

V D V D 1 D D
n

× ≈ × + × − −
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Current Limit During Overload – Example with 
Combined Effects

• In overload: Output current 
increases ⇒ output voltage 
decreases

Assuming no hiccup mode
25

decreases
– Short-circuit: output current 

much higher than at onset of 
current  limit 15

20

ut
C

ur
re

nt
(A

)

Without Leakage

With Leakage

• Parasitic turn off delays may 
result in an out of control 
current if volt-seconds 

10O
ut

pu
balance is not possible at the 
transformer
– Transformer’s leakage 

i d t h l t i t i

00.511.522.533.544.55
5

Vo1 Vo2Output Voltage (V)
Short Circuit

inductance helps to maintain 
that balance

– If no leakage, the imbalance 
occurs starting at Vo1

( )o _ short
S del _ OFF tr S

2

i d l OFF l S

V
T t D T

n
V t V D T

× − − × =

× − × ×
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g o1
– With leakage, the imbalance 

occurs only from Vo2

i del _ OFF clamp tr S                          V t V D T× × ×
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Summary
Th fl b k t f i th k l t f th• The flyback power transformer is the key element of the 
converter, for optimum efficiency and cross-regulation

Parasitics ha e a strong infl ence on fl back con erter’s• Parasitics have a strong influence on flyback converter’s 
behavior, particularly under overload or short-circuit 
conditions

• The primary clamp circuit design is a trade-off between:
– Efficiency 
– Peak drain voltage
– Output current limit 
– Cross-regulationCross regulation

• Simple feedforward technique can be used to optimize the 
converter and the system, lowering worst-case components
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converter and the system, lowering worst case components 
stress and reducing the overall cost and size
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