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ABSTRACT
This article shows a circuit implementation using a single-stage op amp to convert complementary-current
outputs from a current-sinking DAC to a single-ended voltage.
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1 Introduction
Digital-to-analog converters (DACs) come in many bit resolutions and sampling speeds. Outputs from
lower-speed DACs are often single-ended and have either a voltage or a current output. Most highspeed
DACs are designed with complementary outputs that either source or sink current. This article, Part 1 of a
three-part series, discusses the interface between a current-sinking DAC and an op amp. Part 2, which
will appear in a future issue of the Analog Applications Journal, will discuss the interface between a
current-sourcing DAC and an op amp. Part 3, also in a future issue of the Analog Applications Journal, will
provide a simplified approach to the interface analogy presented in Part 2.

High-speed DACs are used in endequipment applications like communications, test equipment, medical
applications, industrial applications, and others that require signal generation. Each of these applications
has its own specific requirements for signal characteristics and performance. This article series focuses on
end equipment that requires DC coupling, such as signal generators with frequency bandwidths of up to
100 MHz and a single-ended output. In these cases, high-speed op amps can provide a good solution for
converting the complementary-current output from a high-speed DAC to a voltage that can drive the signal
output.

2 Overview of Complementary-Current-Steering DAC
A simplified block diagram of a complementary-currentsteering DAC is shown in Figure 1. The digital input
is decoded for the switch drivers that switch or steer the appropriate current sources in the current-source
array to the outputs, IOUT1 and IOUT2. IOUT1 and IOUT2 are complementary, so if current flows out of one it is
subtracted from the other and vice versa, keeping the total current constant. For example, if full scale is 20
mA, the minimum code input or zero-scale input may provide 0 mA at IOUT1 and 20 mA at IOUT2. At
midscale, each output provides 10 mA; and at maximum or full scale, IOUT1 = 20 mA and IOUT2 = 0 mA. This
example is illustrated in Table 1. It is important to note that the midscale input, with each output at 10 mA,
sets the output common-mode condition for the design.

The current-source array is constructed with either n-type or p-type transistors. The word “source” is used
generically to refer to the transistor circuit structure, which may either source or sink current. This article
considers the interface between a current-sinking DAC and an op amp where the source array is
constructed with n-type transistors.

Figure 1. Simplified Block Diagram of Current-Steering DAC

Table 1. Example of IOUT1 and IOUT2 Currents for 20-mA Full Scale

Input IOUT1 (mA) IOUT2 (mA)
Maximum Scale 20 0

Midscale 10 10
Zero Scale 0 20

2 Interfacing Op Amps to High-Speed DACs, Part 1: Current-Sinking DACs SLYT342–July 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLYT342


Example Devices:
DAC5686/87/88,
DAC5681/82Z

IOUT1 IOUT2

Compliance
Voltage:

AV ± 0.5 VDD

Current-
Sink

Cascodes

Switches

(a) NMOS

Example Device:

DAC5675A

IOUT1 IOUT2

Compliance
Voltage:

AV – 1 V to AV + 0.3 VDD DD

Current-
Sink

Cascodes

Switches

(b) NPN (bipolar)

www.ti.com Architecture and Compliance Voltage of Current-Sinking DACs

3 Architecture and Compliance Voltage of Current-Sinking DACs
Figure 2 shows simplified examples of NMOS and NPN current sinks and lists a few devices that use
them. The compliance voltage shown for each group of devices is the voltage range at the DAC outputs
within which a device will perform as specified. Lower voltages tend to shut down the outputs, and higher
voltages have the potential to cause breakdown. Both of these should be avoided to provide the best
performance and long-term reliability.

Generally the output is terminated by impedance to a positive power supply. This impedance supplies a
current path needed for the sink array, and the voltage drop across the same impedance can be a voltage
output. The impedance can be constructed in various ways; it can be a simple resistor divider, a
transformer-coupled impedance, or a combination of passive components and an active circuit. This article
focuses on the latter option, with an op amp as the active circuit.

Figure 2. Simplified NMOS and NPN Current Sinks

4 Op Amp Interface
The proposed op amp interface is shown in Figure 3. This circuit provides biasing of the DAC outputs,
converts the DAC currents to voltages, and provides a single-ended output voltage through the op amp.
The op amp is the active amplifier element for the circuit and uses R2, R3, RG, and RF to make a difference
amplifier.
• IDAC+ and IDAC– are the current outputs from the DAC.
• R2 and R3 are input resistors to the positive input of the op amp.
• RG and RF are the main gain-setting resistors for the op amp.
• RX, R1, RY, and R4 provide bias and impedance termination for the DAC outputs.
• VDAC+ and VDAC– are the voltages at the outputs of the DAC.
• Vp and Vn are the input terminals of the op amp.
• VS+ and VS– are the power supplies to the op amp.
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Figure 3. Proposed Circuit for an Op Amp Interface

Proper component selection provides the impedance required to maintain voltage compliance with
maximum amplitude, and balance for the best performance.

Typically, harmonic distortion in an op amp is dominated (at least at lower frequencies) by the second-
order harmonics. Balanced inputs to the difference-amplifier circuit will help suppress second-order
harmonics and provide for the best performance, but little impact is expected on third-order harmonics if
the inputs are not balanced.

For analysis, it is easiest to break the circuit into positive and negative halves and examine each
separately. Assume that the op amp is ideal.

4.1 Analysis of Positive Side

Figure 4. Positive Side of Analysis Circuit

The positive half of the circuit is shown in Figure 4. To start the analysis, use Kirchhoff’s current law to
write a node equation at VDAC+:

(1)

The input impedance can be expressed as:
ZDAC+ = RX || R1 || (R2 + R3) (2)

Equation 1 and Equation 2 are simultaneous equations with many variables, and designers must choose
or identify values based on other design criteria to solve them. The following assumptions are made for
this article:
• The DAC output current, IDAC+, and the voltage swing, VDAC+, are defined by the designer, which sets a

target value for ZDAC+.
• An existing circuit voltage or other known voltage is used for VREF.
• In a difference amplifier, R3/R2 must equal RF/RG to balance the gain of the amplifier. Note that in a

voltage-feedback op amp, it is desirable to make the impedance at Vp equal to that at Vn to cancel
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voltage offset caused by the input bias current. In a current-feedback op amp, the input bias currents
are not correlated; so it is acceptable not to balance these impedances, but it may be desirable to
minimize them.

• The equations are solved for the condition where the DAC current on the positive side is zero: IDAC+ = 0
mA. This sets the DAC voltage on the positive side to its maximum value, VDAC+ = VDAC+(max).

With these constraints, the designer can apply algebra and simultaneous-equation techniques to
Equation 1 and Equation 2 to solve for 1/R1:

(3)

The known value for R1 can be substituted into Equation 2, which can then be rearranged to find 1/RX:

(4)

4.2 Analysis of Negative Side

Figure 5. Negative Side of Analysis Circuit

The negative half of the circuit is shown in Figure 5. Analysis of the negative side is complicated, because
Vn is driven not only by the negative side of the DAC, but also by the positive side through the op amp
action. To start the analysis, use Kirchhoff’s current law to write a node equation at VDAC–:

(5)

The input impedance can be expressed as:

(6)

With substitution and rearrangement, the designer can use:

(7)

and Vn = αVp to rewrite Equation 6 as:

(8)

Using the same substitutions and general design constraints used on the positive side to drive values for
ZDAC–, VREF, and RG, simultaneous-equation techniques can be applied to Equation 5 and Equation 8 to
solve for 1/R4 (Equation 9). Note that the equations are solved for the condition where the DAC current on
the negative side is zero: IDAC– = 0 mA. This sets the DAC voltage on the negative side to its maximum
value, VDAC– = VDAC–(max), and sets the DAC voltage on the positive side to its minimum value, VDAC+ =
VDAC+(min).

5SLYT342–July 2009 Interfacing Op Amps to High-Speed DACs, Part 1: Current-Sinking DACs
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLYT342


V

I
Z

R

R

OUT

DAC

F

G

= ×2

V V V V VOUT OUT V OUT V OUT V OUT Vp DC p DAC n DC n DAC
= + + +_ _ _ _( ) ( ) ( ) ( )

V I
R R R

R R R R R ROUT V DAC
Y F

Y G Y G
n DAC_ ( )

= − ×
+ +

−

4

4 4
( )

V V
R

R R

R

R R ROUT V REF
Y

F

G Y
n DC_ ( ) ||

= − ×
+

×
+

4

4 4
( )

V
R

R R R
I

R R R

R R R R ROUT V
F

G Y
DAC

X

X X
p DAC_ ( ) ||

= +
+

× ×
+ +( )

+1
4

1 3

1 1 22 3+( )R( ) [ ]

V
R

R R R
V

R R

R R R R R ROUT V
F

G Y
REF

X
p DC_ ( ) ||

= +
+

× ×
+( ) + +

1
4

1 3

1 2 3 1 2 ++( )R3
( ) [ ]

1
1

1 1

3

2 3

4R

Z
R

R R

R

Z R RY

DAC

G

DAC G

=

−

×
+

− +

+

−

α( )

( )

1

1

4

3

2 3 3

2 3

R

Z
R

R R

R

Z

V
R

R R

DAC

G

DAC

DAC

=

−

×
+

+

×
+

+

−

+

α

α(min) −

−
−

−

−

−

V

V V R

V

DAC

REF DAC G

DAC

(max)

(max)

(max

1
1

))

(max)V VREF DAC−
+

−

1

( )

[ ]( )
( )

Op Amp Interface www.ti.com

(9)

The value of 1/R4 can then be used to find 1/RY:

(10)

Note that α, the multiplication factor from Vp to Vn, expresses the difference between the input pins. In a
voltage-feedback amplifier, α is set by the loop gain of the amplifier. In a current-feedback amplifier, α is
the gain of the input buffer between the inputs. α is typically close enough to 1 that it can be removed from
the calculation.

4.3 Calculating Output Voltage
Superposition can be used to write equations for the separate sources referred to VOUT. Since the DAC
only sinks current, which is by convention negative current flow, the output-voltage swing is the opposite
of what might be expected. In other words, when the DAC is sinking current on the positive side, the
output of the op amp tends to swing negative, and when the DAC is sinking current on the negative side,
the output of the op amp tends to swing positive. Thus, in the following equations IDAC+ and IDAC– are
always negative or zero.

The output-referred DC bias from the positive side is:

(11)

The output-referred DAC signal from the positive side is:

(12)

The output-referred DC bias from the negative side is:

(13)

The output-referred DAC signal from the negative side is:

(14)

Adding these four equations provides an expression for VOUT:

(15)

If it is assumed that IDAC = IDAC+ – IDAC–, Z = ZDAC+ = ZDAC–, and RF/RG = R3/R2, the DC component of the
DAC outputs will cancel, and the AC signal gain equation from the DAC output current to the voltage
output of the op amp can be simplified and written as:

(16)
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5 Design Example and Simulation
For an example of how to proceed with the design, assume use of one of the NMOS DACs noted earlier,
with a compliance voltage of 3.3 ±0.5 V. Also assume that the full-scale output is set to 20 mA. To get a 5-
VPP, DC-coupled, single-ended output signal, use the circuit shown in Figure 3. Because a ±5-V power
supply is being used for the op amp, set VREF = 5 V. Given that IDAC± = 20 mA and VDAC± = 1 VPP, the target
impedance, ZDAC±, can be calculated to equal 50 Ω.

With the starting design constraints given earlier, the THS3095 current-feedback op amp is selected as
the amplifier, where R3 = RF = 750 Ω. The gain from VDAC± to the output is given by the resistor ratios
RF/RG = R3/R2, so RG can be calculated as:

(17)

Use the nearest standard 1% value, 301 Ω.

Equation 3, Equation 4, Equation 9, and Equation 10 can be used to find, respectively, R1, RX, R4, and RY:

(18)
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Figure 6. Simulation of Current-Sinking DAC Interfaced to Op Amp

The nearest standard 1% values should be used: R1 = 261 Ω, RX = 66.5 Ω, R4 = 442 Ω, and RY = 82.5 Ω.

These equations are more easily solved when set up in a spreadsheet. To see an example Excel®
worksheet, go to http://www.ti.com/lit/zip/slyt342 and click Open to view the WinZip™ directory online (or
click Save to download the WinZip file for offline use). Then open the file DAC_
Sink_to_Op_Amp_Wksht.xls and select the “DAC Sink to Op Amp, No Filter” worksheet tab.

SPICE simulation is an excellent way to validate the design. To see a TINA-TI™ simulation of the circuit in
this example, go to http://www.ti.com/lit/zip/slyt342 and click Open to view the WinZip directory online (or
click Save to download the WinZip file for offline use). If the TINA-TI software is already installed, open the
file DAC_ Sink_to_Op_Amp_No_Filter.TSC to view the example. To download and install the free TINA-TI
software, visit www. ti.com/tina-ti and click the Download button.

The simulation circuit and waveforms in Figure 6 show that the circuit simulates as expected. IDAC+ and
IDAC– are the DAC currents, VDAC+ and VDAC– are the voltages developed at the DAC outputs, and VOUT is
the output of the amplifier. The current-sinking DAC and op amp are ideal elements constructed with
SPICE macros, and are intended to show that the equations derived earlier for R1, RX, R4, and RY are valid
for ideal elements. Actual performance will vary depending on selected devices.
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6 DAC Image-Filter Considerations
The DAC output signal will have the desired baseband signal, as well as the sampling images that occur
at multiples of the sampling frequency. Filtering is usually used to reduce the amplitude of the sampling
images, because they degrade performance. Filtering directly at the DAC output before the op amp
preserves the best performance. This is especially important with multitone signals, where second-order
intermodulation products from the sampling images appear at the baseband.

Filter design is not the topic of this article, so it will not be covered in detail; but for proper operation the
filter component values are calculated based on the input and output impedances seen by the filter. While
finding the exact value of the impedance is not difficult, it is usually easier to find standard component
values to implement the filter when the input and output impedances to the filter are equal. With this in
mind, consider how to achieve the same goals as before, while keeping the impedance seen by the filter
balanced.

Figure 7. Inserting DAC Image Filter

Figure 7 shows the proposed circuit implementation. R1, RX, R4, and RY have been replaced with prime
and double-prime components on either side of the filter, where

R1 = R′1 || R″1,

RX = R′X || R″X,

R4 = R′4 || R″4, and

RY = R′Y || R″Y.

With the additional constraint that the impedance seen on each terminal of the filter is 2 × ZDAC±, the
following equations can be derived by:
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These equations are more easily solved when set up in a spreadsheet. To see an example Excel
worksheet, go to http://www.ti.com/lit/zip/slyt342 and click Open to view the WinZip directory online (or
click Save to download the WinZip file for offline use). Then open the file DAC_Sink_
to_Op_Amp_Wksht.xls and select the “DAC Sink to Op Amp, With Filter” worksheet tab.

SPICE simulation is an excellent way to validate the design. To see a TINA-TI simulation comparing
results with a filter used in the circuit, open the WinZip directory as described above for the worksheet. If
the TINA-TI software is already installed, open the file DAC_Sink_to_Op_Amp_ With_Filter.TSC to view
the example. To download and install the free TINA-TI software, visit www.ti.com/tina-ti and click the
Download button. To show the effects of balancing the filter impedance, a 100-MHz differential filter
designed for 100-Ω input and output impedance is inserted into the interface of the DAC and op amp. In
the top circuit, the filter is inserted between the bias resistors and amplifier gain resistors with no regard
for balancing the impedance; the output is labeled “VOUT No Match1.” In the bottom circuit, the filter is
inserted between the DAC and the bias resistors with no regard for balancing the impedance; the output is
labeled “VOUT No Match2.” In the center circuit, the bias network is designed for 100-Ω balanced
impedance; the output is labeled “VOUT Matched.” The transient simulation waveforms look the same as
those shown in Figure 6 for each of these circuits, but simulation of an AC transfer function (see Figure 8)
shows that the unmatched implementations result in significant ripple in the frequency response while the
matched design performs as desired.
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Figure 8. Simulation of AC Transfer Function With Matched vs. Unmatched Filter Implementations

During design of the Texas Instruments TSW3070 evaluation board, a circuit was derived as shown in
Figure 9 that appears to be well-balanced and that provides for proper impedance matching to the 100-
MHz low-pass filter (LPF). However, the simulation waveforms of the circuit show that the impedances
seen by the outputs of the DAC are not balanced, and that the voltage at VDAC+ is not the mirror image of
that at VDAC–. Per the last example given, this circuit was modified to balance the impedances for the DAC
and the LPF. Performance of the second and third harmonics was tested before and after the modification,
and the results (shown in Figure 10) show as much as a 10-dB improvement in the second harmonics
(depending on the frequency) with basically no change in the third harmonics.
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Figure 9. Original TSW3070 Circuit Simulation (Not Balanced)

Figure 10. Harmonic Distortion With Balanced Versus Unbalanced Impedance
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7 Conclusion
This article shows a circuit implementation using a single-stage op amp to convert complementary-current
outputs from a current-sinking DAC to a single-ended voltage. Equations are derived and a methodology
presented for proper selection of component values to set the DAC output-voltage compliance, while
maintaining balanced input signals to the op amp for best overall performance. Filter-design
considerations are also included to explain proper insertion when filtering before the amplifier is desired.

8 Related Web Sites
amplifier.ti.com

www.ti.com/sc/device/partnumber

(Replace partnumber with DAC5675A, DAC5681, DAC5682Z, DAC5686, DAC5687, DAC5688, or
THS3095)

www.ti.com/tsw3070

TINA-TI and spreadsheet support files for examples: www.ti.com/lit/zip/slyt342

To download TINA-TI software: www.ti.com/tina-ti
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