ARM Assembly Language Tools
v20.2.0.LTS

User's Guide

I3 TeExXAs

INSTRUMENTS

Literature Number: SPNU118Y
September 1995—Revised February 2020

I3 TEXAS
INSTRUMENTS

Contents

[(=7 = T = PP 13
1 Introduction to the Software Development TOOIS . ..cvii i 16
11 Software Development TOOIS OVEIVIEWuueiueeiiueirsersterss it santssisstass s rasiainssannss 17

1.2 LI 1S3 =TS] o0 18

2 INtroduction t0 ODJECT MOAUIES ...t ettt et e e e e e e e e e enes 19
2.1 Object File FOrmat SPeCifiCatiONSuuiieesiiiiesiiiesssaeessasnresssanneessaanressaanneesasnneessannnessennnnnss 20

2.2 ST oW = o] =@ =) 1 20

2.3 oo 18 Tox 1T I (o TS~ od 1T LN 20

2.3.1 SpeECial SECHON NAMES . .uttttiittetiiinteeseintessaaneesaasnnessaannessaanneessannnessennneesssnnnesssnnneeenns 21

2.4 How the Assembler HandIes SECHONSueiiiiiiii i r s s s e s e e ssann e s sannneesaannnenann 21

b2 R U T 1 = =T BT =od 1T LS 22

P22 3 141 = =T o ST =T ot 1o L 23

2.4.3 USEr-Named SECHONSutiiiiteiiiateesaaaneessaane e saaane s saaneessaannestaannnssaannnessaannersaannnernnn 23

A S O U ¢ (=1 ST =T o 1o o N 23

2.4.5 SeCtioN Program COUNTEIS ..uuuueestseeeessaaneessaannressaannessasnnessssnnnesessnnessssnnessssnnnessennnensnn 24

B TS 10 o 1S Yo 1 o 1S 24

2.4.7 USING SECHONS DIFECHVES .u.iuuutseiiiaieiiiats s iiitte s e ssaaa e e ssaa e s saaaansssaanassssanansssannnnsinn 25

25 How the Linker Handles SECHONS ...uueitiisiisiiiiiiii s e eraenas 27

2.5.1 CombiniNg INPUL SECHONS 1. v tuuttiseiiteriseia st r s s a e e s s rneaaneans 28

BT = ol o TS~ od 1o o S 29

2.6 71 01070 S 29

2.6.1 Global (External) SYMDOISuueiiueiitiiiiii i 29

B2 G A o Yo | B0/ 1] o T N 30

S TR T VAT L= 1S 2] o Yo £ S 30

2.6.4 The Symbol Table . ..ouueiiiiii e 31

2.7 53]] o] TRl == [Tox= 11T L 31

2.8 I = o 1 o JIF= T = £ o | = U S 32

3 Program Loading and RUNNING ...t e e e e e e e e e e s s e e e e e n e e enens 33
3.1 o = o {1 T 34

0 0 R I - To =g o N W N o[=] 34

1 04 072 = T To | 51 1= 1 o N 1 Y= Vo 11 35

3.2 120 o 1 o 39

3.3 RUN-TIME INITIAIZATION 1. uete it s st e s s s e s s r e s s s s s e ssann e s sanneaanans 39

1 TG 700 I U= S o 1 00 U ot oo 39

3.3.2 RAM Model VS. ROM MOUEIttt et e r e e et e s s e e s s s ane s s s e e s aanne s aannnneesn 40

3.3.3 About Linker-Generated COpY TableS ..uuuiiiueeiiiiiieiiiieriiesriirs s s ssaiasssanannenss 41

3.4 (T80T 0 50 0 I o -] 42

3.5 L0 R T L= = (o o= U1 [o N 42

3.6 WX Lo 11T i F= LN [o g = Lo o 42

4 PN E Y=l aa Y o1 =T g B L=t o] T o1 4T o PPN 43
4.1 F N SISY =T a1 o] =T @Y= 1= 44

4.2 The Assembler's Role in the Software Development FIOWeviiiiiiiiiiii i en e e 45

4.3 INVOKING the ASSEMIDIEI . .ttt et i et s i e e i e s e e e st e ane s s saaan e s saanneessannnessaannnessannnessannneesnnns 46

4.4 Controlling Application Binary INTErACEueiieeiiiiiiiri i anns 47

2 Contents SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I3 TEXAS
INSTRUMENTS
www.ti.com
4.5 Naming Alternate Directories for ASSEMDbIEr INPUL......uivieeii i s raeaas a7
4.5.1 Using the --include_path Assembler OPtioNeeiiiiieiiii i r e sa e e aaaes 48
4.5.2 Using the TI_ARM_A_DIR Environment Variable...........ooiiiiiiiiiiiiiiiiiirs i e e 48
4.6 Yo 0 oT IS ¢= 1= 0 =T o 1 0 0T 50
G0t = o< I T o 50
4.6.2 MNEMONIC Field ... iuiiitiiitiiiiii i e e 51
G TC J @ =T = oo T [51
4.6.4 ComMMENTE FIEIA .uuuseieeiiii i e 53
4.7 [T = L O 0] 11 = g £ 54
0 R 11 (=0 =T gl I =T - 54
4.7.2 Character String LItEralS.cueiiiiiii ittt srr s s ranr e s saannr e saan e aaanness 55
4.7.3 Floating-PoOiNt LItEralS. .. uuueeeiiieeiiiisesiiiies s s e s s e s saaa s ssaann e ssaan e s saannrsaaannness 56
4.8 ASSEMDIETr SYMDIOIS . vttt e 56
0 R 0 =T 1= £ 56
R 0 - o 57
S N o Yo | = o= 57
R Y] 11 o To [o @0 g I = £ 59
4.8.5 Defining Symbolic Constants (--asm_defing OPtioN) v...ueeiiiieieiiiineiiiiriiraiiaaineaaaans 59
4.8.6 Predefined SymboliC CONSANTS ...uueieeiiseiriite it rannss 61
G A = (=T 13 (=] 62
4.8.8 SUDSHItULION SYMDOIS. ...t s s 63
4.9 (0SS T L 64
4.9.1 Mathematical and LOGICal OPEIatOrSueseiieteiiiiteeraaatesaaannesaaaansssaaanesaaannessaannnssaannes 65
4.9.2 Relational Operators and Conditional EXPresSioNSueeiiiiiieiiiiiiriiriirsii s snieeaaaas 66
4.9.3 Well-DefiNed EXPrESSIONS .. uuttuseistieeiseissessssasss s saats s sas s et sarsrarsiaresnness 66
4.9.4 Relocatable Symbols and Legal EXPreSSiONS «..uuuiiseiiieeriseiiiriiisiisssnnrassissesinrsaserns 66
4.9.5 EXPreSSiON EXAMPIES .ottt ssaiae s trasee s saare s 67
4.10 BUIilt-in FUNCLIONS AN OPEIratOrS . uuuusiistsiate it irterassssassias s rass e ssrs s s st n s ras st e san e s rns 68
4.10.1 Built-In Math and TrigonomMEetric FUNCLIONSuiiiiii ettt e s s s e e san e e s aannes 68
4.11 Unified Assembly Language SYNtaX SUPPOITeesieseseiristesraiatrsssinressainnrsssainnssssanestaasssessannns 69
O 2 Yo T o= £ oL 70
4.13 Debugging ASSEMDIY SOUICE . .uuutiiseeiistiite it aa s s s s ta s e e ranes 73
4.14 CroSS-REfErENCEe LISHNGS . uueeiiuutetirnneisissesisisse s sastesiaassstsaasressaaassessaannsssansnssssannsssssnness 74
5 ASSEMDIEN DIFECTIVES 1ouitiiiiiiii i e 75
51 D £ (AT ST U 0 o 2 76
5.2 Directives that DefiNe SECHONS ...t i stiiiii i it nananans 81
5.3 Directives that Change the INStrUCHON Ty P .. uuiiiiit i i iie i s e s s saane e s aaannessaannnessannnensnn 83
5.4 Directives that INItialize ValUESviuiiiiiiiii i s s enaes 83
55 Directives that Perform Alignment and RESEIVE SPaCEcivviiieiiiriieiiiiieiaiir i saaasssaannreeas 86
5.6 Directives that Format the OULPUL LiStNgS .. uueeiieieesiieieesiiinessaaneesssanressaannesssannressannnesssnnneesnnns 87
5.7 Directives that Reference Other FIleSuuiiiiiiiiiiii i raas 88
5.8 Directives that Enable Conditional ASSEMDIY ... e eeaaas 89
5.9 Directives that Define Union OF StrUCIUIE TYPES 1.uuueeiiiieesiiineessanneessaansesssanneessannressesnneesssnnnesenns 89
5.10 Directives that Define ENUMErated TYPES ..uuiuueiuiiiniiisisise st raas s rane e 90
5.11 Directives that Define Symbols at ASSEmMDIY TimMecoiiiiiiiiii e aee s 90
5.12 MiSCEllaNEOUS DiIrECHVES .uuusiueiueisiserseiesssase ettt e r e re e e aernes 91
5.13 DIreCHVES R EIENCE 1ttt ittt 92
6 Macro Language DeSCIIPTIONueiiiieie i et e e e e s e e e e e s 154
6.1 L L3 T Y= Lo o 155
6.2 [T T g0 1Y T 01 155
6.3 Macro Parameters/Substitution SYMDOISueeiiiiiiiiii i e 157
6.3.1 Directives That Define Substitution SYmbOoIS........coueeiiiiiiiiiiii e 158
6.3.2 Built-In Substitution SYmbol FUNCHONSuuiiiiiii i e raees 159
SPNU118Y —September 1995—Revised February 2020 Contents 3

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I3 TEXAS
INSTRUMENTS
www.ti.com
6.3.3 Recursive Substitution SYMDOISuuieeiiiiii i 160
LR F N o T o =0 BT 051 1 F (0] 160
6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols...........ccovvviiiiiiiiinnnnn 161
6.3.6 Substitution Symbols as Local VariableS in MACIOSuiiveeeiriiieeriainersainnesraanneesaannnersnnnes 162
6.4 Yo Tt o I o] = 7= 163
6.5 Using Conditional ASSEMDIY iN MaACIOS . .uuuiiuuieeiiiteirii s st saas s ssaise s saasressannnessannnns 164
6.6 LS To I T o T= RS T 1 T o 166
6.7 Producing MeSSages iN MaACIOSuuueeiiiieiesiaattetraaatesaaat e e ssaaa s e saaann s s saannnssaannnessaannnsssannnessnn 167
6.8 Using Directives to Format the OUPUL LISTING ...eeviiuieiiiiteiiiirniiriis s ssnins s ssansssssannes 168
6.9 Using Recursive and NeStEA MaCIOS .uuuuuueiutireeiiatsise it ssss s sss s ssarsrasssanssannsanes 169
6.10 MACIO DiIr€CIVES SUMIMAIY .t uuusesetunesnssrse e ess e sasssss s s saaetas e s s taa s s saa s sarssaseaanesannsanses 170
F N o g 1AV G B TS 41 o] 4 o] o PP 171
7.1 o Y= @ T 172
7.2 The Archiver's Role in the Software Development FIOW.ovuvvieiiiiiiiiiiiiri s 173
7.3 INVOKING The AFCRIVET .. ettt ettt e r e s s s s st s s e s sa s e e s saan e s saann e e saannneaanns 174
7.4 F Y (o] YT = T] o] =Y 175
7.5 Library Information Archiver DeSCrIPtION .. .uu st raaeaas 176
7.5.1 Invoking the Library Information ArChiVer.........oviiiiiiii i 176
7.5.2 Library Information Archiver EXamPlecuieeeeeeiiiitesiiineessasnnessasnneessssnnessasnnesssssnnessnnnes 177
7.5.3 Listing the Contents of an INdeX LiDraryveevvieiiiiiiii i s 177
ST S =T o U1 =T o 1= o 178
D] S D 1T Y od T 0] o o PP 179
8.1 L1 O YT 180
8.2 The Linker's Role in the Software Development FIOWvvveeiiiiriiii i anees 181
8.3 LAY 70T T TR T 0T 182
8.4 TS @ o o 183
8.4.1 Wildcards in File, Section, and Symbol Patternscviiiiiiiiii i eanaas 185
8.4.2 Specifying C/C++ Symbols with LINKEr OPtioNSuuueeiiiiieiiiiieeisiies s s sanneessaanns 185
8.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)cccvvviiiiieiiiiiniiineennns 185
8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)ccevvvinnnennns 186
8.4.5 Changing Encoding of Big-Endian INSIIUCLIONS ...uuvueseiiiiieiiiiiseiriirs s sssinessssinnesannas 187
8.4.6 Compression (--cinit_compression and --copy_compression OPtion)cvvveevvreivieerinririeeinnen, 187
8.4.7 Compress DWARF Information (--compress_dwarf Option)ceeiiiiiiiiiiiie i raineeannes 187
8.4.8 CoNtrol LINKer DiagnOStiCS . s uuuusssiunssessnnesssinnssssasesssssssestsasnsssaansnsssanstessasnnsssssnnnes 187
8.4.9 Automatic Library Selection (--disable_auto_rts Option)evveeeiiseiiiiriiiriiie e 188
8.4.10 Do Not Remove Unused Sections (--unused_section_elimination Option)cvvveeviuririneinnenns 188
8.4.11 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options) 189
8.4.12 Error Correcting Code Testing (--€CC OPLIONS) +vuuuerrutrrunrrinnirteiineisieerasrrrisesinseaareraeiaes 191
8.4.13 Define an Entry Point (--entry_point OPtioN)uueeeirreeeraaeesraaanressaanressaanneessannresaannnes 192
8.4.14 Set Default Fill Value (--fill_value OPtioN)ueeiiiiieiiiieiiiisniissssissssinesssninnssannes 192
8.4.15 Generate List of Dead Functions (--generate_dead_funcs_list Option)ccovvviiiiiiiiiiininnnnns 192
8.4.16 Define Heap Size (--heap_SiZ€ OPtiON) ...ciuue ettt iraateraare s raaanr e saaanre s aaanneeaaanes 192
8.4.17 HidiNg SYMDOIS . .ueiiiiiiiiii i 193
8.4.18 Alter the Library Search Algorithm (--library, --search_path, and TI_ARM_C _DIR)ccvvvuvinnnnns 193
8.4.19 Change Symbol LOCAlIZAtIONt s r e e s s ran e s rar e s raanr e raannes 196
8.4.20 Create a Map File (--map_file OPtioN) ..uuuiviueeiiiieiiiie i aaiae s aaaes 197
8.4.21 Managing Map File Contents (--mapfile_contents OptioN)oeeveeiiieeiiiririirie e 198
8.4.22 Disable Name Demangling (--N0_demangle)coiiiiieiiiiiiiiiiiii i ranns 199
8.4.23 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)cccevvviunennns 199
8.4.24 Strip Symbolic Information (--no_symtable OptioN) ...v.eevveeiiiieiieiiirire i neenaes 199
8.4.25 Name an Output Module (--output_file OPLtioN)eeeiiii i raaees 200
8.4.26 Prioritizing Function Placement (--preferred_order Option)vvveeeeiriieeirniieiiiiesiinesinnes 200
8.4.27 C Language Options (--ram_model and --rom_model OptioNS)vvviiiiereriiirnerainnrerraaneeranns 200
Contents SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I3 TEXAS
INSTRUMENTS
www.ti.com
8.4.28 Retain Discarded Sections (--retain OPLtiON) «..ueiveeriesiieeri i are s 200
8.4.29 Create an Absolute Listing File (--run_abs OptioNn)cooeeeiiiiiiiiiiiriie i rrnaee s rnans 201
8.4.30 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)ccvvvveviiiiiiiiiiinnninnns 201
8.4.31 Define Stack Size (--StaCk_SiZze OPLON) «.uueiuteiieeiirerieiarinr e e rareres 201
8.4.32 Enforce Strict Compatibility (--strict_compatibility Option)ooeeeeiiiiiiiiiii i rnaes 201
8.4.33 Mapping of Symbols (--symbol_map OPtioN)vveeeeiiiiiiiiiiiii i i 201
8.4.34 Generate Far Call Trampolines (--trampolines OPtioN) ...vuueviueeiiueiiieriri i aeaieeaaes 202
8.4.35 Introduce an Unresolved Symbol (--undef_sym Option).......veeeiiseiiieerissinisninneiaieenans 204
8.4.36 Display a Message When an Undefined Output Section Is Created (--warn_sections) 205
8.4.37 Generate XML Link Information File (--xmI_link_info Option).......cceviiiiiiiiiiiiiiiininiannaas 205
8.4.38 Zero Initialization (--zero_init OPLION) ..uuvueerisssrseiisri i saaraaaes 205
8.5 Linker Command FilES ... uuuiiueiiisiiiiiiii i 206
8.5.1 Reserved Names in Linker Command FileS......civiiiriuiiiiiiiiii i ssaeaaes 207
8.5.2 Constants in Linker Command FileSviuiiiiiiiiiiiiiiri i 207
8.5.3 Accessing Files and Libraries from a Linker Command Fileccevviiiiiiiiiiiiiiiiiiiiiienans 208
8.5.4 The MEMORY DIFECHVE +.uuttuteiutiiteiiseiseesstiste s saats e sasssis s saas s s s saarssasssaneasnness 209
8.5.5 The SECTIONS DilECHIVE .. .utuueiusiseiutiutiserssstrtsssrsesrrassaasrassarsassassrssartassasesesansnes 212
8.5.6 Placing a Section at Different Load and Run AddreSSeSuviiiieiiiiiiiiriiiiiesiiiinesisnineiians 224
8.5.7 Using GROUP and UNION StatemMentSuevvuesiiueinunerissinnesisriineiissianesissiasssinrsannsiins 226
8.5.8 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)....uuriuiiiinirinrininerineinineninnins 231
8.5.9 Configuring Error Correcting Code (ECC) with the LinKer.......oviveiiiiiiiiiiiiiiii i 231
8.5.10 Assigning SymboIs at LinK Time .. .uevusiieiiiiii i s aaees 234
8.5.11 Creating and FilliNg HOIESueuiii i e e e s s n e s ssan e s s sanna s aanns 240
8.6 T2 3/ 1 1] 0] £ 243
8.6.1 Using Linker Symbols in C/C++ APPIICAtIONS +..uviueiiiiiiiiiriiie i e aaaes 243
8.6.2 Declaring Weak SYMDOIS ... et aanns 244
8.6.3 Resolving Symbols with ODbject LIDraries ...uve. e eiiiiiiiii i s rr e anaes 244
8.7 Default Placement AlGOrthm ... e e e 245
8.7.1 How the Allocation Algorithm Creates OUutpUt SECHIONS ..uvuuriiieiiseiiirriririairaaieeaaes 246
8.7.2 Reducing Memory Fragmentationeeesseeessrsiessssnnessainssisaisessssansssssassnesssannsssannns 246
8.8 Using Linker-Generated COpY TableS. ...iuuiirieiitiiiteririe s ss e s s s sre e aaeesanns 246
8.8.1 Using Copy Tables for BOOt LOAMINGuuetieteiiiite it raaaeesaa e s raans e ssannne s sannnnessanns 246
8.8.2 Using Built-in Link Operators in Copy Tablesviieeiiiiiiiii i i s 247
8.8.3 Overlay Management EXampleeoiuiiieiiiiiieii i s s rias e 248
8.8.4 Generating Copy Tables With the table() Operatoruvveeiiiii i i i ranes 248
S 0S8 T @0 1 o] =27 T o 254
ST JE I @o o) VAN 1= o L= O 0] 1 (=T o] £ 257
8.8.7 General PUrpOSE COPY ROULINE . ..uiitteiiieteeiaite e aa e s aa s s saaae s s saanne s ssannnessannnassannnns 258
8.9 Linker-Generated CRC TableS . iuuuiiiuiiiiiiiiiiiiisi i nens 259
LS TR I o L= ot o o o] (=T @ o1 - (o 259
ST T <1 1T 10 259
LS ST T = 0010 T 260
ST T 101 (= 3 7= ot 262
8.9.5 A Note on the TMS570_CRC64_ISO AlGOrithmueiuiuiiiiieiiireiieiierer e nreseens 264
8.10 Partial (INCremental) LINKINGuueuirueseirieteisntesrainessirare st ssase s ssaas st saassesssansnsssannnnssas 265
S04 I R I o (T T 7 L@ 5 o [266
8.11.1 RUN-TIME INItIAlIZAON +1uuetisteiae i r s s aar e raaeaannens 266
8.11.2 Object Libraries and RUN-TIME SUPPOI «..uuuuueetiintneirisnessaansrsssinsnsssainsssssassrssasinssisanes 267
8.11.3 Setting the Size of the Stack and Heap SECHONSvvuviiieiiiiie i rneeaes 267
8.11.4 Initializing and Autolnitialzing Variables at RUN TiIMe.......uiiiiiiiiiiiii i e rrne e eaaes 267
8.11.5 Initialization of Cinit and Watchdog Timer Hold..........ooieeiiiiieiiii i e rnaees 267
S0 7 IR 0 =T G o 1o 268
9 ADSOIULE LiStEr DESCIIPLION L.eneiiieieitie et e e e e e e e e e e e e eenens 271
SPNU118Y —September 1995—Revised February 2020 Contents 5

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I3 TEXAS
INSTRUMENTS
www.ti.com
9.1 Producing an ADSOIULE LiStING +uuueiuuttiseiieerssisssseints e tse s s s s s re s raneaaa s s nssaaeaaneens 272
9.2 INVOKING the ADSOIULE LISTET ...ttt it eii it as it r e e s e e s s e e s s ae st aans e s sann e s saanneesaannneeannn 273
9.3 Y 010 0 (= I3 (T g =0 = 3] o] = 274
10 Cross-Reference LiSter DeSCIIPtION 1uiuiiiii ittt r e e s e e e e raaaanas 277
10.1 Producing a CrosS-Reference LiStNG «.uuuueeiuseiiseiiirissiisssiis i saesins s sas s sanesannss 278
10.2 Invoking the CroSS-ReferEeNCE LISTEI ..uuuuueeiiiiiaiiiiiite it r e s are s sa s e s sran e s s s aann s ananneeannns 279
10.3 Cross-Reference LiSting EXamPleueeiiiiieeiiiiie i iiee s iteesssanee s ssanne s s ssannesaannessaannnessannnnnsnn 280
11 (@ =103 B i L U T L= PP 282
11.1 Invoking the Object File Display ULe et r e v e e s s ane s s s anr e s s nnn e anane e aanns 283
11.2 INVOKING the DiSaSSeMIIr. .ttt r e s s s s s e s s s s s e s saaaae s s sann e s sannnnesas 284
5 IO S 10177 4 o R €T AN F= 10 0 < 286
11.4 InvOKING the StriP ULIITY .. uu e e s e r e s r s r i n e rneaas 287
12 Hex Conversion ULility DESCIIPLION ...t et e e e e e e e e e e enens 288
12.1 The Hex Conversion Utility's Role in the Software Development FIOWcoeveviiiiieeiiii i ennneess 289
12.2 Invoking the Hex Conversion ULIILY «....uveeireeiiiiinis s e s s ss s e s e n e raees 290
12.2.1 Invoking the Hex Conversion Utility From the Command Linecocviiiiiiiiiiiiiiiiieeinans 290
12.2.2 Invoking the Hex Conversion Utility With a Command Fileccvviiiiiiiiiiiiii i nsiee e nnnes 292
12.3 Understanding Memory WIdthseiueiieiiii i i e s ne 293
0 700 T = Vo = T o 11 N 293
12.3.2 Specifying the Memory Widthcceeeiiiii i i sr s s s e s e e s s aann e s annnenas 294
12.3.3 Partitioning Data INto OULPUL FIlES ..uuiiuuiirsiiiiii i s rae e 295
I I o @ 1Y S I T Yo 1) = N 298
12.4.1 When to Use the ROMS Dir€CHVE ..uuuuiiuiisitirsirisiitssesi s 299
12.4.2 An Example of the ROMS Dir€CHVE ..uuutirseiiseiiieriisss st r s sn s raaeaas 299
125 The SECTIONS DilECHVE ... uustutiusiserserattssass et s e s s st e sas s e s et s s sansassanssnnnns 301
12.6 The Load Image Format (--load_image OpPtion)ueeeiiieieriiiesesinesssaineessannsessannnessaannnessannnessnn 302
12.6.1 Load Image SeCtion FOrMALION ..uuuseiseiiserseiaeerinrraass s sars e s sane e sanrsraneras 302
12.6.2 Load Image CharaCteriStICS .. .ueuiuusetristssirintesraaatsssaantssaaansessaannsssaannsssaannssssannnesss 303
12.7 EXCluding @ SPeCified SECHON. ..ttt it s it a i s s sanr e s saanneesaaaneessaannessaanneessannnnssaannnesnnn 303
12.8 ASSIgNING OULPUL FIlENAMES . uuiiistiiseiiir it r s s n e ra s s n s r e raa e aannens 304
12.9 Image Mode and the -fill OPLIONeeeiiii i e s r s s s rr i r e s e e anaas 305
12.9.1 Generating @ MemMOrY IMagE .. .uuuueeetseneessaanneessaanressaanneesaasneessasnnessesnneessssnnessssnnnnsss 305
12.9.2 Specifying @ Fill VAlUE .. .uvieeiiiiii i s 305
12.9.3 Steps to Follow in UsSiNg IMage MOueiiiiiiiiiiiiiei i e s e s ss s nne s aanees 305
12.10 Array OULPUL FOMMIAE 1. ssssssnssesssneessssssmssssssssssnnnmeeemsmmmmesssns 306
12.11 Building a Table for an ONn-Chip BOOt LOAUET ...iuueiutiiiniiiieeiie e s s s ssin e 307
12.11.1 Description of the BOOt Table. ...t e aaee s 307
12.11.2 The BOOt Table FOIrMat....uvueieiieiiseiaiir s e e 307
12.11.3 How to Build the BOOt Tableuuiieiiiii i s ree s 307
12.11.4 Booting From a Device Peripheral.......cceeiiiiiiiiiiii e r e s anne e 308
12.11.5 Setting the Entry Point for the Boot Tableocvieiiiiiii i rser e e e e s e nees 308
12.11.6 Using the ARM BOOt LOAUETuuiiusiiitiiteiiseinie i ssss st e e s s s s r e rneaas 309
12.12 Using Secure Flash Boot 0n TMS320F2838X DEVICES .. uuuuiiuuteiiiiansiainsesiaiasssiaanssssrannrsrsaanneesns 313
12.13 Controlling the ROM DeViCe AQAIESS .. uuiiretettiineeeteantessaanneeseannreseaannessssnneessssnnessesnnnessssnnensnn 314
12.14 Control Hex Conversion Utility DIagNOSHICS «.uuuuiuseiiueerssiisssrissinseiiseiaeesasssssssiassansaesannssannss 315
12.15 Description of the ODJECt FOIMALS. . ..uuiiiteiiii i s s s s s s e s raanr e s sanneeanas 316
12.15.1 ASCII-Hex Object Format (--asCii OPtiON) ..eevveieeeriiineessaieesssasseessaaneesseanneessannressennnees 316
12.15.2 Intel MCS-86 Object Format (--intel OPtioN)uuevessiiserineirreriiiie s raaeaaeens 317
12.15.3 Motorola Exorciser Object Format (--motorola Option).......uvveeeeiiiieieiiii i sranieesranes 318
12.15.4 Extended Tektronix Object Format (--tektroniX OPtioN)vvvieieresieiieeerisineessainnessannnnerrnnnes 319
12.15.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option).........ocevevevinnnns 320
12.15.6 TI-TXT Hex Format (--ti_tXt OPtiON) wouvuuueeeiiieeiiiie e sraiar e s s saanee s saaan s saannenss 321
6 Contents SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I3 TEXAS
INSTRUMENTS
www.ti.com
13 Sharing C/C++ Header Files With Assembly SOUICE....ccciiiiiiiiiiiiii e 322
13.1 Overview Of the .CAECIS DIrECHIVEee ettt it r et r e e s e e e s e e s saann e e saan e e sanannesananneeaanns 323
13.2 NOtES ON C/CH+ CONVEISIONS . atttinatesiansssrassessaaaseesaaaessaaasnsssaassstaaasssstaansnstsansnesissnnnsssns 323
IR T2 R o 13 11T 323
13.2.2 Conditional Compilation (#iff#else/Hfdef/etC.). . vviiiiii i 324
R S e = 10 | 0 1= 324
13.2.4 The #error and #AWarning Dir€ClIVES . uuuiiiiee it iaiessiaeersanressaanneesaannresaannnessaannness 324
13.2.5 Predefined symbol _ ASM_HEADER __ ...iuiiiiiiiiiiiii i ist s s sann s snenneans 324
13.2.6 Usage Within C/C++ asm() StatemMeNtS. .. .uueiiiieieiiiites i rraaar e sraanne s aaaneess 324
IR A I T T o 0o Lo I = o 324
13.2.8 Conversion Of #AEfINE MaACTOSuuiiiiiiie it r e s e sa e s s aan e aaannnesaannnenss 324
13.2.9 The HUNAEf DIFECHVE . .uuiiiitti it e r e s s s s s e st aa s e s saaasa s s saanessaannneanan 325
RS 70 1 TR = o0 0 T =10 L 325
IR 7201 I O 1 o 325
13.2.12 C/C++ BUIlt-IN FUNCHONS . uutteiiiiteiiiitt it e et s s ias e sr s e s s s e e s sa e e s sanne s ssannnessas 326
13.2.13 Structures and UNIONS .u.ueeuserseiusissrserasrssssraesr e eaesrraes 326
13.2.14 FuncCtion/Variable ProtOtYPES «uuuuiussiseiiteiseisersr st ss s e ssss s srneaas 326
13.2.15 C CoNStANt SUIXES . uueiiiiaiiiiiiiee it sr s s a e s s sa e s s aaan e s saanansssannnnins 327
13.2.16 BaSiC C/CH+ TYPES turteriinterrsannressansessssnneesassnnessssnnessesnnnessssnnessesnsnnessesnnessesnnnessns 327
13.3 Notes on C++ SPECific CONVEISIONS 1uuuuuuutiutsiseiiterssiasriar st rar s s st raeaaineaanns 327
R 20 700 I N =10 =Y/ = T o | T o N 327
RS S T I 1= 1= I O oL = 327
IR T G TR =T 141 = 328
R TR 70 VT (1 = U U o (o] g 328
13.4 Special ASSEMIEr SUPPOM . . ueee sttt aites s eaeee s eaanresaaannessaasnnessasnnessaannnessannnnssesnnnesssnnnnesnns 328
13.4.1 Enumerations (.enum/.emember/.eNdenuUm)c.ovvueiiiiriieiiiiiri 328
13.4.2 The .defiNe DIFECHIVE ..uueiieteiiiit et r st r st s s sa e e s sa e st s s e s saana e s ssannnessannnneanan 328
13.4.3 The .Uundefine/.UNasg DirECHVESuueeiiiiiee s i iie st iantessaannessaannressaannessaanneesaannnesssnnnnnss 328
13.4.4 The $$defined() BUilt-In FUNCHONuiiiiiiei i e e e e e e s 329
13.4.5 The $$size0f BUIlt-IN FUNCHON . .tiueiitiieieiiseeeee ettt eeeesae s s saneeaesansansanerneaanaaneanes 329
13.4.6 Structure/Union Alignment and $3alignof() .o.eeeeeeiiiiiriiiiiir i e 329
13.4.7 The .CStNG DIrECHVE .. uuuttiti ittt et r s s s s e aa s s r s r e s aneans 329
A Symbolic DebUGQING DirCHIVESu ittt e e e e eeaeans 330
Al DWARF DebUQQING FOIMAL 1. uuuteiiistseisieteisiatssssiss e ssiasssssisas s ssaae s sssssessaansssssannnessannnnsssns 331
A.2 (D= o TU o I =T 1=} | = 331
B XML Link Information File DeSCIiPtiONe et e e e e e e e a e 332
B.1 XML Information File EIemMENt TYPES .uuuueiiiiiieiiiiies s ssate s raaas e ssaa s s s saanns s saannnssaannnssannnes 333
B.2 DT Yo U {4 T= o1 = =T T oT o 333
[2 R o ==V [T g o 1= LT (S 333
L2] 10 1 =] 334
202G T @] o=t A @]] 0] 1= | A N 1] S 335
12 307 S o T o= I T 11 o N 0 336
[ST o Tt =Y 41T o 1T o 338
B.2.6 Far Call Trampoling LISt ...uvuueesiiieeiieineessaaneessasnressaannresaaannessasnnessasnnnessssnnessssnnnnsss 339
B.2.7 SymbBOl Table .. e 340
C Hex Conversion ULty EXAmMPIESt r e e e s 341
C.1 Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROMcvivvivviiiinnnnnnns 342
C.2 Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Codeccivviiiiiiiiiiiiiniiiinninnnns 346
C.3 Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMSccvvieiiiiiiiineinnnns 349
D L1 Lo 1T 7 1 TP 353
[250 R =Y ¢4 11 o] o T |V 353
E V1Y o] T 1= (0 PP 358
SPNU118Y —September 1995—-Revised February 2020 Contents 7

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

E.1 RECENE REVISIONS .t ttttttttttteeeesieeseeseeeeennnnnnnesseseeenennnnsnnssssseeeesnnnnsnssnsssssseeesennnnnnnnssnsrrees 358

Contents SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1-1. ARM Device Software Development FIOWciieiriiiiiiiii i saaeenas 17
2-1. Partitioning Memory INto LOGICal BIOCKS +.uuuuuussiiiiieiiiiisiiiine st sssies s sssae s ssinae s ssaaane s sannesnas 21
2-2. Using Sections DireCtiVes EXaMPIE ... uu ettt r s s e aanrens 26
2-3. Object Code Generated by the File in ... e raannneeas 27
2-4. Combining Input Sections to Form an Executable Object Module..........ccviiiiiiiiiiiiiiiiii e 28
3-1. Bootloading Sequence (SIMPHfied) ..ove i e 35
3-2. Bootloading Sequence with Secondary BOOtIOAAETvviueiiieiiiiiiiiiiiri i 36
3-3. Autoinitialization at RUN TimME .. .uuuiuiiiiseiiiiiii i a e aeans 40
I [01 (= 2= i o T g = L 0 Y= Uo N o 0T 41
4-1. The Assembler in the ARM Software Development FIOW........ueiiiieiiiii i s e e anaas 45
I = 10 o] L= NS o] o] = gl £ 1 o 71
5-1 QLT =1 (o N1 =T o 11 84
ST [011 (= 2= 0T g T DT =T o 1Y 85
LS FO 8 0 U= | [o o I 1T =T o 1= 86
5-4. The .Space and .DES DiIr€CVES ...uuieiiuiiieiriiie i r e ra e s e e e aanens 87
5-5. Double-Precision FIoating-Point FOMMALtueeiiieiiiit i e s e s e e s e s sanann e s annneess 108
5-6. The .field DireCtVE cuuiutiiistiitiiisiiis it a s e a e 115
5-7. Single-Precision Floating-Point FOMMatveiiiiiiieiiiiii i s aseeranes 116
5-8. The .USECE DIFECHIVE 1uusiiustiteiseisseratest et s e s s s e e ra e ra e s et s s st s s st e na e e sn e ranees 152
7-1. The Archiver in the ARM Software Development FIOWeuiiiiieiiiiiiiii i eraiaeees 173
8-1. The Linker in the ARM Software Development FIOW.vveirieeiiiiisirs s saes 181
8-2. Section Placement Defined DYueiieiiiiiiiiiii i 214
8-3. RUN-TIME EXECULION OF 4uuuutiitiiistiiisiiiiiiisiinisi st ra s nraaees 226
8-4. Memory AlloCation SNOWN iN @NG . .ueiuieieiiiierire e e s r s r e ra s r s rnerns 228
8-5. Compressed CopY Table ...t ianaeaan 254
8-6. HaNdler Table ..uiiueiiiiiiiiii i e 255
8-7. CRC_TABLE CoNnceptual MOGElttt r s s s e s s n e n e ranes 262
9-1. Absolute Lister DevelopmMENt FIOWuoiei it e e r i s s aee s s s s s aaanne s ssanna e s sannneeann 272
10-1. The Cross-Reference Lister Development FIOWvvvieiiiiiieiiiiisiiie i e sanneeas 278
12-1. The Hex Conversion Utility in the ARM Software Development FIOWccvvvvviiiiiiiniiiiniienaess 289
12-2. Hex Conversion ULility ProCESS FIOW.uei ettt e re e e s ree s s s e s saan e s ssannn e s sannnenans 293
12-3. Object File Data and Memory Widthsueeeiiiieiiiie i r s s s asanreaaaas 295
12-4. Data, Memory, and ROM WidLhseeiiiiieeiiiie e e s s s e s s s e s ss e e s ssannn e ssnnnessaannnessannnnnrnn 297
12-5. The infile.out File Partitioned INnto FOUr OULPUL FIlESeiiii i e e e aeeeanas 300
12-6. Sample Hex Converter Out File for Booting From 8-Bit SPI BOOL......cuuieiiiieiiiiiiiiiiieiniieenninaeens 311
12-7. Sample Hex Converter Out File for ARM 16-Bit Parallel BOOt GP 1/O.....cuviiiiiiiiiiiieiiiininaenaaes 312
I T NS O | B 1= Q@ o] =T ot B o T 316
12-9. Intel Hexadecimal ObjeCt FOIMALuueiiiieseiiiiieeisiesrair e ss e s st s s ss e s saann e s asannnsssannnssns 317
2 O T Y o) o] 0] =0 T o g 0 - 318
12-11. Extended TektroniX ObJECt FOIMALouiees ettt e e ra e e s s ae e s ss e e s saann e s saannnssaannnennn 319
I I B I Vo o T=To B @ o] =T od 0 0 T 320
2 e T I 100 O o] 1= o o 4 - | 321
C-1. EPROM Memory System fOr SCENANO L 1.uuiiuutiiuseistirseiiseiaseriasissssisrsass i sarssassrasssinsranns 342
C-2. Contents of Hex Output File eXampleL.NeXueiiiiueiiiiiieiiiiise i saisr s ssainnssasanness 345
C-3. EPROM Memory System fOr SCENANO 2 ..uueiuuiirueeitinssiaieiaiseriasissssisssaass i s sasssinsranns 346
C-4. Contents of Hex Output File eXample2.NeXoiieiiiiiei i i rar e rs e s s ananne e ananneess 349
C-5. EPROM Memory System fOr SCENAIIO 3 «uuuuueeiiiiesiiitteisistessaiasressiasrsssaisnsssaasssisasnnsiaannnesss 349
SPNU118Y —September 1995—Revised February 2020 List of Figures 9

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

C-6. Contents of Hex Output File IoWerlh.bit......vveeiieiiiiiiii i 352
C-7. Contents of Hex Output File UPPErle.biteeeiiie i r e e s e e s a e e s annneeas 352
10 List of Figures SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I3 TEXAS

INSTRUMENTS

www.ti.com

List of Tables

O AN Y =TT =Y 4 o] 1= G @ oo g 46
4-2. ARM Processor SYMDOlIC CONSIANTS +.uuuuuseiieteisiianeiriiers s s s ssasse s sarnsssssantsssaannssssannnes 61
4-3. ARM Register SymboIs With AlIBSES ... uueiueirtiiiriii i 62
4-4. ARM Status RegiSters and All@SES ... uueiiiiiiii i ira i ra e raaar s re et 62
4-5. Operators Used in EXPressions (PreCEAENCE) ..uuuiiiiuureiiiiuieriiitteisiintsssainsessainnssssinnssisasnsssannes 65
4-6. Expressions With Absolute and Relocatable SymboIScovviiiiiiiii 66
4-7. Built-In MathematiCal FUNCHIONS ..uuuueiissiiseiisinee s s s e s e r e ranes 68
4-8. SYMDO| At OUIES . ettt 74
5-1. Directives that Control SECHON USEueiiuiiiieiiiiiiiieiirie st r e s s raasaaneans 76
5-2. Directives that Gather Sections iNt0 COMMON GrOUPS +.uuuuuesrustsruseiaseerissrassssissianerassiaiaraerin 76
5-3. Directives that Affect Unused Section ElIMinationccvvviiieiiiiiiiiiiiiiiiiiiii i 76
5-4. Directives that Initialize Values (Data and MemOIY) c..uiiieerinterreiiirierisis i sasinssarsrnns 76
5-5. Directives that Perform Alignment and RESEIVE SPACEuueriiiiie it iaare it ssaarrearaanreraaanness 77
5-6. Directives that Change the INStrUCtION TYPE . .uuuei ittt aa e rrar e saanaenas 77
5-7. Directives that Format the OUPUL LISTING v.ueuueriuiiiiieiiriiiri s s s s rasaaaeens 77
5-8. Directives that Reference Other FileSiiueiiieiiiiiiiiiiisi i s 78
5-9. Directives that Affect Symbol Linkage and Visibilityooiueeiiiiiiii e 78
5-10. Directives that Enable Conditional ASSEMDIY.....uiueiiieiiiiiii i 78
5-11. Directives that Define Union OF STHUCLUIE TYPES «.uuuuteiiiiiesiiaesessaantessaanressanresaaannessaannrssaannnesss 78
5-12. Directives that Define SYMDOIS ...t e 79
5-13. Directives that Create or AffECt MACIOS +..uuuiruiiitiii i e r e aanens 79
5-14. Directives that CONtrol DIagNOSHICSuueeineteeiiateersaantesaaanesasaan e e saaaasessaannessaaannessaantessaannnessnn 79
5-15. Directives that Perform Assembly Source Debug.......cvvviiiiiiiiiiii e 80
5-16. Directives that Are Used by the ADSOIULE LiSter. .. uuuireiiieiiii i raes 80
5-17. Directives that Perform Miscellan@ous FUNCHONS .. .uueiisiiissesitireiisiii i sanssrans 80
6-1. Substitution Symbol Functions and Return ValUeS........coueiiiiiiiiiiii i s nsaaees 159
LS O3 = 1 4] o 1Y = V] L 170
6-3. Manipulating SubSHtUtION SYMBDOISuiii e e r s s r e s rranne e ranreeas 170
6-4. CoNditioNal ASSEMDIY . uuutiiteii e 170
6-5. Producing ASSEemMDIY-TIMeE MESSAGES ... uuuuutiuttruriiterte ittt rassraassaarsrastaisssanrranes 170
(ST o T4 4 F=] o g T =] T N 170
S N = T T o3 @ o1 110 LT U] . - Y/ 183
8-2. File Search Path OptioNS SUMIMAIYueiueiretirterae et ra s rss s aar s e aanssannss 183
8-3. Command File Preprocessing OptioNS SUMIMAIY .uuuuuseiseirueerissmrsesisrssssrassiannerassrasssisannsin 183
8-4. DiagnOoStiC OPLIONS SUMIMAIY . .uuteiruuutetrateesaaneessasnetaaisssstaasnstaassssstaasssstsastessasnnessssnnnessns 183
8-5. Linker OUtpUt OpPtiONS SUMMEIY ... ueeuuttute i et sas st esis st ssia s s rssasstaessanssannssins 184
8-6. Symbol Management OPtioNS SUMIMAIY t.uuuuuuserusesiurerseiaseesissrassisssrirsrass s 184
8-7. Run-Time Environment OPtioNS SUMIMAIY .. .uueeuiiuueessannesssassssssassessaassssssansssssannnssssinnssssssnnss 184
8-8. Link-Time Optimization OPtiONS SUMMAIY ...uuuuiiuutite ittt sarssarssasssissaansass 185
8-9. Miscellaneous OPLiONS SUMIMEAIY .. uuuuseisueernrsrsserss sttt saar s tas s rareraisesanns 185
8-10. Predefined ARM MaCro NaMES ... uutiiusiiiatiiiseiitisisiissisis i et saar s raissainnsannes 190
8-11. Groups of Operators Used in EXpressions (PreCedeNCE) ...uuivuiiiiesiiiriiiieiitisiesrinsssissrinsnsesaneaaaes 235
10-1. Symbol Attributes in Cross-Reference LiStNG ...vvueerieeiiiiriiiiiiiirisisi s sannssaees 280
12-1. Basic Hex Conversion ULty OPtiONS ...uu.ueeeiriiseeissiiesisissssiisesssissssssansssssaassssssannssssannnsssnns 290
2 = 1o To o 0 T= 1o =T o] (T} 307
12-3. BOOt TAble SOUICE FOIMMALS 1. uueisttrseiseirae i s s s s s s ra e s s a s n e raneaannens 309
I = 1o Lo = o] o 0 4= 309

SPNU118Y —September 1995—-Revised February 2020 List of Tables 11

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

12-5. Options for Specifying HeX CoNVErsioN FOMMALS .. .uuiutiveerririseiieisiesranssssssaansrrssaeasiessannssns 316
A-1. Symbolic DebUQQING DIFECHVES ...ttt st e iaate et raaat e s saans e e ssan s e s saann e s saanneesaannsssaannessnnnns 331
12 List of Tables SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Preface
I -{IE)S(’?gUMENTS SPNU118Y —September 1995—Revised February 2020

Read This First

About This Manual
The ARM Assembly Language Tools User's Guide explains how to use the following Texas Instruments
Code Generation object file tools:
» Assembler
* Archiver
e Linker
e Library information archiver
* Absolute lister
» Cross-reference lister
» Disassembler
* Object file display utility
* Name utility
e Strip utility
» Hex conversion utility

How to Use This Manual

This book helps you learn how to use the Texas Instruments object file and assembly language tools
designed specifically for the ARM® 32-bit devices. This book consists of four parts:

* Introductory information, consisting of Chapter 1 through Chapter 3, gives you an overview of the
object file and assembly language development tools. Chapter 2, in particular, explains object modules
and how they can be managed to help your ARM application load and run. It is highly recommended
that developers become familiar with what object modules are and how they are used before using the
assembler and linker.

» Assembler description, consisting of Chapter 4 through Chapter 6, contains detailed information
about using the assembler. Chapter 4 and Chapter 5 explain how to invoke the assembler and discuss
source statement format, valid constants and expressions, assembler output, and assembler directives.
Chapter 6 focuses on the macro language.

« Linker and other object file tools description, consisting of Chapter 7 through Chapter 12,
describes in detail each of the tools provided with the assembler to help you create executable object
files. Chapter 7 provides details about using the archiver to create object libraries. Chapter 8 explains
how to invoke the linker, how the linker operates, and how to use linker directives. Chapter 11 provides
a brief overview of some of the object file utilities that can be useful in examining the content of object
files as well as removing symbol and debug information to reduce the size of a given object file.
Chapter 12 explains how to use the hex conversion utility.

» Additional Reference material, consisting of Appendix A through Appendix D, provides
supplementary information including symbolic debugging directives used by the ARM C/C++ compiler.
It also provides hex utility examples. A description of the XML link information file and a glossary are
also provided.

SPNU118Y —September 1995—-Revised February 2020 Read This First 13

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Notational Conventions www.ti.com

Notational Conventions

This document uses the following conventions:

» Program listings, program examples, and interactive displays are shown in a special typeface.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample of C code:
#include <stdio.h>

main()
{ printf("hello world\n");
b

* In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are
in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered.

e Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter
the brackets themselves. The following is an example of a command that has an optional parameter:

‘armcl [options] [filenames] [--run_linker [link_options] [object files]] ‘

» Braces ({and}) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_maodel or --ram_model option:

armcl --run_linker {--rom_model | --ram_model} filenames [--output_file= name.out]
--library= libraryname

* In assembler syntax statements, The leftmost character position, column 1, is reserved for the first
character of a label or symbol. If the label or symbol is optional, it is usually not shown. If it is a
required parameter, it is shown starting against the left margin of the box, as in the example below. No
instruction, command, directive, or parameter, other than a symbol or label, can begin in column 1.

‘symbol .usect "section name", size in bytes|, alignment] ‘

» Some directives can have a varying number of parameters. For example, the .byte directive can have
multiple parameters. This syntax is shown as [, ..., parameter].

‘.byte parameter,[, ... , parameter,] ‘

» The TMS470 and TMS570 devices are collectively referred to as ARM.

* The ARM 16-bit instruction set is referred to as 16-BIS.

» The ARM 32-bit instruction set is referred to as 32-BIS.

» Other symbols and abbreviations used throughout this document include the following:

Symbol Definition

B,b Suffix — binary integer

H, h Suffix — hexadecimal integer
LSB Least significant bit

MSB Most significant bit

0x Prefix — hexadecimal integer
Q.q Suffix — octal integer

14 Read This First SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

See the following resources for further information about the Tl Code Generation Tools:
* Texas Instruments Wiki: Compiler topics
e Texas Instruments E2E Community: Compiler forum

You can use the following books to supplement this user's guide:

SPNU151 —ARM Optimizing C/C++ Compiler User's Guide. Describes the ARM C/C++ compiler. This
C/C++ compiler accepts ANSI standard C/C++ source code and produces assembly language
source code for the ARM platform of devices.

SPNU134 —TMS470R1x User's Guide. Describes the TMS470R1x RISC microcontroller, its architecture
(including registers), ICEBreaker module, interfaces (memory, coprocessor, and debugger), 16-bit
and 32-bit instruction sets, and electrical specifications.

Trademarks

ARM is a registered trademark of ARM Limited.
All other trademarks are the property of their respective owners.

SPNU118Y —September 1995—-Revised February 2020 Read This First 15

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y
http://processors.wiki.ti.com/index.php/Category:Compiler
http://e2e.ti.com/support/development_tools/compiler/f/343
http://www.ti.com/lit/pdf/spnu151
http://www.ti.com/lit/pdf/spnu134

1 Chapter 1
I -{IE)S(’?IEUMENTS SPNU118Y —September 1995—Revised February 2020

Introduction to the Software Development Tools

The ARM® is supported by a set of software development tools, which includes an optimizing C/C++
compiler, an assembler, a linker, and assorted utilities. This chapter provides an overview of these tools.

The ARM device is supported by the following assembly language development tools:

» Assembler

e Archiver

* Linker

» Library information archiver

» Absolute lister

» Cross-reference lister

» Obiject file display utility

» Disassembler

* Name utility

o Strip utility

» Hex conversion utility

This chapter shows how these tools fit into the general software tools development flow and gives a brief
description of each tool. For convenience, it also summarizes the C/C++ compiler and debugging tools.

For detailed information on the compiler and debugger, and for complete descriptions of the ARM device,
refer to the books listed in Related Documentation From Texas Instruments.

Topic Page
1.1 Software Development TOOIS OVEIVIEWcuue et atieiaieeaeae e aeeaeaeraanaeaeeaenes 17
O o Yo F R L= YT od 1 o) 10 o 1= PP 18
16 Introduction to the Software Development Tools SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Software Development Tools Overview

1.1 Software Development Tools Overview

Figure 1-1 shows the ARM device software development flow. The shaded portion highlights the most
common development path; the other portions are optional. The other portions are peripheral functions
that enhance the development process.

Figure 1-1. ARM Device Software Development Flow

C/IC++
source
files
Macro
source C/C++
files compiler

Assembler
source

C/C++ name

demangling
utility

Macro
library Assembler
Object Librat_r)Il_-tbuiId Delt)uglging
files oy o0
L Run-time-
Library of A support
object > library
files
Executable
object file

Hex-conversion
utility

EPROM
programmer

Absolute lister

Cross-reference
lister

Object file
utilities

SPNU118Y —September 1995—-Revised February 2020

Submit Documentation Feedback

Introduction to the Software Development Tools

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Tools Descriptions www.ti.com

1.2

Tools Descriptions

The following list describes the tools that are shown in Figure 1-1:

The C/C++ compiler accepts C/C++ source code and produces ARM machine code object modules.
See the ARM Optimizing C/C++ Compiler User's Guide for more information. A shell program, an
optimizer, and an interlist utility are included in the installation:

— The shell program enables you to compile, assemble, and link source modules in one step.
— The optimizer modifies code to improve the efficiency of C/C++ programs.

— The interlist utility interlists C/C++ source statements with assembly language output to correlate
code produced by the compiler with your source code.

The assembler translates assembly language source files into machine language object modules.
Source files can contain instructions, assembler directives, and macro directives. You can use
assembler directives to control the assembly process, including the source listing format, data
alignment, and section content. See Chapter 4 through Chapter 6. See the TMS470R1x User's Guide
for detailed information on the assembly language instruction set.

The linker combines object files into a single executable object module. It performs symbolic relocation
and resolves external references. The linker accepts relocatable object modules (created by the
assembler) as input. It also accepts archiver library members and output modules created by a
previous linker run. Link directives allow you to combine object file sections, bind sections or symbols
to addresses or within memory ranges, and define global symbols. See Chapter 8.

The archiver allows you to collect a group of files into a single archive file, called a library. The most
common use of the archiver is to collect a group of object files into an object library. The linker extracts
object library members to resolve external references during the link. You can also use the archiver to
collect several macros into a macro library. The assembler searches the library and uses the members
that are called as macros by the source file. The archiver allows you to modify a library by deleting,
replacing, extracting, or adding members. See Section 7.1.

The library information archiver allows you to create an index library of several object file library
variants, which is useful when several variants of a library with different options are available. Rather
than refer to a specific library, you can link against the index library, and the linker will choose the best
match from the indexed libraries. See Section 7.5 for more information about using the archiver to
manage the content of a library.

You can use the library-build utility to build your own customized run-time-support library. See the
ARM Optimizing C/C++ Compiler User's Guide for more information.

The hex conversion utility converts object files to TI-Tagged, ASCII-Hex, Intel, Motorola-S, or
Tektronix object format. Converted files can be downloaded to an EPROM programmer. See
Chapter 12.

The absolute lister uses linked object files to create .abs files. These files can be assembled to
produce a listing of the absolute addresses of object code. See Chapter 9.

The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definition, and their references in the linked source files. See Chapter 10.

The main product of this development process is a executable object file that can be executed on a
ARM device. You can use one of several debugging tools to refine and correct your code. Available
products include:

— An instruction-accurate and clock-accurate software simulator
— An XDS emulator

In addition, the following utilities are provided to help examine or manage the content of a given object file:

The object file display utility prints the contents of object files and object libraries in either human
readable or XML formats. See Section 11.1.

The disassembler decodes the machine code from object modules to show the assembly instructions
that it represents. See Section 11.2.

The name utility prints a list of symbol names for objects and functions defined or referenced in an
object file or object archive. See Section 11.3.

The strip utility removes symbol table and debugging information from object files and object libraries.
See Section 11.4.

18

Introduction to the Software Development Tools

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

i Chapter 2

TE S SPNU118Y —September 1995—Revised February 2020

INSTRUMENTS

Introduction to Object Modules

The assembler creates object modules from assembly code, and the linker creates executable object files
from object modules. These executable object files can be executed by an ARM device.

Object modules make modular programming easier because they encourage you to think in terms of
blocks of code and data when you write an assembly language program. These blocks are known as
sections. Both the assembler and the linker provide directives that allow you to create and manipulate
sections.

This chapter focuses on the concept and use of sections in assembly language programs.

Topic Page

2.1 Object File Format SPeCIfiCatiONS .. .uiuiitieieiiiiei e e ae e aaeas 20

2.2 Executable ODJECT FilES ..uiuiuiiiiiiiiii ettt ettt e et e e nes 20

P22 T | 9 o Yo [V Foa o i I (o TS Y= o3 1 0 1 - 20

2.4 How the Assembler Handles SECLIONS ...uiiiiiiiiiiiii i eeae s 21

2.5 How the Linker Handles SECHIONSuiuiitiiiii ittt e e e ees 27

200G TV 111 o Lo K P 29

Y22 A S Y/ 111 o o L Toal == o o= 1[0 1 1= PP 31

22 T o Y- Vo [T T = W o 0o | > 1 o O PP 32
SPNU118Y —September 1995—-Revised February 2020 Introduction to Object Modules 19

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Object File Format Specifications www.ti.com
2.1 Object File Format Specifications
The object files created by the assembler and linker conform to the ELF (Executable and Linking Format)
binary format, which is used by the Embedded Application Binary Interface (EABI). See the ARM
Optimizing C/C++ Compiler User's Guide (SPNU151) for information on the EABI ABI. The complete ARM
ABI specifications can be found in the ARM Information Center.
COFF object files and the legacy TIABI and TI ARM9 ABI modes are not supported in v15.6.0.STS and
later versions of the Tl Code Generation Tools. If you would like to produce COFF output files, please use
v5.2 of the ARM Code Generation Tools and refer to SPNU151J for documentation.
The ELF object files generated by the assembler and linker conform to the December 17, 2003 shapshot
of the System V generic ABI (or gABI). This specification is currently maintained by SCO.
2.2 Executable Object Files
The linker produces executable object modules. An executable object module has the same format as
object files that are used as linker input. The sections in an executable object module, however, have
been combined and placed in target memory, and the relocations are all resolved.
To run a program, the data in the executable object module must be transferred, or loaded, into target
system memory. See Chapter 3 for details about loading and running programs.
2.3 Introduction to Sections

(6]

The smallest unit of an object file is a section. A section is a block of code or data that occupies
contiguous space in the memory map. Each section of an object file is separate and distinct.

ELF format executable object files contain segments. An ELF segment is a meta-section. It represents a
contiguous region of target memory. It is a collection of sections that have the same property, such as
writeable or readable. An ELF loader needs the segment information, but does not need the section
information. The ELF standard allows the linker to omit ELF section information entirely from the
executable object file.

Obiject files usually contain three default sections:

.text section Contains executable code @
.data section Usually contains initialized data
.bss Usually reserves space for uninitialized variables

The assembler and linker allow you to create, name, and link other kinds of sections. The .text, .data, and
.bss sections are archetypes for how sections are handled.

There are two basic types of sections:

Initialized sections Contain data or code. The .text and .data sections are initialized; user-
named sections created with the .sect assembler directive are also
initialized.

Uninitialized sections Reserve space in the memory map for uninitialized data. The .bss section is

uninitialized; user-named sections created with the .usect assembler
directive are also uninitialized.

Some targets allow content other than text, such as constants, in .text sections.

20

Introduction to Object Modules SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html
http://www.ti.com/lit/pdf/spnu151J
http://sco.com/developers/gabi/

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Introduction to Sections

231

2.4

Several assembler directives allow you to associate various portions of code and data with the appropriate
sections. The assembler builds these sections during the assembly process, creating an object file
organized as shown in Figure 2-1.

One of the linker's functions is to relocate sections into the target system's memory map; this function is
called placement. Because most systems contain several types of memory, using sections can help you
use target memory more efficiently. All sections are independently relocatable; you can place any section
into any allocated block of target memory. For example, you can define a section that contains an
initialization routine and then allocate the routine in a portion of the memory map that contains ROM. For
information on section placement, see the "Specifying Where to Allocate Sections in Memory" section of
the ARM Optimizing C/C++ Compiler User's Guide.

Figure 2-1 shows the relationship between sections in an object file and a hypothetical target memory.
ROM may be EEPROM, FLASH or some other type of physical memory in an actual system.

Figure 2-1. Partitioning Memory Into Logical Blocks

Object file Target memory
.bss » RAM
.data » RAM

text
I—i ROM

Special Section Names

You can use the .sect and .usect directives to create any section name you like, but certain sections are
treated in a special manner by the linker and the compiler's run-time support library. If you create a section
with the same name as a special section, you should take care to follow the rules for that special section.

A few common special sections are:

e .text -- Used for program code.

» .data -- Used for initialized non-const objects (global variables).

» .bss -- Used for uninitialized objects (global variables).

» .const -- Used for initialized const objects (string constants, variables declared const).
» .cinit -- Used to initialize C global variables at startup.

» .stack -- Used for the function call stack.

e .sysmem - Used for the dynamic memory allocation pool.

For more information on sections, see the "Specifying Where to Allocate Sections in Memory" section of
the ARM Optimizing C/C++ Compiler User's Guide.

How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given section.
The assembler has the following directives that support this function:

e .bss

e .data
e .sect
e .text

e .usect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect directives create
initialized sections.

SPNU118Y —September 1995—-Revised February 2020 Introduction to Object Modules 21

Submit

Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

How the Assembler Handles Sections www.ti.com

241

You can create subsections of any section to give you tighter control of the memory map. Subsections are
created using the .sect and .usect directives. Subsections are identified with the base section name and a
subsection name separated by a colon; see Section 2.4.6.

NOTE: If you do not use a section directive, the assembler assembles everything into the .text
section.

Uninitialized Sections

Uninitialized sections reserve space in ARM memory; they are usually placed in RAM. These sections
have no actual contents in the object file; they simply reserve memory. A program can use this space at
run time for creating and storing variables.

Uninitialized data areas are built by using the following assembler directives.
» The .bss directive reserves space in the .bss section.
e The .usect directive reserves space in a specific uninitialized user-named section.

Each time you invoke the .bss or .usect directive, the assembler reserves additional space in the .bss or
the user-named section. The syntax is:

.bss symbol, size in bytes|, alignment [, bank offset]]
symbol .usect "section name", size in bytes|, alignment[, bank offset]]

symbol points to the first byte reserved by this invocation of the .bss or .usect directive. The
symbol corresponds to the name of the variable for which you are reserving space. It
can be referenced by any other section and can also be declared as a global symbol
(with the .global directive).

size in bytes is an absolute expression (see Section 4.9). The .bss directive reserves size in bytes
bytes in the .bss section. The .usect directive reserves size in bytes bytes in section
name. For both directives, you must specify a size; there is no default value.

alignment is an optional parameter. It specifies the minimum alignment in bytes required by the
space allocated. The default value is byte aligned; this option is represented by the
value 1. The value must be a power of 2.

bank offset is an optional parameter. It ensures that the space allocated to the symbol occurs on a

specific memory bank boundary. The bank offset measures the number of bytes to
offset from the alignment specified before assigning the symbol to that location.

section name specifies the user-named section in which to reserve space. See Section 2.4.3.

Initialized section directives (.text, .data, and .sect) change which section is considered the current section
(see Section 2.4.4). However, the .bss and .usect directives do not change the current section; they simply
escape from the current section temporarily. Immediately after a .bss or .usect directive, the assembler
resumes assembling into whatever the current section was before the directive. The .bss and .usect
directives can appear anywhere in an initialized section without affecting its contents. For an example, see
Section 2.4.7.

The .usect directive can also be used to create uninitialized subsections. See Section 2.4.6 for more
information on creating subsections.

The .common directive is similar to directives that create uninitialized data sections, except that common
symbols are created by the linker instead.

22

Introduction to Object Modules SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

WWW.1i

TEXAS
INSTRUMENTS

i.com How the Assembler Handles Sections

24.2

243

244

Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are stored in
the object file and placed in ARM memory when the program is loaded. Each initialized section is
independently relocatable and may reference symbols that are defined in other sections. The linker
automatically resolves these references. The following directives tell the assembler to place code or data
into a section. The syntaxes for these directives are:

text
.data
.sect "section name"

The .sect directive can also be used to create initialized subsections. See Section 2.4.6, for more
information on creating subsections.

User-Named Sections

User-named sections are sections that you create. You can use them like the default .text, .data, and .bss
sections, but each section with a distinct name is kept distinct during assembly.

For example, repeated use of the .text directive builds up a single .text section in the object file. This .text
section is allocated in memory as a single unit. Suppose there is a portion of executable code (perhaps an
initialization routine) that you want the linker to place in a different location than the rest of .text. If you
assemble this segment of code into a user-named section, it is assembled separately from .text, and you
can use the linker to allocate it into memory separately. You can also assemble initialized data that is
separate from the .data section, and you can reserve space for uninitialized variables that is separate from
the .bss section.

These directives let you create user-named sections:

* The .usect directive creates uninitialized sections that are used like the .bss section. These sections
reserve space in RAM for variables.

» The .sect directive creates initialized sections, like the default .text and .data sections, that can contain
code or data. The .sect directive creates user-named sections with relocatable addresses.

The syntaxes for these directives are:

symbol .usect "section name", size in bytes], alignment[, bank offset]]
.sect "section name"

The maximum number of sections is 2%%-1 (4294967295).

The section name parameter is the name of the section. For the .usect and .sect directives, a section
name can refer to a subsection; see Section 2.4.6 for details.

Each time you invoke one of these directives with a new name, you create a new user-named section.
Each time you invoke one of these directives with a name that was already used, the assembler resumes
assembling code or data (or reserves space) into the section with that name. You cannot use the same
names with different directives. That is, you cannot create a section with the .usect directive and then try
to use the same section with .sect.

Current Section

The assembler adds code or data to one section at a time. The section the assembler is currently filling is
the current section. The .text, .data, and .sect directives change which section is considered the current
section. When the assembler encounters one of these directives, it stops assembling into the current
section (acting as an implied end of current section command). The assembler sets the designated
section as the current section and assembles subsequent code into the designated section until it
encounters another .text, .data, or .sect directive.

SPNU118Y —September 1995—-Revised February 2020 Introduction to Object Modules 23
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

How the Assembler Handles Sections www.ti.com

245

2.4.6

If one of these directives sets the current section to a section that already has code or data in it from
earlier in the file, the assembler resumes adding to the end of that section. The assembler generates only
one contiguous section for each given section name. This section is formed by concatenating all of the
code or data which was placed in that section.

Section Program Counters

The assembler maintains a separate program counter for each section. These program counters are
known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Initially, the assembler sets each
SPC to 0. As the assembler fills a section with code or data, it increments the appropriate SPC. If you
resume assembling into a section, the assembler remembers the appropriate SPC's previous value and
continues incrementing the SPC from that value.

The assembler treats each section as if it began at address 0; the linker relocates the symbols in each
section according to the final address of the section in which that symbol is defined. See Section 2.7 for
information on relocation.

Subsections

A subsection is created by creating a section with a colon in its name. Subsections are logical subdivisions
of larger sections. Subsections are themselves sections and can be manipulated by the assembler and
linker.

The assembler has no concept of subsections; to the assembler, the colon in the name is not special. The
subsection .text:rts would be considered completely unrelated to its parent section .text, and the
assembler will not combine subsections with their parent sections.

Subsections are used to keep parts of a section as distinct sections so that they can be separately
manipulated. For instance, by placing each function and object in a uniquely-named subsection, the linker
gets a finer-grained view of the section for memory placement and unused-function elimination.

By default, when the linker sees a SECTION directive in the linker command file like ".text", it will gather
.text and all subsections of .text into one large output section named ".text". You can instead use the
SECTION directive to control the subsection independently. See Section 8.5.5.1 for an example.

You can create subsections in the same way you create other user-named sections: by using the .sect or
.usect directive.

The syntaxes for a subsection name are:

symbol .usect "section_name:subsection_name" ,size in bytes|, alignment|[, bank offset]]
.sect "section_name:subsection_name"

A subsection is identified by the base section name followed by a colon and the name of the subsection.
The subsection name may not contain any spaces.

A subsection can be allocated separately or grouped with other sections using the same base name. For
example, you create a subsection called _func within the .text section:

.sect "_text:_func"

Using the linker's SECTIONS directive, you can allocate .text._func separately, or with all the .text
sections.

You can create two types of subsections:
« Initialized subsections are created using the .sect directive. See Section 2.4.2.
» Uninitialized subsections are created using the .usect directive. See Section 2.4.1.

Subsections are placed in the same manner as sections. See Section 8.5.5 for information on the
SECTIONS directive.

24

Introduction to Object Modules SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com How the Assembler Handles Sections

2.4.7 Using Sections Directives

Figure 2-2 shows how you can build sections incrementally, using the sections directives to swap back
and forth between the different sections. You can use sections directives to begin assembling into a
section for the first time, or to continue assembling into a section that already contains code. In the latter
case, the assembler simply appends the new code to the code that is already in the section.

The format in Figure 2-2 is a listing file. Figure 2-2 shows how the SPCs are modified during assembly. A
line in a listing file has four fields:

Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.

Field 4 contains the original source statement.

See Section 4.12 for more information on interpreting the fields in a source listing.

SPNU118Y —September 1995—-Revised February 2020 Introduction to Object Modules 25

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

How the Assembler Handles Sections

13 TEXAS

INSTRUMENTS

www.ti.com

Lo L B =

Figure 2-2. Using Sections Directives Example

00000000

ooooO0000OQOOOOO1L
00000004 00000022
00000008 00000033

0ooo00000

0000000c QO0OO0O123

00000000

00000000 E59F14D2
00000004 E2511001
00000008 1AFFFFFD

00000010

00000010 000000AA
00000014 000000BE
00000018 0O000D00CC

EREEKERAEREZARRAE R AR ERARRAE AL R AR R AR A AR AR TR A F R AR, E

% Assemble an initialized table into .data. #*#*
AEEE A A EA R T AR A ERA A AR R AT RA R R AR AR R AR RAAE R RE A AR A A REE
.data

coeff .word 011h, 022h, 033h

EEEEEEE LTI E R AET R AT RE R AR AR LR AERT AR A A AT A AT AR LR

#% Reserve space in .bss for a variable. ® %
FEEEIETETEIATRE TR TR I TR TR AT T AR T E T AT T EhhdxhTxddd®

.bss buffer,10

FEAEEAEEEA R A AR AT AATRAA R A AR AAFAAALAR AR A A AT AETAE T AR R LR

% Still in .data. **
A E R A E R A TR AR A AR A A AR AR A RA AR AERARA AR RAAEF R AEF A AT A TEE

ptr .word 0123h
HRERFERAEREZAERRE R R T AL R AT R LRI AR AR I AT T T o dFHhF

#% Agsemble code into the .text section. * &
RS A S A AR A EEEEEEEEEEEEEEEE SR EEEEEEEEEEEEEEE 5
text
add: LDR

aloop: SUBS R1, R1l, #1
BHNE aloop
RS A S A AR A EEEEEEEEEEEEEEEE SR EEEEEEEEEEEEEEE 5

#% Another initialized table into .data. * &
RS A S A E SR EE LS EEEEEEEE RS E R EE SR EEEEEEEEEE LS EEE X

.data
Tword

R1, #1234

ivals 0AAh, 0BBh, 0CCh

2? EEEFAEFTAETFET TR ETFHETF A EFFIETEF IR TR E TR T AT T TR AT
28 ** Define another section for more variables.*#
29 EEEFAEFTAETFET TR ETFHETF A EFFIETEF IR TR E TR T AT T TR AT
30 00O0ODOODOO var? .usect "newvars"”, 1
31 00000001 inbuf .usect "newvars”, 7
32 EEEFAEFTAETFET TR ETFHETF A EFFIETEF IR TR E TR T AT T TR AT
33 * % Assemble more code into .text. * %
34 FEAEFTAET T AT R T TR TR TR E T E R drEdd it drkddddrdddrdddd
35 0000000c text
36 0000000c E59F3D80 mpy: LDR R3, #3456
37 00000010E0120293 mloop: MULS R2, R3, R2
38 00000014 1AFFFFFD ENE mloop
39 FhAEFTAETFT AT R T TR TR TR E T E R EdE T Tk d T dddd
40 *#* Define a named section for int. vectors. * *
41 FEAEFTAET T AT R T TR TR TR E T E R drEdd it drkddddrdddrdddd
42 00000000 .5ect "yectors”
43 00000000O0QO000011 Tword 011h,033h
0o00DOD0O4 00000033
vy T s
Field 1 Field 2 Field 3 Field 4

As Figure 2-3 shows, the file in Figure 2-2 creates five sections:

26 Introduction to Object Modules SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS

www.ti.com

How the Linker Handles Sections

text
.data

vectors

.bss

newvars

contains six 32-bit words of object code.
contains seven 32-bit words of initialized data.

is a user-named section created with the .sect directive; it contains two 32-bit words of
initialized data.

reserves ten bytes in memory.

is a user-named section created with the .usect directive; it reserves eight bytes in
memory.

The second column shows the object code that is assembled into these sections; the first column shows
the source statements that generated the object code.

2.5 How the Linker Handles Sections

Figure 2-3. Object Code Generated by the File in Figure 2-2

Line numbers

19
20
21
36
37
38

5
5
5
14
26
26
26

43
43

10

30
31

Object code

E59F14D2
E2511001
1AFFFFFD
E59F3D80
E0120293
1AFFFFFD

00000011

00000022
00000033
00000123
000000AA
000000BB
0oooooccC

00000011
00000033

Mo data -

ten bytes
reserved

Mo data -
eight bytes
reserved

Section

dext

.data

vectors

.bss

newvars

The linker has two main functions related to sections. First, the linker uses the sections in object files as
building blocks; it combines input sections to create output sections in an executable output module.
Second, the linker chooses memory addresses for the output sections; this is called placement. Two linker

directives support these functions:

« The MEMORY directive allows you to define the memory map of a target system. You can name
portions of memory and specify their starting addresses and their lengths.

» The SECTIONS directive tells the linker how to combine input sections into output sections and where
to place these output sections in memory.

Subsections let you manipulate the placement of sections with greater precision. You can specify the
location of each subsection with the linker's SECTIONS directive. If you do not specify a subsection, the
subsection is combined with the other sections with the same base section hame. See Section 8.5.5.1.

SPNU118Y —September 1995—-Revised February 2020

Submit Documentation Feedback

Introduction to Object Modules

Copyright © 1995-2020, Texas Instruments Incorporated

27

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

How the Linker Handles Sections www.ti.com

It is not always necessary to use linker directives. If you do not use them, the linker uses the target
processor's default placement algorithm described in Section 8.7. When you do use linker directives, you
must specify them in a linker command file.

Refer to the following sections for more information about linker command files and linker directives:
e Section 8.5, Linker Command Files

» Section 8.5.4, The MEMORY Directive

» Section 8.5.5, The SECTIONS Directive

» Section 8.7, Default Placement Algorithm

2.5.1 Combining Input Sections
Figure 2-4 provides a simplified example of the process of linking two files together.
Note that this is a simplified example, so it does not show all the sections that will be created or the actual
sequence of the sections. See Section 8.7 for the actual default memory placement map for ARM.
Figure 2-4. Combining Input Sections to Form an Executable Object Module
file1.0bj
Executable
bss object module Memory map
file1
text
Space for
4'\,7777(13587)*7*— vgriables
data file2 (.bss)
’ (.bss)
Init - file1 -
(named section) — [5 (.data) Imgaltlzed
A0 Y- __] ata
d file2 (.data)
(.data)
file1
file2.obj N (.text) Executable
| S B code
file2 (.text)
.bss (text)
text) Init Init
.data) Tables Tables
Tables
(named section)
In Figure 2-4, filel.obj and file2.obj have been assembled to be used as linker input. Each contains the
.text, .data, and .bss default sections; in addition, each contains a user-named section. The executable
object module shows the combined sections. The linker combines the .text section from filel.obj and the
.text section from file2.obj to form one .text section, then combines the two .data sections and the two .bss
sections, and finally places the user-named sections at the end. The memory map shows the combined
sections to be placed into memory.
28 Introduction to Object Modules SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS

INSTRUMENTS

www.ti.com How the Linker Handles Sections

25.2

2.6

26.1

Placing Sections

Figure 2-4 illustrates the linker's default method for combining sections. Sometimes you may not want to
use the default setup. For example, you may not want all of the .text sections to be combined into a single
.text section. Or you may want a user-named section placed where the .data section would normally be
allocated. Most memory maps contain various types of memory (RAM, ROM, EEPROM, FLASH, etc.) in
varying amounts; you may want to place a section in a specific type of memory.

For further explanation of section placement within the memory map, see the discussions in Section 8.5.4
and Section 8.5.5. See Section 8.7 for the actual default memory allocation map for ARM.

Symbols

An object file contains a symbol table that stores information about symbols in the object file. The linker
uses this table when it performs relocation. See Section 2.7.

An object file symbol is a named 32-bit integer value, usually representing an address. A symbol can
represent such things as the starting address of a function, variable, section, or an absolute integer (such
as the size of the stack).

Symbols are defined in assembly by adding a label or a directive such as .set .equ .bss, or .usect.

Symbols have a binding, which is similar to the C standard concept of linkage. ELF files may contain
symbols bound as local symbols, global symbols, and weak symbols.

e Global symbols are visible to the entire program. The linker does not allow more than one global
definition of a particular symbol; it issues a multiple-definition error if a global symbol is defined more
than once. (The assembler can provide a similar multiple-definition error for local symbols.) A reference
to a global symbol from any object file refers to the one and only allowed global definition of that
symbol. Assembly code must explicitly make a symbol global by adding a .def, .ref, or .global directive.
(See Section 2.6.1))

» Local symbols are visible only within one object file; each object file that uses a symbol needs its own
local definition. References to local symbols in an object file are entirely unrelated to local symbols of
the same name in another object file. By default, a symbol is local. (See Section 2.6.2.)

* Weak symbols are symbols that may be used but not defined in the current module. They may or may
not be defined in another module. A weak symbol is intended to be overridden by a strong (non-weak)
global symbol definition of the same name in another object file. If a strong definition is available, the
weak symbol is replaced by the strong symbol. If no definition is available (that is, if the weak symbol is
unresolved), no error is generated, but the weak variable's address is considered to be null (0). For this
reason, application code that accesses a weak variable must check that its address is not zero before
attempting to access the variable. (See Section 2.6.3.)

Absolute symbols are symbols that have a numeric value. They may be constants. To the linker, such
symbols are unsigned values, but the integer may be treated as signed or unsigned depending on how it
is used. The range of legal values for an absolute integer is 0 to 2732-1 for unsigned treatment and -2/31
to 2731-1 for signed treatment.

In general, common symbols (see .common directive) are preferred over weak symbols.

See Section 4.8 for information about assembler symbols.

Global (External) Symbols

Global symbols are symbols that are either accessed in the current module but defined in another (an
external symbol) or defined in the current module and accessed in another. Such symbols are visible
across object modules. You must use the .def, .ref, or .global directive to identify a symbol as external:

.def The symbol is defined in the current file and may be used in another file.
ref The symbol is referenced in the current file, but defined in another file.

.global The symbol can be either of the above. The assembler chooses either .def or .ref as
appropriate for each symbol.

SPNU118Y —September 1995—-Revised February 2020 Introduction to Object Modules 29
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Symbols www.ti.com

The following code fragments illustrate the use of the .global directive.

x: ADD RO, #56h ; Define x
-global x ; acts as .def x

Because x is defined in this module, the assembler treats ".global x" as ".def x". Now other modules can
refer to x.

B y ; Reference y
-.global y ; .ref of y

Because y is not defined in this module, the assembler treats ".global y" as ".ref y". The symbol y must be
defined in another module.

Both the symbols x and y are external symbols and are placed in the object file's symbol table; x as a
defined symbol, and y as an undefined symbol. When the object file is linked with other object files, the
entry for x will be used to resolve references to x in other files. The entry for y causes the linker to look
through the symbol tables of other files for y’s definition.

The linker attempts to match all references with corresponding definitions. If the linker cannot find a
symbol's definition, it prints an error message about the unresolved reference. This type of error prevents
the linker from creating an executable object module.

An error also occurs if the same symbol is defined more than once.

2.6.2 Local Symbols

Local symbols are visible within a single object file. Each object file may have its own local definition for a
particular symbol. References to local symbols in an object file are entirely unrelated to local symbols of
the same name in another object file.

By default, a symbol is local.

2.6.3 Weak Symbols
Weak symbols are symbols that may or may not be defined.

The linker processes symbols that are defined with a "weak" binding differently from symbols that are
defined with global binding. Instead of including a weak symbol in the object file's symbol table (as it would
for a global symbol), the linker only includes a weak symbol in the output of a "final" link if the symbol is
required to resolve an otherwise unresolved reference.

This allows the linker to minimize the number of symbols it includes in the output file's symbol table by
omitting those that are not needed to resolve references. Reducing the size of the output file's symbol
table reduces the time required to link, especially if there are a large number of pre-loaded symbols to link
against. This feature is particularly helpful for OpenCL applications.

You can define a weak symbol using either the .weak assembly directive or the weak operator in the linker
command file.

» Using Assembly: To define a weak symbol in an input object file, the source file can be written in
assembly. Use the .weak and .set directives in combination as shown in the following example, which
defines a weak symbol "ext_addr_sym":

-weak ext_addr_sym
ext_addr_sym .set 0x12345678

Assemble the source file that defines weak symbols, and include the resulting object file in the link.
The "ext_addr_sym" in this example is available as a weak symbol in a final link. It is a candidate for
removal if the symbol is not referenced elsewhere in the application. See .weak directive.

30 Introduction to Object Modules SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Symbols

* Using the Linker Command File: To define a weak symbol in a linker command file, use the "weak"
operator in an assignment expression to designate that the symbol as eligible for removal from the
output file's symbol table if it is not referenced. In a linker command file, an assignment expression
outside a MEMORY or SECTIONS directive can be used to define a weak linker-defined symbol. For
example, you can define "ext_addr_sym" as follows:

weak(ext_addr_sym) = 0x12345678;

If the linker command file is used to perform the final link, then "ext_addr_sym" is presented to the
linker as a weak symbol; it will not be included in the resulting output file if the symbol is not
referenced. See Section 8.6.2.

e Using C/C++ code: See information about the WEAK pragma and weak GCC-style variable attribute
in the ARM Optimizing C/C++ Compiler User's Guide.

If there are multiple definitions of the same symbol, the linker uses certain rules to determine which
definition takes precedence. Some definitions may have weak binding and others may have strong
binding. "Strong" in this context means that the symbol has not been given a weak binding by either of the
two methods described above. Some definitions may come from an input object file (that is, using
assembly directives) and others may come from an assignment statement in a linker command file.

The linker uses the following guidelines to determine which definition is used when resolving references to
a symbol:
» A strongly bound symbol always takes precedence over a weakly bound symbol.

» If two symbols are both strongly bound or both weakly bound, a symbol defined in a linker command
file takes precedence over a symbol defined in an input object file.

» If two symbols are both strongly bound and both are defined in an input object file, the linker provides a
symbol redefinition error and halts the link process.

2.6.4 The Symbol Table
The assembler generates entries with global (external) binding in the symbol table for each of the
following:
e Each .ref, .def, or .global directive (see Section 2.6.1)
* The beginning of each section
The assembler generates entries with local binding for each locally-available function.
For informational purposes, there are also entries in the symbol table for each symbol in a program.
2.7 Symbolic Relocations
The assembler treats each section as if it began at address 0. Of course, all sections cannot actually
begin at address 0 in memory, so the linker must relocate sections. Relocations are symbol-relative rather
than section-relative.
The linker can relocate sections by:
» Allocating them into the memory map so that they begin at the appropriate address as defined with the
linker's MEMORY directive
e Adjusting symbol values to correspond to the new section addresses
» Adjusting references to relocated symbols to reflect the adjusted symbol values
SPNU118Y —September 1995—-Revised February 2020 Introduction to Object Modules 31

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Symbolic Relocations www.ti.com

The linker uses relocation entries to adjust references to symbol values. The assembler creates a
relocation entry each time a relocatable symbol is referenced. The linker then uses these entries to patch
the references after the symbols are relocated. Example 2-1 contains a code fragment for a ARM device
for which the assembler generates relocation entries.

Example 2-1. Code That Generates Relocation Entries

1

2 *x Generating Relocation Entries *x
3

4 .ref X

5 .def Y

6 00000000 -text

7 00000000 E0921003 ADDS R1, R2, R3

8 00000004 0A0O00001 BEQ Y

9 00000008 E1C410BE STRH R1, [R4, #14]

10 0000000c EAFFFFFB! B X ; generates a relocation entry
11 00000010 E0821003 Y: ADD R1, R2, R3

In Example 2-1, both symbols X and Y are relocatable. Y is defined in the .text section of this module; X is
defined in another module. When the code is assembled, X has a value of 0 (the assembler assumes all
undefined external symbols have values of 0), and Y has a value of 16 (relative to address 0 in the .text
section). The assembler generates two relocation entries: one for X and one for Y. The reference to X is
an external reference (indicated by the ! character in the listing). The reference to Y is to an internally
defined relocatable symbol (indicated by the ' character in the listing).

After the code is linked, suppose that X is relocated to address 0x10014. Suppose also that the .text
section is relocated to begin at address 0x10000; Y now has a relocated value of 0x10010. The linker
uses the relocation entry for the reference to X to patch the branch instruction in the object code:

EAFFFFFB! B X becomes EAO000000

2.8 Loading a Program
The linker creates an executable object file which can be loaded in several ways, depending on your
execution environment. These methods include using Code Composer Studio or the hex conversion utility.
For details, see Section 3.1.

32 Introduction to Object Modules SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

i Chapter 3

TE S SPNU118Y —September 1995—Revised February 2020

INSTRUMENTS
Program Loading and Running

Even after a program is written, compiled, and linked into an executable object file, there are still many
tasks that need to be performed before the program does its job. The program must be loaded onto the
target, memory and registers must be initialized, and the program must be set to running.

Some of these tasks need to be built into the program itself. Bootstrapping is the process of a program
performing some of its own initialization. Many of the necessary tasks are handled for you by the compiler
and linker, but if you need more control over these tasks, it helps to understand how the pieces are
expected to fit together.

This chapter will introduce you to the concepts involved in program loading, initialization, and startup.
This chapter does not cover dynamic loading.

This chapter currently provides examples for the C6000 device family. Refer to your device documentation
for various device-specific aspects of bootstrapping.

Topic Page

£ 4 15 - T 1o o 34

G 0 1 20 o] 2 P 39

3.3 RUN-TIME INIIAIIZALION .eueieiiei ettt e et e e st e n e e et aeanaaes 39

G AN (o LU 4 =T] =T (o TN .1 =V 42

3.5 RUN-TIME REIOCALION .ttt ittt e e e e e et e et a e e et e e e n e e eeae e nes 42

3.6 Additional INfOrMaAtiON tuuuuiiieiii i ittt ia e reeeeaaeraeraeeaseaasanstanenssansrnnrnnsnnenns 42
SPNU118Y —September 1995—Revised February 2020 Program Loading and Running 33

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Loading www.ti.com

3.1

3.1.1

Loading

A program needs to be placed into the target device's memory before it may be executed. Loading is the
process of preparing a program for execution by initializing device memory with the program's code and
data. A loader might be another program on the device, an external agent (for example, a debugger), or
the device might initialize itself after power-on, which is known as bootstrap loading, or bootloading.

The loader is responsible for constructing the load image in memory before the program starts. The load
image is the program's code and data in memory before execution. What exactly constitutes loading
depends on the environment, such as whether an operating system is present. This section describes
several loading schemes for bare-metal devices. This section is not exhaustive.

A program may be loaded in the following ways:

e A debugger running on a connected host workstation. In a typical embedded development setup,
the device is subordinate to a host running a debugger such as Code Composer Studio (CCS). The
device is connected with a communication channel such as a JTAG interface. CCS reads the program
and writes the load image directly to target memory through the communications interface.

* "Burning" the load image onto an EPROM module. The hex converter (armhex) can assist with this
by converting the executable object file into a format suitable for input to an EPROM programmer. The
EPROM is placed onto the device itself and becomes a part of the device's memory. See Chapter 12
for details.

« Bootstrap loading from a dedicated peripheral, such as an I°C peripheral. The device may require
a small program called a bootloader to perform the loading from the peripheral. The hex converter can
assist in creating a bootloader.

* Another program running on the device. The running program can create the load image and
transfer control to the loaded program. If an operating system is present, it may have the ability to load
and run programs.

Load and Run Addresses

Consider an embedded device for which the program's load image is burned onto EPROM/ROM. Variable
data in the program must be writable, and so must be located in writable memory, typically RAM.
However, RAM is volatile, meaning it will lose its contents when the power goes out. If this data must have
an initial value, that initial value must be stored somewhere else in the load image, or it would be lost
when power is cycled. The initial value must be copied from the non-volatile ROM to its run-time location
in RAM before it is used. See Section 8.8 for ways this is done.

The load address is the location of an object in the load image.
The run address is the location of the object as it exists during program execution.
An object is a chunk of memory. It represents a section, segment, function, or data.

The load and run addresses for an object may be the same. This is commonly the case for program code
and read-only data, such as the .const section. In this case, the program can read the data directly from
the load address. Sections that have no initial value, such as the .bss section, do not have load data and
are considered to have load and run addresses that are the same. If you specify different load and run
addresses for an uninitialized section, the linker provides a warning and ignores the load address.

The load and run addresses for an object may be different. This is commonly the case for writable data,
such as the .data section. The .data section's starting contents are placed in ROM and copied to RAM.
This often occurs during program startup, but depending on the needs of the object, it may be deferred to
sometime later in the program as described in Section 3.5.

Symbols in assembly code and object files almost always refer to the run address. When you look at an
address in the program, you are almost always looking at the run address. The load address is rarely
used for anything but initialization.

The load and run addresses for a section are controlled by the linker command file and are recorded in
the object file metadata.

34

Program Loading and Running SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Loading

The load address determines where a loader places the raw data for the section. Any references to the
section (such as references to labels in it) refer to its run address. The application must copy the section
from its load address to its run address before the first reference of the symbol is encountered at run time;
this does not happen automatically simply because you specify a separate run address. For examples that
specify load and run addresses, see Section 8.5.6.1.

For an example that illustrates how to move a block of code at run time, see Example 8-10. To create a
symbol that lets you refer to the load-time address, rather than the run-time address, see the .label
directive. To use copy tables to copy objects from load-space to run-space at boot time, see Section 8.8.

ELF format executable object files contain segments. See Section 2.3 for information about sections and
segments.

3.1.2 Bootstrap Loading

The details of bootstrap loading (bootloading) vary a great deal between devices. Not every device
supports every bootloading mode, and using the bootloader is optional. This section discusses various
bootloading schemes to help you understand how they work. Refer to your device's data sheet to see
which bootloading schemes are available and how to use them.

A typical embedded system uses bootloading to initialize the device. The program code and data may be
stored in ROM or FLASH memory. At power-on, an on-chip bootloader (the primary bootloader) built into
the device hardware starts automatically.

Figure 3-1. Bootloading Sequence (Simplified)

Power On

Device Reset:
on-chip bootloader

Entry point:
(_c_int00 by default)

main

The primary bootloader is typically very small and copies a limited amount of memory from a dedicated
location in ROM to a dedicated location in RAM. (Some bootloaders support copying the program from an
I/O peripheral.) After the copy is completed, it transfers control to the program.

For many programs, the primary bootloader is not capable of loading the entire program, so these
programs supply a more capable secondary bootloader. The primary bootloader loads the secondary
bootloader and transfers control to it. Then, the secondary bootloader loads the rest of the program and
transfers control to it. There can be any number of layers of bootloaders, each loading a more capable
bootloader to which it transfers control.

SPNU118Y —September 1995—Revised February 2020 Program Loading and Running 35

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Loading www.ti.com

Figure 3-2. Bootloading Sequence with Secondary Bootloader

Power On

Device Reset:
on-chip bootloader

CPU Reset

Secondary Bootloader

Entry point:
(_c_int00 by default)

main

3.1.2.1 Boot, Load, and Run Addresses
The boot address of a bootloaded object is where its raw data exists in ROM before power-on.

The boot, load, and run addresses for an object may all be the same; this is commonly the case for .const
data. If they are different, the object's contents must be copied to the correct location before the object
may be used.

The boot address may be different than the load address. The bootloader is responsible for copying the
raw data to the load address.

The boot address is not controlled by the linker command file or recorded in the object file; it is strictly a
convention shared by the bootloader and the program.
3.1.2.2 Primary Bootloader
The detailed operation of the primary bootloader is device-specific. Some devices have complex
capabilities such as booting from an 1/O peripheral or configuring memory controller parameters.
3.1.2.3 Secondary Bootloader

The hex converter assumes the secondary bootloader is of a particular format. The hex converter's model
bootloader uses a boot table. You can use whatever format you want, but if you follow this model, the hex
converter can create the boot table automatically.

36 Program Loading and Running SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Loading

3.1.2.4 Boot Table

The input for the model secondary bootloader is the boot table. The boot table contains records that
instruct the secondary bootloader to copy blocks of data contained in the table to specified destination
addresses. The hex conversion utility automatically builds the boot table for the secondary bootloader.
Using the utility, you specify the sections you want to initialize, the boot table location, and the name of the
section containing the secondary bootloader routine and where it should be located. The hex conversion
utility builds a complete image of the table and adds it to the program.

The boot table is target-specific. For C6000, the format of the boot table is simple. A header record
contains a 4-byte field that indicates where the boot loader should branch after it has completed copying
data. After the header, each section that is to be included in the boot table has the following contents:

» 4-byte field containing the size of the section

e 4-byte field containing the destination address for the copy

» the raw data

» 0 to 3 bytes of trailing padding to make the next field aligned to 4 bytes

More than one section can be entered; a termination block containing an all-zero 4-byte field follows the
last section.

See Section 12.11.2 for details about the boot table format.

3.1.2.5 Bootloader Routine

The bootloader routine is a normal function, except that it executes before the C environment is set up.
For this reason, it can't use the C stack, and it can't call any functions that have yet to be loaded!

The following sample code is for C6000 and is from Creating a Second-Level Bootloader for FLASH
Bootloading on TMS320C6000 Platform With Code Composer Studio (SPRA999).

Example 3-1. Sample Secondary Bootloader Routine

; global EMIF symbols defined for the c671x family
-include boot_c671x.h62
.sect ".boot_load"”
-global _boot

_boot:

;* DEBUG LOOP - COMMENT OUT B FOR NORMAL OPERATION

zero Bl

_myloop: ; [!B1] B _myloop
nop 5

_myloopend: nop

;* CONFIGURE EMIF

; *EMIF_GCTL = EMIF_GCTL_V;

mvkl EMIF_GCTL,A4
11 mvkl EMIF_GCTL_V,B4
mvkh EMIF_GCTL,A4
11 mvkh EMIF_GCTL_V,B4
stw B4,*A4

; *EMIF_CEO = EMIF_CEO_V

mvkl EMIF_CEO,A4

1 mvkl EMIF_CEO_V,B4
mvkh EMIF_CEO,A4

T mvkh EMIF_CEO_V,B4

SPNU118Y —September 1995—-Revised February 2020 Program Loading and Running 37

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y
http://www.ti.com/lit/pdf/SPRA999

Loading

13 TEXAS
INSTRUMENTS

www.ti.com

Example 3-1. Sample Secondary Bootloader Routine (continued)

stw

B4 ,*A4

*EMIF_CE1 = EMIF_CE1_V (setup for 8-bit async)

mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_CE1,A4
EMIF_CE1_V,B4
EMIF_CE1,A4
EMIF_CE1_V,B4
B4,*A4

*EMIF_CE2 = EMIF_CE2_V (setup for 32-bit async)

mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_CE2,A4
EMIF_CE2_V,B4
EMIF_CE2,A4
EMIF_CE2_V,B4
B4,*Ad

*EMIF_CE3 = EMIF_CE3_V (setup for 32-bit async)

11 mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_CE3,A4
EMIF_CE3_V,B4
EMIF_CE3,A4
EMIF_CE3_V,B4
B4,*Ad

*EMIF_SDRAMCTL = EMIF_SDRAMCTL_V

mvkl
mvkl
mvkh
11 mvkh
stw

EMIF_SDRAMCTL ,A4

EMIF_SDRAMCTL_V,B4 ;

EMIF_SDRAMCTL ,A4

EMIF_SDRAMCTL_V,B4

B4,*A4

*EMIF_SDRAMTIM = EMIF_SDRAMTIM_V

11 mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_SDRAMTIM,A4

EMIF_SDRAMTIM_V,B4 ;

EMIF_SDRAMTIM, A4

EMIF_SDRAMTIM_V,B4

B4,*A4

*EMIF_SDRAMEXT = EMIF_SDRAMEXT_V

11 mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_SDRAMEXT ,A4

EMIF_SDRAMEXT_V,B4 ;

EMIF_SDRAMEXT ,A4

EMIF_SDRAMEXT_V,B4

B4,*A4

copy sections

mvkl COPY_TABLE, a3 ; load table pointer
mvkh COPY_TABLE, a3
Idw *a3++, bl ; Load entry point
copy_section_top:
ldw *a3++, b0 ; byte count
ldw *a3++, a4 ; ram start address
nop 3
[bO] b copy_done ; have we copied all sections?
nop 5
copy_loop:
Idb *a3++,b5
sub b0,1,b0 ; decrement counter
38 Program Loading and Running SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Entry Point

Example 3-1. Sample Secondary Bootloader Routine (continued)

[bo]
['b0]

[1b0]

[1b0]
[al]

b copy_loop ; setup branch if not done
b copy_section_top
zero al

and 3,a3,al
stb b5,*ad++
and -4,a3,a5 ; round address up to next multiple of 4
add 4,a5,a3 ; round address up to next multiple of 4

; jump to entry point

copy_

3.2

done:
b .S2 b1
nop 5
Entry Point

The entry point is the address at which the execution of the program begins. This is the address of the
startup routine. The startup routine is responsible for initializing and calling the rest of the program. For a
C/C++ program, the startup routine is usually named _c_int00 (see Section 3.3.1). After the program is
loaded, the value of the entry point is placed in the PC register and the CPU is allowed to run.

The object file has an entry point field. For a C/C++ program, the linker will fill in _c_int00 by default. You
can select a custom entry point; see Section 8.4.13. The device itself cannot read the entry point field from
the object file, so it has to be encoded in the program somewhere.

» If you are using a bootloader, the boot table includes an entry point field. When it finishes running, the
bootloader branches to the entry point.

« If you are using an interrupt vector, the entry point is installed as the RESET interrupt handler. When
RESET is applied, the startup routine will be invoked.

» If you are using a hosted debugger, such as CCS, the debugger may explicitly set the program counter
(PC) to the value of the entry point.

3.3 Run-Time Initialization
After the load image is in place, the program can run. The subsections that follow describe bootstrap
initialization of a C/C++ program. An assembly-only program may not need to perform all of these steps.
3.3.1 The c_int00 Function
The function _c_int00 is the startup routine (also called the boot routine) for C/C++ programs. It performs
all the steps necessary for a C/C++ program to initialize itself.
The name _c_int00 means that it is the interrupt handler for interrupt number 0, RESET, and that it sets
up the C environment. Its name need not be exactly _c_int00, but the linker sets _c_int00 as the entry
point for C programs by default. The compiler's run-time-support library provides a default implementation
of _c_int0O.
The startup routine is responsible for performing the following actions:
1. Switch to user mode and sets up the user mode stack
2. Set up status and configuration registers
3. Set up the stack
4. Process special binit copy table, if present.
5. Process the run-time initialization table to autoinitialize global variables (when using the --rom_model
option)
6. Call all global constructors
7. Call the function main
8. Call exit when main returns
SPNU118Y —September 1995—Revised February 2020 Program Loading and Running 39

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Run-Time Initialization www.ti.com

3.3.2 RAM Model vs. ROM Model

Choose a startup model based on the needs of your application. The ROM model performs more work
during the boot routine. The RAM model performs more work while loading the application.

If your application is likely to need frequent RESETS or is a standalone application, the ROM model may
be a better choice, because the boot routine will have all the data it needs to initialize RAM variables.
However, for a system with an operating system, it may be better to use the RAM model.

In the EABI ROM model, the C boot routine copies data from the .cinit section to the run-time location of
the variables to be initialized.

In the EABI RAM model, no .cinit records are generated at startup.

3.3.2.1 Autoinitializing Variables at Run Time (--rom_model)

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option.

The ROM model allows initialization data to be stored in slow non-volatile memory and copied to fast
memory each time the program is reset. Use this method if your application runs from code burned into
slow memory or needs to survive a reset.

For the ROM model, the .cinit section is loaded into memory along with all the other initialized sections.
The linker defines a special symbol called __ TI_CINIT_Base that points to the beginning of the
initialization tables in memory. When the program begins running, the C boot routine copies data from the
tables (pointed to by .cinit) into the run-time location of the variables.

Figure 3-3 illustrates autoinitialization at run time using the ROM model.

Figure 3-3. Autoinitialization at Run Time
Object file Memory

C auto init

.cinit
section table and data

(ROM)

Boot
routine

.data
uninitialized
(RAM)

3.3.2.2 Initializing Variables at Load Time (--ram_model)

The RAM model Initializes variables at load time. To use this method, invoke the linker with the --
ram_model option.

This model may reduce boot time and save memory used by the initialization tables.

When you use the --ram_model linker option, the linker sets the STYP_COPY bit in the .cinit section's
header. This tells the loader not to load the .cinit section into memory. (The .cinit section occupies ho
space in the memory map.)

The linker sets __TI_CINIT_Base equal to __TI_CINIT_Limit to indicate there are no .cinit records.
The loader copies values directly from the .data section to memory.
Figure 3-4 illustrates the initialization of variables at load time.

40

Program Loading and Running SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Initialization

Figure 3-4. Initialization at Load Time

Object file Memory

.data
section w

.data section
(initialized)
(RAM)

3.3.2.3 The --rom_model and --ram_model Linker Options
The following list outlines what happens when you invoke the linker with the --ram_model or --rom_model
option.

» The symbol _c_int00 is defined as the program entry point. The _c_int00 symbol is the start of the C
boot routine in boot.c.obj. Referencing _c_int00 ensures that boot.c.obj is automatically linked in from
the appropriate run-time-support library.

* When you use the ROM model to autoinitialize at run time (--rom_model option):

— The linker defines a special symbol called __ TI_CINIT_Base that points to the beginning of the
initialization tables in memory. When the program begins running, the C boot routine copies data
from the tables (pointed to by .cinit) into the run-time location of the variables.

* When you use the RAM model to initialize at load time (--ram_model option):
— The linker sets __ TI_CINIT_Base equal to __TI_CINIT_Limit to indicate there are no .cinit records.

3.3.3 About Linker-Generated Copy Tables

The RTS function copy_in can be used at run-time to move code and data around, usually from its load
address to its run address. This function reads size and location information from copy tables. The linker
automatically generates several kinds of copy tables. Refer to Section 8.8.

You can create and control code overlays with copy tables. See Section 8.8.4 for details and examples.

Copy tables can be used by the linker to implement run-time relocations as described in Section 3.5,
however copy tables require a specific table format.

3.3.3.1 BINIT

The BINIT (boot-time initialization) copy table is special in that the target will automatically perform the
copying at auto-initialization time. Refer to Section 8.8.4.2 for more about the BINIT copy table name. The
BINIT copy table is copied before .cinit processing.

3.3.3.2 CINIT

EABI .cinit tables are special kinds of copy tables. Refer to Section 3.3.2.1 for more about using the .cinit
section with the ROM model and Section 3.3.2.2 for more using it with the RAM model.

SPNU118Y —September 1995—Revised February 2020 Program Loading and Running 41

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Arguments to main www.ti.com

3.4

3.5

3.6

Arguments to main

Some programs expect arguments to main (argc, argv) to be valid. Normally this isn't possible for an
embedded program, but the TI runtime does provide a way to do it. The user must allocate an .args
section of an appropriate size using the --args linker option. It is the responsibility of the loader to populate
the .args section. It is not specified how the loader determines which arguments to pass to the target. The
format of the arguments is the same as an array of pointers to char on the target.

See Section 8.4.4 for information about allocating memory for argument passing.

Run-Time Relocation

At times you may want to load code into one area of memory and move it to another area before running
it. For example, you may have performance-critical code in an external-memory-based system. The code
must be loaded into external memory, but it would run faster in internal memory. Because internal memory
is limited, you might swap in different speed-critical functions at different times.

The linker provides a way to handle this. Using the SECTIONS directive, you can optionally direct the
linker to allocate a section twice: first to set its load address and again to set its run address. Use the load
keyword for the load address and the run keyword for the run address. See Section 3.1.1 for more about
load and run addresses. If a section is assignhed two addresses at link time, all labels defined in the
section are relocated to refer to the run-time address so that references to the section (such as branches)
are correct when the code runs.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is actually allocated as if it
were two separate sections. The two sections are the same size if the load section is not compressed.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run address. The
linker allocates uninitialized sections only once; if you specify both run and load addresses, the linker
warns you and ignores the load address.

For a complete description of run-time relocation, see Section 8.5.6.

Additional Information

See the following sections and documents for additional information:

Section 8.4.4, "Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)"
Section 8.4.13, "Define an Entry Point (--entry_point Option)"

Section 8.5.6.1 ,"Specifying Load and Run Addresses"

Section 8.8, "Linker-Generated Copy Tables"

Section 8.11.1, "Run-Time Initialization"

label directive

Chapter 12, "Hex Conversion Utility Description”

"Run-Time Initialization" and "System Initialization" sections in the ARM Optimizing C/C++ Compiler User's
Guide

42

Program Loading and Running SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Chapter 4

SPNU118Y —September 1995—Revised February 2020

TeEXAS
INSTRUMENTS

Assembler Description

The ARM assembler translates assembly language source files into machine language object files. These
files are object modules, which are discussed in Chapter 2. Source files can contain the following
assembly language elements:

Assembler directives described in Chapter 5
Macro directives described in Chapter 6
Assembly language instructions described in the TMS470R1x User's Guide.

Topic Page
o R AN Y =T a1] (=T G @ L= Y= PP 44
4.2 The Assembler's Role in the Software Development FIOWcccoiiiiiiiiiiiiiiinnnnnnn. 45
4.3 InVOKING the ASSEMDIETuie ettt et e e e 46
4.4 Controlling Application Binary INTErfaceuvuiuiiiiiiiiiiiiiiii e eeas 47
4.5 Naming Alternate Directories for Assembler INPUto.viiiiiiiiiiiiiiee e 47
4.6 SOUrce StatemMent FOIMaAt.oiiiiiieiie ittt e e a e e an e e e e e raea e s e ansnenenenenes 50
A I | (=T = 0 1] = 1 | £ PP 54
4.8 ASSemMbIEr SYMDOIS. ... e e 56
S B b o (=7 [0 0 =P 64
4.10 Built-in FUNCLIONS @Nd OPEIatOrS ..uiuiuieititieeeieeet ettt st iaeasasaeaeaeaeanas 68
4.11 Unified Assembly Language SYyntax SUPPOIt ...c.ieieeiiitieinieieientinensnseneneaeenansnenenens 69
o S 1o T U)o = I3 11 PP 70
4.13 Debugging ASSEMDIY SOUICEeiiiinieie ettt e e e e ea s e e e e enennnnenes 73
4.14 CroSS-ReferenCe LiSTINGS ...ttt ettt e et e e e e e e e e e eeeees 74

SPNU118Y —September 1995—-Revised February 2020 Assembler Description 43

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Assembler Overview www.ti.com

41 Assembler Overview

The 2-pass assembler does the following:
* Processes the source statements in a text file to produce a relocatable object file
» Produces a source listing (if requested) and provides you with control over this listing

» Allows you to divide your code into sections and maintain a section program counter (SPC) for each
section of object code

» Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)

» Allows conditional assembly
e Supports macros, allowing you to define macros inline or in a library

44 Assembler Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com The Assembler's Role in the Software Development Flow

4.2 The Assembler's Role in the Software Development Flow

Figure 4-1 illustrates the assembler's role in the software development flow. The shaded portion highlights
the most common assembler development path. The assembler accepts assembly language source files
as input, both those you create and those created by the ARM C/C++ compiler.

Figure 4-1. The Assembler in the ARM Software Development Flow

C/C++
source
files
Macro
source C/C++
files compiler

Assembler C/C++ name

source

demangling
utility

Macro

library Assembler

Object Librat_ryll_;build Debugging
files utility
L Run-time-
Library of support
object library
files

Executable
object file

Hex-conversion
utility

EPROM Absolute lister Cross-reference | Object file

programmer lister utilities

SPNU118Y —September 1995—-Revised February 2020

Assembler Description 45
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Invoking the Assembler

13 TEXAS
INSTRUMENTS

www.ti.com

4.3 Invoking the Assembler

To invoke the assembler, enter the following:

armcl input file [options]

armcl is the command that invokes the assembler through the compiler. The compiler considers
any file with an .asm extension to be an assembly file and invokes the assembler.

input file names the assembly language source file.

options identify the assembler options that you want to use. Options are case sensitive and can

appear anywhere on the command line following the command. Precede each option with
one or two hyphens as shown.

The valid assembler options are listed in Table 4-1.

Table 4-1. ARM Assembler Options

Option

Description

--absolute_listing

--asm_define=name[=def]

--asm_dependency

--asm_includes

--asm_listing
--asm_listing_cross_reference

--asm_undefine=name

--cmd_file=filename

--code_state={16|32}

--endian

--include_file=filename

--include_path=pathname

--quiet

--symdebug:dwarf or
--symdebug:none

-apd

-api

Creates an absolute listing. When you use --absolute_listing, the assembler does not produce
an object file. The --absolute_listing option is used in conjunction with the absolute lister.

Sets the name symbol. This is equivalent to defining name with a .set directive in the case of a
numeric value or with an .asg directive otherwise. If value is omitted, the symbol is set to 1.
See Section 4.8.5.

Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of dependency lines suitable for input to a standard make utility. The list is written to a file
with the same name as the source file but with a .ppa extension.

Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of files included with the .include directive. The list is written to a file with the same name
as the source file but with a .ppa extension.

Produces a listing file with the same name as the input file with a .Ist extension.

Produces a cross-reference table and appends it to the end of the listing file; it also adds
cross-reference information to the object file for use by the cross-reference utility. If you do not
request a listing file but use the --asm_listing_cross_reference option, the assembler creates a
listing file automatically, naming it with the same name as the input file with a .Ist extension.

Undefines the predefined constant name, which overrides any --asm_define options for the
specified constant.

Appends the contents of a file to the command line. You can use this option to avoid limitations
on command line length imposed by the host operating system. Use an asterisk or a
semicolon (* or ;) at the beginning of a line in the command file to include comments.
Comments that begin in any other column must begin with a semicolon. Within the command
file, filenames or option parameters containing embedded spaces or hyphens must be
surrounded with quotation marks. For example: "this-file.asm"

--code_state=16 (or -mt) instructs the assembler to begin assembling instructions as 16-bit
instructions; UAL syntax (.thumb) for ARMv7 and non-UAL syntax (.state16) otherwise. By
default, the assembler begins assembling 32-bit instructions. You can reset the default
behavior by specifying --code_state=32. For information on indirect calls in 16-bit versus 32-bit
code, see the ARM Optimizing C/C++ Compiler User's Guide.

Produces object code in little-endian format. For more information, see the ARM Optimizing
C/C++ Compiler User's Guide.

Includes the specified file for the assembly module. The file is included before source file
statements. The included file does not appear in the assembly listing files.

Specifies a directory where the assembler can find files named by the .copy, .include, or .mlib
directives. There is no limit to the number of directories you can specify in this manner; each
pathname must be preceded by the --include_path option. See Section 4.5.1.

Suppresses the banner and progress information (assembler runs in quiet mode).

(DWARF is on by default) Enables assembler source debugging in the C source debugger.
Line information is output to the object module for every line of source in the assembly
language source file. You cannot use this option on assembly code that contains .line
directives. See Section 4.13.

46 Assembler Description

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Controlling Application Binary Interface

4.4 Controlling Application Binary Interface

An Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. The ABI exists to allow ABI-compliant object code to link
together, regardless of its source, and allows the resulting executable to run on any system that supports
that ABI. See the ARM Optimizing C/C++ Compiler User's Guide (SPNU151) for information on the EABI
ABI. The complete ARM ABI specifications can be found in the ARM Information Center.

COFF object files and the legacy TIABI and TI ARM9 ABI modes are not supported in v15.6.0.STS and
later versions of the Tl Code Generation Tools. If you would like to produce COFF output files, please use
v5.2 of the ARM Code Generation Tools and refer to SPNU151J for documentation.

All object files in an EABI application must be built for EABI. The linker detects situations where object
modules conform to different ABIs and generates an error.

Note that converting an assembly file from the COFF API to EABI requires some changes to the assembly
code.

4.5 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from external files. The .copy and
.include directives tell the assembler to read source statements from another file, and the .mlib directive
names a library that contains macro functions. Chapter 5 contains examples of the .copy, .include, and
.mlib directives. The syntax for these directives is:

.copy ["]filename["]
.include ["]filename["]
.mlib ["]filename["]

The filename names a copyl/include file that the assembler reads statements from or a macro library that
contains macro definitions. If filename begins with a number the double quotes are required. Quotes are
recommended so that there is no issue in dealing with path information that is included in the filename
specification or path names that include white space. The filename may be a complete pathname, a partial
pathname, or a filename with no path information.

The assembler searches for the file in the following locations in the order given:

1. The directory that contains the current source file. The current source file is the file being assembled
when the .copy, .include, or .mlib directive is encountered.

2. Any directories named with the --include_path option
3. Any directories named with the TI_ARM_C_DIR environment variable
4. Any directories named with the TI_ ARM_C_DIRenvironment variable

Because of this search hierarchy, you can augment the assembler's directory search algorithm by using
the --include_path option (described in Section 4.5.1) or the TI_ARM_A_DIR environment variable
(described in Section 4.5.2). The TI_ARM_C_DIR environment variable is discussed in the ARM
Optimizing C/C++ Compiler User's Guide.

NOTE: The TI_ARM_C_DIR environment variable takes precedence over the older TMS470_C_DIR
environment variable if both are defined. If only TMS470_C_DIR is set, it will continue to be
used. Likewise, the TI_ARM_A_DIR environment variable takes precedence over the older
TMS470_A_DIR environment variable if both are defined. If only TMS470_A _DIR is set, it
will continue to be used.

SPNU118Y —September 1995—-Revised February 2020 Assembler Description 47

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html
http://www.ti.com/lit/pdf/spnu151J

13 TEXAS
INSTRUMENTS

Naming Alternate Directories for Assembler Input www.ti.com

45.1 Using the --include_path Assembler Option

The --include_path assembler option names an alternate directory that contains copy/include files or
macro libraries. The format of the --include_path option is as follows:

armcl --include_path= pathname source filename [other options] ‘

There is no limit to the number of --include_path options per invocation; each --include_path option names
one pathname. In assembly source, you can use the .copy, .include, or .mlib directive without specifying
path information. If the assembler does not find the file in the directory that contains the current source
file, it searches the paths designated by the --include_path options.

For example, assume that a file called source.asm is in the current directory; source.asm contains the
following directive statement:

.copy '‘copy-.asm"

Assume the following paths for the copy.asm file:

UNIX: [tools/files/copy.asm
Windows: c:\tools\files\copy.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) armcl --include_path=/tools/files source.asm
Windows armcl --include_path=c:\tools\files source.asm

The assembler first searches for copy.asm in the current directory because source.asm is in the current
directory. Then the assembler searches in the directory named with the --include_path option.

4.5.2 Using the T_ARM_A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string to. The assembler uses
the TI_ARM_C_DIR environment variable to name alternate directories that contain copy/include files or
macro libraries.

The assembler looks for the TI_ARM_A_DIR environment variable and then reads and processes it. If the
assembler does not find the TI_ARM_A_DIR variable, it then searches for TI_ARM_C_DIR. The
processor-specific variables are useful when you are using Texas Instruments tools for different
processors at the same time.

See the ARM Optimizing C/C++ Compiler User's Guide for details on TI_ARM_C_DIR.

NOTE: The TI_ARM_C_DIR environment variable takes precedence over the older TMS470_C_DIR
environment variable if both are defined. If only TMS470_C_DIR is set, it will continue to be
used. Likewise, the TI_ARM_A_DIR environment variable takes precedence over the older
TMS470_A_DIR environment variable if both are defined. If only TMS470_A_DIR is set, it
will continue to be used.

The command syntax for assigning the environment variable is as follows:

Operating System Enter
UNIX (Bourne Shell) TI_ARM_A_DIR=" pathname, ; pathname, ; . .."; export TI_ARM_A_DIR
Windows set TI_ARM_A_DIR= pathname, ; pathname, ; . . .
48 Assembler Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Naming Alternate Directories for Assembler Input

The pathnames are directories that contain copy/include files or macro libraries. The pathnames must
follow these constraints:

» Pathnames must be separated with a semicolon.

» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:

set TI_ARM_A DIR= c:\path\one\to\tools ; c:\path\two\to\tools

» Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:

In assembly source, you can use the .copy, .include, or .mlib directive without specifying path information.
If the assembler does not find the file in the directory that contains the current source file or in directories
named by the --include_path option, it searches the paths nhamed by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy '‘copyl.asm"™
.copy '‘copy2.asm"

Assume the following paths for the files:

UNIX: [tools/files/copyl.asm and /dsys/copy2.asm
Windows: c:\tools\files\copyl.asm and c:\dsys\copy2.asm

You could set up the search path with the commands shown below:

Operating System Enter

UNIX (Bourne shell) TI_ARM_A_DIR="/dsys"; export TI_ARM_A DIR
armcl --include_path=/tools/files source.asm

Windows TI_ARM_A_DIR=c:\dsys

armcl --include_path=c:\tools\files source.asm

The assembler first searches for copyl.asm and copy2.asm in the current directory because source.asm
is in the current directory. Then the assembler searches in the directory named with the --include_path
option and finds copyl.asm. Finally, the assembler searches the directory named with TI_ARM_A_DIR
and finds copy2.asm.

The environment variable remains set until you reboot the system or reset the variable by entering one of
these commands:

Operating System Enter
UNIX (Bourne shell) unset T1_ARM_A DIR
Windows set TI_ARM_A DIR=
SPNU118Y —September 1995—-Revised February 2020 Assembler Description 49

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Source Statement Format www.ti.com
4.6 Source Statement Format
Each line in a ARM assembly input file can be empty, a comment, an assembler directive, a macro
invocation, or an assembly instruction.
Assembly language source statements can contain four ordered fields (label, mnemonic, operand list, and
comment). The general syntax for source statements is as follows:
’[Iabel[:]]mnemonic [operand list][;comment]
Following are examples of source statements:
SYM1 .set 2 ; Symbol SYM1 = 2
Begin: MoV RO, #SYM1 ; Load RO with 2
-word 016h ; Initialize word (016h)
The ARM assembler reads an unlimited number of characters per line. Source statements that extend
beyond 400 characters in length (including comments) are truncated in the listing file.
Follow these guidelines:
» All statements must begin with a label, a blank, an asterisk, or a semicolon.
» Labels are optional for most statements; if used, they must begin in column 1.
» One or more space or tab characters must separate each field.
» Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (*
or ;), but comments that begin in any other column must begin with a semicolon.
NOTE: A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes
and assembler directive names without the . prefix are valid label names. Remember to
always use whitespace before the mnemonic, or the assembler will think the identifier is a
new label definition.
The following sections describe each of the fields.
4.6.1 Label Field
A label must be a legal identifier (see Section 4.8.1) placed in column 1. Every instruction may optionally
have a label. Many directives allow a label, and some require a label.
A label can be followed by a colon (:). The colon is not treated as part of the label name. If you do not use
a label, the first character position must contain a blank, a semicolon, or an asterisk.
When you use a label on an assembly instruction or data directive, an assembler symbol (Section 4.8)
with the same name is created. Its value is the current value of the section program counter (SPC, see
Section 2.4.5). This symbol represents the address of that instruction. In the following example, the .word
directive is used to create an array of 3 words. Because a label was used, the assembly symbol Start
refers to the first word, and the symbol will have the value 40h.
9 - - * Assume some code was assembled
10 00000040 0000000A Start: .word OAh,3,7
00000044 00000003
00000048 00000007
A label on a line by itself is a valid statement. When a label appears on a line by itself, it points to the
instruction on the next line (the SPC is not incremented):
1 00000000 Here:
2 00000000 00000003 .word 3
A label on a line by itself is equivalent to writing:
Here: .equ $; $ provides the current value of the SPC
If you do not use a label, the character in column 1 must be a blank, an asterisk, or a semicolon.
50 Assembler Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com Source Statement Format

4.6.2

4.6.3

Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in column 1; if it does, it is
interpreted as a label. There is one exception: the parallel bars (||) of the mnemonic field can start in
column 1. The mnemonic field contains one of the following items:

* Machine-instruction mnemonic (such as ADD, MUL, STR)
» Assembler directive (such as .data, .list, .equ)

* Macro directive (such as .macro, .var, .mexit)

* Macro invocation

Operand Field
The operand field follows the mnemonic field and contains zero or more comma-separated operands. An
operand can be one of the following:
e an immediate operand (usually a constant or symbol) (see Section 4.7 and Section 4.8)
e aregister operand
* a memory reference operand
» an expression that evaluates to one of the above (see Section 4.9)

An immediate operand is encoded directly in the instruction. The value of an immediate operand must be
a constant expression. Most instructions with an immediate operand require an absolute constant
expression, such as 1234. Some instructions (such as a call instruction) allow a relocatable constant
expression, such as a symbol defined in another file. (See Section 4.9 for details about types of
expressions.)

A register operand is a special pre-defined symbol that represents a CPU register.

A memory reference operand uses one of several memory addressing modes to refer to a location in
memory. Memory reference operands use a special target-specific syntax defined in the appropriate CPU
and Instruction Set Reference Guide.

You must separate operands with commas. Not all operand types are supported for all operands. See the
description of the specific instruction in the CPU and Instruction Set Reference Guide for your device
family.

4.6.3.1 Operand Syntaxes for Instructions

The assembler allows you to specify that an operand should be used as an address, an immediate value,
an indirect address, a register, a shifted register, or a register list. The following rules apply to the
operands of instructions.

» # prefix — the operand is an immediate value. Using the # sign as a prefix causes the assembler to
treat the operand as an immediate value. This is true even if the operand is a register; the assembler
treats the register as a value instead of using the contents of the register. For example:

Label: ADD R1, R1, #123
; Add 123 (decimal) to the value of R1 and place the result in R1.

» Square brackets — the operand is an indirect address. If the operand is enclosed in square
brackets, the assembler treats the operand as an indirect address; that is, it uses the contents of the
operand as an address. Indirect addresses consist of a base and an offset. The base is specified by a
register and is formed by taking the value in the register. The offset can be specified by a register, an
immediate value, or a shifted register. Furthermore, the offset can be designated as one of the
following:

— Pre-index, where the base and offset are combined to form the address. To designate a pre-index
offset, include the offset within the enclosing right bracket.

— Postindex, where the address is formed from the base, and then the base and offset are combined.
To designate a postindex offset, include the offset outside of the right bracket.

SPNU118Y —September 1995—-Revised February 2020 Assembler Description 51
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Source Statement Format www.ti.com

The offset can be added to or subtracted from the base. The following are examples of instructions that
use indirect addresses as operands:
A: LDR R1, [R1]
; Load from address in R1 into R1.
LDR R7, [R1, #5]
; Form address by adding the value in R1 to 5. Load from address into R7.
STR R3, [R1, -R2]
; Form address by subtracting the value in R2 from the value in R1. Store from R3
; to memory at address.
STR R14, [R1l, +R3, LSL #2]
; Form address by adding the value in R3 shifted left by 2 to the value in R1.
; Store from R14 to memory at address.
LDR R1, [R1], #5
; Load from address in R1 into R1, then add 5 to the address.
STR R2, [R1], R5
; Store value in R2 in the address in R1, then add the value in R5 to the address.

» | suffix — write-back to register. If you use the ! sign as a suffix, the assembler writes the computed
address back to the base register. Write-back to register is used only with the indirect addressing
mode syntax.

This is an example of an instruction using the write back to register suffix:

LDR R1, [R4, #4]!
; Form address by adding the value in R4 to 4. Load from this address into R1,
; then replace the value in R4 with the address.

» " suffix — set S bit. If you use the ” sign as a suffix, the assembler sets the S hit. The resulting action
depends on the type of instruction being executed and whether R15 is in the transfer list. For more
information, see the LDM and STM instructions in the TMS470R1x User's Guide.

LDMIA SP, {R4-R11, R15}"
; Load registers R4 through R11 and R15 from memory at SP. Load CPSR with SPSR.

» Shifted registers. If a register symbol is followed by a shift type, the computed value is the value in
the register shifted according to the type as defined below:

LSL Logical shift left

LSR Logical shift right
ASL Arithmetic shift left
ASR Arithmetic shift right
ROR Rotate right

RRX Rotate right extended

The shift type can be followed by a register or an immediate whose value defines the shift amount. The
following are examples of instructions that use shifted registers as operands:

B: ADD R1, R4, R5, LSR R2

; Logical shift right the value in R5 by the value in R2. Add the value in R5 to R4.
; Place result in R1.

LDR R1, [R5, R4, LSL #4]
; Form address by adding the value in R4 shifted left by 4 to the value in R5.
; Load from address into R1.

CMP R3, R4, RRX
; Compare the value in R3 with the value in R4 rotate right extend.

e Curly braces - the operand is a register list. If you surround registers with curly braces, the
assembler treats the operand as a list of registers. You can separate registers with commas or indicate
a range of registers with a dash. The following are examples of instructions that use register lists:
LDMEA R2, {R1, R3, R6}
; Pre-decrement stack load. Load registers R1, R3 and R6 from memory at the address in R2.
STMFD R12, {R1, R3-R5}
; Pre-increment stack store. Store from registers R1 and R3 through R5 to memory at the
; address in R12.

52 Assembler Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Source Statement Format

4.6.3.2 Immediate Values as Operands for Directives

You use immediate values as operands primarily with instructions. In some cases, you can use immediate
values with the operands of directives. For instance, you can use immediate values with the .byte directive
to load values into the current section.
It is not usually necessary to use the # prefix for directives. Compare the following statements:

ADD R1, #10

-byte 10

In the first statement, the # prefix is necessary to tell the assembler to add the value 10 to R1. In the
second statement, however, the # prefix is not used; the assembler expects the operand to be a value and
initializes a byte with the value 10.

See Chapter 5 for more information on the syntax and usage of directives.

46.4 Comment Field

A comment can begin in any column and extends to the end of the source line. A comment can contain
any ASCII character, including blanks. Comments are printed in the assembly source listing, but they do
not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column 1, it can start with a
semicolon (;) or an asterisk (*). Comments that begin anywhere else on the line must begin with a
semicolon. The asterisk identifies a comment only if it appears in column 1.

SPNU118Y —September 1995—Revised February 2020 Assembler Description 53

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Literal Constants www.ti.com

4.7 Literal Constants

A literal constant (also known as a literal or in some other documents as an immediate value) is a value
that represents itself, such as 12, 3.14, or "hello".

The assembler supports several types of literals:
* Binary integer literals

* Octal integer literals

« Decimal integer literals

» Hexadecimal integer literals

* Character literals

» Character string literals

* Floating-point literals

Error checking for invalid or incomplete literals is performed.

4.7.1 Integer Literals

The assembler maintains each integer literal internally as a 32-bit signless quantity. Literals are
considered unsigned values, and are not sign extended. For example, the literal 00FFh is equal to O0FF
(base 16) or 255 (base 10); it does not equal -1. which is OFFFFFFFFh (base 16). Note that if you store
OFFh in a .byte location, the bits will be exactly the same as if you had stored -1. It is up to the reader of
that location to interpret the signedness of the bits.

4.7.1.1 Binary Integer Literals

A binary integer literal is a string of up to 32 binary digits (Os and 1s) followed by the suffix B (or b). Binary
literals of the form "0[bB][10]+" are also supported. If fewer than 32 digits are specified, the assembler
right justifies the value and fills the unspecified bits with zeros. These are examples of valid binary literals:

00000000B Literal equal to 0,4 Or 046
0100000b Literal equal to 32,, or 20,4
01b Literal equal to 1,, or 1,4
11111000B Literal equal to 248,, or OF8,4
0b00101010 Literal equal to 42,, or 2A ;4
0B101010 Literal equal to 42,, or 2A

4.7.1.2 Octal Integer Literals

An octal integer literal is a string of up to 11 octal digits (0 through 7) followed by the suffix Q (or q). Octal
literals may also begin with a 0, contain no 8 or 9 digits, and end with no suffix. These are examples of
valid octal literals:

10Q Literal equal to 8,, or 8,4

054321 Literal equal to 22737, or 58D1,;
100000Q Literal equal to 32768, or 8000,
2269 Literal equal to 150, or 96,4

4.7.1.3 Decimal Integer Literals

A decimal integer literal is a string of decimal digits ranging from -2147 483 648 to 4 294 967 295. These
are examples of valid decimal integer literals:

54 Assembler Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I3 TEXAS
INSTRUMENTS
www.ti.com Literal Constants
1000 Literal equal to 1000,, or 3E8,;
-32768 Literal equal to -32 768, or -8000,,
25 Literal equal to 25,, or 19,4

4815162342 Literal equal to 4815162342,, or 11FO18BEG6,;

4.7.1.4 Hexadecimal Integer Literals

A hexadecimal integer literal is a string of up to eight hexadecimal digits followed by the suffix H (or h) or
preceded by 0x. A hexadecimal literal must begin with a decimal value (0-9) if it is indicated by the H or h
suffix.

Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. If fewer than eight
hexadecimal digits are specified, the assembler right-justifies the bits.

These are examples of valid hexadecimal literals:

78h Literal equal to 120,, or 0078,
0x78 Literal equal to 120,, or 0078,
OFh Literal equal to 15,, or 000F 4
37ACh Literal equal to 14252, or 37AC

4.7.1.5 Character Literals

4.7.2

A character literal is a single character enclosed in single quotes. The characters are represented
internally as 8-bit ASCII characters. Two consecutive single quotes are required to represent each single
guote that is part of a character literal. A character literal consisting only of two single quotes is valid and
is assigned the value 0. These are examples of valid character literals:

a Defines the character literal a and is represented internally as 61,4
'C' Defines the character literal C and is represented internally as 43,4
Defines the character literal ' and is represented internally as 274
Defines a null character and is represented internally as 00,4

Notice the difference between character literals and character string literals (Section 4.7.2 discusses
character strings). A character literal represents a single integer value; a string is a sequence of
characters.

Character String Literals

A character string is a sequence of characters enclosed in double quotes. Double quotes that are part of
character strings are represented by two consecutive double quotes. The maximum length of a string
varies and is defined for each directive that requires a character string. Characters are represented
internally as 8-bit ASCII characters.

These are examples of valid character strings:

"sample program" defines the 14-character string sample program.
"PLAN ""C""" defines the 8-character string PLAN "C".

Character strings are used for the following:

e Filenames, as in .copy "filename"

» Section names, as in .sect "section name"

» Data initialization directives, as in .byte "charstring"
* Operands of .string directives

SPNU118Y —September 1995—Revised February 2020 Assembler Description 55
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Literal Constants www.ti.com
4.7.3 Floating-Point Literals
A floating-point literal is a string of decimal digits followed by a required decimal point, an optional
fractional portion, and an optional exponent portion. The syntax for a floating-point number is:
[[+-1nnn. [nnn] [EJe [+]-] nnn] |
Replace nnn with a string of decimal digits. You can precede nnn with a + or a -. You must specify a
decimal point. For example, 3.e5 is valid, but 3e5 is not valid. The exponent indicates a power of 10.
These are examples of valid floating-point literals:
3.0
3.14
3.
-0.314e13
+314.59e-2
The assembler syntax does not support all C89-style float literals nor C99-style hexadecimal constants,
but the $$strtod built-in mathematical function supports both. If you want to specify a floating-point literal
using one of those formats, use $$strtod. For example:
$$strtod(*'-3")
$$strtod("'0x1.234p-5")
You cannot directly use NaN, Inf, or -Inf as floating-point literals. Instead, use $$strtod to express these
values. The "NaN" and "Inf" strings are handled case-insensitively. See Section 4.10.1 for built-in
functions.
$$strtod(*'NaN™)
$$strrod('Inf)
4.8 Assembler Symbols
An assembler symbol is a named 32-bit signless integer value, usually representing an address or
absolute integer. A symbol can represent such things as the starting address of a function, variable, or
section. The name of a symbol must be a legal identifier. The identifier becomes a symbolic
representation of the symbol's value, and may be used in subsequent instructions to refer to the symbol's
location or value.
Some assembler symbols become external symbols, and are placed in the object file's symbol table. A
symbol is valid only within the module in which it is defined, unless you use the .global directive or the .def
directive to declare it as an external symbol (see .global directive).
See Section 2.6 for more about symbols and the symbol tables in object files.
4.8.1 Identifiers
Identifiers are names used as labels, registers, symbols, and substitution symbols. An identifier is a string
of alphanumeric characters, the dollar sign, and underscores (A-Z, a-z, 0-9, $, and _). The first character
in an identifier cannot be a number, and identifiers cannot contain embedded blanks. The identifiers you
define are case sensitive; for example, the assembler recognizes ABC, Abc, and abc as three distinct
identifiers.
56 Assembler Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS

www.ti.com Assembler Symbols

4.8.2

Labels

An identifier used as a label becomes an assembler symbol, which represent an address in the program.
Labels within a file must be unique.

NOTE: A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes
and assembler directive names without the . prefix are valid label names. Remember to
always use whitespace before the mnemonic, or the assembler will think the identifier is a
new label definition.

Symbols derived from labels can also be used as the operands of .bss, .global, .ref, or .def directives.

-global _f
LDR Al, CON1
STR Al, [sp, #0]
BL f
CON1: .field -269488145,32
4.8.3 Local Labels

Local labels are special labels whose scope and effect are temporary. A local label can be defined in two

ways:

* $n, where n is a decimal digit in the range 0-9. For example, $4 and $1 are valid local labels. See
Example 4-1.

* name?, where name is any legal identifier as described above. The assembler replaces the question
mark with a period followed by a unique number. When the source code is expanded, you will not see
the unique number in the listing file. Your label appears with the question mark as it did in the source
definition.

You cannot declare these types of labels as global.

Normal labels must be unique (they can be declared only once), and they can be used as constants in the

operand field. Local labels, however, can be undefined and defined again. Local labels cannot be defined

by directives.

A local label can be undefined or reset in one of these ways:

* By using the .newblock directive

» By changing sections (using a .sect, .text, or .data directive)

* By changing the state of generated code (using the .state16 or .state32 directives)

* By entering an include file (specified by the .include or .copy directive)

» By leaving an include file (specified by the .include or .copy directive)

SPNU118Y —September 1995—-Revised February 2020 Assembler Description 57

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Assembler Symbols www.ti.com

Example 4-1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:

Labell: CMP rl, #0 ; Compare rl to zero.
BCS $1 ; If carry is set, branch to $1;
ADDS ro, ro, #1 ; else increment to rO
MOVCS pc, Ir ; and return.
$1: LDR r2, [r5], #4 ; Load indirect of r5 into r2
; with write back.
-newblock ; Undefine $1 so it can be used
; again.
ADDS rl, rl, r2 ; Add r2 to ril.
BPL $1 ; If the negative bit isn"t set,
; branch to $1;
MVNS rl, ri ; else negate rl.
$1: MoV pc, Ir ; Return.

The following code uses a local label illegally:

BCS $1
ADDS ro, rO, #1
MOVCS pc, Ir

$1: LDR r2, [r5], #4

; If carry is set, branch to $1;
; else increment to rO
; and return.
; Load indirect of r5 into r2
; with write-back.
ADDS rl, rl1, r2 ; Add r2 to ril.
BPL $1 ; If the negative bit isn"t set,
; branch to $1;
; else negate rl.
; Return.

MVNS ri, ril
$1: MoV pc, Ir

The $1 label is not undefined before being reused by the second branch instruction. Therefore, $1 is
redefined, which is illegal.

Local labels are especially useful in macros. If a macro contains a normal label and is called more than
once, the assembler issues a multiple-definition error. If you use a local label and .newblock within a
macro, however, the local label is used and reset each time the macro is expanded.

Up to ten local labels of the $n form can be in effect at one time. Local labels of the form name? are not
limited. After you undefine a local label, you can define it and use it again. Local labels do not appear in
the object code symbol table.

For more information about using labels in macros see Section 6.6.

58 Assembler Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com Assembler Symbols

4.8.4 Symbolic Constants

4.8.5

A symbolic constant is a symbol with a value that is an absolute constant expression (see Section 4.9). By
using symbolic constants, you can assign meaningful names to constant expressions. The .set and
.Struct/.tag/.endstruct directives enable you to set symbolic constants (see Define Assembly-Time
Constant). Once defined, symbolic constants cannot be redefined.

If you use the .set directive to assign a value to a symbol , the symbol becomes a symbolic constant and
may be used where a constant expression is expected. For example:

shift3 .set 3
MOV RO, #shift3

You can also use the .set directive to assign symbolic constants for other symbols, such as register
names. In this case, the symbolic constant becomes a synonym for the register:

AuxR1 .set R1
LDR AuxR1, [SP]

The following example shows how the .set directive can be used with the .struct, .tag. and .endstruct
directives. It creates the symbolic constants K, maxbuf, item, value, delta, and i_len.

K .set 1024 ;constant definitions

maxbuf .set 2*K

item .struct ;item structure definition
-int value ;constant offsets value = 0
.int delta ;constant offsets delta = 1

i_len _endstruct

array .tag item ;array declaration
-bss array, i_len*K

The assembler also has many predefined symbolic constants; these are discussed in Section 4.8.6.

Defining Symbolic Constants (--asm_define Option)

The --asm_define option equates a constant value or a string with a symbol. The symbol can then be used
in place of a value in assembly source. The format of the --asm_define option is as follows:

armcl --asm_define=name[=value]

The name is the name of the symbol you want to define. The value is the constant or string value you
want to assign to the symbol. If the value is omitted, the symbol is set to 1. If you want to define a quoted
string and keep the quotation marks, do one of the following:

e For Windows, use --asm_define= name ="\" value \"". For example, --asm_define=car="\"sedan\""

e For UNIX, use --asm_define= name =" value "'. For example, --asm_define=car=""'sedan
* For Code Composer, enter the definition in a file and include that file with the --cmd_file (or -@) option.

Once you have defined the name with the --asm_define option, the symbol can be used with assembly
directives and instructions as if it had been defined with the .set directive. For example, on the command
line you enter:

armcl --asm_define=SYM1=1 --asm_define=SYM2=2 --asm_define=SYM3=3 --asm_define=SYM4=4 value.asm

Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can use them in source code.
Example 4-2 shows how the value.asm file uses these symbols without defining them explicitly.

SPNU118Y —September 1995—Revised February 2020 Assembler Description 59

Submit

Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Assembler Symbols

13 TEXAS
INSTRUMENTS

www.ti.com

In assembler source, you can test the symbol defined with the --asm_define option with these directives:

Type of Test Directive Usage

Existence if $$isdefed(" name ")
Nonexistence if $$isdefed(" name ") =0
Equal to value .if name = value

Not equal to value .if name != value

The argument to the $$isdefed built-in function must be enclosed in quotes. The quotes cause the
argument to be interpreted literally rather than as a substitution symbol.

Example 4-2. Using Symbolic Constants Defined on Command Line

IF_4:

IF_5:

IF_6:

IF_7:

Jif
-byte
.else
-byte
.endif

Jif
-byte
.else
-byte
.endif

Jif
-byte
.else
-byte
.endif

Jif
-byte
.elseif
-byte
.endif

SYmM4
SYM4

SYM2

SYM1

10

SYM1

SYM3

SYM3

SYm4

SYM1

SYM1

SYM2
SYM2

= SYM2 * SYM2
; Equal values

* SYM2 ;

<= 10

Unequal values

; Less than / equal

; Greater than

* SYM2 I= SYM4 + SYM2

* SYM2
+ SYM4 ;
= SYM2
+ SYM3 = 5
+ SYM3

; Unequal value

Equal values

60

Assembler Description

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Symbols

4.8.6 Predefined Symbolic Constants
The assembler has several types of predefined symbols.
$, the dollar-sign character, represents the current value of the section program counter (SPC).
In addition, the following predefined processor symbolic constants are available:

Table 4-2. ARM Processor Symbolic Constants

Macro Name Description

.TI_ARM Always set to 1

.TI_ARM_16BIS Set to 1 if the default state is 16 bit Thumb mode (the --code_state=16 option is used for an ARMv6 or
prior architecture); otherwise, set to 0.

.TI_ARM_32BIS Set to 1 if the default state is 32 bit (the --code_state=16 option is not used or the --code_state=32
option is used); otherwise, set to 0.

.TI_ARM_T2IS Set to 1 if the default state is Thumb-2 mode (the --code_state=16 option is used for an ARMv7 or
higher architecture); otherwise set to 0.

.TI_ARM_LITTLE Set to 1 if little-endian mode is selected (the --endian assembler option is used); otherwise, set to 0.

.TI_ARM_BIG Set to 1 if big-endian mode is selected (the --endian assembler option is not used); otherwise, set to 0.

_ _TI_ARM7ABI_ASSEMBLER Set to 1 if the TI ARM7 ABI is enabled (the --abi=tiabi option is used); otherwise, it is set to 0. (This
option is deprecated.)

_ _TI_ARM9ABI_ASSEMBLER Set to 1 if the TI ARM9 ABI is enabled (the --abi=ti_arm9_abi option is used); otherwise, it is set to 0.
(This option is deprecated.)

_ _TI_EABI_ASSEMBLER Set to 1 if the EABI ABI is enabled. EABI is now the only supported ABI; see Section 4.4.

_ _TI_NEON_SUPPORT_ _ Set to 1 if NEON SIMD extension is targeted (the --neon option is used); otherwise, it is set to 0.

__TLLARM_V4_ _ Set to 1 if the v4 architecture (ARM7) is targeted (the -mv4 option is used); otherwise, it is set to 0.

__TI_ARM_V5E_ _ Set to 1 if the V5E architecture (ARMOE) is targeted (the -mv5e option is used); otherwise, it is set to 0.

__TILLARM_V6_ _ Set to 1 if the v6 architecture (ARM11) is targeted (the -mv6 option is used); otherwise, it is set to 0.

__TI_ARM_V6MO_ _ Set to 1 if the v6MO architecture (Cortex-MO) is targeted (the -mv6MO option is used); otherwise, it is
set to 0.

__TL_ARM_V7_ _ Set to 1 if any v7 architecture (Cortex) is targeted; otherwise, it is set to 0.

__TI_ARM_V7A8_ _ Set to 1 if the v7A8 architecture (Cortex-A8) is targeted (the -mv7A8 option is used); otherwise, it is set
to 0.

__TI_ARM_V7M3_ _ Set to 1 if the v7M3 architecture (Cortex-M3) is targeted (the -mv7M3 option is used); otherwise, it is
set to 0.

__TI_ARM_V7M4_ _ Set to 1 if the v7M4 architecture (Cortex-M4) is targeted (the -mv7M4 option is used); otherwise, it is
setto 0.

__TILLARM_V7R4_ _ Set to 1 if the v7R4 architecture (Cortex-R4) is targeted (the -mv7R4 option is used); otherwise, it is
set to 0.

_ _TI_VFP_SUPPORT_ _ Set to 1 if the VFP coprocessor is enabled (any --float_support option is used); otherwise, it is set to 0.

_ _TI_VFPV3_SUPPORT_ _ Set to 1 if the VFP coprocessor is enabled (the --float_support=vfpv3 option is used); otherwise, it is
setto 0.

_ _TI_VFPV3D16_SUPPORT_ _ Setto 1 if the VFP coprocessor is enabled (the --float_support=vfpv3d16 option is used); otherwise, it
is set to 0.

_ _TI_FPV4SPD16_SUPPORT_ _ Setto 1 if the FP coprocessor is enabled (the --float_support=fpv4spd16 option is used); otherwise, it
is setto 0.

SPNU118Y —September 1995—-Revised February 2020 Assembler Description 61

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Assembler Symbols

13 TEXAS
INSTRUMENTS

www.ti.com

4.8.7 Registers

In addition, control register names are predefined symbols.

The names of ARM registers and their aliases are register symbols, including:

» Coprocessor registers, including C0-C15.

» Coprocessor IDs, including PO-P15.

e VFP registers, including DO-D31, S0-S31.

* NEON registers, including D0-D31, Q0-Q15.

Table 4-3. ARM Register Symbols with Aliases

Register Name Alias Register Name Alias
RO Al R8 V5
R1 A2 R9 V6
R2 A3 R10 V7
R3 A4 R11 V8
R4 V1 R12 V9, IP
RS V2 R13 SP
R6 V3 R14 LR
R7 V4, AP R15 PC

Register symbols and aliases can be entered as all uppercase or all lowercase characters. For example,

R13 could also be entered as r13, SP, or sp.

Control register symbols can be entered in all upper-case or all lower-case characters.

See the "Register Conventions" section of the ARM Optimizing C/C++ Compiler User's Guide for details
about the registers and their uses.

Status registers can be entered as all uppercase or all lowercase characters; that is, CPSR could also be

entered as cpsr, CPSR_ALL, or cpsr_all.

Table 4-4. ARM Status Registers and Aliases

Register Alias Description

CPSR CPSR_ALL Current processor status register

CPSR_FLG Current processor status register flag bits only
SPSR SPSR_ALL Saved processor status register

SPSR_FLG Saved processor status register flag bits only

62

Assembler Description

SPNU118Y —September 1995—Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Symbols

4.8.8 Substitution Symbols

Symbols can be assigned a string value. This enables you to create aliases for character strings by
equating them to symbolic names. Symbols that represent character strings are called substitution
symbols. When the assembler encounters a substitution symbol, its string value is substituted for the
symbol name. Unlike symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:

.asg 'SP, stack-pointer
; Assigns the string SP to the substitution symbol stack-pointer.

.asg "#0x20", block2
; Assigns the string #0x20 to the substitution symbol block2.

ADD stack-pointer, stack-pointer, block2
; Adds the value in SP to #0x20 and stores the result in SP.

When you are using macros, substitution symbols are important because macro parameters are actually
substitution symbols that are assigned a macro argument. The following code shows how substitution

symbols are used in macros:

addl _macro dest, src
; addl macro definition
ADDS dest, dest, src

; Add the value in register dest to the value in register src,
; and store the result in src.

BLCS reset_ctr

; Handle overflow.

.endm

*addl invocation

addl R4, R5
; Calls the macro addl and substitutes R4 for dest and R5 for src.
; The macro adds the value of R4 and the value of R5, stores the
result in R4, and handles overflow.

See Chapter 6 for more information about macros.

SPNU118Y —September 1995—-Revised February 2020 Assembler Description

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

63

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Expressions www.ti.com

4.9

Expressions

Nearly all values and operands in assembly language are expressions, which may be any of the following:
» a literal constant

e aregister

e a register pair

* amemory reference

* asymbol

* a built-in function invocation

* a mathematical or logical operation on one or more expressions

This section defines several types of expressions that are referred to throughout this document. Some
instruction operands accept limited types of expressions. For example, the .if directive requires its operand

be an absolute constant expression with an integer value. Absolute in the context of assembly code
means that the value of the expression must be known at assembly time.

A constant expression is any expression that does not in any way refer to a register or memory reference.
An immediate operand will usually not accept a register or memory reference. It must be given a constant
expression. Constant expressions may be any of the following:

» aliteral constant

e an address constant expression

* asymbol whose value is a constant expression

* a built-in function invocation on a constant expression

* a mathematical or logical operation on one or more constant expressions

An address constant expression is a special case of a constant expression. Some immediate operands
that require an address value can accept a symbol plus an addend; for example, some branch
instructions. The symbol must have a value that is an address, and it may be an external symbol. The

addend must be an absolute constant expression with an integer value. For example, a valid address
constant expression is "array+4".

A constant expression may be absolute or relocatable. Absolute means known at assembly time.
Relocatable means constant, but not known until link time. External symbols are relocatable, even if they
refer to a symbol defined in the same module.

An absolute constant expression may not refer to any external symbols anywhere in the expression. In
other words, an absolute constant expression may be any of the following:

* aliteral constant

e an absolute address constant expression

« asymbol whose value is an absolute constant expression

* a built-in function invocation whose arguments are all absolute constant expressions
» a mathematical or logical operation on one or more absolute constant expressions

A relocatable constant expression refers to at least one external symbol. For ELF, such expressions may
contain at most one external symbol. A relocatable constant expression may be any of the following:

» an external symbol

» arelocatable address constant expression

» asymbol whose value is a relocatable constant expression

* a built-in function invocation with any arguments that are relocatable constant expressions

e a mathematical or logical operation on one or more expressions, at least one of which is a relocatable
constant expression

In some cases, the value of a relocatable address expression may be known at assembly time. For
example, a relative displacement branch may branch to a label defined in the same section.

64

Assembler Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Expressions

4.9.1 Mathematical and Logical Operators

The operands of a mathematical or logical operator must be well-defined expressions. That is, you must
use the correct number of operands and the operation must make sense. For example, you cannot take
the XOR of a floating-point value. In addition, well-defined expressions contain only symbols or assembly-
time constants that have been defined before they occur in the directive's expression.

Three main factors influence the order of expression evaluation:

Parentheses Expressions enclosed in parentheses are always evaluated first.
8/(4/2)=4,but8/4/2=1
You cannot substitute braces ({}) or brackets ([]) for parentheses.

Precedence groups Operators, listed in Table 4-5, are divided into nine precedence groups.
When parentheses do not determine the order of expression evaluation,
the highest precedence operation is evaluated first.
8+4/2=10 (4/2is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not determine the order of
expression evaluation, the expressions are evaluated from left to right,
except for Group 1, which is evaluated from right to left.
8/4*2=4,but8/(4*2)=1

Table 4-5 lists the operators that can be used in expressions, according to precedence group.

Table 4-5. Operators Used in Expressions (Precedence)

Group® Operator Description®
1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT
2 * Multiplication
/ Division
% Modulo
3 + Addition
- Subtraction
4 << Shift left
>> Shift right
5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
6 =[=] Equal to
1= Not equal to
7 & Bitwise AND
8 N Bitwise exclusive OR (XOR)
9 | Bitwise OR

@ Group 1 operators are evaluated right to left. All other operators are evaluated left to right.
@ Unary + and - have higher precedence than the binary forms.

The assembler checks for overflow and underflow conditions when arithmetic operations are performed
during assembly. It issues a warning (the "value truncated" message) whenever an overflow or underflow
occurs. The assembler does not check for overflow or underflow in multiplication.

SPNU118Y —September 1995—Revised February 2020 Assembler Description 65

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Expressions www.ti.com

4.9.2

4.9.3

494

Relational Operators and Conditional Expressions

The assembler supports relational operators that can be used in any expression; they are especially
useful for conditional assembly. Relational operators include the following:

= Equal to | = Not equal to
< Less than <= Less than or equal to
> Greater than > = Greater than or equal to

Conditional expressions evaluate to 1 if true and O if false and can be used only on operands of equivalent
types; for example, absolute value compared to absolute value, but not absolute value compared to
relocatable value.

Well-Defined Expressions

Some assembler directives, such as .if, require well-defined absolute constant expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants that have been defined before
they occur in the directive's expression. In addition, they must use the correct number of operands and the
operation must make sense. The evaluation of a well-defined expression must be unambiguous.

This is an example of a well-defined expression:
1000h+X

where X was previously defined as an absolute symbol.

Relocatable Symbols and Legal Expressions
All legal expressions can be reduced to one of two forms:
relocatable symbol + absolute symbol
or
absolute value

Unary operators can be applied only to absolute values; they cannot be applied to relocatable symbols.
Expressions that cannot be reduced to contain only one relocatable symbol are illegal.

Table 4-6 summarizes valid operations on absolute, relocatable, and external symbols. An expression
cannot contain multiplication or division by a relocatable or external symbol. An expression cannot contain
unresolved symbols that are relocatable to other sections.

Symbols that have been defined as global with the .global directive can also be used in expressions; in
Table 4-6, these symbols are referred to as external.

Table 4-6. Expressions With Absolute and Relocatable Symbols

If Ais... and If Bis..., then A +Bis... and A-Bis...
absolute absolute absolute absolute
absolute relocatable relocatable illegal
absolute external external illegal
relocatable absolute relocatable relocatable
relocatable relocatable illegal absolute®
relocatable external illegal illegal
external absolute external external
external relocatable illegal illegal
external external illegal illegal

@ A and B must be in the same section; otherwise, adding relocatable symbols to relocatable symbols is illegal.

66

Assembler Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Expressions

4.9.5 Expression Examples

Following are examples of expressions that use relocatable and absolute symbols. These examples use
four symbols that are defined in the same section:

-global extern_1 ; Defined in an external module

intern_1: _word ""D* ; Relocatable, defined in current
; module

LAB1: .set 2 ; LAB1 = 2

intern_2 ; Relocatable, defined in current
; module

intern_3 ; Relocatable, defined in current

; module
 Example 1

The statements in this example use an absolute symbol, LAB1, which is defined to have a value of 2.
The first statement loads the value 51 into RO. The second statement loads the value 27 into RO.
MOV RO, #LAB1 + ((4+3) * 7) ; RO = 51
+
+

32+ (M *D
; 2+ (49) =51

MOV RO, #LAB1 + 4 + (3*7) ; RO = 27
2+ 4+ (21) = 27
» Example 2
The first statement in the following example is valid; the statements that follow it are invalid.

LDR R1, intern_1 - 10 ; Legal

LDR R1, 10-intern_1 ; Can"t negate reloc. symbol
LDR R1, -(intern_1) ; Can"t negate reloc. symbol
LDR R1, intern_1/10 ; / isn"t additive operator

LDR R1, intern_1 + intern_2 ; Multiple relocatables
 Example 3

The first statement below is legal; although intern_1 and intern_2 are relocatable, their difference is
absolute because they are in the same section. Subtracting one relocatable symbol from another
reduces the expression to relocatable symbol + absolute value. The second statement is illegal
because the sum of two relocatable symbols is not an absolute value.

LDR R1, intern_1l - intern_2 + intern_3 ; Legal

LDR R1, intern_1 + intern_2 + intern_3 ; Illegal
 Example 4

A relocatable symbol's placement in the expression is important to expression evaluation. Although the
statement below is similar to the first statement in the previous example, it is illegal because of left-to-
right operator precedence; the assembler attempts to add intern_1 to extern_3.

LDR R1, intern_1 + intern_3 - intern_2 ; Illegal

SPNU118Y —September 1995—-Revised February 2020 Assembler Description 67

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Built-in Functions and Operators

13 TEXAS
INSTRUMENTS

www.ti.com

4.10 Built-in Functions and Operators

The assembler supports built-in mathematical functions and built-in addressing operators.

The built-in substitution symbol functions are discussed in Section 6.3.2.

4.10.1 Built-In Math and Trigonometric Functions

The assembler supports built-in functions for conversions and various math computations. Table 4-7
describes the built-in functions. The expr must be a constant value.

Table 4-7. Built-In Mathematical Functions

Function Description

$$acos(expr) Returns the arccosine of expr as a floating-point value
$$asin(expr) Returns the arcsine of expr as a floating-point value
$$atan(expr) Returns the arctangent of expr as a floating-point value

$$atan2(expr, y)
$$ceil(expr)
$$cos(expr)
$$cosh(expr)
$$cvi(expr)
$$cvi(expr)
$$exp(expr)
$$fabs(expr)
$$floor(expr)
$$fmod(expr, y)
$$int(expr)
$$ldexp(expr, expr2)
$$log(expr)
$$log10(expr)
$$max(exprl, expr2)
$$min(exprl, expr2)
$$pow(exprl, expr2)
$$round(expr)
$$sgn(expr)
$$sin(expr)
$$sinh(expr)
$$sqrt(expr)
$$strtod(str)

$$tan(expr)
$$tanh(expr)
$$trunc(expr)

Returns the arctangent of expr as a floating-point value in range [-x, =]
Returns the smallest integer not less than expr

Returns the cosine of expr as a floating-point value

Returns the hyperbolic cosine of expr as a floating-point value
Converts expr to a floating-point value

converts expr to integer value

Returns the exponential function e

Returns the absolute value of expr as a floating-point value
Returns the largest integer not greater than expr

Returns the remainder of exprl + expr2

Returns 1 if expr has an integer value; else returns 0. Returns an integer.
Multiplies expr by an integer power of 2. That is, exprl x 2 2
Returns the natural logarithm of expr, where expr>0

Returns the base 10 logarithm of expr, where expr>0

Returns the maximum of two values

Returns the minimum of two values

Returns exprlraised to the power of expr2

Returns expr rounded to the nearest integer

Returns the sign of expr.

Returns the sine of expr

Returns the hyperbolic sine of expr as a floating-point value
Returns the square root of expr, expr=0, as a floating-point value

Converts a character string to a double precision floating-point value. The string contains a properly-
formatted C99-style floating-point literal.

Returns the tangent of expr as a floating-point value
Returns the hyperbolic tangent of expr as a floating-point value
Returns expr rounded toward 0

Assembler Description

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Unified Assembly Language Syntax Support

4.11 Unified Assembly Language Syntax Support

Unified assembly language (UAL) is the new assembly syntax introduced by ARM Ltd. to handle the
ambiguities introduced by the original Thumb-2 assembly syntax and provide similar syntax for ARM,
Thumb and Thumb-2. UAL is backwards compatible with old ARM assembly, but incompatible with the
previous Thumb assembly syntax.

UAL syntax is the default assembly syntax beginning with ARMv7 architectures. When writing assembly
code, the .arm and .thumb directives are used to specify ARM and Thumb UAL syntax, respectively. The
.State32 and .statel6 directives remain to specify non-UAL ARM and Thumb syntax. The .arm and
.state32 directives are equivalent since UAL syntax is backwards compatible in ARM mode. Since non-
UAL syntax is not supported for Thumb-2 instructions, Thumb-2 instructions cannot be used inside of a
.Statel6 section. However, assembly code with .statel6 sections that contain only non-UAL Thumb code
can be assembled for ARMv7 architectures to allow easy porting of older code.

See Section 5.3 for more information about the .statel6, .state32, .arm, and .thumb directives.

A full description of the UAL syntax can be found in the ARM Ltd. documentation, but there are a few key
differences related to Thumb-2 syntax:

* The .W extension is used to indicate that an instruction should be encoded in a 32-bit form. A .N
extension is used to indicate that an instruction should be encoded in a 16-bit form; the assembler
reports an error if this is not possible. If no extension is used then the assembler uses a 16-bit
encoding whenever possible.

e 16-bit Thumb ALU instructions that set status indicate this with a syntax that has a 'S' modifier. This is
the same as how ARM ALU instructions that set status have always been handled.

SPNU118Y —September 1995—Revised February 2020 Assembler Description 69

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Source Listings www.ti.com

4.12 Source Listings

A source listing shows source statements and the object code they produce. To obtain a listing file, invoke
the assembler with the --asm_listing option (see Section 4.3).

Two banner lines, a blank line, and a title line are at the top of each source listing page. Any title supplied
by the .title directive is printed on the title line. A page number is printed to the right of the title. If you do
not use the .title directive, the name of the source file is printed. The assembler inserts a blank line below
the title line.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. Figure 4-2 shows these in
an actual listing file.

Field 1: Source Statement Number
Line number

The source statement number is a decimal number. The assembler numbers source lines as it
encounters them in the source file; some statements increment the line counter but are not listed. (For
example, .title statements and statements following a .nolist are not listed.) The difference between two
consecutive source line numbers indicates the number of intervening statements in the source file that
are not listed.

Include file letter

A letter preceding the line number indicates the line is assembled from the include file designated by
the letter.

Nesting level number

A number preceding the line number indicates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the SPC value, which is hexadecimal. All sections (.text, .data, .bss, and named
sections) maintain separate SPCs. Some directives do not affect the SPC and leave this field blank.

Field 3: Object Code

This field contains the hexadecimal representation of the object code. All machine instructions and
directives use this field to list object code. This field also indicates the relocation type associated with
an operand for this line of source code. If more than one operand is relocatable, this column indicates
the relocation type for the first operand. The characters that can appear in this column and their
associated relocation types are listed below:

undefined external reference
.text relocatable

+ .sect relocatable

.data relocatable

.bss, .usect relocatable

% relocation expression

70

Assembler Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Source Listings

Field 4: Source Statement Field

This field contains the characters of the source statement as they were scanned by the assembler. The
assembler accepts a maximum line length of 200 characters. Spacing in this field is determined by the

spacing in the source statement.

Figure 4-2 shows an assembler listing with each of the four fields identified.

Figure 4-2. Example Assembler Listing

Include file Line number
letter

1 00000000 .state32
2 .copy "macl.inc”

A 1 tolé6 .macro

A 2 ADD r0, pc, #1

A 3 BX r0

A 4 .statelé6

A 5

A 6 .endm
3
4 .global _ stack
5 ;***
6 ;* DEFINE THE USER MODE STACK **
7 ;***
8 00000200 STACKSIZE .set 512
9 00000000 _ stack: .usect ”.stack”, STACKSIZE, 4
10 ;***
11 ;* INTERRUPT VECTORS **
12 ;***
13 .global reset
14 00000000 .sect ".intvecs"”
15

16 00000000 EAFFFFFE’
17 00000004 00000000
18 00000008 00000000
19 0000000c 00000000
20 00000010 00000000
21 00000014 00000000
22 00000018 00000000
23 0000001c 00000000

25 00000000

31 00000000

35 00000000 E10F0000
36 00000004 E3CO001F
37 00000008E3800010
38 0000000cE129F000

;\/_/;\/_/

B reset
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0

.text
.global dispatch
.global reset

;***

;* RESET ROUTINE * %

;***

reset:

. %

’

;* SET TO USER MODE

.o %

14

MRS r0, cpsr

BIC r0, r0, #0x1F ; Clear modes
ORR r0, r0, #0x10 ; Set user mode
MSR cpsr, r0

Field 1 Field 2 Field 3

Field 4

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Assembler Description

Copyright © 1995-2020, Texas Instruments Incorporated

71

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Source Listings

I

TEXAS
INSTRUMENTS

www.ti.com

Figure 4-2. Example Assembler Listing (Continued)

number

/ Nesting level

40
41
42
43

)

44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61

00000010
00000010 E28F0001
00000014 E12FFF10
00000018

000000184802
0000001a4685
0000001c 4802
0000001e 4485

00000020 F7FF!

00000022 FFEE

00000024 00000000- stack
00000028 00000200 stacksz

o %

’

;* CHANGE TO 16 BIT STATE

* %

I

tolé6

ADD r0, pc, #1
BX r0
.statelé6

* %
4

;* INITIALIZE THE USER MODE STACK

° %

4

LDR r0, stack
MOV sp, r0

LDR r0, stacksz
ADD sp, r0

° x
4

;* DISPATCH TASKS

o %
BL dispatch
.long _ stack

.long STACKSIZE

Field 1

Field 2 Field 3

Field 4

72

Assembler Description

SPNU118Y —September 1995—Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com Debugging Assembly Source

4.13 Debugging Assembly Source

By default, when you compile an assembly file, the assembler provides symbolic debugging information
that allows you to step through your assembly code in a debugger rather than using the Disassembly
window in Code Composer Studio. This enables you to view source comments and other source-code
annotations while debugging. The default has the same behavior as using the --symdebug:dwarf option.
You can disable the generation of debugging information by using the --symdebug:none option.

The .asmfunc and .endasmfunc (see .asmfunc directive) directives enable you to use C characteristics in
assembly code that makes the process of debugging an assembly file more closely resemble debugging a
C/C++ source file.

The .asmfunc and .endasmfunc directives allow you to name certain areas of your code, and make these
areas appear in the debugger as C functions. Contiguous sections of assembly code that are not enclosed
by the .asmfunc and .endasmfunc directives are automatically placed in assembler-defined functions
named with this syntax:

‘$ filename : starting source line : ending source line $

If you want to view your variables as a user-defined type in C code, the types must be declared and the
variables must be defined in a C file. This C file can then be referenced in assembly code using the .ref
directive (see .ref directive). Example 4-3 shows the cvar.c C program that defines a variable, svar, as the
structure type X. The svar variable is then referenced in the addfive.asm assembly program in Example 4-
4 and 5 is added to svar's second data member.

Compile both source files with the --symdebug:dwarf option (-g) and link them as follows:
armcl --symdebug:dwarf cvars.c addfive.asm --run_linker --library=Ink.cmd
--library=rtsv4_A be _eabi.lib --output_file=addfive.out

When you load this program into a symbolic debugger, addfive appears as a C function. You can monitor
the values in svar while stepping through main just as you would any regular C variable.

Example 4-3. Viewing Assembly Variables as C Types C Program

typedef struct {

int ml;
int m2;

> X

X svar = {1, 2 };

Example 4-4. Assembly Program for Example 4-3

; Tell the assembler we"re referencing variable "_svar', which is defined in

; another file (cvars.c).

-text
-global addfive
addfive: _asmfunc
LDW .D2T12 *+B14(_svar+4),B4 ; load svar.m2 into B4
RET .S2 B3 ; return from function
NOP 3 ; delay slots 1-3
ADD .D2 5,B4,B4 ; add 5 to B4 (delay slot 4)
STW .D2T12 B4,*+B14(_svar+4) ; store B4 back into svar.m2
; (delay slot 5)
-endasmfunc
SPNU118Y —September 1995—-Revised February 2020 Assembler Description 73

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Cross-Reference Listings www.ti.com

4.14 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference listing, invoke
the assembler with the --asm_listing_cross_reference option (see Section 4.3) or use the .option directive
with the X operand (see Select Listing Options). The assembler appends the cross-reference to the end of
the source listing. Example 4-5 shows the four fields contained in the cross-reference listing.

Example 4-5. An Assembler Cross-Reference Listing

LABEL VALUE -DEFN REF

.TI_ARM 00000001 0

.TI_ARM_16BIS 00000000 0

.TI_ARM_32BIS 00000001 0

.TI_ARM_BIG 00000001 0

.TI_ARM_LITTLE 00000000 0

.ti_arm 00000001 0

.ti_arm_16bis 00000000 0

.ti_arm_32bis 00000001 0

.ti_arm_big 00000001 0

.ti_arm_little 00000000 0

STACKSIZE 00000200 9 10 63

__stack 00000000~ 10 5 62

dispatch REF 29 60

reset 00000000" 34 16 19 30

stack 00000024~ 62 52

stacksz 00000028" 63 54
Label column contains each symbol that was defined or referenced during the assembly.
Value column contains an 8-digit hexadecimal number (which is the value assigned to the

symbol) or a name that describes the symbol's attributes. A value may also be
preceded by a character that describes the symbol's attributes. Table 4-8 lists these
characters and names.

Definition (DEFN) column contains the statement number that defines the symbol. This
column is blank for undefined symbols.
Reference (REF) column lists the line numbers of statements that reference the symbol. A

blank in this column indicates that the symbol was never used.

Table 4-8. Symbol Attributes

Character or Name Meaning

REF External reference (global symbol)

UNDF Undefined

' Symbol defined in a .text section

" Symbol defined in a .data section

+ Symbol defined in a .sect section

- Symbol defined in a .bss or .usect section

74 Assembler Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

i Chapter 5

TE S SPNU118Y —September 1995—Revised February 2020

INSTRUMENTS

Assembler Directives

Assembler directives supply data to the program and control the assembly process. Assembler directives
enable you to do the following:

» Assemble code and data into specified sections

* Reserve space in memory for uninitialized variables

» Control the appearance of listings

e Initialize memory

» Assemble conditional blocks

» Define global variables

» Specify libraries from which the assembler can obtain macros
» Examine symbolic debugging information

This chapter is divided into two parts: the first part (Section 5.1 through Section 5.12) describes the
directives according to function, and the second part (Section 5.13) is an alphabetical reference.

Topic Page
5.1 DIr€CHIVES SUIMMIAIY .euuinieiteueueuanae e eeeuanee e e eeaea s e e aeeaenen e e aeeaenenanreaeaeaenenrnns 76
5.2 Directives that Define SECLIONSuiuiiiii ittt e e e e e anns 81
5.3 Directives that Change the INStruCtioN TYPe ...cueuei et eeeeees 83
5.4 Directives that INitialize VAlUEScuouiiiiiiiiiiiii i et e e e a e e e eaenenas 83
5.5 Directives that Perform Alignment and RESErve SPaceccovveiiieiniiiiieiiiiininiieieens 86
5.6 Directives that Format the OUtpUt LiStINGS «.cuvuiuieieieiiiieii e eeeaeaeeenes 87
5.7 Directives that Reference Other FileSouiuiiiiiiiiiiiii i e ee e 88
5.8 Directives that Enable Conditional ASSEMDBIYouieiiiiiiiiiiiiie e 89
5.9 Directives that Define Union Or StruCture TYPES ..uouiuiiieitieieiiiieieiteeeeeeaeeaeaeaeeeeanns 89
5.10 Directives that Define ENUMErated TYPeS . uuuiuiiiiiiieieiniieiitieitiaiteeaeaeieeesaeaeneneaenees 90
5.11 Directives that Define Symbols at Assembly TiMe.....cccciiiiiiiiiiiiiii e 90
5.12 MiSCEllaN€0OUS DilEC IVES .. uuututie it ittt et e ettt e e et e et an e e et e e ananeeeaeanes 91
5.13 DireCtiVES REfEIENCE. . ittt e et e e e e e e e n e e eeeenes 92

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 75

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Directives Summary www.ti.com

5.1 Directives Summary
Table 5-1 through Table 5-17 summarize the assembler directives.

Besides the assembler directives documented here, the ARM device software tools support the following
directives:

* Macro directives are discussed in Chapter 6; they are not discussed in this chapter.

» The C compiler uses directives for symbolic debugging. Unlike other directives, symbolic debugging

directives are not used in most assembly language programs. Appendix A discusses these directives;
they are not discussed in this chapter.

Labels and Comments Are Not Shown in Syntaxes

NOTE: Most source statements that contain a directive can also contain a label and a comment.
Labels begin in the first column (only labels and comments can appear in the first column),
and comments must be preceded by a semicolon, or an asterisk if the comment is the only
element in the line. To improve readability, labels and comments are not shown as part of

the directive syntax here. See the detailed description of each directive for using labels with
directives.

Table 5-1. Directives that Control Section Use

Mnemonic and Syntax Description See
.bss symbol, size in bytes|, alignment Reserves size bytes in the .bss (uninitialized data) section .bss topic
[, bank offset]]
.data Assembles into the .data (initialized data) section .data topic
.sect "section name" Assembles into a named (initialized) section .sect topic
text Assembles into the .text (executable code) section .text topic
symbol .usect "section name", size in bytes Reserves size bytes in a named (uninitialized) section .usect topic
[, alignment[, bank offset]]
Table 5-2. Directives that Gather Sections into Common Groups
Mnemonic and Syntax Description See
.endgroup Ends the group declaration. .endgroup topic
.gmember section name Designates section name as a member of the group. .gmember topic
.group group section name group type : Begins a group declaration. .group topic
Table 5-3. Directives that Affect Unused Section Elimination
Mnemonic and Syntax Description See
.retain "section name" Instructs the linker to include the current or specified section in the .retain topic
linked output file, regardless of whether the section is referenced or
not
.retainrefs "section name" Instructs the linker to include any data object that references the .retain topic
current or specified section.
Table 5-4. Directives that Initialize Values (Data and Memory)
Mnemonic and Syntax Description See
.bits valuey[, ..., value,] Initializes one or more successive bits in the current section .bits topic
.byte value,], ... , value,] Initializes one or more successive bytes in the current section .byte topic
.char valuey|, ..., value] Initializes one or more successive bytes in the current section .char topic
.cstring {expr,|"string,"}[,... , {expr,|"string,"}] Initializes one or more text strings .string topic
76 Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS

www.ti.com

Directives Summary

Table 5-4. Directives that Initialize Values (Data and Memory) (continued)

Mnemonic and Syntax

Description

See

.double value,], ..., value,]

field value][, size]
float value,, ..., value,]

Initializes one or more 64-bit, IEEE double-precision, floating-point .double topic

constants
Initializes a field of size bits (1-32) with value

field topic

Initializes one or more 32-bit, IEEE single-precision, floating-point float topic

constants
.half value,[, ..., value,] Initializes one or more 16-bit integers (halfword) .half topic
.int value,], ..., value,] Initializes one or more 32-bit integers .int topic
.long value,|, ..., value,] Initializes one or more 32-bit integers .long topic
.short value,|, ..., value,] Initializes one or more 16-bit integers (halfword) .short topic
.string {expr,|"string;"}[,... , {expr,|"string,"}] Initializes one or more text strings .string topic
.ubyte value,], ..., value,] Initia_llizes one or more successive unsigned bytes in the current .ubyte topic
section
.uchar valuey[, ..., value,] Initia_llizes one or more successive unsigned bytes in the current .uchar topic
section
.uhalf value,], ..., value,] Initializes one or more unsigned 16-bit integers (halfword) .uhalf topic
.uint value,[, ..., value,] Initializes one or more unsigned 32-bit integers .uint topic
.ulong value,], ..., value,] Initializes one or more unsigned 32-bit integers .long topic
.ushort value,], ... , value,] Initializes one or more unsigned 16-bit integers (halfword) .short topic
.uword value,|, ..., value,] Initializes one or more unsigned 32-bit integers .uword topic
.word value,|, ..., value,] Initializes one or more 32-bit integers .word topic
Table 5-5. Directives that Perform Alignment and Reserve Space
Mnemonic and Syntax Description See
.align [size in bytes] Aligns the SPC on a boundary specified by size inbytes, which .align topic

must be a power of 2; defaults to byte boundary

.bes size Reserves size bytes in the current section; a label points to the end .bes topic

of the reserved space
.space size Reserves size bytes in the current section; a label points to the .space topic

beginning of the reserved space

Table 5-6. Directives that Change the Instruction Type
Mnemonic and Syntax Description See
.arm Begins assembling ARM UAL instructions. Equivalent to .state32. .arm topic
.statel6 Begins assembling non-UAL 16-bit instructions .state16 topic
.state32 Begins assembling 32-bit instructions (default) .state32 topic
thumb Begins assembling Thumb or Thumb-2 UAL instructions .thumb topic
Table 5-7. Directives that Format the Output Listing

Mnemonic and Syntax Description See
.drlist Enables listing of all directive lines (default) .drlist topic

.drnolist Suppresses listing of certain directive lines .drnolist topic
fclist Allows false conditional code block listing (default) fclist topic
fcnolist Suppresses false conditional code block listing fenolist topic
length [page length] Sets the page length of the source listing .length topic

list Restarts the source listing list topic

.mlist Allows macro listings and loop blocks (default) .mlist topic
.mnolist Suppresses macro listings and loop blocks .mnolist topic
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 77

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

Directives Summary

TEXAS
INSTRUMENTS

www.ti.com

Table 5-7. Directives that Format the Output Listing (continued)

Mnemonic and Syntax Description See
.nolist Stops the source listing .nolist topic
.option option, [, option, , . . .] Selects output listing options; available options are A, B, H, M, N, .option topic
O,R, T,W,and X
.page Ejects a page in the source listing .page topic
.sslist Allows expanded substitution symbol listing .sslist topic
.ssnolist Suppresses expanded substitution symbol listing (default) .ssnolist topic
.tab size Sets tab to size characters .tab topic
title "string" Prints a title in the listing page heading itle topic
.width [page width] Sets the page width of the source listing .width topic
Table 5-8. Directives that Reference Other Files
Mnemonic and Syntax Description See
.copy ["Ifilename["] Includes source statements from another file .copy topic
.include ["]filename["] Includes source statements from another file .include topic
.mlib ["Ifilename["] Specifies a macro library from which to retrieve macro definitions .mlib topic
Table 5-9. Directives that Affect Symbol Linkage and Visibility
Mnemonic and Syntax Description See
.common symbol, size in bytes [, alignment] Defines a common symbol for a variable. .common topic
.common symbol, structure tag [, alignment]
.def symboly[, ... , symbol,] Identifies one or more symbols that are defined in the current .def topic
module and that can be used in other modules.
.global symbol,], ..., symbol,] Identifies one or more global (external) symbols. .global topic
.ref symbol,[, ..., symbol,] Identifies one or more symbols used in the current module that are .ref topic

defined in another module.
.symdepend dst symbol name][, src symbol name] Creates an artificial reference from a section to a symbol.

.symdepend topic

.weak symbol name Identifies a symbol used in the current module that is defined in .weak topic

another module.
Table 5-10. Directives that Enable Conditional Assembly

Mnemonic and Syntax Description See

.if condition Assembles code block if the condition is true .if topic

.else Assembles code block if the .if condition is false. When using the .if .else topic
construct, the .else construct is optional.

.elseif condition Assembles code block if the .if condition is false and the .elseif .elseif topic
condition is true. When using the .if construct, the .elseif construct
is optional.

.endif Ends .if code block .endif topic

.loop [count] Begins repeatable assembly of a code block; the loop count is .loop topic
determined by the count.

.break [end condition] Ends .loop assembly if end condition is true. When using the .loop .break topic

construct, the .break construct is optional.
.endloop Ends .loop code block

.endloop topic

Table 5-11. Directives that Define Union or Structure Types

Mnemonic and Syntax Description

See

.cstruct Acts like .struct, but adds padding and alignment like that which is
done to C structures

.cstruct topic

78 Assembler Directives SPNU118Y —-September 1995—Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Summary

Table 5-11. Directives that Define Union or Structure Types (continued)

Mnemonic and Syntax Description See
.cunion Acts like .union, but adds padding and alignment like that which is .cunion topic
done to C unions
.emember Sets up C-like enumerated types in assembly code Section 5.10
.endenum Sets up C-like enumerated types in assembly code Section 5.10
.endstruct Ends a structure definition .cstruct topic,
.struct topic
.endunion Ends a union definition -cunion topic,
.union topic
.enum Sets up C-like enumerated types in assembly code Section 5.10
.union Begins a union definition .union topic
.struct Begins structure definition .struct topic
.tag Assigns structure attributes to a label .cstruct topic, _
-struct topic.union
topic
Table 5-12. Directives that Define Symbols
Mnemonic and Syntax Description See
.asg ["]character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .asg can be redefined.
.define ["]character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .define cannot be redefined.
symbol .equ value Equates value with symbol .equ topic
.elfsym name, SYM_SIZE(size) Provides ELF symbol information .elfsym topic
.eval expression , Performs arithmetic on a numeric substitution symbol .eval topic
substitution symbol
.label symbol Defines a load-time relocatable label in a section .label topic
.newblock Undefines local labels .newblock topic
symbol .set value Equates value with symbol .set topic
.unasg symbol Turns off assignment of symbol as a substitution symbol .unasg topic
.undefine symbol Turns off assignment of symbol as a substitution symbol .unasg topic
Table 5-13. Directives that Create or Affect Macros
Mnemonic and Syntax Description See
macname .macro [parameter,][,... , parameter,] Begin definition of macro named macname .macro topic
.endm End macro definition .endm topic
.mexit Go to .endm Section 6.2
.mlib filename Identify library containing macro definitions .mlib topic
.var Adds a local substitution symbol to a macro's parameter list .var topic
Table 5-14. Directives that Control Diagnostics
Mnemonic and Syntax Description See
.emsg string Sends user-defined error messages to the output device; .emsg topic
produces no .obj file
.mmsg string Sends user-defined messages to the output device .mmsg topic
.wmsg string Sends user-defined warning messages to the output device .wmsg topic

SPNU118Y —September 1995—-Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Assembler Directives

79

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Directives Summary www.ti.com
Table 5-15. Directives that Perform Assembly Source Debug
Mnemonic and Syntax Description See
.asmfunc Identifies the beginning of a block of code that contains a function .asmfunc topic
.endasmfunc Identifies the end of a block of code that contains a function .endasmfunc
topic
Table 5-16. Directives that Are Used by the Absolute Lister
Mnemonic and Syntax Description See
.setsect Produced by absolute lister; sets a section Chapter 9
.setsym Produced by the absolute lister; sets a symbol Chapter 9
Table 5-17. Directives that Perform Miscellaneous Functions
Mnemonic and Syntax Description See
.cdecls [options ,]"filename"[, "filename2"][, ...] Share C headers between C and assembly code .cdecls topic
.end Ends program .end topic

In addition to the assembly directives that you can use in your code, the C/C++ compiler produces several
directives when it creates assembly code. These directives are to be used only by the compiler; do not
attempt to use these directives.

 DWAREF directives listed in Section A.1

» The .battr directive is used to encode build attributes for the object file.
e The .bound directive is used internally.

» The .comdat directive is used internally.

» The .compiler_opts directive indicates that the assembly code was produced by the compiler, and
which build model options were used for this file.

80 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives that Define Sections

5.2 Directives that Define Sections

These directives associate portions of an assembly language program with the appropriate sections:

The .bss directive reserves space in the .bss section for uninitialized variables.

The .data directive identifies portions of code in the .data section. The .data section usually contains
initialized data.

The .retain directive can be used to indicate that the current or specified section must be included in
the linked output. Thus even if no other sections included in the link reference the current or specified
section, it is still included in the link.

The .retainrefs directive can be used to force sections that refer to the specified section. This is useful
in the case of interrupt vectors.

The .sect directive defines an initialized named section and associates subsequent code or data with
that section. A section defined with .sect can contain code or data.

The .text directive identifies portions of code in the .text section. The .text section usually contains
executable code.

The .usect directive reserves space in an uninitialized named section. The .usect directive is similar to
the .bss directive, but it allows you to reserve space separately from the .bss section.

Chapter 2 discusses these sections in detail.

Example 5-1 shows how you can use sections directives to associate code and data with the proper
sections. This is an output listing; column 1 shows line numbers, and column 2 shows the SPC values.
(Each section has its own program counter, or SPC.) When code is first placed in a section, its SPC
equals 0. When you resume assembling into a section after other code is assembled, the section's SPC
resumes counting as if there had been no intervening code.

The directives in Example 5-1 perform the following tasks:

text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.
var_defs initializes words with the values 17 and 18.

.bss reserves 19 bytes.

Xy

reserves 20 bytes.

The .bss and .usect directives do not end the current section or begin new sections; they reserve the
specified amount of space, and then the assembler resumes assembling code or data into the current
section.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 81
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Directives that Define Sections www.ti.com
Example 5-1. Sections Directives
1
2 * Start assembling into the .text section *
3
4 00000000 .text
5 00000000 00000001 -word 1,2
00000004 00000002
6 00000008 00000003 -word 3,4
0000000c 00000004
7
8
9 * Start assembling into the .data section *
10
11 00000000 .data
12 00000000 00000009 .word 9, 10
00000004 0000000A
13 00000008 0000000B .word 11, 12
0000000c 0000000C
14
15
16 * Start assembling into a named, *
17 * initialized section, var_defs *
18
19 00000000 .sect "var_defs"
20 00000000 00000011 -.word 17, 18
00000004 00000012
21
22
23 * Resume assembling into the .data section *
24
25 00000010 .data
26 00000010 0000000D .word 13, 14
00000014 0000000E
27 00000000 .bss sym, 19 ; Reserve space in .bss
28 00000018 00O0000OF -word 15, 16 ; Still in .data
0000001c 00000010
29
30
31 * Resume assembling into the .text section *
32
33 00000010 .text
34 00000010 00000005 -.word 5, 6
00000014 00000006
35 00000000 usym .usect "'xy", 20 ; Reserve space in Xxy
36 00000018 00000007 -.word 7, 8 ; Still in _text
0000001c 00000008
82 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives that Change the Instruction Type

5.3 Dir
By

ectives that Change the Instruction Type

default, the assembler begins assembling all instructions in a file as 32-bit instructions. You can

change the default action by using the --code_state=16 assembler (see Section 4.3) option, which causes

the

assembler to begin assembling all instructions in a file as 16-bit instructions. You can also use four

directives that change how the assembler assembles instructions starting at the point where the directives
occur:

5.4 Dir

The .arm directive tells the assembler to begin assembling ARM UAL syntax 32-bit instructions starting
at the location of the directive. The .arm directive performs an implicit word alignment before any
instructions are written to the section to ensure that all 32-bit instructions are word aligned. The .arm
directive also resets any local labels defined. The .arm directive is equivalent to the .state32 directive.

The .statel6 directive causes the assembler to begin assembling non-UAL 16-bit instructions starting
at the location of the directive. The .statel6 directive performs an implicit halfword alignment before
any instructions are written to the section to ensure that all 16-bit instructions are halfword aligned. The
.State16 directive also resets any local labels defined.

The .state32 directive tells the assembler to begin assembling 32-bit instructions starting at the
location of the directive. The .state32 directive performs an implicit word alignment before any
instructions are written to the section to ensure that all 32-bit instructions are word aligned. The
.state32 directive also resets any local labels defined.

The .thumb directive tells the assembler to begin assembling Thumb or Thumb-2 UAL syntax
instructions starting at the location of the directive. The .thumb directive performs an implicit word
alignment before any instructions are written to the section to ensure that all instructions are word
aligned. The .thumb directive also resets any local labels defined.

ectives that Initialize Values

Several directives assemble values for the current section. For example:

The .byte and .char directives place one or more 8-bit values into consecutive bytes of the current
section. These directives are similar to .word, .int, and .long, except that the width of each value is
restricted to 8 bits.

The .double directive calculates the double-precision (64-bit) IEEE floating-point representation of one
or more floating-point values and stores them in two consecutive words in the current section. The
.double directive automatically aligns to the double-word boundary.

SPNU118Y —September 1995—Revised February 2020 Assembler Directives 83
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Directives that Initialize Values www.ti.com

» The .field and .bits directives place a single value into a specified nhumber of bits in the current word.
With .field, you can pack multiple fields into a single word; the assembler does not increment the SPC
until a word is filled. If a field will not fit in the space remaining in the current word, .field will insert
zeros to fill the current word and then place the field in the next word. The .bits directive is similar but
does not force alignment to a field boundary. See the .field topic and .bits topic.

Figure 5-1 shows how fields are packed into a word. Using the following assembled code, notice that
the SPC does not change for the first three fields (the fields are packed into the same word):

1 00000000 60000000 -field 3, 3

2 00000000 64000000 .Field 8, 6

3 00000000 64400000 .Field 16, 5

4 00000004 01234000 -Field 01234h, 20
5 00000008 00001234 .Field 01234h, 32

Figure 5-1. The .field Directive

field 3,3
313029

[0 11

3 bits

field 8,6
31 282726252423 0

[o1 1001000

6 bits

field 16,5
31 2221201918 0

011001000‘10000

5 bits

field 01234h,20
3130292827 262524 23222120191817 161514 1312 0

00000O0OO0O1T0O001T0001T10100

20 bits

field 01234h,32
31 0

|00000000000000000001001000110100|

» The .float directive calculates the single-precision (32-bit) IEEE floating-point representation of a single
floating-point value and stores it in a word in the current section that is aligned to a word boundary.

» The .half and .short directives place one or more 16-bit values into consecutive 16-bit fields
(halfwords) in the current section. The .half and .short directives automatically align to a short (2-byte)
boundary.

* The .int, .long, and .word directives place one or more 32-bit values into consecutive 32-bit fields
(words) in the current section. The .int, .long, and .word directives automatically align to a word
boundary.

* The .string and .cstring directives place 8-bit characters from one or more character strings into the
current section. The .string and .cstring directives are similar to .byte, placing an 8-bit character in each
consecutive byte of the current section. The .cstring directive adds a NUL character needed by C; the
.string directive does not add a NUL character.

» The .ubyte, .uchar, .uhalf, .uint, .ulong, .ushort, and .uword directives are provided as unsigned
versions of their respective signed directives. These directives are used primarily by the C/C++
compiler to support unsigned types in C/C++.

Directives that Initialize Constants When Used in a .struct/.endstruct Sequence

NOTE: The .bits, .byte, .char, .int, .long, .word, .double, .half, .short, .ubyte, .uchar, .uhalf, .uint,
.ulong, .ushort, .uword, .string, .float, and .field directives do not initialize memory when they
are part of a .struct/ .endstruct sequence; rather, they define a member’s size. For more
information, see the .struct/.endstruct directives.

84 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives that Initialize Values

Figure 5-2 compares the .byte, .char, .short, .int, .long, .float, .double, .word, and .string directives using

the following assembled code:

1 00000000 AA
00000001 BB
00000002 CC
00000004 ABCD
00000006 0000DDDD
0000000a EEEEFFFF
0000000e 0000DDDD
00000012 3FFFFCB9
00000016 3FFFFFF5
0000001a 83A53BS8E
9 0000001e 48
0000001F 65
00000020 6C
00000021 70

oO~NO O WN

-byte OAAh, 0BBh
.char 0CCh
.short 0OABCDh
-word 0DDDDh
-long OEEEEFFFFh
.int 0DDDDh
-Float 1.9999
.double 1.99999
.string "Help"

Figure 5-2. Initialization Directives

Byte Code
7 0
0 byte 0AAh
7 0
7 0
2 .char QCCh
15 0
4 AB CD .short OABCDh
31 0
6 coooo | pbpbpb | .word oppooh
31 0
a | Eeee | FFFF | .ong OEEEEFFFF
31 0
e { oooo | popoo | it opoooh
31 0
12 | 3FFF | FCBS | float 1.9999
31 0
16 | 3FFF | FFFG5 I .double 1.99999
31 0
1a | saas | 3sse |
7 0
1e string "Help”
H
4
-]
2
1
:
p
SPNU118Y —September 1995—Revised February 2020 Assembler Directives 85

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Directives that Perform Alignment and Reserve Space www.ti.com

5.5 Directives that Perform Alignment and Reserve Space

These directives align the section program counter (SPC) or reserve space in a section:

» The .align directive aligns the SPC at a 1-byte to 32K-byte boundary. This ensures that the code
following the directive begins on the byte value that you specify. If the SPC is already aligned at the
selected boundary, it is not incremented. Operands for the .align directive must equal a power of 2
between 2° and 2%, inclusive.

Figure 5-3 demonstrates the .align directive. Using the following assembled code:

1 00000000 40000000 -Ffield 2,3

2 00000000 4000000B .field 11, 21

3 .align 2

4 00000004 45 .string "Errcnt"

00000005 72

00000006 72

00000007 63

00000008 6E

00000009 74
5 -align
6 0000000c 04 -byte 4

Figure 5-3. The .align Directive

—— —
_ - Py - -~
S———

=== New SPC = 04h
after assembling
02h oF .align 2 directive

Current =7 bytes| |~]
SPC =03h 04h Y

———

—_——

(a) Result of .align 2

——

08h 'y
curent—"— | | Fr0oo
SPC = 0Ah 1 word New SPC = O_Ch
after assembling
.align directive
0Ch ¥
(b) Result of .align without an argument
86 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives that Format the Output Listings

The .bes and .space directives reserve a specified humber of bytes in the current section. The
assembler fills these reserved byres with 0s. You can reserve a specified number of words by
multiplying the number of bytes by 4.

— When you use a label with .space, it points to the first byte that contains reserved bits.
— When you use a label with .bes, it points to the last byte that contains reserved bits.
Figure 5-4 shows how the .space and .bes directives work for the following assembled code:

1

2 00000000 00000100 .word 100h, 200h
00000004 00000200

3 00000008 Res_1: .space 17

4 0000001c 00OOO00OF .word 15

5 00000033 Res_2: _bes 20

6 00000034 BA -byte 0BAh

Res_1 points to the first byte in the space reserved by .space. Res_2 points to the last byte in the
space reserved by .bes.

Figure 5-4. The .space and .bes Directives

==

<+— Res_1=08h
17 bytes -
reserved

<+— Res_2 =33h
20 bytes -
reserved

—_——

5.6 Directives that Format the Output Listings

These directives format the listing file:

The .drlist directive causes printing of the directive lines to the listing; the .drnolist directive turns it off
for certain directives. You can use the .drnolist directive to suppress the printing of the following
directives. You can use the .drlist directive to turn the listing on again.

.asg .eval Jength .mnolist var
.break fclist .mlist .sslist .width
.emsg .fcnolist .mmsg .ssnolist .wmsg

The source code listing includes false conditional blocks that do not generate code. The .fclist and
.fcnolist directives turn this listing on and off. You can use the .fclist directive to list false conditional
blocks exactly as they appear in the source code. You can use the .fcnolist directive to list only the
conditional blocks that are actually assembled.

The .length directive controls the page length of the listing file. You can use this directive to adjust
listings for various output devices.

The .list and .nolist directives turn the output listing on and off. You can use the .nolist directive to
prevent the assembler from printing selected source statements in the listing file. Use the .list directive
to turn the listing on again.

The source code listing includes macro expansions and loop blocks. The .mlist and .mnolist directives
turn this listing on and off. You can use the .mlist directive to print all macro expansions and loop
blocks to the listing, and the .mnolist directive to suppress this listing.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 87
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Directives that Reference Other Files www.ti.com

5.7

The .option directive controls certain features in the listing file. This directive has the following
operands:

turns on listing of all directives and data, and subsequent expansions, macros, and blocks.
limits the listing of .byte and .char directives to one line.

limits the listing of .half and .short directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets the B, H, M, T, and W directives (turns off the limits of B, H, M, T, and W).

limits the listing of .string directives to one line.

limits the listing of .word and .int directives to one line.

produces a cross-reference listing of symbols. You can also obtain a cross-reference listing
by invoking the assembler with the --asm_listing_cross_reference option (see Section 4.3).

XsH4mozzIw>»

The .page directive causes a page eject in the output listing.

The source code listing includes substitution symbol expansions. The .sslist and .ssnolist directives
turn this listing on and off. You can use the .sslist directive to print all substitution symbol expansions
to the listing, and the .ssnolist directive to suppress this listing. These directives are useful for
debugging the expansion of substitution symbols.

The .tab directive defines tab size.
The .title directive supplies a title that the assembler prints at the top of each page.

The .width directive controls the page width of the listing file. You can use this directive to adjust
listings for various output devices.

Directives that Reference Other Files

These directives supply information for or about other files that can be used in the assembly of the current
file:

The .copy and .include directives tell the assembler to begin reading source statements from another
file. When the assembler finishes reading the source statements in the copy/include file, it resumes
reading source statements from the current file. The statements read from a copied file are printed in
the listing file; the statements read from an included file are not printed in the listing file.

The .def directive identifies a symbol that is defined in the current module and that can be used in
another module. The assembler includes the symbol in the symbol table.

The .global directive declares a symbol external so that it is available to other modules at link time.
(For more information about global symbols, see Section 2.6.1). The .global directive does double duty,
acting as a .def for defined symbols and as a .ref for undefined symbols. The linker resolves an
undefined global symbol reference only if the symbol is used in the program. The .global directive
declares a 16-bit symbol.

The .mlib directive supplies the assembler with the name of an archive library that contains macro
definitions. When the assembler encounters a macro that is not defined in the current module, it
searches for it in the macro library specified with .mlib.

The .ref directive identifies a symbol that is used in the current module but is defined in another
module. The assembler marks the symbol as an undefined external symbol and enters it in the object
symbol table so the linker can resolve its definition. The .ref directive forces the linker to resolve a
symbol reference.

The .symdepend directive creates an artificial reference from the section defining the source symbol
name to the destination symbol. The .symdepend directive prevents the linker from removing the
section containing the destination symbol if the source symbol section is included in the output module.

The .weak directive identifies a symbol that is used in the current module but is defined in another
module. It is equivalent to the .ref directive, except that the reference has weak linkage.

88

Assembler Directives SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Directives that Enable Conditional Assembly

5.8 Directives that Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to assemble certain sections of code
according to a true or false evaluation of an expression. Two sets of directives allow you to assemble
conditional blocks of code:

« The .if/.elseif/.else/.endif directives tell the assembler to conditionally assemble a block of code
according to the evaluation of an expression.

.if condition marks the beginning of a conditional block and assembles code
if the .if condition is true.

[.elseif condition] marks a block of code to be assembled if the .if condition is
false and the .elseif condition is true.

.else marks a block of code to be assembled if the .if condition is
false and any .elseif conditions are false.

.endif marks the end of a conditional block and terminates the block.

e The .loop/.break/.endloop directives tell the assembler to repeatedly assemble a block of code
according to the evaluation of an expression.

.loop [count] marks the beginning of a repeatable block of code. The optional
expression evaluates to the loop count.
.break [end condition] tells the assembler to assemble repeatedly when the .break end

condition is false and to go to the code immediately after
.endloop when the expression is true or omitted.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for conditional expressions. For more
information about relational operators, see Section 4.9.2.

5.9 Directives that Define Union or Structure Types

These directives set up specialized types for later use with the .tag directive, allowing you to use symbolic
names to refer to portions of a complex object. The types created are analogous to the struct and union
types of the C language.

The .struct, .union, .cstruct, and .cunion directives group related data into an aggregate structure which is
more easily accessed. These directives do not allocate space for any object. Objects must be separately
allocated, and the .tag directive must be used to assign the type to the object.

type .struct ; structure tag definition
X -int
Y -int

T_LEN .endstruct

COORD .tag type ; declare COORD (coordinate)
COORD .space T_LEN ; actual memory allocation
LDR RO, COORD.Y ; load member Y of structure

; COORD into register RO.

The .cstruct and .cunion directives guarantee that the data structure will have the same alignment and
padding as if the structure were defined in analogous C code. This allows structures to be shared between
C and assembly code. See Chapter 13. For .struct and .union, element offset calculation is left up to the
assembler, so the layout may be different than .cstruct and .cunion.

SPNU118Y —September 1995—Revised February 2020 Assembler Directives 89

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Directives that Define Enumerated Types www.ti.com

5.10 Directives that Define Enumerated Types

These directives set up specialized types for later use in expressions allowing you to use symbolic names
to refer to compile-time constants. The types created are analogous to the enum type of the C language.
This allows enumerated types to be shared between C and assembly code. See Chapter 13.

See Section 13.2.10 for an example of using .enum.

5.11 Directives that Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to constant values or strings.

» The .asg directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols created with .asg can be redefined.

.asg '"10, 20, 30, 40", coefficients
; Assign string to substitution symbol.
-byte coefficients
; Place the symbol values 10, 20, 30, and 40
; into consecutive bytes in current section.

» The .define directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols created with .define cannot be redefined.

» The .eval directive evaluates a well-defined expression, translates the results into a character string,
and assigns the character string to a substitution symbol. This directive is most useful for manipulating

counters:
.asg 1, X ;o x =1
-loop ; Begin conditional loop.
-byte X*10h ; Store value into current section.
-break X =4 ; Break loop if x = 4.
-eval x+1, x ; Increment x by 1.
-endloop ; End conditional loop.

e The .label directive defines a special symbol that refers to the load-time address within the current
section. This is useful when a section loads at one address but runs at a different address. For
example, you may want to load a block of performance-critical code into slower off-chip memory to
save space and move the code to high-speed on-chip memory to run. See the .label topic for an
example using a load-time address label.

» The .set and .equ directives set a constant value to a symbol. The symbol is stored in the symbol table
and cannot be redefined; for example:

bval .set 0100h ; Set bval = 0100h
-long bval, bval*2, bval+12
; Store the values 0100h, 0200h, and 010Ch
; into consecutive words in current section.

The .set and .equ directives produce no object code. The two directives are identical and can be used
interchangeably.

* The .unasg directive turns off substitution symbol assignment made with .asg.
e The .undefine directive turns off substitution symbol assignment made with .define.
» The .var directive allows you to use substitution symbols as local variables within a macro.

90 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Miscellaneous Directives

5.12 Miscellaneous Directives

These directives enable miscellaneous functions or features:

* The .asmfunc and .endasmfunc directives mark function boundaries. These directives are used with
the compiler --symdebug:dwarf (-g) option to generate debug information for assembly functions.

» The .cdecls directive enables programmers in mixed assembly and C/C++ environments to share C
headers containing declarations and prototypes between C and assembly code.

» The .end directive terminates assembly. If you use the .end directive, it should be the last source
statement of a program. This directive has the same effect as an end-of-file character.

» The .group, .gmember, and .endgroup directives define an ELF group section to be shared by
several sections.

» The .newblock directive resets local labels. Local labels are symbols of the form $n, where n is a
decimal digit. They are defined when they appear in the label field. Local labels are temporary labels
that can be used as operands for jump instructions. The .newblock directive limits the scope of local
labels by resetting them after they are used. See Section 4.8.3 for information on local labels.

These three directives enable you to define your own error and warning messages:

» The .emsg directive sends error messages to the standard output device. The .emsg directive
generates errors in the same manner as the assembler, incrementing the error count and preventing
the assembler from producing an object file.

e The .mmsg directive sends assembly-time messages to the standard output device. The .mmsg
directive functions in the same manner as the .emsg and .wmsg directives but does not set the error
count or the warning count. It does not affect the creation of the object file.

» The .wmsg directive sends warning messages to the standard output device. The .wmsg directive
functions in the same manner as the .emsg directive but increments the warning count rather than the
error count. It does not affect the creation of the object file.

For more information about using the error and warning directives in macros, see Section 6.7.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 91

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

5.13 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized alphabetically, one
directive per topic. Related directives (such as .if/.else/.endif), however, are presented together in one
topic.

.align Align SPC on the Next Boundary

Syntax .align [size in bytes]

Description The .align directive aligns the section program counter (SPC) on the next boundary,
depending on the size in bytes parameter. The size can be any power of 2, although
only certain values are useful for alignment. An operand of 1 aligns the SPC on the next
byte boundary, and this is the default if no size in bytes is given. The size in bytes must
equal a power of 2; the value must be between 1 and 32,768, inclusive. The assembler
assembles words containing null values (0) up to the next size in bytes boundary:

1 aligns SPC to byte boundary

2 aligns SPC to halfword boundary

4 aligns SPC to word boundary

8 aligns SPC to doubleword boundary
128 aligns SPC to page boundary

Using the .align directive has two effects:
» The assembler aligns the SPC on an x-byte boundary within the current section.

* The assembler sets a flag that forces the linker to align the section so that individual
alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 2, .align 8, and a default
.align.

1 00000000 04 -byte 4
.align 2
3 00000002 45 .string "Errorcnt”
00000003 72
00000004 72
00000005 6F
00000006 72
00000007 63
00000008 6E
00000009 74

N

.align
0000000c 60000000 -Field
0000000c 6A000000 -Field

.align
0000000c 6A006000 -Field

-align
10 00000010 50000000 -field
11 .align
12 00000014 04 -byte 4

© o0o~NO O b
oo wWwnN 01w

92 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.asg/.define/.eval

Assign a Substitution Symbol

Syntax .asg "character string",substitution symbol
.define "character string" ,substitution symbol
.eval expression,substitution symbol
Description The .asg and .define directives assign character strings to substitution symbols.

Substitution symbols are stored in the substitution symbol table. The .asg directive can

be used in many of the same ways as the .set directive, but while .set assigns a

constant value (which cannot be redefined) to a symbol, .asg assigns a character string

(which can be redefined) to a substitution symbol.

» The assembler assigns the character string to the substitution symbol.

» The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

The .define directive functions in the same manner as the .asg directive, except that

.define disallows creation of a substitution symbol that has the same name as a register

symbol or mnemonic. It does not create a new symbol name space in the assembler,

rather it uses the existing substitution symbol name space. The .define directive is used
to prevent corruption of the assembly environment when converting C/C++ headers. See

Chapter 13 for more information about using C/C++ headers in assembly source.

The .eval directive performs arithmetic on substitution symbols, which are stored in the

substitution symbol table. This directive evaluates the expression and assigns the string

value of the result to the substitution symbol. The .eval directive is especially useful as a

counter in .loop/.endloop blocks.

* The expression is a well-defined alphanumeric expression in which all symbols have
been previously defined in the current source module, so that the result is an
absolute expression.

e The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (), and
the dollar sign ($).

See the .unasg/.undefine topic for information on turning off a substitution symbol.

SPNU118Y —September 1995—Revised February 2020 Assembler Directives 93

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Example

This example shows how .asg and .eval can be used.

1

2
3
4
5
6
7

8

9
10
11
12
13
14

R ERP PP, R, P P R

00000000 E28DD018

00000004 E28DD018

00000008 00000001

0000000c 00000002

00000010 00000003

00000014 00000004

00000018 00000005

.sslist ; show expanded sub. symbols
; using .asg and .eval

.asg R13, STACKPTR
.asg &, AND

ADD STACKPTR, STACKPTR, #280 AND 255
ADD R13, R13, #280 & 255

ADD STACKPTR, STACKPTR, #280 & 255
ADD R13, R13, #280 & 255

.asg 0, x
-loop 5
.eval x+1, x
-word X
-endloop
.eval x+1,
.eval 0+1, x
-word X
-word 1
.eval x+1,
.eval 1+1,
-word X
-word 2
.eval x+1,
.eval 2+1, x
-word X
-word 3
.eval x+1,
.eval 3+1,
-word X
-word 4
.eval x+1,
.eval 4+1,
-word X
-word 5

X

X X

X

X X

X X

94

Assembler Directives

SPNU118Y —September 1995—Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.asmfunc/.endasmfunc Mark Function Boundaries

Syntax symbol .asmfunc [stack_usage(num)]
.endasmfunc
Description The .asmfunc and .endasmfunc directives mark function boundaries. These directives
are used with the compiler -g option (--symdebug:dwarf) to allow assembly code
sections to be debugged in the same manner as C/C++ functions.
You should not use the same directives generated by the compiler (see Appendix A) to
accomplish assembly debugging; those directives should be used only by the compiler to
generate symbolic debugging information for C/C++ source files.
The symbol is a label that must appear in the label field.
The .asmfunc directive has an optional parameter, stack_usage, which indicates that the
function may use up to num bytes.
Consecutive ranges of assembly code that are not enclosed within a pair of .asmfunc
and .endasmfunc directives are given a default name in the following format:
$ filename : beginning source line : ending source line $
Example In this example the assembly source generates debug information for the user_func
section.
1 00000000 .sect ".text"
2 -global user_func
3 -global printf
4
5 .align 4
6
7 00000000 .state32
8
9 user_func: .asmfunc
10 00000000 E92D4008 STMFD SPI, {A4, LR}
11 00000004 E28F000C ADR Al, SL1
12 00000008 EBFFFFFC! BL printf
13 0000000c E3A00000 MOV Al, #0
14 00000010 E8BD4008 LDMFD SP1, {A4, LR}
15 00000014 E12FFF1E BX LR
16 -endasmfunc
17
18 .align 4
19 00000018 48 SL1: .string "Hello World!",10,0
00000019 65
0000001a 6C
0000001b 6C
0000001c 6F
0000001d 20
0000001e 57
0000001F 6F
00000020 72
00000021 6C
00000022 64
00000023 21
00000024 OA
00000025 00
SPNU118Y —September 1995—Revised February 2020 Assembler Directives 95

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.bits Initialize Bits
Syntax .bits value], size in bits]
Description The .bits directive places a value into consecutive bits of the current section.

The .bits directive is similar to the .field directive (see .field topic). However, the .bits
directive does not force the value to be aligned to a field boundary. If the .bits directive is
followed by a different space-creating directive, the SPC is aligned to an appropriate
value for the directive that follows.

This directive has two operands:

« The value is a required parameter; it is an expression that is evaluated and placed in
the current section at the current location. The value must be absolute.

* The size in bits is an optional parameter; it specifies a number from 1 to 32, which is
the number of bits in the value. The default size is 32 bits. If you specify a value that
cannot fit in size in bits, the assembler truncates the value and issues a warning
message. For example, .bits 3,1 causes the assembler to truncate the value 3 to 1,
the assembler also prints the message:

*** WARNING! line 21: WO0Ol1l: Field value truncated to 1
.bits 3, 1

96 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.bss Reserve Space in the .bss Section

Syntax .bss symbol, size in bytes|, alignment]

Description The .bss directive reserves space for variables in the .bss section. This directive is
usually used to allocate space in RAM.

This directive is similar to the .usect directive (see .usect topic); both simply reserve

space for data and that space has no contents. However, .usect defines additional

sections that can be placed anywhere in memory, independently of the .bss section.

» The symbol is a required parameter. It defines a symbol that points to the first
location reserved by the directive. The symbol name must correspond to the variable
that you are reserving space for.

» The size in bytes is a required parameter; it must be an absolute constant
expression. The assembler allocates size bytes in the .bss section. There is no
default size.

» The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary indicates must be set to a
power of 2 between 2° and 2%, inclusive. If the SPC is already aligned at the
specified boundary, it is not incremented.

For more information about sections, see Chapter 2.

Example In this example, the .bss directive allocates space for two variables, TEMP and ARRAY.
The symbol TEMP points to four bytes of uninitialized space (at .bss SPC = 0). The
symbol ARRAY points to 100 bytes of uninitialized space (at .bss SPC = 04h). Symbols
declared with the .bss directive can be referenced in the same manner as other symbols
and can also be declared external.

1

2 ** Start assembling into the .text section. **
3

4 00000000 .text

5 00000000 E3A00000 MOV RO, #0

6

7

8 ** Allocate 4 bytes in .bss for TEMP. **
9

10 00000000 var_1: .bss TEMP, 4

11

12

13 *x Still in _text. *x
14

15 00000004 E2801056 ADD R1, RO, #56h

16 00000008 E0020091 MUL R2, R1, RO

17

18

19 ** Allocate 100 bytes in .bss for the symbol **
20 ** named ARRAY. **
21

22 00000004 .bss ARRAY, 100, 4

23

24

25 *x Assemble more code into .text. *x
26

27 0000000c E1AOFOOE MOV PC, LR

28

29

30 *x Declare external _bss symbols. *x
31

32 .global ARRAY, TEMP

33 -end

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 97

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.byte/.ubyte/.char/.uchar Initialize Byte

Syntax .byte value,], ... , value,]
.ubyte value,|, ..., value,]
.char valuey[, ... , value,]
.uchar value|, ... , value,]

Description The .byte, .ubyte, .char, and .uchar directives place one or more values into

consecutive bytes of the current section. A value can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number

e A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The first byte occupies the eight least significant bits of a full 32-bit word. The second

byte occupies bits eight through 15 while the third byte occupies bits 16 through 23. The

assembler truncates values greater than eight bits.

If you use a label, it points to the location of the first byte that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's

size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag

topic.

Example In this example, 8-bit values (10, -1, abc, and a) are placed into consecutive bytes in
memory with .byte. Also, 8-bit values (8, -3, def, and b) are placed into consecutive
bytes in memory with .char. The label STRX has the value Oh, which is the location of
the first initialized byte. The label STRY has the value 6h, which is the first byte
initialized by the .char directive.

1 00000000 -space 100h

2 00000100 OA STRX .byte 10, -1, "abc", "a"
00000101 FF
00000102 61
00000103 62
00000104 63
00000105 61

3 00000106 08 STRY .char 8, -3, "def", "b"
00000107 FD
00000108 64
00000109 65
0000010a 66
0000010b 62

98 Assembler Directives SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.cdecls

Syntax

Syntax

Description

Share C Headers Between C and Assembly Code

Single Line:
.cdecls [options ,] " filename "[, " filename2 "[,...]]
Multiple Lines:
.cdecls [options]
%{
I* *
/* C/C++ code - Typically a list of #includes and a few defines */
[* %/
%0}

The .cdecls directive allows programmers in mixed assembly and C/C++ environments
to share C headers containing declarations and prototypes between the C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations cause
suitable assembly to be generated automatically, allowing you to reference the C/C++
constructs in assembly code; such as calling functions, allocating space, and accessing
structure members; using the equivalent assembly mechanisms. While function and
variable definitions are ignored, most common C/C++ elements are converted to
assembly, for instance: enumerations, (non-function-like) macros, function and variable
prototypes, structures, and unions.

The .cdecls options control whether the code is treated as C or C++ code; and how the
.cdecls block and converted code are presented. Options must be separated by
commas; they can appear in any order:

C Treat the code in the .cdecls block as C source code (default).

CPP Treat the code in the .cdecls block as C++ source code. This is the
opposite of the C option.

NOLIST Do not include the converted assembly code in any listing file generated
for the containing assembly file (default).

LIST Include the converted assembly code in any listing file generated for the
containing assembly file. This is the opposite of the NOLIST option.

NOWARN Do not emit warnings on STDERR about C/C++ constructs that cannot
be converted while parsing the .cdecls source block (default).

WARN Generate warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block. This is the opposite of
the NOWARN option.

In the single-line format, the options are followed by one or more filenames to include.
The filenames and options are separated by commas. Each file listed acts as if #include
"filename" was specified in the multiple-line format.

In the multiple-line format, the line following .cdecls must contain the opening .cdecls
block indicator %{. Everything after the %/{, up to the closing block indicator %}, is
treated as C/C++ source and processed. Ordinary assembler processing then resumes
on the line following the closing %}.

The text within %{ and %} is passed to the C/C++ compiler to be converted into
assembly language. Much of C language syntax, including function and variable
definitions as well as function-like macros, is not supported and is ignored during the
conversion. However, all of what traditionally appears in C header files is supported,
including function and variable prototypes; structure and union declarations; non-
function-like macros; enumerations; and #defines.

SPNU118Y —September 1995—Revised February 2020 Assembler Directives 99
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Example

The resulting assembly language is included in the assembily file at the point of the
.cdecls directive. If the LIST option is used, the converted assembly statements are
printed in the listing file.

The assembly resulting from the .cdecls directive is treated similarly to a .include file.
Therefore the .cdecls directive can be nested within a file being copied or included. The
assembler limits nesting to ten levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B indicates a second
copied file, etc.

The .cdecls directive can appear anywhere in an assembly source file, and can occur
multiple times within a file. However, the C/C++ environment created by one .cdecls is
not inherited by a later .cdecls; the C/C++ environment starts new for each .cdecls.

See Chapter 13 for more information on setting up and using the .cdecls directive with C
header files.

In this example, the .cdecls directive is used call the C header.h file.

C header file:

#define WANT_ID 10
#define NAME "John\n"

extern int a_variable;
extern float cvt_integer(int src);

struct myCstruct { int member_a; float member_b; };

enum status_enum { OK = 1, FAILED = 256, RUNNING = 0 };

Source file:
.cdecls C,LIST,"myheader.h"

size: -int $$sizeof(myCstruct)
aoffset: .int myCstruct.member_a
boffset: .int myCstruct.member_b
okvalue: .int status_enum.OK
failval: .int status_enum.FAILED

-i1f $$defined(WANT_ID)
id .cstring NAME

.endif

100

Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Listing File:

1 .cdecls C,LIST,"myheader.h"
A 1 e
A 2 ; Assembly Generated from C/C++ Source Code
A 3 P
A 4
A 5 ; =========== MACRO DEFINITIONS ===========
A 6 .define "10",WANT_ID
A 7 .define """"'John\n""""" ,NAME
A 8
A 9 ; =========== TYPE DEFINITIONS ===========
A 10 status_enum -enum
A 11 00000001 OK .emember 1
A 12 00000100 FAILED .emember 256
A 13 00000000 RUNNING .emember O
A 14 -endenum
A 15
A 16 myCstruct .struct 0,4

17 ; struct size=(8 bytes]|64 bits), alignment=4
A 18 00000000 member_a -Ffield 32

19 int member_a - offset O bytes, size (4 bytes]32 bits)
A 20 00000004 member_b -Field 32

21 ; Float member_b - offset 4 bytes, size (4 bytes|32 bits)
A 22 00000008 -endstruct

23 ; Final size=(8 bytes]64 bits)
A 24
A 25 ; =========== EXTERNAL FUNCTIONS ===========
A 26 -global _cvt_integer
A 27
A 28 ; =========== EXTERNAL VARIABLES ===========
A 29 -global _a variable

2 00000000 00000008 size: .int $$sizeof(myCstruct)

3 00000004 00000000 aoffset: .int myCstruct.member_a

4 00000008 00000004 boffset: .int myCstruct.member_b

5 0000000c 00000001 okvalue: .int status_enum.OK

6 00000010 00000100 failval: .int status_enum.FAILED

7 -if $$defined(WANT_ID)

8 00000014 0000004A id .cstring NAME

00000015 0000006F
00000016 00000068
00000017 0OOOOOOGE
00000018 0000000A
00000019 00000000

.endif

SPNU118Y —September 1995—-Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Assembler Directives

101

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.common

Syntax

Description

Create a Common Symbol

.common symbol,size in bytes|, alignment]

.common symbol,structure tag][, alignment]

The .common directive creates a common symbol in a common block, rather than
placing the variable in a memory section.

The benefit of common symbols is that generated code can remove unused variables
that would otherwise increase the size of the .bss section. (Uninitialized variables of a
size larger than 32 bytes are separately optimized through placement in separate
subsections that can be omitted from a link.)

This directive is used by the compiler when the --common option is enabled (the default),
which causes uninitialized file scope variables to be emitted as common symbols. This
optimization happens for C/C++ code by default unless you use the --common=off
compiler option.

» The symbol is a required parameter. It defines a name for the symbol created by this
directive. The symbol name must correspond to the variable that you are reserving
space for.

» The size in bytes is a required parameter; it must be an absolute expression. The
assembler allocates size bytes in the section used for common symbols. There is no
default size.

* A structure tag can be used in place of a size to specify a structure created with the
.struct directive. Either a size or a structure tag is required for this argument.

« The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary must be set to a power of 2
between 2° and 2%, inclusive. If the SPC is already aligned at the specified boundary,
it is not incremented.

Common symbols are symbols that are placed in the symbol table of an ELF object file.
They represent an uninitialized variable. Common symbols do not reference a section.
(In contrast, initialized variables need to reference a section that contains the initialized
data.) The value of a common symbol is its required alignment; it has no address and
stores no address. While symbols for an uninitialized common block can appear in
executable object files, common symbols may only appear in relocatable object files.
Common symbols are preferred over weak symbols. See the section on the "Symbol
Table" in the System V ABI specification for more about common symbols.

When object files containing common symbols are linked, space is reserved in an
uninitialized section (.common) for each common symbol. A symbol is created in place of
the common symbol to refer to its reserved location.

102

Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.copyl.include

Syntax

Description

Example 1

Copy Source File

.copy "filename"

.include "filename"

The .copy and .include directives tell the assembler to read source statements from a
different file. The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included file are not printed
in the assembly listing, regardless of the number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:
1. Stops assembling statements in the current source file
2. Assembles the statements in the copied/included file

3. Resumes assembling statements in the main source file, starting with the statement
that follows the .copy or .include directive

The filename is a required parameter that names a source file. It is enclosed in double
guotes and must follow operating system conventions.

You can specify a full pathname (for example, /320tools/filel.asm). If you do not specify
a full pathname, the assembler searches for the file in:

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the TI_ARM_A_DIR environment variable
4. Any directories specified by the TI_ARM_C_DIR environment variable

For more information about the --include_path option and TI_ARM_A_DIR, see
Section 4.5. For more information about TI_ ARM_C_DIR, see the ARM Optimizing
C/C++ Compiler User's Guide.

The .copy and .include directives can be nested within a file being copied or included.
The assembler limits nesting to 32 levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. A indicates the first copied file, B indicates a second
copied file, etc.

In this example, the .copy directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file byte.asm. When
copy.asm assembles, the assembler copies byte.asm into its place in the listing (note
listing below). The copy file byte.asm contains a .copy statement for a second file,
word.asm.

When it encounters the .copy statement for word.asm, the assembler switches to
word.asm to continue copying and assembling. Then the assembler returns to its place
in byte.asm to continue copying and assembling. After completing assembly of byte.asm,
the assembler returns to copy.asm to assemble its remaining statement.

copy.asm byte.asm word.asm
(source file) (first copy file) (second copy file)

.space 29 ** In byte.asm ** In word.asm
.copy "'byte.asm" _byte 32,1+ "A" .word OABCDh, 56q
** Back in original file .copy "‘word.asm"

.string "done" ** Back in byte.asm
-byte 67h + 3q

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 103
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Listing file:
1 00000000
2
A 1
A 2 0000001d 20
0000001e 42
A 3
B 1
B 2 00000020 0000ABCD
00000024 0000002E
A
A 00000028 6A

g s wo b

00000029 64
0000002a 6F
0000002b 6E
0000002c 65

B

**

**

**

-Space 29

.copy "'byte.asm"
In byte.asm

-byte 32,1+ "A"

.copy "‘word.asm"
In word.asm
-word OABCDh, 56q

Back in byte.asm
-byte 67h + 3q

Back in original file

.string "done™

Example 2 In this example, the .include directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file. The
mechanism is similar to the .copy directive, except that statements are not printed in the
listing file.

include.asm byte2.asm word2.asm
(source file) (first copy file) (second copy file)
.space 29 ** In byte2.asm ** In word2.asm
-include "byte2_asm" _byte 32,1+ "A" -word OABCDh, 56q
-include
** Back in original file "word2.asm"
** Back in byte2.asm
.string "done"
-byte 67h + 3q
Listing file:
1 00000000 -space 29
2 -include "byte2.asm"
3
4 ** Back in original file
5 00000029 64 .string "done"
0000002a 6F
0000002b 6E
0000002c 65
104 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Copyright © 1995-2020, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

.cstruct/.cunion/.endstruct/.endunion/.tag Declare C Structure Type

Syntax [stag] .cstruct|.cunion [expr]
[mem,] element [expr,]
[mem,] element [expr,]
[mem,] .tag stag [expr.]
[mem,] element [expry]
[size] .endstruct|.endunion
label .tag stag
Description The .cstruct and .cunion directives have been added to support ease of sharing of

common data structures between assembly and C code. The .cstruct and .cunion
directives can be used exactly like the existing .struct and .union directives except that
they are guaranteed to perform data layout matching the layout used by the C compiler
for C struct and union data types.

In particular, the .cstruct and .cunion directives force the same alignment and padding as
used by the C compiler when such types are nested within compound data structures.

The .endstruct directive terminates the structure definition. The .endunion directive
terminates the union definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

» The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. The stag is optional for .struct, but is required for .tag.

» The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. A .tag directive
is a special case because stag must be used (as in the definition of stag).

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

« The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

* The size is an optional label for the total size of the structure.

Example This example illustrates a structure in C that will be accessed in assembly code.

typedef struct STRUCT1

0 { int i0; /* offset 0 */

; short sO; /* offset 4 */

; } structl; /* size 8, alignment 4 */

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 105

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

} struct2;

Attempts to

offsetof(structl, i0)
offsetof(structl, sO)
sizeof(structl) =
offsetof(struct2, sl)
offsetof(struct2, il)
sizeof(struct2) =

typedef struct STRUCT2
{ structl stl; /* offset 0 */
short si; /* offset 8 */

/* size 12, alignment 4 */

= 00 Oo0hM~O

2

The structure will get the following offsets once the C compiler lays out the structure
elements according to the C standard rules:

replicate this structure in assembly using the .struct/.union directives will not

structl -struct

i0 -int ; bytes 0-3

sO -short ; bytes 4-5

structllen .endstruct ; size 6, alignment 4
struct2 .struct

stl .tag structl ; bytes 0-5

sl .short ; bytes 6-7

endstruct2 .endstruct

.sect
-word
-word
-word

.sect
-word
-word
-word

size 8, alignment 4

"datal"

structl.iO ; 0
structl.sO ; 4
structllen ; 6
"data2"

struct2.stl ; O
struct2.sl ; 6
endstruct2 ; 8

create the correct offsets because the assembler tries to use the most compact arrangement:

calculate offsets in the same manner as the C compiler. The resulting

assembly structure can be used to access the elements of the C structure. Compare the difference
in the offsets of those structures defined via .struct above and the offsets for the C code.

; The .cstruct/.cunion directives

cstructl .cstruct
i0 -int ; bytes 0-3
sO -short ; bytes 4-5
cstructllen .endstruct ; size 8, alignment 4
cstruct2 .cstruct
stl .tag cstructl ; bytes 0-7
sl .short ; bytes 8-9
cendstruct2 _endstruct ; size 12, alignment 4
.sect "data3"
-word cstructl.iO, structl.iO ; 0
.word cstructl.s0, structl.sO ; 4
-word cstructllen, structllen ;8
.sect "data4"
-word cstruct2.stl, struct2.stl ; O
.word cstruct2.sl, struct2.sl ; 8
.word cendstruct2, endstruct2 ; 12

106 Assembler Directives

Copyright © 1995-2020, Texas Instruments Incorporated

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.data

Syntax

Description

Example

Assemble Into the .data Section

.data

The .data directive sets .data as the current section; the lines that follow will be
assembled into the .data section. The .data section is normally used to contain tables of

data or preinitialized variables.

For more information about sections, see Chapter 2.

In this example, code is assembled into the .data and .text sections.

1

2 *x Reserve space in .data. *x
3

4 00000000 .data

5 00000000 .space 0CCh

6

7

8 *x Assemble into .text. *x
9

10 00000000 .text ; Constant into .data
11 00000000 INDEX .set 0

12 00000000 E3A00000 MoV RO, #INDEX

13

14

15 holad Assemble into .data. holad
16

17 000000cc Table: _.data

18 000000cc FFFFFFFF -word -1 ; Assemble 32-bit

19 ; constant into .data.
20

21 000000d0 FF -byte OFFh ; Assemble 8-bit

22 ; constant into .data.
23

24

25 *x Assemble into .text. *x
26

27 00000004 .text

28 00000004 000000CC*™ con: .Field Table, 32

29 00000008 E51F100C LDR R1, con
30 0000000c E5912000 LDR R2, [R1]

31 00000010 E0802002 ADD R2, RO, R2

32
33 ** Resume assembling into the .data section **
34 ** at address OFh. *x
35
36 000000d1 .data

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Assembler Directives

107

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.double Initialize Double-Precision Floating-Point Value
Syntax .double value, [, ..., value,]
Description The .double directive places the IEEE double-precision floating-point representation of

one or more floating-point values into the current section. Each value must be an
absolute constant expression with an arithmetic type or a symbol equated to an absolute
constant expression with an arithmetic type. Each constant is converted to a floating-
point value in IEEE double-precision 64-bit format. Double-precision floating point
constants are aligned to a double word boundary.

The 64-bit value is stored in the format shown in Figure 5-5.

Figure 5-5. Double-Precision Floating-Point Format

[SEEEEEEEEEEEMMMMMMMMMMMMMMMMMMM M|
31 20 0

|MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMl
31 0

Legend: S =sign
E = exponent (11-bit biased)
M = mantissa (52-bit fraction)

When you use .double in a .struct/.endstruct sequence, .double defines a member's size;
it does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example This example shows the .double directive.
1 00000000 C5308B2A .double -2.0e25
00000004 2C280291
2 00000008 40180000 .double 6
0000000c 00000000
3 00000010 407C8000 .double 456

00000014 00000000

108 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.drlist/.drnolist

Syntax

Description

Example

Control Listing of Directives

drlist
.drnolist

Two directives enable you to control the printing of assembler directives to the listing file:

The .drlist directive enables the printing of all directives to the listing file.

The .drnolist directive suppresses the printing of the following directives to the listing

file. The .drnolist directive has no affect within macros.

e .asg » fcnolist e .ssnolist
e .break e .mlist e var

e .emsg * .mmsg e .wmsg

e .eval e .mnolist

o fclist e .sslist

By default, the assembler acts as if the .drlist directive had been specified.

This example shows how .drnolist inhibits the listing of the specified directives.

Source file:
.asg 0, x
.loop 2
.eval X+1, X
-endloop
-drnolist
.asg 1, x
-loop 3
-eval x+1, X
-endloop
Listing file:
3 .asg 0, X
4 -loop 2
5 .eval X+1, X
6 -endloop
1 -eval 0+1, X
1 .eval 1+1, X
7
8 -drnolist
12 -loop 3
13 -eval x+1, X
14 -endloop

SPNU118Y —September 1995—-Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Assembler Directives

109

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.elfsym ELF Symbol Information

Syntax .elfsym name, SYM_SIZE(size)

Description The .elfsym directive provides additional information for symbols in the ELF format. This
directive is designed to convey different types of information, so the type, data pair is
used to represent each type. Currently, this directive only supports the SYM_SIZE type.
SYM_SIZE indicates the allocation size (in bytes) of the symbol indicated by name.

Example This example shows the use of the ELF symbol information directive.

.sect " _examp"
.align 4
-elfsym ex_sym, SYM_SIZE(4)
ex_sym:
-word 0
110 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.emsg/.mmsg/.wmsg Define Messages

Syntax .emsg string
.mmsg string

.wmsg string

Description These directives allow you to define your own error and warning messages. When you
use these directives, the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.

The .emsg directive sends an error message to the standard output device in the same
manner as the assembler. It increments the error count and prevents the assembler from
producing an object file.

The .mmsg directive sends an assembly-time message to the standard output device in
the same manner as the .emsg and .wmsg directives. It does not, however, set the error
or warning counts, and it does not prevent the assembler from producing an object file.

The .wmsg directive sends a warning message to the standard output device in the
same manner as the .emsg directive. It increments the warning count rather than the
error count, however. It does not prevent the assembler from producing an object file.

Example This example sends the message ERROR -- MISSING PARAMETER to the standard

output device.
Source file:

MSG_EX -.macro parml

-if $$symlen(parml) = O
.emsg "ERROR -- MISSING PARAMETER™

.else
ADD parml, r7, r8
-endif
-endm
MSG_EX RO
MSG_EX
Listing file:
1 MSG_EX .macro parml
2 -if $$symlen(parml) = 0O
3 .emsg "ERROR -- MISSING PARAMETER"
4 .else
5 ADD parml, r7, r8
6 -endif
7 -endm
8
9 00000000 MSG_EX RO
1 if $$symlen(parml) = 0
1 .emsg "ERROR -- MISSING PARAMETER"
1 .else
1 00000000 E0870008 ADD RO, r7, r8
1 .endif
10
11 00000004 MSG_EX
1 -if $$symlen(parml) = 0O
1 .emsg "ERROR -- MISSING PARAMETER"
*H&&*x USER ERROR ***** _ : ERROR -- MISSING PARAMETER
1 .else
1 ADD parml, r7, r8
1 -endif

1 Error, No Warnings

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Assembler Directives

Copyright © 1995-2020, Texas Instruments Incorporated

111

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.end

Syntax

Description

Example

In addition, the following messages are sent to standard output by the assembler:

*** ERROR! line 11: ***** USER ERROR ***** _ : ERROR -- MISSING PARAMETER
.emsg "ERROR -- MISSING PARAMETER" 11

1 Error, No Warnings
Errors in source - Assembler Aborted

End Assembly

.end

The .end directive is optional and terminates assembly. The assembler ignores any
source statements that follow a .end directive. If you use the .end directive, it must be
the last source statement of a program.

This directive has the same effect as an end-of-file character. You can use .end when
you are debugging and you want to stop assembling at a specific point in your code.

Ending a Macro

NOTE: Do not use the .end directive to terminate a macro; use the .endm macro
directive instead.

This example shows how the .end directive terminates assembly. Any source statements
that follow the .end directive are ignored by the assembler.

Source file:
START: .space 300
TEMP .set 15

-bss LOC1, 48h
LOCL_n .word LOC1

MVN RO, RO

ADD RO, RO, #TEMP

LDR R4, LOCL_n

STR RO, [R4]

.end

-byte 4

-word CCCh

Listing file:

1 00000000 START: _space 300
2 0000000F TEMP .set 15
3 00000000 .bss LOC1, 48h
4 0000012c 00000000- LOCL_n .word LOC1
5 00000130 E1E00000 MVN RO, RO
6 00000134 E280000F ADD RO, RO, #TEMP
7 00000138 E51F4014 LDR R4, LOCL_n
8 0000013c E5840000 STR RO, [R4]
9 -end

112 Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

fclist/.fcnolist

Syntax

Description

Example

Control Listing of False Conditional Blocks

fclist
fcnolist

Two directives enable you to control the listing of false conditional blocks:

The fclist directive allows the listing of false conditional blocks (conditional blocks that
do not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until a .fclist
directive is encountered. With .fcnolist, only code in conditional blocks that are actually
assembled appears in the listing. The .if, .elseif, .else, and .endif directives do not
appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist directive
had been used.

This example shows the assembly language and listing files for code with and without
the conditional blocks listed.

Source file:
AAA .set 1
BBB .set O
.fclist
i AAA
ADD RO, RO, #1024
.else
ADD RO, RO, #1024*10
.endif
-Fcnolist
S V.V
ADD RO, RO, #1024
.else
ADD RO, RO, #1024*10
.endif
Listing file:
1 00000001 AAA .set 1
2 00000000 BBB .set O
3 -fclist
4
5 i AAA
6 00000000 E2800B0O1 ADD RO, RO, #1024
7 .else
8 ADD RO, RO, #1024*10
9 .endif
10
11 -Fcnolist
12
14 00000004 E2800BO1 ADD RO, RO, #1024

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Assembler Directives 113

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

field

Syntax

Description

Example

Initialize Field

field value], size in bits]

The .field directive initializes a multiple-bit field within a single word (32 bits) of memory.
This directive has two operands:

» The value is a required parameter; it is an expression that is evaluated and placed in
the field. The value must be absolute.

* The size in bits is an optional parameter; it specifies a number from 1 to 32, which is
the number of bits in the field. The default size is 32 bits. If you specify a value that
cannot fit in size in bits, the assembler truncates the value and issues a warning
message. For example, .field 3,1 causes the assembler to truncate the value 3 to 1;
the assembler also prints the message:

*** WARNING! line 21: WO00l1l: Field value truncated to 1
.field 3, 1

Successive .field directives pack values into the specified number of bits starting at the
current word. Fields are packed starting at the most significant part of the word, moving
toward the least significant part as more fields are added. If the assembler encounters a
field size that does not fit into the current word, it writes out the word, and begins
packing fields into the next word.

The .field directive is similar to the .bits directive (see the .bits topic). However, the .bits
directive does not force alignment to a field boundary and does not automatically
increment the SPC when a word boundary is reached.

Use the .align directive to force the next .field directive to begin packing a new word.
If you use a label, it points to the byte that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

This example shows how fields are packed into a word. The SPC does not change until
a word is filled and the next word is begun.

1

2 *x Initialize a 14-bit field. **
3

4 00000000 2AF00000 .field OABCh, 14

5

6

7 holad Initialize a 5-bit field holad
8 *x in the same word. *x
9

10 00000000 2AF14000 L_F: .field O0Ah, 5

11

12

13 holad Write out the word. holad
14

15 .align 4

16

17

18 *x Initialize a 4-bit field. **
19 ** This fields starts a new word. **
20

21 00000004 COO00000 x: .Field O0Ch, 4

22

23

24 *x 32-bit relocatable field *x
25 holad in the next word. holad
26

27 00000008 00000004* -Ffield x

28

114 Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference

29

30 ** Initialize a 32-bit field. **

31

32 0000000c 00004321 .Field 04321h, 32

Figure 5-6 shows how the directives in this example affect memory.
Figure 5-6. The .field Directive
Word Code
0 field OABCh, 14
3130292827 262524232221201918 0

00101010111 100

14-bit field
0 field 00Ah, 5

31 181716151413 0
00101010111 100(01010

5-bit field .align 4
1 field 00Ch, 5
31302928 0
1100
N
4-bit field
5 field x
31 0

000OO0OO0OOOO0OOOOOOOOOOOOOOOOOOOOOOOTTO

3 field 04321, 32
31 0

000OO0OO0OOOO0OOOOOOOOOOOOO1TOOOO1T1TOOOO1

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

115

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
float Initialize Single-Precision Floating-Point Value
Syntax float value], ..., value,]
Description The .float directive places the IEEE single-precision floating-point representation of a

single floating-point constant into a word in the current section. The value must be an
absolute constant expression with an arithmetic type or a symbol equated to an absolute
constant expression with an arithmetic type. Each constant is converted to a floating-
point value in IEEE single-precision 32-bit format.

The 32-bit value is stored exponent byte first, most significant byte of fraction second,
and least significant byte of fraction third, in the format shown in Figure 5-7.

Figure 5-7. Single-Precision Floating-Point Format

[SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMM M
31 23 0

value = ('1)SX (1 0+ mantissa) X (2)exponent-127

Legend: S =sign (1 bit)
E = exponent (8-bit biased)
M = mantissa (23-bit fraction)

When you use .float in a .struct/.endstruct sequence, .float defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example Following are examples of the .float directive:
1 00000000 E9045951 .float -1.0e25
2 00000004 40400000 .float 3
3 00000008 42F60000 .float 123
116 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.global/.def/.ref

Syntax

Description

Example

Identify Global Symbols

.global symbol,], ..., symbol,]
.def symboly[, ... , symbol,]
.ref symbol,[, ... , symbol,]

Three directives identify global symbols that are defined externally or can be referenced
externally:

The .def directive identifies a symbol that is defined in the current module and can be
accessed by other files. The assembler places this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but is defined in
another module. The linker resolves this symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss or .usect directive. If a global symbol is
defined more than once, the linker issues a multiple-definition error. (The assembler can
provide a similar multiple-definition error for local symbols.) The .ref directive always
creates a symbol table entry for a symbol, whether the module uses the symbol or not;
.global, however, creates an entry only if the module actually uses the symbol.

A symbol can be declared global for either of two reasons:

» If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .global or .ref directive tells the assembler that the symbol is
defined in an external module. This prevents the assembler from issuing an
unresolved reference error. At link time, the linker looks for the symbol's definition in
other modules.

» If the symbol is defined in the current module, the .global or .def directive declares
that the symbol and its definition can be used externally by other modules. These
types of references are resolved at link time.

This example shows four files. The filel.Ist and file2.Ist refer to each other for all symbols
used; file3.Ist and file4.Ist are similarly related.

The filel.Ist and file3.Ist files are equivalent. Both files define the symbol INIT and
make it available to other modules; both files use the external symbols X, Y, and Z. Also,
filel.Ist uses the .global directive to identify these global symbols; file3.Ist uses .ref and
.def to identify the symbols.

The file2.Ist and file4.Ist files are equivalent. Both files define the symbols X, Y, and Z
and make them available to other modules; both files use the external symbol INIT. Also,
file2.Ist uses the .global directive to identify these global symbols; file4.Ist uses .ref and
.def to identify the symbols.

filel.Ist

; Global symbol defined in this file
-global INIT
; Global symbols defined in file2.lst
-global X, Y, Z
00000000 INIT:
00000000 E2800056 ADD RO, RO, #56h
00000004 000000001 .word X

PO OWO~NOOOMWNEPE

R

-end

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 117
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

file2.Ist
1
2
3
4
5
6
7
8

9
10
11
12

file3.Ist

R
RPOOWONOUNWNLER

filed.Ist

1
2
3
4
5
6
7
8
9
10
11
12

; Global symbols defined in this file

-global X, Y, zZ

; Global symbol defined in filel.lst

00000001 X:

00000002
00000003
00000000 00000000!

N <

; Global

; Global

00000000 INIT:

00000000 E2800056
00000004 00000000!

00000001
00000002
00000003
00000000 00000000!

N < X

; Global

; Global

-global INIT
.set 1
.set 2
.set 3
-word INIT
.end

symbols defined in this file

.def INIT

symbol defined in file4._Ist

.ref X, Y, Z

ADD RO, RO, #56
-word X
.end

symbols defined in this file

.def X, Y, Z

symbol defined in file3.Ist

.ref INIT
.set 1
.set 2
.set 3
-word INIT
.end

118

Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Copyright © 1995-2020, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

.group/.gmember/.endgroup Define Common Data Section

Syntax .group group section name group type
.gmember section name

.endgroup

Description Three directives instruct the assembler to make certain sections members of an ELF
group section (see the ELF specification for more information on group sections).

The .group directive begins the group declaration. The group section name designates
the name of the group section. The group type designates the type of the group. The
following types are supported:

0x0 Regular ELF group
0x1 COMDAT ELF group

Duplicate COMDAT (common data) groups are allowed in multiple modules; the linker
keeps only one. Creating such duplicate groups is useful for late instantiation of C++
templates and for providing debugging information.

The .gmember directive designates section name as a member of the group.
The .endgroup directive ends the group declaration.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 119

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.half/.short/.uhalf/.ushort |Initialize 16-Bit Integers

Syntax .half value,], ..., value,]
.short value,], ... , value,]
.uhalf value,[, ..., value,]
.ushort value|, ... , value,]

Description The .half and .short directives place one or more values into consecutive halfwords in
the current section. A value can be either:

* An expression that the assembler evaluates and treats as a 16-bit signed or unsigned
number

» A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 16-bit field,
which is padded with Os.

The assembler truncates values greater than 16 bits.

If you use a label with .half or .short, it points to the location where the assembler places

the first byte.

These directives perform a halfword (16-bit) alignment before data is written to the

section. This guarantees that data resides on a 16-bit boundary.

When you use .half or .short in a .struct/.endstruct sequence, they define a member's

size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag

topic.

Example In this example, .half is used to place 16-bit values (10, -1, abc, and a) into consecutive
halfwords in memory; .short is used to place 16-bit values (8, -3, def, and b) into
consecutive halfwords in memory. The label STRN has the value 100ch, which is the
location of the first initialized halfword for .short.

1 00000000 .space 100h * 16

2 00001000 000A .half 10, -1, "abc", "a"
00001002 FFFF
00001004 0061
00001006 0062
00001008 0063
0000100a 0061

3 0000100c 0008 STRN .short 8, -3, "def", "b"
0000100e FFFD
00001010 0064
00001012 0065
00001014 0066
00001016 0062

120 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.if/.elseif/.else/.endif Assemble Conditional Blocks

Syntax .if condition
[.elseif condition]
[-else]
.endif
Description These directives provide conditional assembly:
The .if directive marks the beginning of a conditional block. The condition is a required
parameter.
« If the expression evaluates to true (nonzero), the assembler assembles the code that
follows the expression (up to a .elseif, .else, or .endif).
» If the expression evaluates to false (0), the assembler assembles code that follows a
.elseif (if present), .else (if present), or .endif (if no .elseif or .else is present).
The .elseif directive identifies a block of code to be assembled when the .if expression is
false (0) and the .elseif expression is true (nonzero). When the .elseif expression is
false, the assembler continues to the next .elseif (if present), .else (if present), or .endif
(if no .elseif or .else is present). The .elseif is optional in a conditional block, and more
than one .elseif can be used. If an expression is false and there is no .elseif, the
assembler continues with the code that follows a .else (if present) or a .endif.
The .else directive identifies a block of code that the assembler assembles when the .if
expression and all .elseif expressions are false (0). The .else directive is optional in the
conditional block; if an expression is false and there is no .else statement, the assembler
continues with the code that follows the .endif. The .elseif and .else directives can be
used in the same conditional assembly block.
The .endif directive terminates a conditional block.
See Section 4.9.2 for information about relational operators.
Example This example shows conditional assembly:
1 00000001 SYM1 .set 1
2 00000002 SYM2 .set 2
3 00000003 SYM3 .set 3
4 00000004 SYM4 .set 4
5
6 If 4: if SYM4 = SYM2 * SYM2
7 00000000 04 .byte SYM4 ; Equal values
8 .else
9 -byte SYM2 * SYM2 ; Unequal values
10 .endif
11
12 I 5: -if SYM1 <= 10
13 00000001 OA -byte 10 ; Less than / equal
14 .else
15 -byte SYM1 ; Greater than
16 .endif
17
18 If 6: .if SYM3 * SYM2 I= SYM4 + SYM2
19 -byte SYM3 * SYM2 ; Unequal value
20 .else
21 00000002 08 -byte SYM4 + SYM4 ; Equal values
22 .endif
23
24 If£7: Lif SYM1 = SYM2
25 .byte SYM1
26 .elseif SYM2 + SYM3 = 5
27 00000003 05 .byte SYM2 + SYM3
28 .endif
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 121

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.int/.unint/.long/.ulong/.word/.uword Initialize 32-Bit Integers

Syntax

Description

Example 1

Example 2

Example 3

.int value,|, ..., value,]
.uint value,], ..., value, |
long value,], ..., value,]
.ulong value,|, ... , value,]
.word value,], ..., value,]
.uword value,[, ..., value,]

The .int, .unint, .long, .ulong, .word, and .uword directives place one or more values
into consecutive words in the current section. Each value is placed in a 32-bit word by
itself and is aligned on a word boundary. A value can be either:

» An expression that the assembler evaluates and treats as a 32-bit signed or unsigned
number

» A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 32-bit field,
which is padded with Os.

A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the linker can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.

If you use a label with these directives, it points to the first word that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. See the .struct/.endstruct/.tag topic.

This example uses the .int directive to initialize words.

1 00000000 .space 73h

2 00000000 .bss PAGE, 128

3 00000080 .bss SYMPTR, 4

4 00000074 E3A00056 INST: MOV RO, #056h

5 00000078 OOO0000A .int 10, SYMPTR, -1, 35 + "a", INST, "abc"

0000007c 00000080-
00000080 FFFFFFFF
00000084 00000084
00000088 00000074*
0000008c 00000061
00000090 00000062
00000094 00000063

This example shows how the .long directive initializes words. The symbol DAT1 points to
the first word that is reserved.

1 00000000 OO0O0OABCD DAT1: .long OABCDh, “A® + 100h, "g*, "o"
00000004 00000141
00000008 00000067
0000000c 0000006F
2 00000010 00000000* -long DAT1, OAABBCCDDh
00000014 AABBCCDD
3 00000018 DAT2:

In this example, the .word directive is used to initialize words. The symbol WORDX
points to the first word that is reserved.

1 00000000 00000C80 WORDX: .word 3200, 1 + "AB", -OAFh, *X*
00000004 00004242
00000008 FFFFFF51
0000000c 00000058

122 Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Jabel

Syntax

Description

Example

Create a Load-Time Address Label

.label symbol

The .label directive defines a special symbol that refers to the load-time address rather
than the run-time address within the current section. Most sections created by the
assembler have relocatable addresses. The assembler assembles each section as if it
started at 0, and the linker relocates it to the address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and run at a
different address. For example, you may want to load a block of performance-critical
code into slower memory to save space and then move the code to high-speed memory
to run it. Such a section is assigned two addresses at link time: a load address and a run
address. All labels defined in the section are relocated to refer to the run-time address
so that references to the section (such as branches) are correct when the code runs.
See Section 3.5 for more information about run-time relocation.

The .label directive creates a special label that refers to the load-time address. This
function is useful primarily to designate where the section was loaded for purposes of
the code that relocates the section.

This example shows the use of a load-time address label.

sect "._examp™
-label examp_load ; load address of section

start: ; run address of section
<code>

finish: ; run address of section end
-label examp_end ; load address of section end

See Section 8.5.6 for more information about assigning run-time and load-time
addresses in the linker.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 123
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

length/.width

Set Listing Page Size

Syntax Jength [page length]
.width [page width]
Description Two directives allow you to control the size of the output listing file.
The .length directive sets the page length of the output listing file. It affects the current
and following pages. You can reset the page length with another .length directive.
» Default length: 60 lines. If you do not use the .length directive or if you use the
.length directive without specifying the page length, the output listing length defaults
to 60 lines.
e Minimum length: 1 line
* Maximum length: 32 767 lines
The .width directive sets the page width of the output listing file. It affects the next line
assembled and the lines following. You can reset the page width with another .width
directive.
e Default width: 132 characters. If you do not use the .width directive or if you use the
.width directive without specifying a page width, the output listing width defaults to
132 characters.
e Minimum width: 80 characters
* Maximum width: 200 characters
The width refers to a full line in a listing file; the line counter value, SPC value, and
object code are counted as part of the width of a line. Comments and other portions of a
source statement that extend beyond the page width are truncated in the listing.
The assembler does not list the .width and .length directives.
Example The following example shows how to change the page length and width.
*x Page length = 65 lines *x
*x Page width = 85 characters *x
-length 65
.width 85
*x Page length = 55 lines *x
*x Page width = 100 characters *x
-length 55
.width 100
124 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Jist/.nolist Start/Stop Source Listing
Syntax list
.nolist

Description Two directives enable you to control the printing of the source listing:
The .list directive allows the printing of the source listing.
The .nolist directive suppresses the source listing output until a .list directive is
encountered. The .nolist directive can be used to reduce assembly time and the source
listing size. It can be used in macro definitions to suppress the listing of the macro
expansion.
The assembler does not print the .list or .nolist directives or the source statements that
appear after a .nolist directive. However, it continues to increment the line counter. You
can nest the .list/.nolist directives; each .nolist needs a matching .list to restore the
listing.
By default, the source listing is printed to the listing file; the assembler acts as if the .list
directive had been used. However, if you do not request a listing file when you invoke
the assembler by including the --asm_listing option on the command line (see
Section 4.3), the assembler ignores the .list directive.

Example This example shows how the .copy directive inserts source statements from another file.
The first time this directive is encountered, the assembler lists the copied source lines in
the listing file. The second time this directive is encountered, the assembler does not list
the copied source lines, because a .nolist directive was assembled. The .nolist, the
second .copy, and the .list directives do not appear in the listing file. Also, the line
counter is incremented, even when source statements are not listed.

Source file:
.copy *‘copy2.asm™
* Back in original file
NOP
-nolist
.copy "‘copy2.asm™
-list
* Back in original file
.string ""Done™
Listing file:
1 .copy "'copy2.asm”
A 1 * In copy2.asm (copy file)
A 2 00000000 00000020 .word 32, 1 + "A"
00000004 00000042
2 * Back in original file
3 00000008 E1A00000 NOP
7 * Back in original file
8 00000014 44 .string "Done"
00000015 6F
00000016 6E
00000017 65
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 125

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Jloop/.endloop/.break Assemble Code Block Repeatedly

Syntax

Description

Example

Joop [count]
.break [end-condition]

.endloop

Three directives allow you to repeatedly assemble a block of code:

The .loop directive begins a repeatable block of code. The optional count operand, if
used, must be a well-defined integer expression. The count indicates the number of
loops to be performed (the loop count). If count is omitted, it defaults to 1024. The loop
will be repeated count number of times, unless terminated early by a .break directive.

The optional .break directive terminates a .loop early. You may use .loop without using
.break. The .break directive terminates a .loop only if the end-condition expression is true
(evaluates to nonzero). If the optional end-condition operand is omitted, it defaults to
true. If end-condition is true, the assembler stops repeating the .loop body immediately;
any remaining statements after .break and before .endloop are not assembled. The
assembler resumes assembling with the statement after the .endloop directive. If end-
condition is false (evaluates to 0), the loop continues.

The .endloop directive marks the end of a repeatable block of code. When the loop
terminates, whether by a .break directive with a true end-condition or by performing the
loop count number of iterations, the assembler stops repeating the loop body and
resumes assembling with the statement after the .endloop directive.

This example illustrates how these directives can be used with the .eval directive. The
code in the first six lines expands to the code immediately following those six lines.

1 .eval 0,x

2 COEF .loop

3 -word x*100

4 .eval X+1, X

5 -break X =6

6 -endloop
1 00000000 00000000 -word 0*100
1 -eval 0+1, x
1 -break 1 =6
1 00000004 00000064 -word 1*100
1 -eval 1+1, X
1 -break 2 =06
1 00000008 000000C8 -word 2*100
1 -eval 2+1, X
1 -break 3=6
1 0000000c 0000012C -word 3*100
1 -eval 3+1, X
1 -break 4 =6
1 00000010 00000190 -word 4*100
1 -eval 4+1, X
1 -break 5=6
1 00000014 000001F4 -word 5*100
1 -eval 5+1, X
1 -break 6 =6

126 Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.macro/.endm

Define Macro

Syntax macname .macro [parameter,[, ... , parameter,]]
model statements or macro directives
.endm
Description The .macro and .endm directives are used to define macros.
You can define a macro anywhere in your program, but you must define the macro
before you can use it. Macros can be defined at the beginning of a source file, in an
.include/.copy file, or in a macro library.
macname names the macro. You must place the name in the source
statement's label field.
.macro identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.
[parameters] are optional substitution symbols that appear as operands for the
.macro directive.
model statements are instructions or assembler directives that are executed each
time the macro is called.
macro directives are used to control macro expansion.
.endm marks the end of the macro definition.
Macros are explained in further detail in Chapter 6.
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 127

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.mlib

Syntax

Description

Example

Define Macro Library

.mlib "filename"

The .mlib directive provides the assembler with the filename of a macro library. A macro
library is a collection of files that contain macro definitions. The macro definition files are
bound into a single file (called a library or archive) by the archiver.

Each file in a macro library contains one macro definition that corresponds to the name
of the file. The filename of a macro library member must be the same as the macro
name, and its extension must be .asm. The filename must follow host operating system
conventions; it can be enclosed in double quotes. You can specify a full pathname (for
example, c:\320tools\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in the following locations in the order given:

1. The directory that contains the current source file

2. Any directories hamed with the --include_path assembler option

3. Any directories specified by the TI_ARM_A_DIR environment variable
4. Any directories specified by the TI_ARM_C_DIR environment variable

See Section 4.5 for more information about the --include_path option.

A .mlib directive causes the assembler to open the library specified by filename and
create a table of the library's contents. The assembler stores names of individual library
members in the opcode table as library entries. This redefines any existing opcodes or
macros with the same name. If one of these macros is called, the assembler extracts the
library entry and loads it into the macro table. The assembler expands the library entry
as it does other macros, but it does not place the source code in the listing. Only macros
called from the library are extracted, and they are extracted only once.

See Chapter 6 for more information on macros and macro libraries.

The code creates a macro library that defines two macros, inc4.asm and dec4.asm. The
file inc4.asm contains the definition of inc4 and dec4.asm contains the definition of dec4.
inc4.asm dec4.asm

* Macro for incrementing * Macro for decrementing
inc4d _.macro regl, reg2, reg3, reg4 dec4 _.macro regl, reg2, reg3, reg4
Add regl, regl, #1 SUB regl, regl, #1
ADD reg2, reg2, #1 SUB reg2, reg2, #1
ADD reg3, reg3, #1 SUB reg3, reg3, #1
ADD reg4, reg4, #1 SUB reg4, reg4, #1
-endm -endm

Use the archiver to create a macro library:

armar -a mac inc4.asm dec4.asm
ar32 -a mac inc4.asm dec4.asm

Now you can use the .mlib directive to reference the macro library and define the
inc4.asm and dec4.asm macros:

1 -mlib "mac.lib"

2 ; Macro call

3 00000000 inc4 R7, R6, R5, R4
00000000 E2877001 ADD R7, R7, #1
00000004 E2866001 ADD R6, R6, #1
00000008 E2855001 ADD R5, R5, #1
0000000c E2844001 ADD R4, R4, #1

PR R

al

; Macro call

6 00000010 dec4 RO, R1, R2, R3
00000010 E2400001 SuUB RO, RO, #1
00000014 E2411001 SuUB R1, R1, #1
00000018 E2422001 SuB R2, R2, #1
0000001c E2433001 SuUB R3, R3, #1

S

128

Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS

www.ti.com Directives Reference

.mlist/.mnolist Start/Stop Macro Expansion Listing

Syntax .mlist

.mnolist

Description Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the listing file.
The .mnolist directive suppresses macro and .loop/.endloop block expansions in the
listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

See Chapter 6 for more information on macros and macro libraries. See the
loop/.break/.endloop topic for information on conditional blocks.

Example This example defines a macro named STR_3. The first time the macro is called, the
macro expansion is listed (by default). The second time the macro is called, the macro
expansion is not listed, because a .mnolist directive was assembled. The third time the
macro is called, the macro expansion is again listed because a .mlist directive was
assembled.

1 STR_3 .macro P1, P2, P3
2 .string ":pl:", ":ip2:', ":ip3:"
3 -endm
4
5 00000000 STR_3 ™"as", "I'", "am"™ ; Invoke STR_3 macro.
1 00000000 3A .string ":pl:", ":p2:", ":p3:"
00000001 70
00000002 31
00000003 3A
00000004 3A
00000005 70
00000006 32
00000007 3A
00000008 3A
00000009 70
0000000a 33
0000000b 3A
6 -mnolist ; Suppress expansion.
7 0000000c STR_3 ™as™, "I', "am™ ; Invoke STR_3 macro.
8 -mlist ; Show macro expansion.
9 00000018 STR_3 "as", "I, "am" ; Invoke STR_3 macro.
1 00000018 3A .string ":pl:", ":p2:", ":p3:"
00000019 70
0000001a 31
0000001b 3A
0000001c 3A
0000001d 70
0000001e 32
0000001F 3A
00000020 3A
00000021 70
00000022 33
00000023 3A
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 129

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.newblock Terminate Local Symbol Block
Syntax .newblock
Description The .newblock directive undefines any local labels currently defined. Local labels, by
nature, are temporary; the .newblock directive resets them and terminates their scope.
A local label is a label in the form $n, where n is a single decimal digit, or name?, where
name is a legal symbol name. Unlike other labels, local labels are intended to be used
locally, and cannot be used in expressions. They can be used only as operands in 8-bit
jump instructions. Local labels are not included in the symbol table.
After a local label has been defined and (perhaps) used, you should use the .newblock
directive to reset it. The .text, .data, and .sect directives also reset local labels. Local
labels that are defined within an include file are not valid outside of the include file.
See Section 4.8.3 for more information on the use of local labels.
Example This example shows how the local label $1 is declared, reset, and then declared again.
1 00000000 E3510000 LABEL1: CMP ri, #0
2 00000004 2A000001 BCS $1
3 00000008 E2900001 ADDS rO, rO, #1
4 0000000c 21A0FO00E MOVCS pc, Ir
5 00000010 E4952004 $1: LDR r2, [r5], #4
6 -newblock ; Undefine $1 to use again.
7 00000014 E0911002 ADDS ril, rl, r2
8 00000018 5A000000 BPL $1
9 0000001c E1F01001 MVNS rl, rl
10 00000020 E1AOFOOE $1: MOV pc, Ir
130 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.option Select Listing Options

Syntax .option option,[, option,,. . .]

Description The .option directive selects options for the assembler output listing. The options must
be separated by commas; each option selects a listing feature. These are valid options:
A turns on listing of all directives and data, and subsequent expansions, macros,

and blocks.

B limits the listing of .byte and .char directives to one line.

H limits the listing of .half and .short directives to one line.

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

N turns off listing (performs .nolist).

(0] turns on listing (performs .list).

R resets any B, H, M, T, and W (turns off the limits of B, H, M, T, and W).

T limits the listing of .string directives to one line.

w limits the listing of .word and .int directives to one line.

X produces a cross-reference listing of symbols. You can also obtain a cross-
reference listing by invoking the assembler with the --
asm_listing_cross_reference option (see Section 4.3).

Options are not case sensitive.

Example This example shows how to limit the listings of the .byte, .char, .int, long, .word, and
.string directives to one line each.

1
2 ** | imit the listing of _byte, .char, .int, .long, **
3 ** _word, and .string directives to 1 line each. **
4
5 .option B, W, T
6 00000000 BD .byte -"C", 0BOh, 5
7 00000003 BC .char -"D", 0COh, 6
8 00000008 0000000A .int 10, 35 + "a", "abc"
9 0000001c AABBCCDD .long OAABBCCDDh, 536 + "A"
10 00000024 000015AA .word 5546, 78h
11 0000002c 45 .string "Extended Registers"
12
13
14 *x Reset the listing options. *x
15
16 .option R
17 0000003e BD .byte -"C", 0BOh, 5
0000003f BO
00000040 05
18 00000041 BC .char -"D", 0COh, 6
00000042 CO
00000043 06
19 00000044 0000000A .int 10, 35 + "a", "abc"
00000048 00000084
0000004c 00000061
00000050 00000062
00000054 00000063
20 00000058 AABBCCDD .long OAABBCCDDh, 536 + A"
0000005¢c 00000259
21 00000060 O00015AA .word 5546, 78h
00000064 00000078
22 00000068 45 .string "Extended Registers"
00000069 78
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 131

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

0000006a 74
0000006b 65
0000006¢c 6E
0000006d 64
0000006e 65
0000006F 64
00000070 20
00000071 52
00000072 65
00000073 67
00000074 69
00000075 73
00000076 74
00000077 65
00000078 72
00000079 73

.page Eject Page in Listing
Syntax .page
Description The .page directive produces a page eject in the listing file. The .page directive is not
printed in the source listing, but the assembler increments the line counter when it
encounters the .page directive. Using the .page directive to divide the source listing into
logical divisions improves program readability.
Example This example shows how the .page directive causes the assembler to begin a new page
of the source listing.
Source file:
Source file (generic)
-title ""*xx* Page Directive Example ****'
-page
Listing file:
TMS470R1x Assembler Version X.xX Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
**** pPage Directive Example **** PAGE 1
2 ;
3 ;
4 ; -
TMS470R1x Assembler Version X.XX Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
**** page Directive Example **** PAGE 2
No Errors, No Warnings
132 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Copyright © 1995-2020, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.retain / .retainrefs

Syntax

Description

Conditionally Retain Sections In Object Module Output

.retain["section name"]

.retainrefs["section name"]

The .retain directive indicates that the current or specified section is not eligible for
removal via conditional linking. You can also override conditional linking for a given
section with the --retain linker option. You can disable conditional linking entirely with the
--unused_section_elimination=off linker option.

The .retainrefs directive indicates that any sections that refer to the current or specified
section are not eligible for removal via conditional linking. For example, applications may
use an .intvecs section to set up interrupt vectors. The .intvecs section is eligible for
removal during conditional linking by default. You can force the .intvecs section and any
sections that reference it to be retained by applying the .retain and .retainrefs directives
to the .intvecs section.

The section name identifies the section. If the directive is used without a section name, it
applies to the current initialized section. If the directive is applied to an uninitialized
section, the section name is required. The section name must be enclosed in double
guotes. A section name can contain a subsection name in the form section
name:subsection name.

The linker assumes that all sections by default are eligible for removal via conditional
linking. (However, the linker does automatically retain the .reset section.) The .retain
directive is useful for overriding this default conditional linking behavior for sections that
you want to keep included in the link, even if the section is not referenced by any other
section in the link. For example, you could apply a .retain directive to an interrupt
function that you have written in assembly language, but which is not referenced from
any normal entry point in the application.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 133
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.sect

Syntax

Description

Example

Assemble Into Named Section

.sect " section name "
.sect " section name " [{RO|RW}] [,{ALLOC|NOALLOC}]

The .sect directive defines a named section that can be used like the default .text and
.data sections. The .sect directive sets section name to be the current section; the lines
that follow are assembled into the section name section.

The section name identifies the section. The section name must be enclosed in double
guotes. A section name can contain a subsection name in the form section name :
subsection name. See Chapter 2 for more information about sections.

The sections can be marked read-only (RO) or read-write (RW). Also, the sections can
be marked for allocation (ALLOC) or no allocation (NOALLOC). These attributes can be
specified in any order, but only one attribute from each set can be selected. RO conflicts
with RW, and ALLOC conflicts with NOALLOC. If conflicting attributes are specified the
assembler generates an error, for example:

"t.asm", ERROR! at line 1:[EO000] Attribute RO cannot be combined with attr RW
.sect "illegal_sect",RO,RW

This example defines two special-purpose sections, Sym_Defs and Vars, and assembles
code into them.

1

2 *x Begin assembling into .text section. *x
3

4 00000000 -text

5 00000000 E3A00078 MoV RO, #78h

6 00000004 E2801078 ADD R1, RO, #78h

7

8 *x Begin assembling into Sym_Defs section. *x
9

10 00000000 .sect '"Sym_Defs"

11 00000000 3D4CcccD -float 0.05 ; Assembled into Sym_Defs

12 00000004 OOOOOOAA X: -word OAAh ; Assembled into Sym_Defs

13 00000008 E2833028 ADD R3, R3, #28h ; Assembled into Sym Defs

14

15 *x Begin assembling into Vars section. *x

16

17 00000000 .sect "Vars"

18 00000010 WORD_LEN .set 16

19 00000020 DWORD_LEN .set WORD_LEN * 2

20 00000008 BYTE_LEN .set WORD_LEN / 2

21

22 *x Resume assembling into .text section. *x

23

24 00000008 -text

25 00000008 E2802042 ADD R2, RO, #42h ; Assembled into .text

26 0000000c 03 -byte 3, 4 ; Assembled into .text
0000000d 04

27

28 *x Resume assembling into Vars section. *x

29

30 00000000 .sect "Vars"

31 00000000 000DO0OOO
32 00000000 O00ODOAOO
33 00000004 00000008

_field 13, WORD_LEN
.field O0Ah, BYTE_LEN
.field 10q, DWORD_LEN

134 Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.set/.equ Define Assembly-Time Constant
Syntax symbol .set value
symbol .equ value
Description The .set and .equ directives equate a constant value to a .set/.equ symbol. The symbol
can then be used in place of a value in assembly source. This allows you to equate
meaningful names with constants and other values. The .set and .equ directives are
identical and can be used interchangeably.
» The symbol is a label that must appear in the label field.
e The value must be a well-defined expression, that is, all symbols in the expression
must be previously defined in the current source module.
Undefined external symbols and symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which it is
assigned is also relocatable.
The value of the expression appears in the object field of the listing. This value is not
part of the actual object code and is not written to the output file.
Symbols defined with .set or .equ can be made externally visible with the .def or .global
directive (see the .global/.def/.ref topic). In this way, you can define global absolute
constants.
Example This example shows how symbols can be assigned with .set and .equ.
1
2 *x Equate symbol AUX_R1 to register AR1l and use **
3 *x it instead of the register. *x
4
5 00000001 AUX_R1 .set R1
6 00000000 E3A01056 MOV AUX_R1, #56h
7
8
9 *x Set symbol index to an integer expression. *x
10 ** and use it as an immediate operand. **
11
12 00000035 INDEX .equ 100/2 +3
13 00000004 E2810035 ADD RO, AUX_R1, #INDEX
14
15
16 ** Set symbol SYMTAB to a relocatable expression. **
17 *x and use it as a relocatable operand. *x
18
19 00000008 OOOOOOOA LABEL .word 10
20 00000009" SYMTAB .set LABEL + 1
21
22
23 *x Set symbol NSYMS equal to the symbol INDEX **
24 *x INDEX and use it as you would INDEX. *x
25
26 00000035 NSYMS .set INDEX
27 0000000c 00000035 .word NSYMS
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 135

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.space/.bes

Syntax

Description

Example

Reserve Space

[label] .space size in bytes
[label] .bes size in bytes

The .space and .bes directives reserve the number of bytes given by size in bytes in the
current section and fill them with Os. The section program counter is incremented to
point to the word following the reserved space.

When you use a label with the .space directive, it points to the first byte reserved. When
you use a label with the .bes directive, it points to the last byte reserved.

This example shows how memory is reserved with the .space and .bes directives.

1
2 *x Begin assembling into the .text section. *x
3
4 00000000 .text
5
6
7 *x Reserve OF0 bytes in the .text section. *x
8
9 00000000 .space OFOh
10 000000f0 00000100 .word 100h, 200h
000000f4 00000200
11
12 *x Begin assembling into the .data section. *x
13
14 00000000 .data
15 00000000 49 .string "In .data"
00000001 6E
00000002 20
00000003 2E
00000004 64
00000005 61
00000006 74
00000007 61
16
17 ** Reserve 100 bytes in the .data section; RES_1 **
18 *x points to the first byte that contains *x
19 ** reserved bytes. **
20
21 00000008 RES_1: .space 100
22 0000006c 0O0O0O000OF -.word 15
23 00000070 00000008 .word RES_1
24
25
26 ** Reserve 20 bits in the .data section; RES 2 **
27 *x points to the last byte that contains *x
28 ** reserved bytes. **
29
30 00000087 RES_2: _.bes 20
31 00000088 00000036 .word 36h
32 0000008c 00000087 .word RES_2

136 Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.sslist/.ssnolist

Control Listing of Substitution Symbols

Syntax .sslist
.ssnholist
Description Two directives allow you to control substitution symbol expansion in the listing file:
The .sslist directive allows substitution symbol expansion in the listing file. The
expanded line appears below the actual source line.
The .ssnolist directive suppresses substitution symbol expansion in the listing file.
By default, all substitution symbol expansion in the listing file is suppressed; the
assembler acts as if the .ssnolist directive had been used.
Lines with the pound (#) character denote expanded substitution symbols.
Example This example shows code that, by default, suppresses the listing of substitution symbol
expansion, and it shows the .sslist directive assembled, instructing the assembler to list
substitution symbol code expansion.
1 ADDL .macro dest, src
2 -global reset_ctr
3 ADDS dest, dest, src
4 BLCS reset_ctr
5 -endm
6
7 00000000 ADDL R4, R5
1 -global reset_ctr
1 00000000 E0944005 ADDS R4, R4, R5
1 00000004 2BFFFFFD! BLCS reset_ctr
8 00000008 E5954000 LDR R4, [R5]
9 0000000c ADDL RO, R4
1 -global reset_ctr
1 0000000c E0900004 ADDS RO, RO, R4
1 00000010 2BFFFFFA! BLCS reset_ctr
10
11 .sslist
12
13 00000014 E5B53004 LDR R3, [R5, #4]!
14 00000018 E5954000 LDR R4, [R5]
15 0000001c ADDL R4, R3
1 -global reset_ctr
1 0000001c E0944003 ADDS dest, dest, src
ADDS R4, R4, R3
1 00000020 2BFFFFF6! BLCS reset_ctr
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 137

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.Statel6

Syntax

Description

Example

Assemble 16-Bit Instructions (Non-UAL Syntax)

.Statel6

By default, the assembler begins assembling all instructions in a file as 32-hit
instructions. Use the .statel6 directive to direct the assembler to begin assembling all
instructions at that point as 16-bit instructions. This directive and the .state32 directive
allow you to switch between the two assembly modes for non-UAL syntax. If you want to
assemble an entire file as 16-bit instructions for V6 and earlier architectures, use the —-mt
assembler option, which instructs the assembler to begin the assembly process,
assembling all instructions as 16-bit instructions.

The .state16 directive performs an implicit halfword alignment before any instructions are
written to the section to ensure that all 16-bit instructions are halfword-aligned. The
.State16 directive also resets any local labels defined.

In this example, the assembler assembles 16-bit instructions, begins assembling 32-bit
instructions, and returns to assembling 16-bit instructions.

1 -global globl, glob2

2

3 *x Begin assembling 16-bit instructions. *x
4

5 00000000 .statel6

6

7 00000000 4808 LDR ro, globl_a

8 00000002 4909 LDR rl, glob2_a

9 00000004 6800 LDR ro, [rO]

10 00000006 6809 LDR ri, [ri]

11 00000008 0080 LSL ro, r0, #2

12 0000000a 3156 ADD ri, #56h

13 0000000c 4778 BX pc

14 0000000e 46CO NOP

15

16 ** Switch to 32-bit instructions to use the **
17 *x 32-bit state long multiply instruction. *x
18

19 00000010 .state32

20

21 00000010 E0845190 UMULL r5, r4, rO0, r1

22 00000014 E28FE001 ADD Ir, pc, #1

23 00000018 E12FFF1E BX Ir

24

25 *x Continue assembling 16-bit instructions. *x
26

27 0000001c .statel6

28

29 0000001c 1A2D SuB r5, r5, ro0
30 0000001e D200 BCS $1

31 00000020 3C01 SUB rd, #1
32 00000022 $1

33 00000024 00000000! globl_a .word globl
34 00000028 00000000! glob2_a .word glob2

138 Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.state32/.arm

Assemble 32-Bit Instructions

Syntax .state32
.arm
Description By default, the assembler begins assembling all instructions in a file as 32-hit
instructions. When you use the -mt assembler option or the .state16 directive to
assemble 16-bit instructions, you can use the .state32 or .arm directive to tell the
assembler to begin assembling all instructions after the .state32/.arm directive as 32-bit
instructions.
When you are writing assembly code, the .arg directive is used to specify ARM UAL
syntax. The .state32 and .arm directives are equivalent since UAL syntax is backward
compatible.
These directives perform an implicit word alignment before any instructions are written to
the section to ensure that all 32-bit instructions are word-aligned. These directives also
reset any local labels defined.
Example In this example, the assembler assembles 32-bit instructions, begins assembling 16-bit
instructions, and returns to assembling 32-bit instructions.
1 -global globs, filter
2
3 *x Begin assembling 32-bit instructions. *x
4
5 00000000 .state32
6 00000000 E28F4001 ADD r4, pc, #1
7 00000004 E12FFF14 BX r4
8
9 ** Switch to 16-bit instructions to use **
10 *x less code space. *x
11
12 00000008 .statel6
13 00000008 2200 MOV r2, #0
14 0000000a 2300 MOV r3, #0
15 0000000c 4COB LDR r4, globs_a
16 0000000e 2500 MOV r5, #0
17 00000010 2600 MOV ré, #0
18 00000012 2700 MOV r7, #0
19 00000014 4690 MOV rg, r2
20 00000016 4691 MOV r9, r2
21 00000018 4692 MOV rio, r2
22 0000001a 4693 MOV ril, r2
23 0000001c 4694 MOV ri2, r2
24 0000001le 4695 MOV ri3, r2
25 00000020 4778 BX pc
26 00000022 46C0 NOP
27
28 *x Continue assembling 32-bit instructions. *x
29
30 00000024 .state32
31 00000024 E4940004 LDR ro, [r4], #4
32 00000028 E5941000 LDR ri, [r4]
33 0000002c EBFFFFF3! BL filter
34 00000030 E1500001 CMP ro, ri
35 00000034 30804005 ADDCC r4, r0, r5
36 00000038 20464001 SUBCS r4, r6, rl
37 0000003c 000000001 globs_a .word globs
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 139

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.string/.cstring

Syntax

Description

Examp

le

Initialize Text

.string {expr, | "string,"} [, ... , {expr, | "string,"}]
.cstring {expr, | "string,"} [, ... , {expr, | "string,"}]

The .string and .cstring directives place 8-bit characters from a character string into the
current section. The expr or string can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number.

» A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The .cstring directive adds a NUL character needed by C; the .string directive does not
add a NUL character. In addition, .cstring interprets C escapes (\\ \a \b \f \n \r \t \v
\<octal>).

The assembler truncates any values that are greater than eight bits. Operands must fit
on a single source statement line.

If you use a label, it points to the location of the first byte that is initialized.

When you use .string and .cstring in a .struct/.endstruct sequence, the directive only
defines a member's size; it does not initialize memory. For more information, see the
.struct/.endstruct/.tag topic.

In this example, 8-bit values are placed into consecutive bytes in the current section.

1 00000000 41 Str_Ptr: .string "ABCD"
00000001 42
00000002 43
00000003 44
2 00000004 41 .string 41h, 42h, 43h, 44h
00000005 42
00000006 43
00000007 44
3 00000008 41 .string "Austin', "Houston", "Dallas"
00000009 75
0000000a 73
0000000b 74
0000000c 69
0000000d 6E
0000000e 48
0000000F 6F
00000010 75
00000011 73
00000012 74
00000013 6F
00000014 6E
00000015 44
00000016 61
00000017 6C
00000018 6C
00000019 61
0000001a 73
4 0000001b 30 .string 36 + 12

140

Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.struct/.endstruct/.tag Declare Structure Type

Syntax

Description

[stag] .struct [expr]

[mem,] element [expr,]
[mem,] element [expr,]

[mem,] .tag stag [expr.]

[memy,] element [expry]
[size] .endstruct
label tag stag

The .struct directive assigns symbolic offsets to the elements of a data structure
definition. This allows you to group similar data elements together and let the assembler
calculate the element offset. This is similar to a C structure or a Pascal record. The
.struct directive does not allocate memory; it merely creates a symbolic template that can
be used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

e The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. The stag is optional for .struct, but is required for .tag.

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

e The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

» The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, .field, and .tag. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. The .tag
directive is a special case because stag must be used (as in the definition of stag).

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

» The size is an optional label for the total size of the structure.

Directives that Can Appear in a .struct/.endstruct Sequence

NOTE: The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, conditional assembly directives, and the .align
directive, which aligns the member offsets on word boundaries. Empty
structures are illegal.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 141
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

The following examples show various uses of the .struct, .tag, and .endstruct directives.

Example 1 1 REAL_REC .struct ; stag
2 00000000 NOM .int ; memberl = 0O
3 00000004 DEN -int ; member2 = 1
4 00000008 REAL_LEN -endstruct ; real_len = 4
5
6 00000000 E59F0004 LDR RO, REAL_A
7 00000004 E5904004 LDR R4, [RO, #REAL_REC.DEN]
8 00000008 E0811004 ADD R1, R1, R4
9 00000000 -bss REAL, REAL_LEN ; allocate mem rec
10 0000000c 00000000- REAL_A -word REAL
11
Example 2 12 CPLX_REC .struct
13 00000000 REALI .tag REAL_REC ; stag
14 00000008 IMAGI .tag REAL_REC ; memberl = 0
15 00000010 CPLX_LEN -endstruct ; cpix_len = 8
16
17 COMPLEX .tag CPLX_REC ; assign structure
18 ; attribute
19 00000010 COMPLEX .space CPLX_LEN ; allocate space
20 00000020 E51F4018 LDR R4, COMPLEX.REALI ; access structure
21 00000024 E0811004 ADD R1, R1, R4
Example 3 1 .struct ; no stag puts mems into
2 ; global symbol table
3 00000000 X -int ; create 3 dim templates
4 00000004 Y -int
5 00000008 Z .int
6 0000000C .endstruct
Example 4 1 BIT_REC .struct ; stag
2 00000000 STREAM .string 64
3 00000040 BIT7 -field 7 ; bit7 = 64
4 00000040 BIT8 .field 9 ; bit9 = 64
5 00000042 BIT10 .field 10 ; bitl0o = 64
6 00000044 X_INT -int ; x_int = 68
7 00000048 BIT_LEN -endstruct length = 72
142 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Copyright © 1995-2020, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.symdepend

Syntax

Description

Create an Artificial Reference from a Section to a Symbol

.symdepend dst symbol name[, src symbol name]

The .symdepend directive creates an artificial reference from the section defining src
symbol name to the symbol dst symbol name. This prevents the linker from removing the
section containing dst symbol name if the section defining src symbol name is included
in the output module. If src symbol name is not specified, a reference from the current
section is created.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss or .usect directive. If a global symbol is
defined more than once, the linker issues a multiple-definition error. (The assembler can
provide a similar multiple-definition error for local symbols.)

The .symdepend directive creates a symbol table entry only if the module actually uses
the symbol. The .weak directive, in contrast, always creates a symbol table entry for a
symbol, whether the module uses the symbol or not (see .weak topic).

If the symbol is defined in the current module, use the .symdepend directive to declare
that the symbol and its definition can be used externally by other modules. These types
of references are resolved at link time.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 143
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.tab

Syntax

Description

Example

Define Tab Size

.tab size

The .tab directive defines the tab size. Tabs encountered in the source input are
translated to size character spaces in the listing. The default tab size is eight spaces.

In this example, each of the lines of code following a .tab statement consists of a single
tab character followed by an NOP instruction.

Source file:

; default tab size

NOP
NOP
NOP

-tab 4

NOP
NOP
NOP

.tab 16

NOP
NOP
NOP

Listing file:

[uy
COWOO~NUPAWNEPE

12
13
14

00000000
00000004
00000008

0000000c
00000010
00000014

00000018
0000001c
00000020

E1A00000
E1A00000
E1A00000

E1A00000
E1A00000
E1A00000

E1A00000
E1A00000
E1A00000

; default tab size

NOP
NOP
NOP

NOP
NOP
NOP

NOP
NOP
NOP

144 Assembler Directives

SPNU118Y —September 1995—Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

text Assemble Into the .text Section
Syntax text
Description The .text sets .text as the current section. Lines that follow this directive will be
assembled into the .text section, which usually contains executable code. The section
program counter is set to 0 if nothing has yet been assembled into the .text section. If
code has already been assembled into the .text section, the section program counter is
restored to its previous value in the section.
The .text section is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you use a .data or .sect directive
to specify a different section.
For more information about sections, see Chapter 2.
Example This example assembles code into the .text and .data sections.
1
2 ** Begin assembling into .data section. **
3
4 00000000 .data
5 00000000 OA .byte 0Ah, 0Bh
00000001 0B
6
7 ** Begin assembling into .text section. **
8
9 00000000 .text
10 00000000 41 START: .string "A","B","C"
00000001 42
00000002 43
11 00000003 58 END: .string "X", Uy, vz
00000004 59
00000005 5A
12 00000008 E3A01003 MOV R1, #END-START
13 0000000c E1A01181 MOV R1, R1, LSL #3
14
15
16 ** Resume assembling into .data section.**
17
18 00000002 .data
19 00000002 OC .byte 0Ch, ODh
00000003 0D
20
21 ** Resume assembling into .text section.**
22
23 00000010 .text
24 00000010 51 .string "QuUIT"
00000011 55
00000012 49
00000013 54
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 145

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.thumb

Syntax

Description

Example

Assemble Thumb or Thumb-2 Instructions (UAL Syntax)

.thumb

You can use the .thumb directive to tell the assembler to begin assembling all
instructions after the .thumb directive using Thumb (32-bit) or Thumb-2 (16-bit or 32-bit)
UAL syntax. The assembler determines whether instructions are 16- or 32-bit
instructions based on the syntax structure of the code.

The .thumb directive performs an implicit halfword alignment before any instructions are
written to the section to ensure that all Thumb/Thumb-2 instructions are halfword
aligned. These directives also reset any local labels defined.

In this example, the assembler assembles 16-bit instructions, begins assembling 32-bit
instructions, and returns to assembling 16-bit instructions.

1 -global globl, glob2
2
3 ** Begin assembling Thumb instructions. **
4
5 00000000 -thumb
6
7 00000000 4808 LDR ro, globl_a
8 00000002 4909 LDR rl, glob2_a
9 00000004 6800 LDR ro, [rO]
10 00000006 6809 LDR ri, [ri]
11 00000008 0080 LSLS ro, r0, #2
12 0000000a 3156 ADDS rl, #56h
13 0000000c 4778 BX pc
14 0000000e 46CO NOP
15
16 *x Switch to ARM mode to use the long *x
17 ** multiply instruction. **
18
19 00000010 .arm
20
21 00000010 E0845190 UMULL r5, r4, r0, r1
22 00000014 E28FE001 ADD Ir, pc, #1
23 00000018 E12FFF1E BX Ir
24
25 *x Continue assembling Thumb iInstructions. *x
26
27 0000001c -thumb
28
29 0000001c 1A2D SUBS r5, r5, roO
30 0000001e D201 BCS $1
31 00000020 3C01 SUBS rd, #1
32 00000024 $1

33 00000024 00000000! globl_a .word globl
34 00000028 00000000! glob2_a .word glob2

146 Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

title Define Page Title
Syntax title "string"
Description The .title directive supplies a title that is printed in the heading on each listing page. The
source statement itself is not printed, but the line counter is incremented.
The string is a quote-enclosed title of up to 64 characters. If you supply more than 64
characters, the assembler truncates the string and issues a warning:
*** WARNING! line x: WO0O1l: String is too long - will be truncated
The assembler prints the title on the page that follows the directive and on subsequent
pages until another .title directive is processed. If you want a title on the first page, the
first source statement must contain a .title directive.
Example In this example, one title is printed on the first page and a different title is printed on
succeeding pages.
Source file:
-title "**** Fast Fourier Transforms ****"
-title "**** Floating-Point Routines ****"
-page
Listing file:
TMS470R1x Assembler Version X.xX Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
**** Fast Fourier Transforms **** PAGE 1
2 ;
3 ;
4 ; .
TMS470R1x Assembler Version X.XX Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
**** Eloating-Point Routines **** PAGE 2
No Errors, No Warnings
SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 147

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.unasg/.undefine

Syntax

Description

Turn Off Substitution Symbol

.unasg symbol
.undefine symbol

The .unasg and .undefine directives remove the definition of a substitution symbol
created using .asg or .define. The named symbol will removed from the substitution
symbol table from the point of the .undefine or .unasg to the end of the assembly file.
See Section 4.8.8 for more information on substitution symbols.

These directives can be used to remove from the assembly environment any C/C++
macros that may cause a problem. See Chapter 13 for more information about using
C/C++ headers in assembly source.

148

Assembler Directives

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.union/.endunion/.tag Declare Union Type

Syntax

Description

[utag] .union [expr]

[mem,] element [expr,]
[mem,] element [expr,]

[mem,] .tagutag [expr,]

[memy] element [expry]
[size] .endunion
label tag utag

The .union directive assigns symbolic offsets to the elements of alternate data structure
definitions to be allocated in the same memory space. This enables you to define
several alternate structures and then let the assembler calculate the element offset. This
is similar to a C union. The .union directive does not allocate any memory; it merely
creates a symbolic template that can be used repeatedly.

A .struct definition can contain a .union definition, and .structs and .unions can be
nested.

The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures or unions that
contain other structures or unions. The .tag directive does not allocate memory. The
structure or union tag of a .tag directive must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

* The utag is the union's tag. is the union's tag. Its value is associated with the
beginning of the union. If no utag is present, the assembler puts the union members
in the global symbol table with the value of their absolute offset from the top of the
union. In this case, each member must have a unique name.

« The expr is an optional expression indicating the beginning offset of the union.
Unions default to start at 0. This parameter can only be used with a top-level union. It
cannot be used when defining a nested union.

* The mem,, is an optional label for a member of the union. This label is absolute and
equates to the present offset from the beginning of the union. A label for a union
member cannot be declared global.

e The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. An element can also be a complete
declaration of a nested structure or union, or a structure or union declared by its tag.
Following a .union directive, these directives describe the element's size. They do not
allocate memory.

» The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

* The size is an optional label for the total size of the union.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 149
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

Directives that Can Appear in a .union/.endunion Sequence

NOTE: The only directives that can appear in a .union/.endunion sequence are
element descriptors, structure and union tags, and conditional assembly
directives. Empty structures are illegal.

These examples show unions with and without tags.

Example 1 1 .global employid

2 xample -union ; utag

3 0000 1ival -word ; memberl = int

4 0000 fval -Ffloat ; member2 = float

5 0000 sval .string ; member3 = string

6 0002 real_len -endunion ; real_len = 2

7

8 000000 .bss employid, real_len ;allocate memory

9

10 employid .tag xample ; name an instance

11 000000 0000- ADD employid.fval, A ; access union element
Example 2 1

2 ; utag

3 0000 x -long ; memberl = long

4 0000 vy -Float ; member2 = float

5 0000 z -word ; member3 = word

6 0002 size_u -endunion ; real_len = 2

7
150 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.usect

Syntax

Description

Example

Reserve Uninitialized Space

symbol .usect "section name", size in bytes|, alignment[, bank offset]]

The .usect directive reserves space for variables in an uninitialized, named section. This
directive is similar to the .bss directive (see .bss topic); both simply reserve space for
data and that space has no contents. However, .usect defines additional sections that
can be placed anywhere in memory, independently of the .bss section.

» The symbol points to the first location reserved by this invocation of the .usect
directive. The symbol corresponds to the name of the variable for which you are
reserving space.

e The section name must be enclosed in double quotes. This parameter names the
uninitialized section. A section name can contain a subsection name in the form
section name : subsection name.

* The size in bytes is an expression that defines the number of bytes that are reserved
in section name.

e The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary can be set to any power of
2.

» The bank offset is an optional parameter that ensures that the space allocated to the
symbol occurs on a specific memory bank boundary. The bank offset value measures
the number of bytes to offset from the alignment specified before assigning the
symbol to that location.

Initialized sections directives (.text, .data, and .sect) tell the assembler to pause
assembling into the current section and begin assembling into another section. A .usect
or .bss directive encountered in the current section is simply assembled, and assembly
continues in the current section.

Variables that can be located contiguously in memory can be defined in the same
specified section; to do so, repeat the .usect directive with the same section name and
the subsequent symbol (variable name).

For more information about sections, see Chapter 2.

This example uses the .usect directive to define two uninitialized, named sections, varl
and var2. The symbol ptr points to the first byte reserved in the varl section. The symbol
array points to the first byte in a block of 100 bytes reserved in varl, and dflag points to
the first byte in a block of 50 bytes in varl. The symbol vec points to the first byte
reserved in the var2 section.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 151
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

Figure 5-8 shows how this example reserves space in two uninitialized sections, varl

and var2.
1
2 *x Assemble into the .text section. *x
3
4 00000000 .text
5 00000000 E3A01003 MOV R1, #03h
6
7
8 *x Reserve 1 byte in the varl section. *x
9
10 00000000 ptr .usect "varl", 1
11
12
13 *x Reserve 100 bytes in the varl section. *x
14
15 00000001 array .usect “varl", 100
16
17 00000004 E281001F ADD RO, R1, #037 ; Still iIn _text
18
19
20 *x Reserve 50 bytes in the varl section. *x
21
22 00000065 dflag .usect "varl", 50
23
24 00000008 E2812064 ADD R2, R1, #dflag - array ; Still in _text
25
26
27 ** Reserve 100 bytes in the var2 section. **
28
29 00000000 vec .usect "var2'", 100
30
31 0000000c E0824000 ADD R4, R2, RO ; Still in _text
32
33 ** Declare a .usect symbol to be external. **
34
35 -global array
Figure 5-8. The .usect Directive
Section var1 Section var2
Pr =" 2 pytes ptr —»
array —»
100 bytes
100 bytes
100 bytes reserved
in var2
dflag —»
50 bytes
152 bytes reserved
in var1
152 Assembler Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

var

Syntax

Description

.weak

Syntax

Description

Use Substitution Symbols as Local Variables

var sym, [, sym,, ..., sym,]

The .var directive allows you to use substitution symbols as local variables within a
macro. With this directive, you can define up to 32 local macro substitution symbols
(including parameters) per macro.

The .var directive creates temporary substitution symbols with the initial value of the null
string. These symbols are not passed in as parameters, and they are lost after
expansion.

See Section 4.8.8 for more information on substitution symbols .See Chapter 6 for
information on macros.

Identify a Symbol to be Treated as a Weak Symbol

.weak symbol name

The .weak directive identifies a symbol that is used in the current module but is defined
in another module. The linker resolves this symbol's definition at link time. Instead of
including a weak symbol in the output file's symbol table by default (as it would for a
global symbol), the linker only includes a weak symbol in the output of a "final" link if the
symbol is required to resolve an otherwise unresolved reference. See Section 2.6.3 for
details about how weak symbols are handled by the linker.

The .weak directive is equivalent to the .ref directive, except that the reference has weak
linkage.

The .weak directive always creates a symbol table entry for a symbol, whether the
module uses the symbol or not. The .symdepend directive, in contrast, creates an
symbol table entry only if the module actually uses the symbol (see .symdepend topic).

If a symbol is not defined in the current module (which includes macro, copy, and include
files), use the .weak directive to tell the assembler that the symbol is defined in an
external module. This prevents the assembler from issuing an unresolved reference
error. At link time, the linker looks for the symbol's definition in other modules.

For example, use the .weak and .set directives in combination as shown in the following
example, which defines a weak absolute symbol "ext_addr_sym":

-weak ext_addr_sym
ext_addr_sym .set 0x12345678

If you assemble such assembly source and include the resulting object file in the link, the
"ext_addr_sym" in this example is available as a weak absolute symbol in a final link. It
is a candidate for removal if the symbol is not referenced elsewhere in the application.

SPNU118Y —September 1995—-Revised February 2020 Assembler Directives 153
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

1 Chapter 6
I -{IE)S(’?IEUMENTS SPNU118Y —September 1995—Revised February 2020

Macro Language Description

The ARM device assembler supports a macro language that enables you to create your own instructions.
This is especially useful when a program executes a particular task several times. The macro language
lets you:

» Define your own macros and redefine existing macros

» Simplify long or complicated assembly code

» Access macro libraries created with the archiver

» Define conditional and repeatable blocks within a macro
* Manipulate strings within a macro

» Control expansion listing

Topic Page
LG A U F- 7 T 1 =T 0 F P 155
(S22 T o 1 Lo Y= Vo o 1 PP 155
6.3 Macro Parameters/Substitution SymbolSo 157
6.4 MACIO LIDraries ..uuie i e e 163
6.5 Using Conditional ASSEMDBIY iN MACIOS ..uuiuiiititiiiieii ettt e e eae e eaeneens 164
6.6 USING LADEIS IN IMBCIOS ..ueueuinieieiiieeee et ee e e et e e e e e e e e e e e n e e e e e enennnnenen 166
6.7 Producing MeSSages iN MaCIOS ... cucueueuieieieeeenenia e eeeeaaasa e e eenenra e eenenenannes 167
6.8 Using Directives to Format the Output LiSTiNG ...c.eueeieieiiiiiiiiiiei e e eeens 168
6.9 Using Recursive and NeSted MaCIOScucueiieieiniieitieieieeaeae e e aaseeaeaeaaanreneaens 169
6.10 MaCro Dir€CtiVES SUMMAIY .eueutuuiuininieeitiseneete et tseaee et s st eaea e e aaenansaeneaeaeanens 170

154 Macro Language Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS

INSTRUMENTS

www.ti.com Using Macros

6.1

6.2

Using Macros

Programs often contain routines that are executed several times. Instead of repeating the source
statements for a routine, you can define the routine as a macro, then call the macro in the places where
you would normally repeat the routine. This simplifies and shortens your source program.

If you want to call a macro several times but with different data each time, you can assign parameters
within a macro. This enables you to pass different information to the macro each time you call it. The
macro language supports a special symbol called a substitution symbol, which is used for macro
parameters. See Section 6.3 for more information.

Using a macro is a 3-step process.

Step 1. Define the macro. You must define macros before you can use them in your program. There
are two methods for defining macros:

a. Macros can be defined at the beginning of a source file or in a copy/include file. See
Section 6.2, Defining Macros, for more information.

b. Macros can also be defined in a macro library. A macro library is a collection of files in
archive format created by the archiver. Each member of the archive file (macro library)
may contain one macro definition corresponding to the member name. You can access a
macro library by using the .mlib directive. For more information, see Section 6.4.

Step 2. Call the macro. After you have defined a macro, call it by using the macro name as a
mnemonic in the source program. This is referred to as a macro call.

Step 3. Expand the macro. The assembler expands your macros when the source program calls
them. During expansion, the assembler passes arguments by variable to the macro
parameters, replaces the macro call statement with the macro definition, then assembles the
source code. By default, the macro expansions are printed in the listing file. You can turn off
expansion listing by using the .mnolist directive. For more information, see Section 6.8.

When the assembler encounters a macro definition, it places the macro name in the opcode table. This
redefines any previously defined macro, library entry, directive, or instruction mnemonic that has the same
name as the macro. This allows you to expand the functions of directives and instructions, as well as to
add new instructions.

Defining Macros

You can define a macro anywhere in your program, but you must define the macro before you can use it.
Macros can be defined at the beginning of a source file or in a .copy/.include file (see Copy Source File);
they can also be defined in a macro library. For more information about macro libraries, see Section 6.4.

Macro definitions can be nested, and they can call other macros, but all elements of the macro must be
defined in the same file. Nested macros are discussed in Section 6.9.

A macro definition is a series of source statements in the following format:

macname .macro [parameter,][, ... , parameter,]
model statements or macro directives
[.mexit]
.endm

macname names the macro. You must place the name in the source statement's label field.
Only the first 128 characters of a macro name are significant. The assembler
places the macro name in the internal opcode table, replacing any instruction or
previous macro definition with the same name.

.macro is the directive that identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

parameter ,, are optional substitution symbols that appear as operands for the .macro directive.

parameter Parameters are discussed in Section 6.3.

SPNU118Y —September 1995—Revised February 2020 Macro Language Description 155
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Defining Macros www.ti.com

model statements are instructions or assembler directives that are executed each time the macro is

called.
macro directives are used to control macro expansion.
.mexit is a directive that functions as a goto .endm. The .mexit directive is useful when

error testing confirms that macro expansion fails and completing the rest of the
macro is unnecessary.

.endm is the directive that terminates the macro definition.

If you want to include comments with your macro definition but do not want those comments to appear in
the macro expansion, use an exclamation point to precede your comments. If you do want your comments
to appear in the macro expansion, use an asterisk or semicolon. See Section 6.7 for more information
about macro comments.

Example 6-1 shows the definition, call, and expansion of a macro.
Example 6-1. Macro Definition, Call, and Expansion

Macro definition: The following code defines a macro, add3, with four parameters:

1 *

2

3 * add3

4 *

5 * ADDRP = P1 + P2 + P3

6

7 add3 .macro P1, P2, P3, ADDRP
8

9 ADD ADDRP, P1, P2

10 ADD ADDRP, ADDRP, P3
11 -endm

Macro call: The following code calls the add3 macro with four arguments:
12
13 00000000 add3 R1, R2, R3, RO

Macro expansion: The following code shows the substitution of the macro definition for the macro call. The
assembler substitutes R1, R2, R3, and RO for the P1, P2, P3, and ADDRP parameters of add3.

1
1 00000000 E0810002 ADD RO, R1, R2
1 00000004 E0800003 ADD RO, RO, R3
156 Macro Language Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

6.3

Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can assign parameters within
the macro. The macro language supports a special symbol, called a substitution symbol, which is used for
macro parameters.

Macro parameters are substitution symbols that represent a character string. These symbols can also be
used outside of macros to equate a character string to a symbol name (see Section 4.8.8).

Valid substitution symbols can be up to 128 characters long and must begin with a letter. The remainder
of the symbol can be a combination of alphanumeric characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they are defined in. You can define
up to 32 local substitution symbols (including substitution symbols defined with the .var directive) per
macro. For more information about the .var directive, see Section 6.3.6.

During macro expansion, the assembler passes arguments by variable to the macro parameters. The
character-string equivalent of each argument is assigned to the corresponding parameter. Parameters
without corresponding arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string equivalent of all remaining
arguments.

If you pass a list of arguments to one parameter or if you pass a comma or semicolon to a parameter, you
must surround these terms with quotation marks.

At assembly time, the assembler replaces the macro parameter/substitution symbol with its corresponding
character string, then translates the source code into object code.

Example 6-2 shows the expansion of a macro with varying numbers of arguments.

Example 6-2. Calling a Macro With Varying Numbers of Arguments

Macro definition:

Parms -macro a,b,c
; a = :a:
: b = :b:
; c = :c:
-endm
Calling the macro:
Parms 100, label Parms 100, label,x,y
; a = 100 ; a = 100
; b = label ; b = label
; c="" ; Cc = X,y
Parms 100, , X Parms *"100,200,300",%x,y
; a = 100 ; a = 100,200,300
- b = - b = x
; c =X ; c=y
Parms "Ustring’™™,x,y
; a = "string"
; b = x

y

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Macro Language Description

157

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

6.3.1 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.
e The .asg directive assigns a character string to a substitution symbol.

For the .asg directive, the quotation marks are optional. If there are no quotation marks, the assembler
reads characters up to the first comma and removes leading and trailing blanks. In either case, a
character string is read and assigned to the substitution symbol. The syntax of the .asg directive is:

.asg["]character string["], substitution symbol

Example 6-3 shows character strings being assigned to substitution symbols.

Example 6-3. The .asg Directive

.asg R13, stack_ptr ; stack pointer

» The .eval directive performs arithmetic on numeric substitution symbols.

The .eval directive evaluates the expression and assigns the string value of the result to the
substitution symbol. If the expression is not well defined, the assembler generates an error and
assigns the null string to the symbol. The syntax of the .eval directive is:

.eval well-defined expression , substitution symbol

Example 6-4 shows arithmetic being performed on substitution symbols.

Example 6-4. The .eval Directive

.asg 1,counter

-loop 100

.word counter

.eval counter + 1,counter
-endloop

In Example 6-4, the .asg directive could be replaced with the .eval directive (.eval 1, counter) without
changing the output. In simple cases like this, you can use .eval and .asg interchangeably. However, you
must use .eval if you want to calculate a value from an expression. While .asg only assigns a character
string to a substitution symbol, .eval evaluates an expression and then assigns the character string
equivalent to a substitution symbol.

See Assign a Substitution Symbol for more information about the .asg and .eval assembler directives.

158

Macro Language Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

6.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make decisions on the basis of the string
value of substitution symbols. These functions always return a value, and they can be used in
expressions. Built-in substitution symbol functions are especially useful in conditional assembly
expressions. Parameters of these functions are substitution symbols or character-string constants.

In the function definitions shown in Table 6-1, a and b are parameters that represent substitution symbols

or character-string constants. The term string refers to the string value of the parameter. The symbol ch

represents a character constant.

Table 6-1. Substitution Symbol Functions and Return Values

Function Return Value

$$symlen (a) Length of string a

$$symcmp (a,b) <0Oifa<b;0ifa=b;>0ifa>b

$$firstch (a,ch) Index of the first occurrence of character constant ch in string a
$3lastch (a,ch) Index of the last occurrence of character constant ch in string a
$Pisdefed (a) 1 if string a is defined in the symbol table

0 if string a is not defined in the symbol table

$Sismember (a,b) Top member of list b is assigned to string a
0 if b is a null string

$3iscons (a) 1 if string a is a binary constant
2 if string a is an octal constant
3 if string a is a hexadecimal constant
4 if string a is a character constant
5 if string a is a decimal constant

$Sisname (a) 1 if string a is a valid symbol name
0 if string a is not a valid symbol name

$$isreg (a) @ 1 if string a is a valid predefined register name
0 if string a is not a valid predefined register name

@ For more information about predefined register names, see Section 4.8.6.

Example 6-5 shows built-in substitution symbol functions.

Example 6-5. Using Built-In Substitution Symbol Functions

.asg label, ADDR ; ADDR = label
.if ($$symcmp(ADDR, "label™) = 0) ; evaluates to true
LDR R4, ADDR

.endif

.asg “X,y,z" , list ; list = x,y,z

Jif ($$ismember (ADDR, list)) ; ADDR = x, list = vy,z
SUB R4, R4, #4 ; sub x

.endif

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Macro Language Description

159

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

6.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to substitute the corresponding
character string. If that string is also a substitution symbol, the assembler performs substitution again. The
assembler continues doing this until it encounters a token that is not a substitution symbol or until it
encounters a substitution symbol that it has already encountered during this evaluation.

In Example 6-6, the x is substituted for z; z is substituted for y; and y is substituted for x. The assembler
recognizes this as infinite recursion and ceases substitution.

Example 6-6. Recursive Substitution

.asg 'X",z ; declare z and assign z = "x"
.asg "'z",y ; declare y and assign y = "z"
.asg "y",x ; declare x and assign x = "y"
LDR RO, x

* LDR RO, x ; recursive expansion

6.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler. The forced substitution
operator, which is a set of colons surrounding the symbol, enables you to force the substitution of a
symbol's character string. Simply enclose a symbol with colons to force the substitution. Do not include
any spaces between the colons and the symbol. The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before expanding other substitution
symbols.

You can use the forced substitution operator only inside macros, and you cannot nest a forced substitution
operator within another forced substitution operator.

Example 6-7 shows how the forced substitution operator is used.

160

Macro Language Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Macro Parameters/Substitution Symbols

Example 6-7. Using the Forced Substitution Operator

1 force -macro

2 .asg 0,x
3 -loop 8

4 AUX:x: .set X

5 .eval x+1,x
6 -endloop

7 -endm

8
9

00000000 force
.asg 0,x
-loop 8
AUX:x: _.set X

.eval x+1,x

-endloop
00000000 AUXO .set O

.eval 0+1,x
00000001 AUX1 .set 1

.eval 1+1,x
00000002 AUX2 .set 2

.eval 2+1,x
00000003 AUX3 .set 3

.eval 3+1,x
00000004 AUX4 .set 4

.eval 4+1,x
00000005 AUX5 .set 5

.eval 5+1,x
00000006 AUX6 .set 6

.eval 6+1,x
00000007 AUX7 .set 7

.eval 7+1,x

NNNNNNNNNNMNNNNMNNMNNNRRRERERPRE

6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitution symbol with subscripted
substitution symbols. You must use the forced substitution operator for clarity.

You can access substrings in two ways:
» :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one character.
« :symbol (well-defined expression ;, well-defined expression ,):

In this method, expression, represents the substring's starting position, and expression, represents the
substring's length. You can specify exactly where to begin subscripting and the exact length of the
resulting character string. The index of substring characters begins with 1, not 0.

Example 6-8 and Example 6-9 show built-in substitution symbol functions used with subscripted
substitution symbols. In Example 6-8, subscripted substitution symbols redefine the ADD instruction so
that it handles short immediate values. In Example 6-9, the subscripted substitution symbol is used to find
a substring strg1l beginning at position start in the string strg2. The position of the substring strgl is
assigned to the substitution symbol pos.

SPNU118Y —September 1995—Revised February 2020 Macro Language Description 161

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Macro Parameters/Substitution Symbols

13 TEXAS

INSTRUMENTS

www.ti.com

Example 6-8. Using Subscripted Substitution Symbols to Redefine an Instruction

ADDX .macro dst, imm
.var TMP
.asg zimm(1):, TMP
-if $$symemp (TMP,"#'") = 0
ADD dst, dst, imm
.else
.emsg ""Bad Macro Parameter"
.endif
.endm
ADDX R9, #100 ; macro call
ADDX R9, R8 ; macro call

Example 6-9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strgl,strg2,pos
.var LEN1,LEN2,1,TMP
.if $$symlen(start) = 0
-eval 1,start
-endif
-eval 0,pos
.eval 1,i
.eval $$symlen(strgl),LEN1
.eval $$symlen(strg2),LEN2
-loop
-break I = (LEN2 - LEN1 + 1)
.asg ":strg2(l,LEN1):", TMP
-eval i,pos
-break
.else
.eval I+ 1,i
-endif
-endloop
-endm
.asg 0,pos
.asg arl ar2 ar3 ar4',regs
substr 1,"ar2",regs,pos
-word pos

6.3.6 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you ca

n use the .var directive to

define up to 32 local macro substitution symbols (including parameters) per macro. The .var directive

creates temporary substitution symbols with the initial value of the null string. Th
passed in as parameters, and they are lost after expansion.

ese symbols are not

var sym, [,sym,, ...,sym,]

The .var directive is used in Example 6-8 and Example 6-9.

162 Macro Language Description

Copyright © 1995-2020, Texas Instruments Incorporated

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com Macro Libraries

6.4

Macro Libraries

One way to define macros is by creating a macro library. A macro library is a collection of files that contain
macro definitions. You must use the archiver to collect these files, or members, into a single file (called an
archive). Each member of a macro library contains one macro definition. The files in a macro library must
be unassembled source files. The macro name and the member name must be the same, and the macro
filename's extension must be .asm. For example:

Macro Name Filename in Macro Library
simple simple.asm
add3 add3.asm

You can access the macro library by using the .mlib assembler directive (described in Define Macro
Library). The syntax is:

‘ .mlib filename

When the assembler encounters the .mlib directive, it opens the library named by filename and creates a
table of the library's contents. The assembler enters the names of the individual members within the library
into the opcode tables as library entries; this redefines any existing opcodes or macros that have the same
name. If one of these macros is called, the assembler extracts the entry from the library and loads it into
the macro table.

The assembler expands the library entry the same way it expands other macros. See Section 6.1 for how
the assembler expands macros. You can control the listing of library entry expansions with the .mlist
directive. For information about the .mlist directive, see Section 6.8 and Start/Stop Macro Expansion
Listing. Only macros that are actually called from the library are extracted, and they are extracted only
once.

You can use the archiver to create a macro library by including the desired files in an archive. A macro
library is no different from any other archive, except that the assembler expects the macro library to
contain macro definitions. The assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable results. For information about
creating a macro library archive, see Section 7.1.

SPNU118Y —September 1995—Revised February 2020 Macro Language Description 163
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Using Conditional Assembly in Macros www.ti.com

6.5

Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/ .break/.endloop. They can be
nested within each other up to 32 levels deep. The format of a conditional block is:

.if well-defined expression
[.elseif well-defined expression]
[.else]

.endif

The .elseif and .else directives are optional in conditional assembly. The .elseif directive can be used
more than once within a conditional assembly code block. When .elseif and .else are omitted and when
the .if expression is false (0), the assembler continues to the code following the .endif directive. See
Assemble Conditional Blocks for more information on the .if/ .elseif/.else/.endif directives.

The .loop/.break/.endloop directives enable you to assemble a code block repeatedly. The format of a
repeatable block is:

Jloop [well-defined expression]
[.break [well-defined expression]]
.endloop

The .loop directive's optional well-defined expression evaluates to the loop count (the number of loops to
be performed). If the expression is omitted, the loop count defaults to 1024 unless the assembler
encounters a .break directive with an expression that is true (nonzero). See Assemble Conditional Blocks
Repeatedly for more information on the .loop/.break/.endloop directives.

The .break directive and its expression are optional in repetitive assembly. If the expression evaluates to
false, the loop continues. The assembler breaks the loop when the .break expression evaluates to true or
when the .break expression is omitted. When the loop is broken, the assembler continues with the code
after the .endloop directive. For more information, see Section 5.8.

Example 6-10, Example 6-11, and Example 6-12 show the .loop/.break/ .endloop directives, properly
nested conditional assembly directives, and built-in substitution symbol functions used in a conditional
assembly code block.

Example 6-10. The .loop/.break/.endloop Directives

.asg 1,x
-loop

-break (x == 10) ; if x == 10, quit loop/break with expression

.eval X+1,X
-endloop

164

Macro Language Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Using Conditional Assembly in Macros

Example 6-11. Nested Conditional Assembly Directives

.asg 1,x

-loop

.if (x == 10) ; if x == 10, quit loop
.break (x == 10) ; force break

.endif

.eval X+1,X
-endloop

Example 6-12. Built-In Substitution Symbol Functions in a Conditional Assembly Code Block

-fcnolist

*

*Double Add or Subtract

*

DBL .macro ABC, dsth, dstl, srch, srcl ; add or subtract double
-if $$symemp (ABC, "'+
ADDS dstl, dstl, srcl ; add double
ADC dsth, dsth, srch

.elseif $$symcmp(ABC,"-"")
SUBS dstl, dstl, srcl ; subtract double
SUBS dsth, dsth, srch

.else
.emsg "Incorrect Operator Parameter"

.endif
-endm

*Macro Call
DBL -, R4, R5, R6, R7

SPNU118Y —September 1995—Revised February 2020 Macro Language Description 165

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Using Labels in Macros

13 TEXAS
INSTRUMENTS

www.ti.com

6.6

Using Labels in Macros

All labels in an assembly language program must be unique. This includes labels in macros. If a macro is
expanded more than once, its labels are defined more than once. Defining a label more than once is
illegal. The macro language provides a method of defining labels in macros so that the labels are unique.
Simply follow each label with a question mark, and the assembler replaces the question mark with a
period followed by a unique number. When the macro is expanded, you do not see the unique number in
the listing file. Your label appears with the question mark as it did in the macro definition. You cannot
declare this label as global. See Section 4.8.3 for more about labels.

The syntax for a unique label is:

label ?

Example 6-13 shows unique label generation in a macro. The maximum label length is shortened to allow
for the unique suffix. For example, if the macro is expanded fewer than 10 times, the maximum label
length is 126 characters. If the macro is expanded from 10 to 99 times, the maximum label length is 125.
The label with its unique suffix is shown in the cross-listing file. To obtain a cross-listing file, invoke the

assembler with the --cross_reference option (see Section 4.3).

Example 6-13. Unique Labels in a Macro

1 ; define macro to find minimum
2 MIN .macro dst, srcl, src2
3 CMP srcl, src2
4 BCC m1?
5 MOV dst, srcl
6 B m2?
7
8 ml1? MOV dst, src2
9 m27?
10 .endm
11
12 ; call macro
13 00000000 .statel6
14 00000000 MIN r4, rl, r2
1 00000000 4291 CMP ri, r2
1 00000002 D301 BCC m1?
1 00000004 1COC MOV r4, rl
1 00000006 EOOO B m2?
1
1 00000008 1C14 ml1? MOV rd4, r2
1 0000000a m2?
166 Macro Language Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com Producing Messages in Macros

6.7

Producing Messages in Macros

The macro language supports three directives that enable you to define your own assembly-time error and
warning messages. These directives are especially useful when you want to create messages specific to
your needs. The last line of the listing file shows the error and warning counts. These counts alert you to
problems in your code and are especially useful during debugging.

.emsg sends error messages to the listing file. The .emsg directive generates errors in the same
manner as the assembler, incrementing the error count and preventing the assembler from
producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg directive functions in the same
manner as the .emsg directive but does not set the error count or prevent the creation of an
object file.

.wmsg sends warning messages to the listing file. The .wmsg directive functions in the same
manner as the .emsg directive, but it increments the warning count and does not prevent the
generation of an object file.

Macro comments are comments that appear in the definition of the macro but do not show up in the
expansion of the macro. An exclamation point in column 1 identifies a macro comment. If you want your
comments to appear in the macro expansion, precede your comment with an asterisk or semicolon.

Example 6-14 shows user messages in macros and macro comments that do not appear in the macro
expansion. For more information about the .emsg, .mmsg, and .wmsg assembler directives, see Define
Messages.

Example 6-14. Producing Messages in a Macro

RPRRPRPRRPRRRRREERR

[y

MUL_1 .macro X,y
0f (B$symlen(x) ==0)
.emsg "ERROR -- Missing Parameter"
-mexit
.elseif ($$symlen(y) == 0)
.emsg "ERROR -- Missing Parameter"
-mexit
.else
MOV R1, x
10 MOV R2, y
11 MUL RO, R1, R2
12 .endif
13 -endm

O©CoO~NOU S~ WNPRP

15 00000000 MUL_I1 #50, #51
if ($$symlen(x) ==0)
.emsg "ERROR -- Missing Parameter™
-mexit
.elseif ($$symlen(y) == 0)
.emsg "ERROR -- Missing Parameter™
-mexit
.else
00000000 E3A01032 MOV R1, #50
00000004 E3A02033 MOV R2, #51
00000008 E0000291 MUL RO, R1, R2
.endif
16
17 0000000c MUL_I
if (B$symlen(x) ==0)
.emsg "ERROR -- Missing Parameter"

*xxxx USER ERROR ***** _ : ERROR -- Missing Parameter

1

.mexit

1 Error, No Warnings

SPNU118Y —September 1995—-Revised February 2020 Macro Language Description

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

167

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Using Directives to Format the Output Listing www.ti.com

6.8 Using Directives to Format the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide information. You may need to
see this hidden information, so the macro language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional blocks in the list output file. You
may want to turn this listing off or on within your listing file. Four sets of directives enable you to control
the listing of this information:

* Macro and loop expansion listing

.mlist expands macros and .loop/.endloop blocks. The .mlist directive prints all code
encountered in those blocks.
.mnolist suppresses the listing of macro expansions and .loop/ .endloop blocks.

For macro and loop expansion listing, .mlist is the default.

« False conditional block listing

fclist causes the assembler to include in the listing file all conditional blocks that do not
generate code (false conditional blocks). Conditional blocks appear in the listing
exactly as they appear in the source code.

fcnolist suppresses the listing of false conditional blocks. Only the code in conditional blocks
that actually assemble appears in the listing. The .if, .elseif, .else, and .endif directives
do not appear in the listing.

For false conditional block listing, .fclist is the default.

e Substitution symbol expansion listing

.sslist expands substitution symbols in the listing. This is useful for debugging the expansion
of substitution symbols. The expanded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing.
For substitution symbol expansion listing, .ssnolist is the default.

» Directive listing
drlist causes the assembler to print to the listing file all directive lines.

.drnolist suppresses the printing of certain directives in the listing file. These directives are
.asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist, .mnolist, .fcnolist, .emsg, .wmsg,
.mmsg, .length, .width, and .break.

For directive listing, .drlist is the default.

168 Macro Language Description SPNU118Y —September 1995—Revised February 2020
Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS

www.ti.com Using Recursive and Nested Macros

6.9

Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means that you can call other
macros in a macro definition. You can nest macros up to 32 levels deep. When you use recursive macros,
you call a macro from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention to the arguments that you
pass to macro parameters because the assembler uses dynamic scoping for parameters. This means that
the called macro uses the environment of the macro from which it was called.

Example 6-15 shows nested macros. The y in the in_block macro hides the y in the out_block macro. The
x and z from the out_block macro, however, are accessible to the in_block macro.

Example 6-15. Using Nested Macros

in_block _.macro y,a

- ; visible parameters are y,a and x,z from the calling macro
-endm

out_block .macro X,Y,Z
; visible parameters are X,y,z
in_block x,y ; macro call with x and y as arguments
-endm
out_block ; macro call

Example 6-16 shows recursive and fact macros. The fact macro produces assembly code necessary to
calculate the factorial of n, where n is an immediate value. The result is placed in data memory address
loc. The fact macro accomplishes this by calling factl, which calls itself recursively.

Example 6-16. Using Recursive Macros

fact -macro N, loc ; N is an integer constant. Register loc address = NI!
Jif N <2 ;01 =11 =1
MoV loc, #1
.else
MoV loc, #N ; N >= 2 so, store N in loc.
.eval -1, N ; Decrement N, and do the factorial of N - 1.
factl ; Call fact with current environment.
-endm

factl .macro
-if N>1
MOV RO, #N ; N>1 so, store N in RO.
MUL loc, RO, loc ; Multiply present factorial by present position.
.eval N -1, N ; Decrement position.
factl ; Recursive call.
-endif
-endm

SPNU118Y —September 1995—-Revised February 2020 Macro Language Description 169

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Macro Directives Summary www.ti.com

6.10 Macro Directives Summary

The directives listed in Table 6-2 through Table 6-6 can be used with macros. The .macro, .mexit, .endm
and .var directives are valid only with macros; the remaining directives are general assembly language

directives.
Table 6-2. Creating Macros
See
Mnemonic and Syntax Description Macro Use Directive
.endm End macro definition Section 6.2 .endm
macname .macro [parameter,][,... , parameter,] Define macro by macname Section 6.2 .macro
.mexit Go to .endm Section 6.2 Section 6.2
.mlib filename Identify library containing macro definitions Section 6.4 .mlib
Table 6-3. Manipulating Substitution Symbols
See
Mnemonic and Syntax Description Macro Use Directive
.asg ["]character string["], substitution symbol Assign character string to substitution symbol Section 6.3.1 .asg
.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols Section 6.3.1 .eval
var sym, [, sym,, ..., sym,] Define local macro symbols Section 6.3.6 .var
Table 6-4. Conditional Assembly
See
Mnemonic and Syntax Description Macro Use Directive
.break [well-defined expression] Optional repeatable block assembly Section 6.5 .break
.endif End conditional assembly Section 6.5 .endif
.endloop End repeatable block assembly Section 6.5 .endloop
.else Optional conditional assembly block Section 6.5 .else
.elseif well-defined expression Optional conditional assembly block Section 6.5 .elseif
.if well-defined expression Begin conditional assembly Section 6.5 Jif
.loop [well-defined expression] Begin repeatable block assembly Section 6.5 loop
Table 6-5. Producing Assembly-Time Messages
See
Mnemonic and Syntax Description Macro Use Directive
.emsg Send error message to standard output Section 6.7 .emsg
.mmsg Send assembly-time message to standard output Section 6.7 .mmsg
.wmsg Send warning message to standard output Section 6.7 .wmsg
Table 6-6. Formatting the Listing
See
Mnemonic and Syntax Description Macro Use Directive
fclist Allow false conditional code block listing (default) Section 6.8 fclist
fcnolist Suppress false conditional code block listing Section 6.8 fenolist
.mlist Allow macro listings (default) Section 6.8 .mlist
.mnolist Suppress macro listings Section 6.8 .mnolist
.sslist Allow expanded substitution symbol listing Section 6.8 .sslist
.ssnolist Suppress expanded substitution symbol listing (default) Section 6.8 .ssnolist
170 Macro Language Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Chapter 7
I -{IE)S(’?IEUMENTS SPNU118Y —September 1995—Revised February 2020

Archiver Description

The ARM archiver lets you combine several individual files into a single archive file. For example, you can
collect several macros into a macro library. The assembler searches the library and uses the members
that are called as macros by the source file. You can use the archiver to collect a group of object files into
an object library. The linker includes in the library the members that resolve external references during the
link. The archiver allows you to modify a library by deleting, replacing, extracting, or adding members.

On architectures like ARM, it is often desirable to have multiple versions of the same object file libraries,
each built with different sets of build options. When several versions of a single library are available, the
library information archiver can be used to create an index library of all the object file library versions. This
index library is the used in the link step in place of a particular version of your object file library.

Topic Page
T. 1 ATCHIVET OVEIVIEW utteuiuiuenititieeeeaeaaa s et e e easa s et e e easa s e s e e e e naaa s e e e enannnnnn e enen 172
7.2 The Archiver's Role in the Software Development FIOWccovviiiiiiiiiiiiiiiiinninennnns 173
7.3 INVOKING the ATCRIVET . ..ue et e e e e e e e e n e e e e 174
T4 ArCHhIVEr EXAMPIES. .. ittt e et et e n e e e 175
7.5 Library Information Archiver DeSCIPLIONueiieiie it eeea s 176
SPNU118Y —September 1995—-Revised February 2020 Archiver Description 171

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Archiver Overview www.ti.com

7.1

Archiver Overview

You can build libraries from any type of files. Both the assembler and the linker accept archive libraries as
input; the assembler can use libraries that contain individual source files, and the linker can use libraries
that contain individual object files.

One of the most useful applications of the archiver is building libraries of object modules. For example,
you can write several arithmetic routines, assemble them, and use the archiver to collect the object files
into a single, logical group. You can then specify the object library as linker input. The linker searches the
library and includes members that resolve external references.

You can also use the archiver to build macro libraries. You can create several source files, each of which
contains a single macro, and use the archiver to collect these macros into a single, functional group. You
can use the .mlib directive during assembly to specify that macro library to be searched for the macros
that you call. Chapter 6 discusses macros and macro libraries in detail, while this chapter explains how to
use the archiver to build libraries.

172

Archiver Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com The Archiver's Role in the Software Development Flow

7.2 The Archiver's Role in the Software Development Flow

Figure 7-1 shows the archiver's role in the software development process. The shaded portion highlights
the most common archiver development path. Both the assembler and the linker accept libraries as input.

Figure 7-1. The Archiver in the ARM Software Development Flow

C/IC++
source
files
Macro
source C/C++
files compiler

C/C++ name

Assembler

demanglin
source giing

utility

:\i/tlaargs Assembler
Object Librat_r)I/_;buiId Delt)uglging
filos utility ools
i Run-time-
Library of support
object g library
files
Executable

object file

Hex-conversion
utility

EPROM Absolute lister Cross:reference Obj_e_c!file
programmer lister utilities

SPNU118Y —September 1995—Revised February 2020 Archiver Description 173

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Invoking the Archiver

13 TEXAS
INSTRUMENTS

www.ti.com

7.3 Invoking the Archiver

To invoke the archiver, enter:

‘armar[—]command [options] libname [filename, ... filename,]

armar
[FJcommand

options

libname

filenames

is the command that invokes the archiver.

tells the archiver how to manipulate the existing library members and any specified. A
command can be preceded by an optional hyphen. You must use one of the following
commands when you invoke the archiver, but you can use only one command per
invocation. The archiver commands are as follows:

@ uses the contents of the specified file instead of command line entries. You can
use this command to avoid limitations on command line length imposed by the
host operating system. Use a ; at the beginning of a line in the command file to
include comments. (See Example 7-1 for an example using an archiver command
file.)

a adds the specified files to the library. This command does not replace an existing

member that has the same name as an added file; it simply appends new
members to the end of the archive.

d deletes the specified members from the library.

replaces the specified members in the library. If you do not specify filenames, the
archiver replaces the library members with files of the same name in the current
directory. If the specified file is not found in the library, the archiver adds it instead
of replacing it.

t prints a table of contents of the library. If you specify filenames, only those files
are listed. If you do not specify any filenames, the archiver lists all the members in
the specified library.

X extracts the specified files. If you do not specify member names, the archiver
extracts all library members. When the archiver extracts a member, it simply
copies the member into the current directory; it does not remove it from the library.

In addition to one of the commands, you can specify options. To use options, combine
them with a command; for example, to use the a command and the s option, enter -as
or as. The hyphen is optional for archiver options only. These are the archiver options:

-h provide command-line help
-q (quiet) suppresses the banner and status messages.

-s prints a list of the global symbols that are defined in the library. (This option is
valid only with the a, r, and d commands.)

-u replaces library members only if the replacement has a more recent modification
date. You must use the r command with the -u option to specify which members to
replace.

-v (verbose) provides a file-by-file description of the creation of a new library from an
old library and its members.

names the archive library to be built or modified. If you do not specify an extension for

libname, the archiver uses the default extension .lib.

names individual files to be manipulated. These files can be existing library members or
new files to be added to the library. When you enter a filename, you must enter a
complete filename including extension, if applicable.

Naming Library Members

NOTE: Itis possible (but not desirable) for a library to contain several members with the same
name. If you attempt to delete, replace, or extract a member whose name is the same as
another library member, the archiver deletes, replaces, or extracts the first library member
with that name.

174 Archiver Description

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Archiver Examples

7.4 Archiver Examples

The following are examples of typical archiver operations:

If you want to create a library called function.lib that contains the files sine.obj, cos.obj, and flt.obj,
enter:

armar -a function sine.obj cos.obj flt.obj

The archiver responds as follows:

==> new archive "function.lib”
==> puilding new archive "function.lib”

You can print a table of contents of function.lib with the -t command, enter:
armar -t function

The archiver responds as follows:
SIZE DATE FILE NAME

4260 Thu Mar 28 15:38:18 2019 sine.obj
4260 Thu Mar 28 15:38:18 2019 cos.obj
4260 Thu Mar 28 15:38:18 2019 flt.obj

If you want to add new members to the library, enter:
armar -as function atan.obj

The archiver responds as follows:
==> symbol defined: "_sin"
==> symbol defined: "$sin”
==> symbol defined: "_cos
==> symbol defined: "$cos”
==> symbol defined: "_tan"
==> symbol defined: "$tan~
==> symbol defined: "_atan
==> symbol defined: "$atan”
==> puilding archive "“function.lib*

Because this example does not specify an extension for the libname, the archiver adds the files to the
library called function.lib. If function.lib does not exist, the archiver creates it. (The -s option tells the
archiver to list the global symbols that are defined in the library.)

If you want to modify a library member, you can extract it, edit it, and replace it. In this example,
assume there is a library named macros.lib that contains the members push.asm, pop.asm, and
swap.asm.

armar -X macros pUSh.anTl

The archiver makes a copy of push.asm and places it in the current directory; it does not remove
push.asm from the library. Now you can edit the extracted file. To replace the copy of push.asm in the
library with the edited copy, enter:

armar -r macros push.asm

If you want to use a command file, specify the command filename after the -@ command. For
example:

armar -@modules.cmd
The archiver responds as follows:
==> building archive "modules.lib*

SPNU118Y —September 1995—-Revised February 2020 Archiver Description 175
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Archiver Examples www.ti.com

Example 7-1 is the modules.cmd command file. The r command specifies that the filenames given in
the command file replace files of the same name in the modules.lib library. The -u option specifies that
these files are replaced only when the current file has a more recent revision date than the file that is
in the library.

Example 7-1. Archiver Command File

; Command file to replace members of the
modules library with updated files

; Use r command and u option:

ru

; Specify library name:

modules.lib

; List filenames to be replaced if updated:

align.asm

bss.asm

data.asm

text.asm

sect.asm

clink.asm

copy.asm

double.asm

drnolist.asm

emsg.asm

end.asm

7.5 Library Information Archiver Description

Section 7.1 through Section 7.4 explain how to use the archiver to create libraries of object files for use in
the linker of one or more applications. You can have multiple versions of the same object file libraries,
each built with different sets of build options. For example, you might have different versions of your object
file library for big and little endian, for different architecture revisions, or for different ABIs depending on
the typical build environments of client applications. However, if you have several versions of a library, it
can be cumbersome to keep track of which version of the library needs to be linked in for a particular
application.

When several versions of a single library are available, the library information archiver can be used to
create an index library of all of the object file library versions. This index library is used in the linker in
place of a particular version of your object file library. The linker looks at the build options of the
application being linked, and uses the specified index library to determine which version of your object file
library to include in the linker. If one or more compatible libraries were found in the index library, the most
suitable compatible library is linked in for your application.

7.5.1 Invoking the Library Information Archiver
To invoke the library information archiver, enter:

armlibinfo [options] --output=libname libname, [libname, ... libname,,]

armlibinfo is the command that invokes the library information archiver.
options changes the default behavior of the library information archiver. These options are:
--output libname specifies the name of the index library to create or update. This
option is required.
--update updates any existing information in the index library specified
with the --output option instead of creating a new index.
libnames names individual object file libraries to be manipulated. When you enter a libname, you

must enter a complete filename including extension, if applicable.

176 Archiver Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Library Information Archiver Description

7.5.2 Library Information Archiver Example
Consider these object file libraries that all have the same members, but are built with different build

options:
Object File Library Name Build Options
mylib_ ARMv4_be.lib --code_state=32 --silicon_version=4 --endian=big
mylib_ ARMv4_le.lib --code_state=32 --silicon_version=4 --endian=little
mylib_THUMBV4_be.lib --code_state=16 --silicon_version=4 --endian=big
mylib_THUMBV4_le.lib --code_state=16 --silicon_version=4 --endian=little
mylib_ THUMBV7A8_le.lib --code_state=16 --silicon_version=7A8 --endian=little

Using the library information archiver, you can create an index library called mylib.lib from the above
libraries:

armlibinfo --output mylib_.lib mylib_ARMv4_be._lib mylib_THUMBv4_be.lib
mylib_THUMBv7A8_le.lib mylib_ARMv4_le_lib mylib_THUMBv4_le.lib

You can now specify mylib.lib as a library for the linker of an application. The linker uses the index library
to choose the appropriate version of the library to use. If the --issue_remarks option is specified before the
--run_linker option, the linker reports which library was chosen.
» Example 1 (ISA v7A8, little endian):
armcl-mv7A8 -me --mylib_pruv3_be main.c -z -1 Ink.cmd ./mylib.lib
<Linking>
remark: linking in "mylib_THUMBV7A8_le.lib" in place of "mylib.lib"
» Example 2 (ISAv5, big endian):
armcl -mv5e --issue_remarks main.c -z -1 Ink.cmd ./mylib.lib
<Linking>
remark: linking in "mylib_ARMv4 be.lib" in place of "mylib.lib"
In Example 2, there was no version of the library for ISAv5, but an ISAv4 library was available and is
compatible, so it was used.

7.5.3 Listing the Contents of an Index Library

The archiver's -t option can be used on an index library to list the archives indexed by an index library:
armar t mylib_lib

SIZE DATE FILE NAME

119 Mon Apr 23 12:45:22 2007 mylib_ARMv4_be.lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib_ARMv4_le.lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib_THUMBv4_be.lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib_THUMBv4_le.lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib_THUMBv7A8 le.lib.libinfo
0 Mon Apr 23 12:45:22 2007 __TI_$SLIBINFO

The indexed object file libraries have an additional .libinfo extension in the archiver listing. The
__TI_$3LIBINFO member is a special member that designates mylib.lib as an index library, rather than a
regular library.

If the archiver’'s -d command is used on an index library to delete a .libinfo member, the linker will no
longer choose the corresponding library when the index library is specified.

Using any other archiver option with an index library, or using -d to remove the __TI_$$LIBINFO member,
results in undefined behavior, and is not supported.

SPNU118Y —September 1995—-Revised February 2020 Archiver Description 177

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Library Information Archiver Description www.ti.com

7.5.4 Requirements

You must follow these requirements to use library index files:
« At least one application object file must appear on the linker command line before the index library.

» Each object file library specified as input to the library information archiver must only contain object file
members that are built with the same build options.

» The linker expects the index library and all of the libraries it indexes to be in a single directory.

178 Archiver Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

i Chapter 8

TE S SPNU118Y —September 1995—Revised February 2020

INSTRUMENTS

Linker Description

The ARM linker creates executable modules by combining object modules. This chapter describes the
linker options, directives, and statements used to create executable modules. Object libraries, command
files, and other key concepts are discussed as well.

The concept of sections is basic to linker operation; Chapter 2 includes a detailed discussion of sections.

Topic Page
8.1 LINKEI OVEIVIEBW ..viiuiuiiuieiniiiaieitiees st et ea s e e s e ea s e e s e e e s e s et s e enreen s e en e anren 180
8.2 The Linker's Role in the Software Development FIOW..........ocveieiiiiiiiiiiieieiieieenen. 181
8.3 INVOKING the LINKEI ..cuiiieieieie et ettt e e e a e e e e e e e nen e nn e e 182
S I T | Q=T G @ o o P 183
8.5 Linker Command FileScuiuieiiiiiii i 206
8.6 LiNKEr SYMbOIS .ouuiiiiiiiiii e e e 243
8.7 Default Placement AlgOorithm ... e 245
8.8 Using Linker-Generated Copy Tablesou i 246
8.9 Linker-Generated CRC Tablesouiuiiiiiiiiiiiii it e e e aas 259
8.10 Partial (Incremental) LINKINGcueuiuieieieiiiiie e eea e ra et enenna e eneaes 265
8.11 LiNKING C/CH+ GO . .uiieeiiiiiieit ittt ettt e et e e et e e ta e e e e e e ananenenenes 266
8.12 LiNKer EXAMPIE uiuiiiiiiiiiii ettt et et e et e e 268

SPNU118Y —September 1995—-Revised February 2020 Linker Description 179

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS

Linker Overview www.ti.com
8.1 Linker Overview

The ARM linker allows you to allocate output sections efficiently in the memory map. As the linker

combines object files, it performs the following tasks:

» Allocates sections into the target system's configured memory

* Relocates symbols and sections to assign them to final addresses

» Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and address

binding. The language supports expression assignment and evaluation. You configure system memory by

defining and creating a memory model that you design. Two powerful directives, MEMORY and

SECTIONS, allow you to:

» Allocate sections into specific areas of memory

» Combine object file sections

» Define or redefine global symbols at link time
180 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com The Linker's Role in the Software Development Flow

8.2 The Linker's Role in the Software Development Flow

Figure 8-1 illustrates the linker's role in the software development process. The linker accepts several
types of files as input, including object files, command files, libraries, and partially linked files. The linker
creates an executable object module that can be downloaded to one of several development tools or
executed by a ARM device.

Figure 8-1. The Linker in the ARM Software Development Flow

C/C++
source
files

Macro
source C/C++
files compiler

Assembler
source

C/C++ name

demangling
utility

Macro
library Assembler
Object Librat.r){.;build Delt)uglging
files utility ools
L Run-time-
Library of L support
object > library
files
Executable
object file

Hex-conversion
utility

EPROM
programmer

Absolute lister

Cross-reference
lister

Object file
utilities

SPNU118Y —September 1995—-Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Linker Description

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Invoking the Linker www.ti.com
8.3 Invoking the Linker
The general syntax for invoking the linker is:
armcl --run_linker [options] filename, filename,
armcl --run_linker is the command that invokes the linker. The --run_linker option's short form is
-Z.
options can appear anywhere on the command line or in a linker command file.
(Options are discussed in Section 8.4.)
filename 4, filename can be object files, linker command files, or archive libraries. The default

extensions for input files are .c.obj (for C source files) and .cpp.obj (for C++
source files). Any other extension must be explicitly specified. The linker can
determine whether the input file is an object or ASCI! file that contains linker
commands. The default output filename is a.out, unless you use the --
output_file option to name the output file.

NOTE: The default file extensions for object files created by the compiler have been changed.
Object files generated from C source files have the .c.obj extension. Object files generated
from C++ source files have the .cpp.obj extension. Object files generated from assembly
source files still have the .obj extension.

There are two methods for invoking the linker:

Specify options and filenames on the command line. This example links two files, filel.c.obj and
file2.c.obj, and creates an output module named link.out.

armcl --run_linker filel.c.obj file2.c.obj --output_file=link.out

Put filenames and options in a linker command file. Filenames that are specified inside a linker
command file must begin with a letter. For example, assume the file linker.cmd contains the following
lines:

--output_file=link.out filel.c.obj file2.c.obj
Now you can invoke the linker from the command line; specify the command filename as an input file:
armcl --run_linker linker.cmd

When you use a command file, you can also specify other options and files on the command line. For
example, you could enter:

armcl --run_linker --map_Ffile=link.map linker.cmd file3.c.obj

The linker reads and processes a command file as soon as it encounters the filename on the
command line, so it links the files in this order: filel.c.obj, file2.c.obj, and file3.c.obj. This example
creates an output file called link.out and a map file called link.map.

For information on invoking the linker for C/C++ files, see Section 8.11.

182 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Options

8.4 Linker Options
Linker options control linking operations. They can be placed on the command line or in a command file.
Linker options must be preceded by a hyphen (-). Options can be separated from arguments (if they have
them) by an optional space.
Table 8-1. Basic Options Summary
Option Alias Description Section
--run_linker -z Enables linking Section 8.3
--output_file -0 Names the executable output module. The default filename is a.out. Section 8.4.25
--map_file -m Produces a map or listing of the input and output sections, including holes, and Section 8.4.20
places the listing in filename
--stack_size -stack Sets C system stack size to size bytes and defines a global symbol that Section 8.4.31
specifies the stack size. Default = 2K bytes
--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size bytes and Section 8.4.16
defines a global symbol that specifies the heap size. Default = 2K bytes
Table 8-2. File Search Path Options Summary
Option Alias Description Section
--library -l Names an archive library or link command filename as linker input Section 8.4.18
--disable_auto_rts Disables the automatic selection of a run-time-support library Section 8.4.9
--priority -priority Satisfies unresolved references by the first library that contains a definition for ~ Section 8.4.18.3
that symbol
--reread_libs -X Forces rereading of libraries, which resolves back references Section 8.4.18.3

--search_path

Alters library-search algorithms to look in a directory named with pathname
before looking in the default location. This option must appear before the --
library option.

Section 8.4.18.1

Table 8-3. Command File Preprocessing Options Summary

Option Alias Description Section
--define Predefines name as a preprocessor macro. Section 8.4.11
--undefine Removes the preprocessor macro name. Section 8.4.11
--disable_pp Disables preprocessing for command files Section 8.4.11
Table 8-4. Diagnostic Options Summary
Option Alias Description Section
--diag_error Categorizes the diagnostic identified by num as an error Section 8.4.8
--diag_remark Categorizes the diagnostic identified by nhum as a remark Section 8.4.8
--diag_suppress Suppresses the diagnostic identified by num Section 8.4.8
--diag_warning Categorizes the diagnostic identified by nhum as a warning Section 8.4.8
--display_error_number Displays a diagnostic's identifiers along with its text Section 8.4.8
--emit_references:file[=file] Emits a file containing section information. The information includes section Section 8.4.8
size, symbols defined, and references to symbols.
--emit_warnings_as_errors -pdew Treats warnings as errors Section 8.4.8
--issue_remarks Issues remarks (nonserious warnings) Section 8.4.8
--no_demangle Disables demangling of symbol names in diagnostics Section 8.4.22
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 8.4.8
--set_error_limit Sets the error limit to num. The linker abandons linking after this number of Section 8.4.8
errors. (The default is 100.)

--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap Section 8.4.8
--warn_sections -w Displays a message when an undefined output section is created Section 8.4.36

SPNU118Y —September 1995—-Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Linker Description

183

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Linker Options

I

TEXAS
INSTRUMENTS

www.ti.com

Table 8-5. Linker Output Options Summary

Option

Alias

Description

Section

--absolute_exe

--ecc={ on | off }
--ecc:data_error
--ecc:ecc_error

--mapfile_contents
--relocatable

--generate_dead_funcs_list

-a

Produces an absolute, executable module. This is the default; if neither --
absolute_exe nor --relocatable is specified, the linker acts as if --absolute_exe
were specified.

Enable linker-generated Error Correcting Codes (ECC). The default is off.
Inject the specified errors into the output file for testing
Inject the specified errors into the Error Correcting Code (ECC) for testing

Controls the information that appears in the map file.
Produces a nonexecutable, relocatable output module

Writes a list of the dead functions that were removed by the linker to file
fname.

Section 8.4.3.1

Section 8.4.12
Section 8.5.9

Section 8.4.12
Section 8.5.9

Section 8.4.12
Section 8.5.9

Section 8.4.21
Section 8.4.3.2
Section 8.4.15

--rom -r Create a ROM object
--run_abs -abs Produces an absolute listing file Section 8.4.29
--xml_link_info Generates a well-formed XML file containing detailed information about the Section 8.4.37
result of a link
Table 8-6. Symbol Management Options Summary
Option Alias Description Section
--entry_point -e Defines a global symbol that specifies the primary entry point for the output Section 8.4.13
module
--globalize Changes the symbol linkage to global for symbols that match pattern Section 8.4.19
--hide Hides global symbols that match pattern Section 8.4.17
--localize Changes the symbol linkage to local for symbols that match pattern Section 8.4.19
--make_global -g Makes symbol global (overrides -h) Section 8.4.19.1
--make_static -h Makes all global symbols static Section 8.4.19.1
--no_symtable -S Strips symbol table information and line number entries from the output Section 8.4.24
module
--retain Retains a list of sections that otherwise would be discarded Section 8.4.28
--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions Section 8.4.30
--symbol_map Maps symbol references to a symbol definition of a different name Section 8.4.33
--undef_sym -u Places an unresolved external symbol into the output module's symbol table Section 8.4.35
--unhide Reveals (un-hides) global symbols that match pattern Section 8.4.17
Table 8-7. Run-Time Environment Options Summary
Option Alias Description Section
--arg_size --args Allocates memory to be used by the loader to pass arguments Section 8.4.4
-be32 Forces the linker to generate BE-32 object code. Section 8.4.5
-be8 Forces the linker to generate BE-8 object code. Section 8.4.5
--cinit_hold_wdt={on|off} Hold (on) or do not hold (off) watchdog timer during cinit auto-initialization. Section 8.11.5
--fill_value -f Sets default fill values for holes within output sections; fill_value is a 32-bit Section 8.4.14
constant
--ram_model -cr Initializes variables at load time Section 8.4.27
--rom_model -C Autoinitializes variables at run time Section 8.4.27
--trampolines Generates far call trampolines; on by default Section 8.4.34
184 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
www.ti.com Linker Options
Table 8-8. Link-Time Optimization Options Summary
Option Alias Description Section
--cinit_compression Specifies the type of compression to apply to the C auto initialization data. The Section 8.4.6
[=compression_kind] default if this option is used with no kind specified is |zss for Lempel-Ziv-
Storer-Szymanski compression. Alternately, specify --cinit_compression=rle to
use Run Length Encoded compression, which generally provides less efficient
compression.
--compress_dwarf Aggressively reduces the size of DWARF information from input object files Section 8.4.7
--COpy_compression Compresses data copied by linker copy tables Section 8.4.6
[=compression_kind]
--unused_section_elimination Eliminates sections that are not needed in the executable module; on by Section 8.4.10
default

Table 8-9. Miscellaneous Options Summary

Option Alias Description Section

--linker_help -help Displays information about syntax and available options -

--minimize_trampolines Places sections to minimize number of far trampolines required Section 8.4.34.2

--preferred_order Prioritizes placement of functions Section 8.4.26

--strict_compatibility fP_Ierforms more conservative and rigorous compatibility checking of input object Section 8.4.32
iles

--trampoline_min_spacing When trampoline reservations are spaced more closely than the specified limit, Section 8.4.34.3
tries to make them adjacent

--zero_init Controls preinitialization of uninitialized variables. Default is on.Always off if -- Section 8.4.38
ram_model is used.

8.4.1 Wildcards in File, Section, and Symbol Patterns

8.4.2

8.4.3

The linker allows file, section, and symbol names to be specified using the asterisk (*) and question mark
(?) wildcards. Using * matches any number of characters and using ? matches a single character. Using
wildcards can make it easier to handle related objects, provided they follow a suitable naming convention.

For example:
mp3*.0obj /* matches anything .obj that begins with mp3 */
task?.o0* /* matches taskl.obj, task2.c.obj, taskX.o55, etc. */

SECTIONS

{
.fast_code: { *.obj(*fast*) } > FAST_MEM

.vectors : { vectors.c.obj(.vector:partl:*) > OxFFFFFFOO
.str_code : { rts*.lib<str*.c.obj>(.text) } > S1ROM

}

Specifying C/C++ Symbols with Linker Options
The link-time symbol is the same as the high-level language name.

For more information on referencing symbol names, see the "Object File Symbol Naming Conventions
(Linknames)" section in the ARM Optimizing C/C++ Compiler User's Guide.

For information specifically about C++ symbol naming, see Section 13.3.1 in this document and the "C++
Name Demangler" chapter in the ARM Optimizing C/C++ Compiler User's Guide.

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

Relocation Capabilities (--absolute_exe and --relocatable Options)

The linker performs relocation, which is the process of adjusting all references to a symbol when the
symbol's address changes (Section 2.7).

SPNU118Y —September 1995—-Revised February 2020 Linker Description 185
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

The linker supports two options (--absolute_exe and --relocatable) that allow you to produce an absolute
or a relocatable output module. The linker also supports a third option (-ar) that allows you to produce an
executable, relocatable output module.

When the linker encounters a file that contains no relocation or symbol table information, it issues a
warning message (but continues executing). Relinking an absolute file can be successful only if each input
file contains no information that needs to be relocated (that is, each file has no unresolved references and
is bound to the same virtual address that it was bound to when the linker created it).

8.4.3.1 Producing an Absolute Output Module (--absolute_exe option)

When you use the --absolute_exe option without the --relocatable option, the linker produces an absolute,
executable output module. Absolute files contain no relocation information. Executable files contain the
following:

» Special symbols defined by the linker (see Section 8.5.10.4)
» An header that describes information such as the program entry point
* No unresolved references

The following example links filel.c.obj and file2.c.obj and creates an absolute output module called a.out:
armcl --run_linker --absolute_exe filel.c.obj file2.c.obj

The --absolute_exe and --relocatable Options

NOTE: If you do not use the --absolute_exe or the --relocatable option, the linker acts as if you
specified --absolute_exe.

8.4.3.2 Producing a Relocatable Output Module (--relocatable option)

When you use the --relocatable option, the linker retains relocation entries in the output module. If the
output module is relocated (at load time) or relinked (by another linker execution), use --relocatable to
retain the relocation entries.

The linker produces a file that is not executable when you use the --relocatable option without the --
absolute_exe option. A file that is not executable does not contain special linker symbols or an optional
header. The file can contain unresolved references, but these references do not prevent creation of an
output module.

This example links filel.c.obj and file2.c.obj and creates a relocatable output module called a.out:
armcl --run_linker --relocatable filel.c.obj file2.c.obj

The output file a.out can be relinked with other object files or relocated at load time. (Linking a file that will
be relinked with other files is called partial linking. For more information, see Section 8.10.)

8.4.3.3 Producing an Executable, Relocatable Output Module (-ar Option)

8.4.4

If you invoke the linker with both the --absolute_exe and --relocatable options, the linker produces an
executable, relocatable object module. The output file contains the special linker symbols, an optional
header, and all resolved symbol references; however, the relocation information is retained.

This example links filel.c.obj and file2.c.obj to create an executable, relocatable output module called
Xr.out:

armcl --run_linker -ar filel.c.obj file2.c.obj --output_file=xr.out

Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)

The --arg_size option instructs the linker to allocate memory to be used by the loader to pass arguments
from the command line of the loader to the program. The syntax of the --arg_size option is:

--arg_size= size

The size is the number of bytes to be allocated in target memory for command-line arguments.

186

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.5

8.4.6

8.4.7

8.4.8

By default, the linker creates the ¢ _args__ symbol and sets it to -1. When you specify --arg_size=size,
the following occur:

» The linker creates an uninitialized section named .args of size bytes.
» The __c_args__ symbol contains the address of the .args section.

The loader and the target boot code use the .args section and the __c_args__ symbol to determine
whether and how to pass arguments from the host to the target program. See the ARM Optimizing C/C++
Compiler User's Guide for information about the loader.

Changing Encoding of Big-Endian Instructions

When you are creating big-endian executable files, you can determine whether instruction encoding is in
little or big endian. The -be8 option produces big-endian executable modules with little-endian encoded
instructions. This is the default behavior for architecture version 6 and higher.

The -be32 option produces big-endian executable modules with big-endian encoded instructions. This is
the default behavior for architecture version 5 and lower.

Compression (--cinit_compression and --copy_compression Option)

By default, the linker does not compress copy table (Section 3.3.3 and Section 8.8) source data sections.
The --cinit_compression and --copy_compression options specify compression through the linker.

The --cinit_compression option specifies the compression type the linker applies to the C autoinitialization
copy table source data sections. The default is Izss.

Overlays can be managed by using linker-generated copy tables. To save ROM space the linker can
compress the data copied by the copy tables. The compressed data is decompressed during copy. The --
copy_compression option controls the compression of the copy data tables.

The syntax for the options are:
--cinit_compression[=compression_kind]
--copy_compression[=compression_kind]

The compression_kind can be one of the following types:

» off. Don't compress the data.

e rle. Compress data using Run Length Encoding.

» lzss. Compress data using Lempel-Ziv-Storer-Szymanski compression (the default if no
compression_kind is specified).

Compressed sections within initialization tables are byte aligned in order to reduce the occurrence of holes
in the .cinit table.

See Section 8.8.5 for more information about compression.

Compress DWARF Information (--compress_dwarf Option)

The --compress_dwarf option aggressively reduces the size of DWARF information by eliminating
duplicate information from input object files.

For ELF object files, which are used with EABI, the --compress_dwarf option eliminates duplicate
information that could not be removed through the use of ELF COMDAT groups. (See the ELF
specification for information on COMDAT groups.)

Control Linker Diaghostics

The linker honors certain C/C++ compiler options to control linker-generated diagnostics. The diagnostic
options must be specified before the --run_linker option.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 187
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Linker Options

13 TEXAS
INSTRUMENTS

www.ti.com

--diag_error=num

--diag_remark=num

--diag_suppress=num

--diag_warning=num

--display_error_number

--emit_references:file
[=filename]

--emit_warnings_as_
errors

--issue_remarks
--no_warnings
--set_error_limit=num

--verbose_diagnostics

Categorize the diagnostic identified by num as an error. To find the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_error=num to recategorize the diagnostic
as an error. You can only alter the severity of discretionary diagnostics.

Categorize the diagnostic identified by num as a remark. To find the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_remark=num to recategorize the
diagnostic as a remark. You can only alter the severity of discretionary
diagnostics.

Suppress the diagnostic identified by num. To find the numeric identifier of a
diagnostic message, use the --display_error_number option first in a
separate link. Then use --diag_suppress=num to suppress the diagnostic.
You can only suppress discretionary diagnostics.

Categorize the diagnostic identified by num as a warning. To find the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_warning=num to recategorize the
diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

Display a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and --
diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the ARM Optimizing C/C++ Compiler User's Guide for
more information on understanding diagnostic messages.

Emits a file containing section information. The information includes section
size, symbols defined, and references to symbols. This information allows
you to determine why each section is included in the linked application. The
output file is a simple ASCII text file. The filename is used as the base name
of a file created. For example, --emit_references:file=myfile generates a file
named myfile.txt in the current directory.

Treat all warnings as errors. This option cannot be used with the --
no_warnings option. The --diag_remark option takes precedence over this
option. This option takes precedence over the --diag_warning option.

Issue remarks (nonserious warnings), which are suppressed by default.
Suppress warning diagnostics (errors are still issued).

Set the error limit to num, which can be any decimal value. The linker
abandons linking after this number of errors. (The default is 100.)

Provide verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

8.4.9 Automatic Library Selection (--disable_auto_rts Option)

The --disable_auto_rts option disables the automatic selection of a run-time-support (RTS) library. See the
ARM Optimizing C/C++ Compiler User's Guide for details on the automatic selection process.

8.4.10 Do Not Remove Unused Sections (--unused_section_elimination Option)

To minimize the footprint, the ELF linker does not include sections that are not needed to resolve any
references in the final executable. Use --unused_section_elimination=off to disable this optimization. The
linker default behavior is equivalent to --unused_section_elimination=on.

188

Linker Description

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.11 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)

The linker preprocesses linker command files using a standard C preprocessor. Therefore, the command
files can contain well-known preprocessing directives such as #define, #include, and #if / #endif.

Three linker options control the preprocessor:

--disable_pp Disables preprocessing for command files
--define=name[=val] Predefines name as a preprocessor macro
--undefine=name Removes the macro name

The compiler has --define and --undefine options with the same meanings. However, the linker options are
distinct; only --define and --undefine options specified after --run_linker are passed to the linker. For
example:

armcl --define=F00=1 main.c --run_linker --define=BAR=2 Ink.cmd
The linker sees only the --define for BAR; the compiler only sees the --define for FOO.

When one command file #includes another, preprocessing context is carried from parent to child in the
usual way (that is, macros defined in the parent are visible in the child). However, when a command file is
invoked other than through #include, either on the command line or by the typical way of being named in
another command file, preprocessing context is not carried into the nested file. The exception to this is --
define and --undefine options, which apply globally from the point they are encountered. For example:

--define GLOBAL
#define LOCAL

#include "incfile.cmd” /* sees GLOBAL and LOCAL */
nestfile.cmd /* only sees GLOBAL */

Two cautions apply to the use of --define and --undefine in command files. First, they have global effect as
mentioned above. Second, since they are not actually preprocessing directives themselves, they are
subject to macro substitution, probably with unintended consequences. This effect can be defeated by
guoting the symbol name. For example:

--define MYSYM=123

--undefine MYSYM /* expands to --undefine 123 (1) */

--undefine "MYSYM"™ /* ahh, that"s better */

The linker uses the same search paths to find #include files as it does to find libraries. That is, #include
files are searched in the following places:

1. If the #include file name is in quotes (rather than <brackets>), in the directory of the current file
2. In the list of directories specified with --library options or environment variables (see Section 8.4.18)

There are two exceptions: relative pathnames (such as "../name") always search the current directory; and
absolute pathnames (such as "/usr/tools/name") bypass search paths entirely.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 189

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Linker Options

13 TEXAS
INSTRUMENTS

www.ti.com

The linker provides the built-in macro definitions listed in Table 8-10. The availability of these macros
within the linker is determined by the command-line options used, not the build attributes of the files being
linked. If these macros are not set as expected, confirm that your project's command line uses the correct

compiler option settings.

Table 8-10. Predefined ARM Macro Names

Macro Name Description
__ DATE__ Expands to the compilation date in the form mmm dd yyyy
__FILE__ Expands to the current source filename

__TI_COMPILER_VERSION__

__TI_EABI__
__TI_ARM__
__TI_ARM_V4__

__TI_ARM_V5__

__TI_ARM_V6__

__TI_ARM_V6MO__

__TI_ARM_V7__
__TI_ARM_V7A8__

__TI_ARM_V7M__
__TI_ARM_V7M3__

__TI_ARM_V7M4__

__TI_ARM_V7R4__

_TIME__

Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does
not contain a decimal. For example, version 3.2.1 is represented as 3002001. The
leading zeros are dropped to prevent the number being interpreted as an octal.

Defined to 1 if EABI is enabled; otherwise, it is undefined.
Always defined

Defined to 1 if the v4 architecture (ARM?7) is targeted (the -mv4 option is used);
otherwise, it is undefined.

Defined to 1 if the V5E architecture (ARMOE) is targeted (the -mv5e option is used);
otherwise, it is undefined.

Defined to 1 if the v6 architecture (ARM11) is targeted (the -mv6 option is used);
otherwise, it is undefined.

Defined to 1 if the v6MO architecture (Cortex-MO) is targeted (the -mv6MO option is
used); otherwise, it is undefined.

Defined to 1 if any v7 architecture (Cortex) is targeted; otherwise, it is undefined.

Defined to 1 if the v7A8 architecture (Cortex-A8) is targeted (the -mv7A8 option is used);
otherwise, it is undefined.

Defined to 1 if any Cortex-M architecture is targeted; otherwise, it is undefined.

Defined to 1 if the v7M3 architecture (Cortex-M3) is targeted (the -mv7M3 option is
used); otherwise, it is undefined.

Defined to 1 if the v7M4 architecture (Cortex-M4) is targeted (the -mv7M4 option is
used); otherwise, it is undefined.

Defined to 1 if the v7R4 architecture (Cortex-R4) is targeted (the -mv7R4 option is
used); otherwise, it is undefined.

Expands to the compilation time in the form "hh:mm:ss"

190

Linker Description

SPNU118Y —September 1995—Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.12 Error Correcting Code Testing (--ecc Options)

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker
command file.

To enable ECC support, include --ecc=on as a linker option on the command line. By default ECC
generation is off, even if the ECC directive and ECC specifiers are used in the linker command file. This
allows you to fully configure ECC in the linker command file while still being able to quickly turn the code
generation on and off via the command line. See Section 8.5.9 for details on linker command file syntax to
configure ECC support.

ECC uses extra bits to allow errors to be detected and/or corrected by a device. The ECC support
provided by the linker is compatible with the ECC support in Tl Flash memory on various Tl devices. Tl
Flash memory uses a modified Hamming(72,64) code, which uses 8 parity bits for every 64 bits. Check
the documentation for your Flash memory to see if ECC is supported. (ECC for read-write memory is
handled completely in hardware at run time.)

After enabling ECC with the --ecc=on option, you can use the following command-line options to test ECC
by injecting bit errors into the linked executable. These options let you specify an address where an error
should appear and a bitmask of bits in the code/data at that address to flip. You can specify the address
of the error absolutely or as an offset from a symbol. When a data error is injected, the ECC parity bits for
the data are calculated as if the error were not present. This simulates bit errors that might actually occur
and tests ECC's ability to correct different levels of errors.

The --ecc:data_error option injects errors into the load image at the specified location. The syntax is:
--ecc:data_error=(symbol+offset]|address)[,page],bitmask

The address is the location of the minimum addressable unit where the error is to be injected. A
symbol+offset can be used to specify the location of the error to be injected with a signed offset from that
symbol. The page number is needed to make the location non-ambiguous if the address occurs on

multiple memory pages. The bitmask is a mask of the bits to flip; its width should be the width of an
addressable unit.

For example, the following command line flips the least-significant bit in the byte at the address 0x100,
making it inconsistent with the ECC parity bits for that byte:

armcl test.c --ecc:data_error=0x100,0x01 -z -0 test.out

The following command flips two bits in the third byte of the code for main():
armcl test.c --ecc:data_error=main+2,0x42 -z -0 test.out
The --ecc:ecc_error option injects errors into the ECC parity bits that correspond to the specified

location. Note that the ecc_error option can therefore only specify locations inside ECC input ranges,
whereas the data_error option can also specify errors in the ECC output memory ranges. The syntax is:

--ecc:ecc_error=(symbol+offset]address)[,page],bitmask

The parameters for this option are the same as for --ecc:data_error, except that the bitmask must be
exactly 8 bits. Mirrored copies of the affected ECC byte will also contain the same injected error.

An error injected into an ECC byte with --ecc:ecc_error may cause errors to be detected at run time in any
of the 8 data bytes covered by that ECC byte.

For example, the following command flips every bit in the ECC byte that contains the parity information for
the byte at 0x200:

armcl test.c --ecc:ecc_error=0x200,0xff -z -0 test.out

The linker disallows injecting errors into memory ranges that are neither an ECC range nor the input range
for an ECC range. The compiler can only inject errors into initialized sections.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 191

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.13 Define an Entry Point (--entry_point Option)

The memory address at which a program begins executing is called the entry point. When a loader loads
a program into target memory, the program counter (PC) must be initialized to the entry point; the PC then
points to the beginning of the program.

The linker can assign one of four values to the entry point. These values are listed below in the order in
which the linker tries to use them. If you use one of the first three values, it must be an external symbol in
the symbol table.

» The value specified by the --entry_point option. The syntax is:
--entry_point= global_symbol

where global_symbol defines the entry point and must be defined as an external symbol of the input
files. The external symbol name of C or C++ objects may be different than the name as declared in the
source language; refer to the ARM Optimizing C/C++ Compiler User's Guide.

e The value of symbol c_int0O0 (if present). The _c_int00 symbol must be the entry point if you are
linking code produced by the C compiler.

» The value of symbol _main (if present)
* 0 (default value)

This example links filel.c.obj and file2.c.obj. The symbol begin is the entry point; begin must be defined as
external in filel or file2.

armcl --run_linker --entry_point=begin filel.c.obj file2.c.obj

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.4.14 Set Default Fill Value (--fill_value Option)

The --fill_value option fills the holes formed within output sections. The syntax for the option is:
-fill_value= value

The argument value is a 32-bit constant (up to eight hexadecimal digits). If you do not use --fill_value, the
linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:
armcl --run_linker --fill_value=0xABCDABCD filel.c.obj file2.c.obj

8.4.15 Generate List of Dead Functions (--generate_dead_funcs_list Option)

The --generate_dead_funcs_list option creates a list of functions that are never referenced (dead) and
writes the list to the specified file. If no filename is specified, the default filename dead_funcs.xml is used.
The syntax for the option is:

--generate_dead_funcs_list=filename

Refer to the ARM Optimizing C/C++ Compiler User's Guide for details on the --generate_dead_funcs_list
option and the corresponding --use_dead_funcs_list option.

8.4.16 Define Heap Size (--heap_size Option)

The C/C++ compiler uses an uninitialized section called .sysmem for the C run-time memory pool used by
malloc(). You can set the size of this memory pool at link time by using the --heap_size option. The syntax
for the --heap_size option is:

--heap_size= size
The size must be a constant. This example defines a 4K byte heap:
armcl --run_linker --heap_size=0x1000 /* defines a 4k heap (.sysmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in an input file.

The linker also creates a global symbol, _ TI_ SYSMEM_SIZE, and assigns it a value equal to the size of
the heap. The default size is 2K bytes. See Section 8.6.1 for information about referring to linker symbols
in C/C++ code.

192

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.17 Hiding Symbols

Symbol hiding prevents the symbol from being listed in the output file's symbol table. While localization is
used to prevent name space clashes in a link unit (see Section 8.4.19), symbol hiding is used to obscure
symbols which should not be visible outside a link unit. Such symbol’'s names appear only as empty
strings or “no name” in object file readers. The linker supports symbol hiding through the --hide and --
unhide options.

The syntax for these options are:
--hide='pattern’
--unhide="pattern'

The pattern is a "glob" (a string with optional ? or * wildcards). Use ? to match a single character. Use * to
match zero or more characters.

The --hide option hides global symbols with a linkname matching the pattern. It hides symbols matching
the pattern by changing the name to an empty string. A global symbol that is hidden is also localized.

The --unhide option reveals (un-hides) global symbols that match the pattern that are hidden by the --hide
option. The --unhide option excludes symbols that match pattern from symbol hiding provided the pattern
defined by --unhide is more restrictive than the pattern defined by --hide.

These options have the following properties:

* The --hide and --unhide options can be specified more than once on the command line.
» The order of --hide and --unhide has no significance.

* A symbol is matched by only one pattern defined by either --hide or --unhide.

e A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

» Itis an error if a symbol matches patterns from --hide and --unhide and one does not supersede the
other. Pattern A supersedes pattern B if A can match everything B can and more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

» These options affect final and partial linking.
In map files these symbols are listed under the Hidden Symbols heading.

8.4.18 Alter the Library Search Algorithm (--library, --search_path, and TI_ARM_C DIR)

Usually, when you want to specify a file as linker input, you simply enter the filename; the linker looks for
the file in the current directory. For example, suppose the current directory contains the library object.lib. If
this library defines symbols that are referenced in the file filel.c.obj, this is how you link the files:

armcl --run_linker filel.c.obj object.lib

If you want to use a file that is not in the current directory, use the --library linker option. The --library
option's short form is -I. The syntax for this option is:

--library=[pathname] filename

The filename is the name of an archive, an object file, or linker command file. You can specify up to 128
search paths.

The --library option is not required when one or more members of an object library are specified for input
to an output section. For more information about allocating archive members, see Section 8.5.5.5.

You can adjust the linker's directory search algorithm using the --search_path linker option or the
TI_ARM_C_DIR environment variable. The linker searches for object libraries and command files in this
order:

1. It searches directories named with the --search_path linker option. The --search_path option must
appear before the --library option on the command line or in a command file.

2. It searches directories named with TI_ARM_C_DIR.

3. If TI_ARM_C_DIR is not set, it searches directories hamed with the assembler's TI_ARM_A_DIR
environment variable.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 193

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

4. It searches the current directory.

NOTE: The TI_ARM_C_DIR environment variable takes precedence over the older TMS470_C_DIR
environment variable if both are defined. If only TMS470_C_DIR is set, it will continue to be
used. Likewise, the TI_ARM_A_DIR environment variable takes precedence over the older
TMS470_A_DIR environment variable if both are defined. If only TMS470_A_DIR is set, it
will continue to be used.

8.4.18.1 Name an Alternate Library Directory (--search_path Option)

The --search_path option names an alternate directory that contains input files. The --search_path option's
short form is -1. The syntax for this option is:

--search_path= pathname
The pathname names a directory that contains input files.

When the linker is searching for input files named with the --library option, it searches through directories
named with --search_path first. Each --search_path option specifies only one directory, but you can have
several --search_path options per invocation. When you use the --search_path option to name an
alternate directory, it must precede any --library option used on the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and lib2.lib that reside in Id and Id2
directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set environment
variable, and how to use both libraries during a link. Select the row for your operating system:

Operating System Enter

armcl --run_linker fl.c.obj f2.c.obj --search_path=/1d --search_path=/1d2
UNIX (Bourne shell) --library=r.lib --library=lib2.1ib

armcl --run_linker fl.c.obj f2.c.obj --search_path=\ld --search_path=\1d2
Windows —-library=r_lib --library=lib2_1ib

8.4.18.2 Name an Alternate Library Directory (TI_ARM_C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string to. The linker uses an
environment variable named TI_ARM_C_DIR to name alternate directories that contain object libraries.
The command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) TI_ARM_C_DIR=" pathname,; pathname,; . . ."; export T_ARM_C_DIR
Windows set TI_ARM_C_DIR= pathname, ; pathname, ; . ..

The pathnames are directories that contain input files. Use the --library linker option on the command line
or in a command file to tell the linker which library or linker command file to search for. The pathnames
must follow these constraints:

» Pathnames must be separated with a semicolon.

e Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:

set TI_ARM_C DIR= c:\path\one\to\tools ; c:\path\two\to\tools

» Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:

set TI_ARM_C_DIR=c:\Ffirst path\to\tools;d:\second path\to\tools
In the example below, assume that two archive libraries called r.lib and lib2.lib reside in Id and 1d2

directories. The table below shows how to set the environment variable, and how to use both libraries
during a link. Select the row for your operating system:

194

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

Operating System Invocation Command
TI_ARM_C_DIR="/1d ;/1d2"; export TI_ARM_C_DIR;
UNIX (Bourne shell) armcl --run_linker fl.c.obj f2.c.obj --library=r.lib —--library=lib2.lib

TI_ARM_C_DIR=\Id;\1d2
Windows armcl --run linker fl.c.obj f2.c.obj --library=r.lib --library=lib2.1ib

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset TI_ARM_C DIR
Windows set TI_ARM_C _DIR=

The assembler uses an environment variable named TI_ARM_A_DIR to name alternate directories that
contain copy/include files or macro libraries. If TI_ARM_C_DIR is not set, the linker searches for object
libraries in the directories named with TI_ARM_A_DIR. For information about TI_ARM_A_DIR, see
Section 4.5.2. For more information about object libraries, see Section 8.6.3.

8.4.18.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

There are two ways to exhaustively search for unresolved symbols:
» Reread libraries if you cannot resolve a symbol reference (--reread_libs).
» Search libraries in the order that they are specified (--priority).

The linker normally reads input files, including archive libraries, only once when they are encountered on
the command line or in the command file. When an archive is read, any members that resolve references
to undefined symbols are included in the link. If an input file later references a symbol defined in a
previously read archive library, the reference is not resolved.

With the --reread_libs option, you can force the linker to reread all libraries. The linker rereads libraries
until no more references can be resolved. Linking using --reread_libs may be slower, so you should use it
only as needed. For example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a
reference to a symbol defined in a.lib, you can resolve the mutual dependencies by listing one of the
libraries twice, as in:

armcl --run_linker --library=a.lib --library=b.lib --library=a.lib
or you can force the linker to do it for you:

The --priority option provides an alternate search mechanism for libraries. Using --priority causes each
unresolved reference to be satisfied by the first library that contains a definition for that symbol. For
example:

objfile references A

libl defines B

1ib2 defines A, B; obj defining A references B

% armcl --run_linker objfile libl lib2

Under the existing model, objfile resolves its reference to A in lib2, pulling in a reference to B, which
resolves to the B in lib2.

Under --priority, obijfile resolves its reference to A in lib2, pulling in a reference to B, but now B is resolved
by searching the libraries in order and resolves B to the first definition it finds, namely the one in lib1.

The --priority option is useful for libraries that provide overriding definitions for related sets of functions in
other libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the rtsv4d_A be_eabi.lib
without providing a full replacement for rtsv4_A_be_eabi.lib. Using --priority and linking your new library
before rtsv4_A_be_eabi.lib guarantees that all references to malloc and free resolve to the new library.

The --priority option is intended to support linking programs with SYS/BIOS where situations like the one
illustrated above occur.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 195

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.19 Change Symbol Localization

Symbol localization changes symbol linkage from global to local (static). This is used to obscure global
symbols that should not be widely visible, but must be global because they are accessed by several
modules in the library. The linker supports symbol localization through the --localize and --globalize linker
options.

The syntax for these options are:
--localize="pattern’
--globalize="pattern'

The pattern is a "glob" (a string with optional ? or * wildcards). Use ? to match a single character. Use * to
match zero or more characters.

The --localize option changes the symbol linkage to local for symbols matching the pattern.

The --globalize option changes the symbol linkage to global for symbols matching the pattern. The --
globalize option only affects symbols that are localized by the --localize option. The --globalize option
excludes symbols that match the pattern from symbol localization, provided the pattern defined by --
globalize is more restrictive than the pattern defined by --localize.

See Section 8.4.2 for information about using C/C++ identifiers in linker options such as --localize and --
globalize.

These options have the following properties:

e The --localize and --globalize options can be specified more than once on the command line.

» The order of --localize and --globalize options has no significance.

» A symbol is matched by only one pattern defined by either --localize or --globalize.

* A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

» ltis an error if a symbol matches patterns from --localize and --globalize and if one does not supersede
other. Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

» These options affect final and partial linking.
In map files these symbols are listed under the Localized Symbols heading.

8.4.19.1 Make All Global Symbols Static (--make_static Option)

The --make_static option makes all global symbols static. Static symbols are not visible to externally linked
modules. By making global symbols static, global symbols are essentially hidden. This allows external
symbols with the same name (in different files) to be treated as unique.

The --make_static option effectively nullifies all .global assembler directives. All symbols become local to
the module in which they are defined, so no external references are possible. For example, assume
filel.c.obj and file2.c.obj both define global symbols called EXT. By using the --make_static option, you
can link these files without conflict. The symbol EXT defined in filel.c.obj is treated separately from the
symbol EXT defined in file2.c.obj.

armcl --run_linker --make_static filel.c.obj file2.c.obj
The --make_static option makes all global symbols static. If you have a symbol that you want to remain
global and you use the --make_static option, you can use the --make_global option to declare that symbol

to be global. The --make_global option overrides the effect of the --make_static option for the symbol that
you specify. The syntax for the --make_global option is:

--make_global= global_symbol

196

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.20 Create a Map File (--map_file Option)
The syntax for the --map_file option is:
--map_file= filename

The linker map describes:

» Memory configuration

* Input and output section allocation

» Linker-generated copy tables

» Trampolines

» The addresses of external symbols after they have been relocated
e Hidden and localized symbols

The map file contains the name of the output module and the entry point; it can also contain up to three
tables:

« A table showing the new memory configuration if any nondefault memory is specified (memory
configuration). The table has the following columns; this information is generated on the basis of the
information in the MEMORY directive in the linker command file:

— Name. This is the name of the memory range specified with the MEMORY directive.

— Origin. This specifies the starting address of a memory range.

— Length. This specifies the length of a memory range.

— Unused. This specifies the total amount of unused (available) memory in that memory area.
— Attributes. This specifies one to four attributes associated with the named range:

specifies that the memory can be read.

specifies that the memory can be written to.

specifies that the memory can contain executable code.
specifies that the memory can be initialized.

- Xs®D

For more information about the MEMORY directive, see Section 8.5.4.

» A table showing the linked addresses of each output section and the input sections that make up the
output sections (section placement map). This table has the following columns; this information is
generated on the basis of the information in the SECTIONS directive in the linker command file:

— Output section. This is the name of the output section specified with the SECTIONS directive.

— Origin. The first origin listed for each output section is the starting address of that output section.
The indented origin value is the starting address of that portion of the output section.

— Length. The first length listed for each output section is the length of that output section. The
indented length value is the length of that portion of the output section.

— Attributes/input sections. This lists the input file or value associated with an output section. If the
input section could not be allocated, the map file will indicate this with "FAILED TO ALLOCATE".

For more information about the SECTIONS directive, see Section 8.5.5.
» A table showing each external symbol and its address sorted by symbol name.
« A table showing each external symbol and its address sorted by symbol address.

The following example links filel.c.obj and file2.c.obj and creates a map file called map.out:
armcl --run_linker filel.c.obj file2.c.obj --map_file=map.out

Example 8-32 shows an example of a map file.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 197

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.21 Managing Map File Contents (--mapfile_contents Option)

The --mapfile_contents option assists with managing the content of linker-generated map files. The syntax
for the --mapfile_contents option is:

--mapfile_contents= filter[, filter]

When the --map_file option is specified, the linker produces a map file containing information about
memory usage, placement information about sections that were created during a link, details about linker-
generated copy tables, and symbol values.

The --mapfile_contents option provides a mechanism for you to control what information is included in or
excluded from a map file. When you specify --mapfile_contents=help from the command line, a help
screen listing available filter options is displayed. The following filter options are available:

Attribute Description Default State
crctables CRC tables On
copytables Copy tables On
entry Entry point On
load_addr Display load addresses Off
memory Memory ranges On
modules Module view On
sections Sections On
sym_defs Defined symbols per file Off
sym_dp Symbols sorted by data page On
sym_name Symbols sorted by name On
sym_runaddr Symbols sorted by run address On
all Enables all attributes

none Disables all attributes

The --mapfile_contents option controls display filter settings by specifying a comma-delimited list of display
attributes. When prefixed with the word no, an attribute is disabled instead of enabled. For example:
--mapfile_contents=copytables,noentry

--mapfile_contents=all,nocopytables

--mapfile_contents=none,entry

By default, those sections that are currently included in the map file when the --map_file option is specified
are included. The filters specified in the --mapfile_contents options are processed in the order that they
appear in the command line. In the third example above, the first filter, none, clears all map file content.
The second filter, entry, then enables information about entry points to be included in the generated map
file. That is, when --mapfile_contents=none,entry is specified, the map file contains only information about
entry points.

The load_addr and sym_defs attributes are both disabled by default.

If you turn on the load_addr filter, the map file includes the load address of symbols that are included in
the symbol list in addition to the run address (if the load address is different from the run address).

You can use the sym_defs filter to include information sorted on a file by file basis. You may find it useful
to replace the sym_name, sym_dp, and sym_runaddr sections of the map file with the sym_defs section
by specifying the following --mapfile_contents option:
--mapfile_contents=nosym_name,nosym_dp,nosym_runaddr,sym_defs

By default, information about global symbols defined in an application are included in tables sorted by

name, data page, and run address. If you use the --mapfile_contents=sym_defs option, static variables
are also listed.

198

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.22 Disable Name Demangling (--no_demangle)
By default, the linker uses demangled symbol names in diagnostics. For example:

undefined symbol first referenced in file
ANewClass::getValue() test.cpp.obj

The --no_demangle option instead shows the linkname for symbols in diagnostics. For example:

undefined symbol first referenced in file
_ZN9ANewClass8getValueEv test.cpp.obj

For information on referencing symbol names, see the "Object File Symbol Naming Conventions
(Linknames)" section in the ARM Optimizing C/C++ Compiler User's Guide.

For information specifically about C++ symbol naming, see the "C++ Name Demangler" chapter in the
ARM Optimizing C/C++ Compiler User's Guide.

8.4.23 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)

By default, the linker eliminates duplicate entries of symbolic debugging information. Such duplicate
information is commonly generated when a C program is compiled for debugging. For example:

-[header.h]-
typedef struct

{

<define some structure members>
} XYZ;

-[f1.c 1-
#include ""header.h"

-[f2.c 1-
#include "header.h"

When these files are compiled for debugging, both f1.c.obj and f2.c.obj have symbolic debugging entries
to describe type XYZ. For the final output file, only one set of these entries is necessary. The linker
eliminates the duplicate entries automatically.

8.4.24 Strip Symbolic Information (--no_symtable Option)

The --no_symtable option creates a smaller output module by omitting symbol table information and line
number entries. The --no_sym_table option is useful for production applications when you do not want to
disclose symbolic information to the consumer.

This example links filel.c.obj and file2.c.obj and creates an output module, stripped of line numbers and
symbol table information, named nosym.out:

armcl --run_linker --output_file=nosym.out --no_symtable filel.c.obj file2.c.obj

Using the --no_symtable option limits later use of a symbolic debugger.

Stripping Symbolic Information

NOTE: The --no_symtable option is deprecated. To remove symbol table information, use the
armstrip utility as described in Section 11.4.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 199

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.25 Name an Output Module (--output_file Option)

The linker creates an output module when no errors are encountered. If you do not specify a filename for
the output module, the linker gives it the default name a.out. If you want to write the output module to a
different file, use the --output_file option. The syntax for the --output_file option is:

--output_file= filename
The filename is the new output module name.

This example links filel.c.obj and file2.c.obj and creates an output module named run.out:
armcl --run_linker --output_file=run.out filel.c.obj file2.c.obj

8.4.26 Prioritizing Function Placement (--preferred_order Option)

The compiler prioritizes the placement of a function relative to others based on the order in which --
preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order=function specification

Refer to the ARM Optimizing C/C++ Compiler User's Guide for details on the program cache layout tool,
which is impacted by --preferred_option.

8.4.27 C Language Options (--ram_model and --rom_model Options)

The --ram_model and --rom_model options cause the linker to use linking conventions that are required by
the C compiler. Both options inform the linker that the program is a C program and requires a boot routine.

» The --ram_model option tells the linker to initialize variables at load time.
e The --rom_model option tells the linker to autoinitialize variables at run time.

If you use a linker command line that does not compile any C/C++ files, you must use either the --
rom_model or --ram_model option. If your command line fails to include one of these options when it is
required, you will see "warning: no suitable entry-point found; setting to 0".

If you use a single command line to both compile and link, the --rom_model option is the default. If used,
the --rom_model or --ram_model option must follow the --run_linker option.

For more information, see Section 8.11, Section 3.3.2.1, and Section 3.3.2.2.

8.4.28 Retain Discarded Sections (--retain Option)

When --unused_section_elimination is on, the ELF linker does not include a section in the final link if it is
not needed in the executable to resolve references. The --retain option tells the linker to retain a list of
sections that would otherwise not be retained. This option accepts the wildcards *' and '?'. When
wildcards are used, the argument should be in quotes. The syntax for this option is:
--retain=sym_or_scn_spec
The --retain option take one of the following forms:
e --retain=symbol_spec
Specifying the symbol format retains sections that define symbol_spec. For example, this code retains
sections that define symbols that start with init:
--retain="init*"
You cannot specify --retain="*",
e -retain=file_spec(scn_spec|, scn_spec, ...]
Specifying the file format retains sections that match one or more scn_spec from files matching the
file_spec. For example, this code retains .intvec sections from all input files:
—--retain="*(.int*)"

You can specify --retain="*(*)' to retain all sections from all input files. However, this does not prevent
sections from library members from being optimized out.

200

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

e --retain=ar_spec<mem_spec, [mem_spec, ...>(scn_spec][, scn_spec, ...]

Specifying the archive format retains sections matching one or more scn_spec from members
matching one or more mem_spec from archive files matching ar_spec. For example, this code retains
the .text sections from printf.c.obj in the rts32eabi.lib library:

--retain=rts32eabi.lib<printf.c.obj>(.text)

If the library is specified with the --library option (--library=rts32eabi.lib) the library search path is used
to search for the library. You cannot specify *<*>(*)".

8.4.29 Create an Absolute Listing File (--run_abs Option)

The --run_abs option produces an output file for each file linked. These files are named with the input
filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs file.

8.4.30 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)

The --scan_libraries option scans all libraries during a link looking for duplicate symbol definitions to those
symbols that are actually included in the link. The scan does not consider absolute symbols or symbols
defined in COMDAT sections. The --scan_libraries option helps determine those symbols that were
actually chosen by the linker over other existing definitions of the same symbol in a library.

The library scanning feature can be used to check against unintended resolution of a symbol reference to
a definition when multiple definitions are available in the libraries.

8.4.31 Define Stack Size (--stack_size Option)

The ARM C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time stack.
You can set the size of this section in bytes at link time with the --stack_size option. The syntax for the --
stack_size option is:

--stack_size= size

The size must be a constant and is in bytes. This example defines a 4K byte stack:
armcl --run_linker --stack_size=0x1000 /* defines a 4K heap (.stack section)*/

If you specified a different stack size in an input section, the input section stack size is ignored. Any
symbols defined in the input section remain valid; only the stack size is different.

When the linker defines the .stack section, it also defines a global symbol, _ Tl STACK_SIZE, and
assigns it a value equal to the size of the section. The default software stack size is 2K bytes. See
Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.4.32 Enforce Strict Compatibility (--strict_compatibility Option)

The linker performs more conservative and rigorous compatibility checking of input object files when you
specify the --strict_compatibility option. Using this option guards against additional potential compatibility
issues, but may signal false compatibility errors when linking in object files built with an older toolset, or
with object files built with another compiler vendor's toolset. To avoid issues with legacy libraries, the --
strict_compatibility option is turned off by default.

8.4.33 Mapping of Symbols (--symbol_map Option)

Symbol mapping allows a symbol reference to be resolved by a symbol with a different name. Symbol
mapping allows functions to be overridden with alternate definitions. This feature can be used to patch in
alternate implementations, which provide patches (bug fixes) or alternate functionality. The syntax for the -
-symbol_map option is:

--symbol_map= refname=defname

For example, the following code makes the linker resolve any references to foo by the definition
foo_patch:

--symbol_map="foo=foo_patch*

The --symbol_map option is now supported even if --opt_level=4 was used when compiling.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 201

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.34 Generate Far Call Trampolines (--trampolines Option)

The ARM device has PC-relative call and PC-relative branch instructions whose range is smaller than the
entire address space. When these instructions are used, the destination address must be near enough to
the instruction that the difference between the call and the destination fits in the available encoding bits. If
the called function is too far away from the calling function, the linker generates an error or generates a
trampoline, depending on the setting of the --trampolines option (on or off).

The alternative to a PC-relative call is an absolute call, which is often implemented as an indirect call: load
the called address into a register, and call that register. This is often undesirable because it takes more
instructions (speed- and size-wise) and requires an extra register to contain the address.

By default, the compiler generates calls that may require a trampoline if the destination is too far away. On
some architectures, this type of call is called a "near call."

The --trampolines option allows you to control the generation of trampolines. When set to "on", this option
causes the linker to generate a trampoline code section for each call that is linked out-of-range of its
called destination. The trampoline code section contains a sequence of instructions that performs a
transparent long branch to the original called address. Each calling instruction that is out-of-range from the
called function is redirected to the trampoline.

The syntax for this option is:
--trampolines[=on|off]
The default setting is on. For ARM, trampolines are turned on by default.

For example, in a section of C code the bar function calls the foo function. The compiler generates this
code for the function:

bar:

call foo ; call the function "foo"

If the foo function is placed out-of-range from the call to foo that is inside of bar, then with --trampolines
the linker changes the original call to foo into a call to foo_trampoline as shown:

bar:

call foo_trampoline ; call a trampoline for foo

The above code generates a trampoline code section called foo_trampoline, which contains code that
executes a long branch to the original called function, foo. For example:

foo_trampoline:
branch_long foo

Trampolines can be shared among calls to the same called function. The only requirement is that all calls
to the called function be linked near the called function's trampoline.

When the linker produces a map file (the --map_file option) and it has produced one or more trampolines,
then the map file will contain statistics about what trampolines were generated to reach which functions. A
list of calls for each trampoline is also provided in the map file.

The Linker Assumes R13 Contains the Stack Pointer

NOTE: Assembly language programmers must be aware that the linker assumes R13 contains the
stack pointer. The linker must save and restore values on the stack in trampoline code that it
generates. If you do not use R13 as the stack pointer, you should use the linker option that
disables trampolines, --trampolines=off. Otherwise, trampolines could corrupt memory and
overwrite register values.

202 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.34.1 Advantages and Disadvantages of Using Trampolines

The advantage of using trampolines is that you can treat all calls as near calls, which are faster and more
efficient. You will only need to modify those calls that don't reach. In addition, there is little need to
consider the relative placement of functions that call each other. Cases where calls must go through a
trampoline are less common than near calls.

While generating far call trampolines provides a more straightforward solution, trampolines have the
disadvantage that they are somewhat slower than directly calling a function. They require both a call and a
branch. Additionally, while inline code could be tailored to the environment of the call, trampolines are
generated in a more general manner, and may be slightly less efficient than inline code.

An alternative method to creating a trampoline code section for a call that cannot reach its called function

is to actually modify the source code for the call. In some cases this can be done without affecting the size
of the code. However, in general, this approach is extremely difficult, especially when the size of the code
is affected by the transformation.

8.4.34.2 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)

The --minimize_trampolines option attempts to place sections so as to minimize the number of far call
trampolines required, possibly at the expense of optimal memory packing. The syntax is:

--minimize_trampolines=postorder

The argument selects a heuristic to use. The postorder heuristic attempts to place functions before their
callers, so that the PC-relative offset to the callee is known when the caller is placed. By placing the callee
first, its address is known when the caller is placed so the linker can definitively know if a trampoline is
required.

8.4.34.3 Making Trampoline Reservations Adjacent (--trampoline_min_spacing Option)

When a call is placed and the callee's address is unknown, the linker must provisionally reserve space for
a far call trampoline in case the callee turns out to be too far away. Even if the callee ends up being close
enough, the trampoline reservation can interfere with optimal placement for very large code sections.

When trampoline reservations are spaced more closely than the specified limit, use the --
trampoline_min_spacing option to try to make them adjacent. The syntax is:
--trampoline_min_spacing=size

A higher value minimizes fragmentation, but may result in more trampolines. A lower value may reduce
trampolines, at the expense of fragmentation and linker running time. Specifying O for this option disables
coalescing. The default is 16K.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 203

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.34.4 Carrying Trampolines From Load Space to Run Space

It is sometimes useful to load code in one location in memory and run it in another. The linker provides the
capability to specify separate load and run allocations for a section. The burden of actually copying the
code from the load space to the run space is left to you.

A copy function must be executed before the real function can be executed in its run space. To facilitate
this copy function, the assembler provides the .label directive, which allows you to define a load-time
address. These load-time addresses can then be used to determine the start address and size of the code
to be copied. However, this mechanism will not work if the code contains a call that requires a trampoline
to reach its called function. This is because the trampoline code is generated at link time, after the load-
time addresses associated with the .label directive have been defined. If the linker detects the definition of
a .label symbol in an input section that contains a trampoline call, then a warning is generated.

To solve this problem, you can use the START(), END(), and SIZE() operators (see Section 8.5.10.7).
These operators allow you to define symbols to represent the load-time start address and size inside the
linker command file. These symbols can be referenced by the copy code, and their values are not
resolved until link time, after the trampoline sections have been allocated.

Here is an example of how you could use the START() and SIZE() operators in association with an output
section to copy the trampoline code section along with the code containing the calls that need trampolines:
SECTIONS
{ .foo : load = ROM, run = RAM, start(foo_start), size(foo_size)

{ x.obj(.text) }

-text: {} > ROM

-far : { --library=rts_lib(.text) } > FAR_MEM
}

A function in x.c.obj contains an run-time-support call. The run-time-support library is placed in far memory
and so the call is out-of-range. A trampoline section will be added to the .foo output section by the linker.
The copy code can refer to the symbols foo_start and foo_size as parameters for the load start address
and size of the entire .foo output section. This allows the copy code to copy the trampoline section along
with the original x.c.obj code in .text from its load space to its run space.

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.4.35 Introduce an Unresolved Symbol (--undef_sym Option)

The --undef_sym option introduces the linkname for an unresolved symbol into the linker's symbol table.
This forces the linker to search a library and include the member that defines the symbol. The linker must
encounter the --undef_sym option before it links in the member that defines the symbol. The syntax for the
--undef_sym option is:

--undef_sym= symbol

For example, suppose a library named rtsv4_A_be_eabi.lib contains a member that defines the symbol
symtab; none of the object files being linked reference symtab. However, suppose you plan to relink the
output module and you want to include the library member that defines symtab in this link. Using the --
undef_sym option as shown below forces the linker to search rtsv4_A be_eabi.lib for the member that
defines symtab and to link in the member.

armcl --run_linker --undef_sym=symtab filel.c.obj file2.c.obj rtsv4_A be_eabi.lib

If you do not use --undef_sym, this member is not included, because there is no explicit reference to it in
filel.c.obj or file2.c.obj.

204 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.36 Display a Message When an Undefined Output Section Is Created (--warn_sections)

In a linker command file, you can set up a SECTIONS directive that describes how input sections are
combined into output sections. However, if the linker encounters one or more input sections that do not
have a corresponding output section defined in the SECTIONS directive, the linker combines the input
sections that have the same name into an output section with that name. By default, the linker does not
display a message to tell you that this occurred.

You can use the --warn_sections option to cause the linker to display a message when it creates a new
output section.

For more information about the SECTIONS directive, see Section 8.5.5. For more information about the
default actions of the linker, see Section 8.7.

8.4.37 Generate XML Link Information File (--xml_link_info Option)

The linker supports the generation of an XML link information file through the --xml_link_info=file option.
This option causes the linker to generate a well-formed XML file containing detailed information about the
result of a link. The information included in this file includes all of the information that is currently produced
in a linker generated map file. See Appendix B for specifics on the contents of the generated XML file.

8.4.38 Zero Initialization (--zero_init Option)

The C and C++ standards require that global and static variables that are not explicitly initialized must be
set to 0 before program execution. The C/C++ compiler supports preinitialization of uninitialized variables
by default. To turn this off, specify the linker option --zero_init=0ff.

The syntax for the --zero_init option is:
--zero_init[={on|off}]

Zero initialization takes place only if the --rom_model linker option, which causes autoinitialization to occur,
is used. If you use the --ram_model option for linking, the linker does not generate initialization records,
and the loader must handle both data and zero initialization.

Disabling Zero Initialization Not Recommended

NOTE: In general, disabling zero initialization is not recommended. If you turn off zero initialization,
automatic initialization of uninitialized global and static objects to zero will not occur. You are
then expected to initialize these variables to zero in some other manner.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 205
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5

Linker Command Files

Linker command files allow you to put linker options and directives in a file; this is useful when you invoke
the linker often with the same options and directives. Linker command files are also useful because they
allow you to use the MEMORY and SECTIONS directives to customize your application. You must use
these directives in a command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

« Input filenames, which specify object files, archive libraries, or other command files. (If a command file
calls another command file as input, this statement must be the last statement in the calling command
file. The linker does not return from called command files.)

» Linker options, which can be used in the command file in the same manner that they are used on the
command line

 The MEMORY and SECTIONS linker directives. The MEMORY directive defines the target memory
configuration (see Section 8.5.4). The SECTIONS directive controls how sections are built and
allocated (see Section 8.5.5.)

» Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the armcl --run_linker command and follow it with the
name of the command file:

armcl --run_linker command_filename

The linker processes input files in the order that it encounters them. If the linker recognizes a file as an
object file, it links the file. Otherwise, it assumes that a file is a command file and begins reading and
processing commands from it. Command filenames are case sensitive, regardless of the system used.

Example 8-1 shows a sample linker command file called link.cmd.

Example 8-1. Linker Command File

a.c.obj /* First input filename */
b.c.obj /* Second input filename */
--output_file=prog.out /* Option to specify output file */
--map_TFile=prog.map /* Option to specify map file */

The sample file in Example 8-1 contains only flenames and options. (You can place comments in a
command file by delimiting them with /* and */.) To invoke the linker with this command file, enter:

armcl --run_linker link.cmd

You can place other parameters on the command line when you use a command file:
armcl --run_linker --relocatable link.cmd x.c.obj y.c.obj

The linker processes the command file as soon as it encounters the filename, so a.c.obj and b.c.obj are
linked into the output module before x.c.obj and y.c.obj.

You can specify multiple command files. If, for example, you have a file called hames.Ist that contains
filenames and another file called dir.cmd that contains linker directives, you could enter:

armcl --run_linker names.lIst dir.cmd

One command file can call another command file; this type of nesting is limited to 16 levels. If a command

file calls another command file as input, this statement must be the last statement in the calling command
file.

206

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS

www.ti.com Linker Command Files

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies to the

format of linker directives in a command file. Example 8-2 shows a sample command file that contains

linker directives.

Example 8-2. Command File With Linker Directives

a.obj b.obj c.obj /* Input filenames */
--output_file=prog.out /* Options */
--map_TFile=prog.map

MEMORY /* MEMORY directive */
{
FAST_MEM: origin = 0x0100 length = 0x0100
SLOW_MEM: origin = 0x7000 length = 0x1000
3
SECTIONS /* SECTIONS directive */
{

.text: > SLOW_MEM
.data: > SLOW_MEM
-bss: > FAST_MEM

T
For more information, see Section 8.5.4 for the MEMORY directive, and Section 8.5.5 for the SECTIONS
directive.
8.5.1 Reserved Names in Linker Command Files
The following names (in both uppercase and lowercase) are reserved as keywords for linker directives. Do
not use them as symbol or section names in a command file.
ADDRESS_MASK ECC LAST NOLOAD RUN_START
ALGORITHM END LEN 0 SECTIONS
ALIAS f LENGTH ORG SIZE
ALIGN FILL LOAD ORIGIN START
ATTR GROUP LOAD_END PAGE TABLE
BLOCK HAMMING MASK LOAD_SIZE PALIGN TYPE
COMPRESSION HIGH LOAD_START PARITY_MASK UNION
COPY INPUT_PAGE MEMORY RUN UNORDERED
CRC _TABLE INPUT_RANGE MIRRORING RUN_END VFILL
DSECT | (lowercase L) NOINIT RUN_SIZE
In addition, any section names used by the TI tools are reserved from being used as the prefix for other
names, unless the section will be a subsection of the section name used by the Tl tools. For example,
section names may not begin with .debug.
8.5.2 Constants in Linker Command Files
You can specify constants with either of two syntax schemes: the scheme used for specifying decimal,
octal, or hexadecimal constants (but not binary constants) used in the assembler (see Section 4.7) or the
scheme used for integer constants in C syntax.
Examples:
Format Decimal Octal Hexadecimal
Assembler format 32 40q 020h
C format 32 040 0x20
SPNU118Y —September 1995—-Revised February 2020 Linker Description 207

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.3 Accessing Files and Libraries from a Linker Command File

Many applications use custom linker command files (or LCFs) to control the placement of code and data in
target memory. For example, you may want to place a specific data object from a specific file into a
specific location in target memory. This is simple to do using the available LCF syntax to reference the
desired object file or library. However, a problem that many developers run into when they try to do this is
a linker generated "file not found" error when accessing an object file or library from inside the LCF that
has been specified earlier in the command-line invocation of the linker. Most often, this error occurs
because the syntax used to access the file on the linker command-line does not match the syntax that is
used to access the same file in the LCF.

Consider a simple example. Imagine that you have an application that requires a table of constants called
"app_coeffs" to be defined in a memory area called "DDR". Assume also that the "app_coeffs" data object
is defined in a .data section that resides in an object file, app_coeffs.c.obj. The app_coeffs.c.obj file is then
included in the object file library app_data.lib. In your LCF, you can control the placement of the
"app_coeffs" data object as follows:

SECTIONS
{

.coeffs: { app_data.lib<app_coeffs.c.obj>(.data) } > DDR

}

Now assume that the app_data.lib object library resides in a sub-directory called "lib" relative to where you
are building the application. In order to gain access to app_data.lib from the build command-line, you can
use a combination of the —i and —I options to set up a directory search path which the linker can use to
find the app_data.lib library:

%> armcl <compile options/files> -z -i ./lib -1 app_data.lib mylnk.cmd <link options/files>

The —i option adds the lib sub-directory to the directory search path and the —I option instructs the linker to
look through the directories in the directory search path to find the app_data.lib library. However, if you do
not update the reference to app_data.lib in mylnk.cmd, the linker will fail to find the app_data.lib library and
generate a "file not found" error. The reason is that when the linker encounters the reference to
app_data.lib inside the SECTIONS directive, there is no —| option preceding the reference. Therefore, the
linker tries to open app_data.lib in the current working directory.

In essence, the linker has a few different ways of opening files:

» If there is a path specified, the linker will look for the file in the specified location. For an absolute path,
the linker will try to open the file in the specified directory. For a relative path, the linker will follow the
specified path starting from the current working directory and try to open the file at that location.

» If there is no path specified, the linker will try to open the file in the current working directory.

» If a -l option precedes the file reference, then the linker will try to find and open the referenced file in
one of the directories in the directory search path. The directory search path is set up via —i options
and environment variables (like C_DIR and).

As long as a file is referenced in a consistent manner on the command line and throughout any applicable
LCFs, the linker will be able to find and open your object files and libraries.

Returning to the earlier example, you can insert a —I option in front of the reference to app_data.lib in
mylnk.cmd to ensure that the linker will find and open the app_data.lib library when the application is built:
SECTIONS

{

.coeffs: { -1 app_data.lib<app_coeffs.c.obj>(.data) } > DDR

}

Another benefit to using the —| option when referencing a file from within an LCF is that if the location of
the referenced file changes, you can modify the directory search path to incorporate the new location of
the file (using —i option on the command line, for example) without having to modify the LCF.

208

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files
8.5.4 The MEMORY Directive

The linker determines where output sections are allocated into memory; it must have a model of target
memory to accomplish this. The MEMORY directive allows you to specify a model of target memory so
that you can define the types of memory your system contains and the address ranges they occupy. The
linker maintains the model as it allocates output sections and uses it to determine which memory locations
can be used for object code.

The memory configurations of ARM systems differ from application to application. The MEMORY directive
allows you to specify a variety of configurations. After you use MEMORY to define a memory model, you
can use the SECTIONS directive to allocate output sections into defined memory.

For more information, see Section 2.5.

8.5.4.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory model that is based on the
ARM architecture. This model assumes that the full 32-bit address space (2% locations) is present in the
system and available for use. For more information about the default memory model, see Section 8.7.

8.5.4.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target system and
can be used by a program. Each range has several characteristics:

* Name
e Starting address
* Length

» Optional set of attributes
e Optional fill specification

When you use the MEMORY directive, be sure to identify all memory ranges that are available for the
program to access at run time. Memory defined by the MEMORY directive is configured; any memory that
you do not explicitly account for with MEMORY is unconfigured. The linker does not place any part of a
program into unconfigured memory. You can represent nonexistent memory spaces by simply not
including an address range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), followed by a
list of memory range specifications enclosed in braces. The MEMORY directive in Example 8-3 defines a
system that has 4K bytes of fast external memory at address 0x0000 0000, 2K bytes of slow external
memory at address 0x0000 1000 and 4K bytes of slow external memory at address 0x1000 0000. It also
demonstrates the use of memory range expressions as well as start/end/size address operators (see
Example 8-4).

Example 8-3. The MEMORY Directive

/ /
/* Sample command file with MEMORY directive */
/ /
filel.c.obj file2.c.obj /* Input files */
--output_file=prog.out /* Options */
MEMORY
{
FAST_MEM (RX): origin = 0x00000000 length = 0x00001000
SLOW_MEM (RW): origin = 0x00001000 length = 0x00000800
EXT_MEM (RX): origin = 0x10000000 [lIength = 0x00001000
SPNU118Y —September 1995—-Revised February 2020 Linker Description 209

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Linker Command Files www.ti.com
The general syntax for the MEMORY directive is:
MEMORY
{
name 1 [(attr)] : origin = expr, length = expr [, fill = constant] [LAST(sym)]
name n [(attr)] : origin = expr, length = expr [, fill = constant] [LAST(sym)]
}
name names a memory range. A memory name can be one to 64 characters; valid characters

include A-Z, a-z, $, ., and _. The names have no special significance to the linker; they
simply identify memory ranges. Memory range names are internal to the linker and are not
retained in the output file or in the symbol table. All memory ranges must have unique
names and must not overlap.

attr specifies one to four attributes associated with the named range. Attributes are optional;
when used, they must be enclosed in parentheses. Attributes restrict the allocation of
output sections into certain memory ranges. If you do not use any attributes, you can
allocate any output section into any range with no restrictions. Any memory for which no
attributes are specified (including all memory in the default model) has all four attributes.
Valid attributes are:

R specifies that the memory can be read.

w specifies that the memory can be written to.

X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

origin specifies the starting address of a memory range; enter as origin, org, or 0. The value,
specified in bytes, is a 32-bit integer constant expression, which can be decimal, octal, or
hexadecimal.

length specifies the length of a memory range; enter as length, len, or I. The value, specified in
bytes, is a 32-bit integer constant expression, which can be decimal, octal, or hexadecimal.

fill specifies a fill character for the memory range; enter as fill or f. Fills are optional. The value
is an integer constant and can be decimal, octal, or hexadecimal. The fill value is used to
fill areas of the memory range that are not allocated to a section. (See Section 8.5.9.3 for
virtual filling of memory ranges when using Error Correcting Code (ECC).)

LAST optionally specifies a symbol that can be used at run-time to find the address of the last
allocated byte in the memory range. See Section 8.5.10.8.

Filling Memory Ranges

NOTE: If you specify fill values for large memory ranges, your output file will be very large because
filling a memory range (even with 0s) causes raw data to be generated for all unallocated
blocks of memory in the range.

The following example specifies a memory range with the R and W attributes and a fill constant of
OFFFFFFFFh:

MEMORY

RFILE (RW) : o = 0x0020, I = 0x1000, f = OxFFFF
}

You normally use the MEMORY directive in conjunction with the SECTIONS directive to control placement
of output sections. For more information about the SECTIONS directive, see Section 8.5.5.

210

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.4.3 Expressions and Address Operators
Memory range origin and length can use expressions of integer constants with the following operators:

Binary operators: * [/ % + - << >> == =< <= > >= & | && ||
Unary operators: -~

Expressions are evaluated using standard C operator precedence rules.

No checking is done for overflow or underflow, however, expressions are evaluated using a larger integer
type.

Preprocess directive #define constants can be used in place of integer constants. Global symbols cannot
be used in Memory Directive expressions.

Three address operators reference memory range properties from prior memory range entries:

START(MR) Returns start address for previously defined memory range MR.
SIZE(MR) Returns size of previously defined memory range MR.
END(MR) Returns end address for previously defined memory range MR.

Example 8-4. Origin and Length as Expressions

/ /
/* Sample command file with MEMORY directive */
/ /
filel.c.obj file2.c.obj /* Input files */
--output_file=prog.out /* Options */

#define ORIGIN 0x00000000
#define BUFFER 0x00000200
#define CACHE 0x0001000

MEMORY
{

0x00001000 + BUFFER
0x00001800 - size(FAST_MEM)
size(FAST_MEM) - CACHE

FAST_MEM (RX): origin
SLOW_MEM (RW): origin
EXT_MEM (RX): origin

ORIGIN + CACHE length
end(FAST_MEM) length
0x10000000 length

8.5.4.4 The ALIAS Statement

Certain devices, such as the MSP432 Cortex M4, have a region of RAM that can be addressed by two
different memory buses--a system bus and an instruction bus. This RAM region, which is located in the
DATA region of the memory map (usually at 0xX20000000), is internally aliased to the CODE region
(usually at 0x01000000). This aliasing takes advantage of the instruction bus to fetch code from RAM
while freeing the other system buses. On such devices, your linker command file should use the ALIAS
statement so that placements to CODE and DATA are made with no collisions.

In order to use the above capability, the linker must be aware of the two addresses that point to the same
memory. Use the following syntax within a MEMORY directive to create an ALIAS for a memory range.
ALIAS regions must have the same length.

MEMORY
{
ALIAS
{
SRAM_CODE (RWX) : origin = 0x01000000
SRAM_DATA (RW) : origin = 0x20000000
} length = 0x0001000
}
SPNU118Y —September 1995—-Revised February 2020 Linker Description 211

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.5 The SECTIONS Directive

After you use MEMORY to specify the target system’'s memory model, you can use SECTIONS to allocate
output sections into specific named memory ranges or into memory that has specific attributes. For
example, you could allocate the .text and .data sections into the area named FAST_MEM and allocate the
.bss section into the area named SLOW_MEM.

The SECTIONS directive controls your sections in the following ways:
» Describes how input sections are combined into output sections
» Defines output sections in the executable program

» Allows you to control where output sections are placed in memory in relation to each other and to the
entire memory space (Note that the memory placement order is not simply the sequence in which
sections occur in the SECTIONS directive.)

« Permits renaming of output sections

For more information, see Section 2.5, Section 2.7, and Section 2.4.6. Subsections allow you to
manipulate sections with greater precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining and
allocating the sections. Section 8.7 describes this algorithm in detail.

8.5.5.1 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase), followed by
a list of output section specifications enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS

{
name : [property [, property] [, property] . ..]
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]

}

Each section specification, beginning with name, defines an output section. (An output section is a section
in the output file.) Section names can refer to sections, subsections, or archive library members. (See
Section 8.5.5.4 for information on multi-level subsections.) After the section name is a list of properties
that define the section's contents and how the section is allocated. The properties can be separated by
optional commas. Possible properties for a section are as follows:

* Load allocation defines where in memory the section is to be loaded. See Section 3.5,
Section 3.1.1, and Section 8.5.6.

Syntax: load = allocation or
> allocation

¢ Run allocation defines where in memory the section is to be run.
Syntax: run = allocation or
run > allocation

* Input sections defines the input sections (object files) that constitute the output section. See
Section 8.5.5.3.

Syntax: { input_sections }

212 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

» Section type defines flags for special section types. See Section 8.5.8.
Syntax: type = COPY or
type = DSECT or
type = NOLOAD

* Fill value defines the value used to fill uninitialized holes. See Section 8.5.11.
Syntax: fill = value

Example 8-5 shows a SECTIONS directive in a sample linker command file.

Example 8-5. The SECTIONS Directive

/ /
/* Sample command file with SECTIONS directive */
/ /
filel.c.obj file2.c.obj /* Input files */
—--output_Tfile=prog.out /* Options */
SECTIONS
{

.text: load = EXT_MEM, run = 0x00000800

.const: load = FAST_MEM

.bss: load = SLOW_MEM

.vectors: load = 0x00000000

{

tl.c.obj(.intvecl)
t2.c.obj(.intvec?2)

endvec = .;
.data:alpha: align = 16
.data:beta: align = 16
}
Figure 8-2 shows the output sections defined by the SECTIONS directive in Example 8-5 (.vectors, .text,
.const, .bss, .data:alpha, and .data:beta) and shows how these sections are allocated in memory using the
MEMORY directive given in Example 8-3.
SPNU118Y —September 1995—-Revised February 2020 Linker Description 213

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Linker Command Files

13 TEXAS
INSTRUMENTS

www.ti.com

0x00000000

0x00001000

0x00001800

0x10000000

0x10001000

OXFFFFFFFF

Figure 8-2. Section Placement Defined by Example 8-5

FAST_MEM
- Bound at 0x00000000
.vectors
- Allocated in FAST_MEM
.const
SLOW_MEM
bss - Allocated in SLOW_MEM
- Aligned on 16-byte
.data:alpha boundary
- Aligned on 16-byte
.data:beta boundary
- Empty range of memory
as defined in above
EXT_MEM
- Allocated in EXT_MEM
text -
- Empty range of memory
as defined in above

8.5.5.2 Section Allocation and Placement

The .vectors section is composed of the .intvec1
section from t1.obj and the .intvec2 section from
t2.0bj.

The .const section combines the .const sections
from file1.obj and file2.0bj.

The .bss section combines the .bss sections from
file1.obj and file2.0bj.

The .data:alpha subsection combines the .data:al-
pha subsections from file1.obj and file2.obj. The
.data:beta subsection combines the .data:beta
subsections from file1.obj and file2.obj. The linker
places the subsections anywhere there is space for
them (in SLOW_MEM in this illustration) and aligns
each on a 16-byte boundary.

The .text section combines the .text sections from
file1.0bj and file2.obj. The linker combines all sec-
tions named .text into this section. The application
must relocate the section to run at 0x00000800.

The linker assigns each output section two locations in target memory: the location where the section will
be loaded and the location where it will be run. Usually, these are the same, and you can think of each
section as having only a single address. The process of locating the output section in the target's memory
and assigning its address(es) is called placement. For more information about using separate load and
run placement, see Section 8.5.6.

If you do not tell the linker how a section is to be allocated, it uses a default algorithm to place the section.
Generally, the linker puts sections wherever they fit into configured memory. You can override this default
placement for a section by defining it within a SECTIONS directive and providing instructions on how to

allocate it.

You control placement by specifying one or more allocation parameters. Each parameter consists of a
keyword, an optional equal sign or greater-than sign, and a value optionally enclosed in parentheses. If
load and run placement are separate, all parameters following the keyword LOAD apply to load
placement, and those following the keyword RUN apply to run placement. The allocation parameters are:

Binding

Named
memory

Alignment

Blocking

allocates a section at a specific address.

.text: load = 0x1000

allocates the section into a range defined in the MEMORY directive with the specified

name (like SLOW_MEM) or attributes.
-text: load > SLOW_MEM

uses the align or palign keyword to specify the section must start on an address boundary.

-text: align = 0x100

uses the block keyword to specify the section must fit between two address aligned to the
blocking factor. If a section is too large, it starts on an address boundary.

-text: block(0x100)

214

Linker Description

SPNU118Y —September 1995—Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

For the load (usually the only) allocation, use a greater-than sign and omit the load keyword:
.text: > SLOW_MEM
-text: {...} > SLOW_MEM
-text: > 0x4000
If more than one parameter is used, you can string them together as follows:
-text: > SLOW_MEM align 16

Or if you prefer, use parentheses for readability:
-text: load = (SLOW_MEM align(16))

You can also use an input section specification to identify the sections from input files that are combined
to form an output section. See Section 8.5.5.3.

Additional information about controlling the order in which code and data are placed in memory is provided
in the FAQ topic on section placement.

8.5.5.2.1 Example: Placing Functions in RAM

The --ramfunc compiler option and ramfunc function attribute allow the compiler to specify that a function
is to be placed in and executed from RAM. Most newer Tl linker command files support the ramfunc
option and function attribute by placing such functions in the .Tl.ramfunc section. If you see a linker error
related to this section, you should add the .Tl.ramfunc section to your SECTIONS directive as follows. In
these examples, RAM and FLASH are names of MEMORY regions for RAM and Flash memory; the
names may be different in your linker command file.

For RAM-based devices:

-Tl.ramfunc : {} > RAM

For Flash-based devices:
-Tl_ramfunc : {} load=FLASH, run=RAM, table(BINIT)

See the Placing functions in RAM wiki page for detalils.

8.5.5.2.2 Binding

You can set the starting address for an output section by following the section name with an address:
.text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address must be
a 32-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space), but
they cannot overlap. If there is not enough space to bind a section to a specified address, the linker issues
an error message.

Binding is Incompatible With Alignment and Named Memory

NOTE: You cannot bind a section to an address if you use alignment or named memory. If you try to
do this, the linker issues an error message.

8.5.5.2.3 Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see
Section 8.5.4). This example names ranges and links sections into them:

MEMORY
{
SLOW_MEM (RIX) : origin = 0x00000000, IlIength = 0x00001000
FAST_MEM (RWIX) : origin = 0x03000000, Ilength = 0x00000300
3
SECTIONS
{
SPNU118Y —September 1995—-Revised February 2020 Linker Description 215

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_FAQ#Q:_How_can_I_get_the_linker_to_place_a_piece_of_code_or_data_so_that_it_comes_before_all_the_rest.3F
http://processors.wiki.ti.com/index.php/Placing_functions_in_RAM

13 TEXAS

INSTRUMENTS
Linker Command Files www.ti.com
-text : > SLOW_MEM
.data : > FAST_MEM ALIGN(128)
-bss : > FAST_MEM

}

In this example, the linker places .text into the area called SLOW_MEM. The .data and .bss output
sections are allocated into FAST_MEM. You can align a section within a named memory range; the .data
section is aligned on a 128-byte boundary within the FAST_MEM range.

Similarly, you can link a section into an area of memory that has particular attributes. To do this, specify a
set of attributes (enclosed in parentheses) instead of a memory name. Using the same MEMORY directive
declaration, you can specify:

SECTIONS

{
text: > (X) /* .text --> executable memory */
.data: > (RI) /* .data --> read or init memory */
.bss : > (RW) /* .bss --> read or write memory */

}

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM area
because both areas have the X attribute. The .data section can also go into either SLOW_MEM or
FAST_MEM because both areas have the R and | attributes. The .bss output section, however, must go
into the FAST_MEM area because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the linker uses lower
memory addresses first and avoids fragmentation when possible. In the preceding examples, assuming no
conflicting assignments exist, the .text section starts at address 0. If a section must start on a specific
address, use binding instead of named memory.

8.5.5.2.4 Controlling Placement Using The HIGH Location Specifier

The linker allocates output sections from low to high addresses within a designated memory range by
default. Alternatively, you can cause the linker to allocate a section from high to low addresses within a
memory range by using the HIGH location specifier in the SECTION directive declaration. You might use
the HIGH location specifier in order to keep RTS code separate from application code, so that small
changes in the application do not cause large changes to the memory map.

For example, given this MEMORY directive:

MEMORY
{
RAM : origin = 0x0200, length = 0x0800
FLASH : origin = 0x1100, length = OXEEEO
VECTORS : origin = OxFFEO, length = OxO0lE
RESET : origin = OXFFFE, length = 0x0002
3
and an accompanying SECTIONS directive:
SECTIONS
{
-bss : {3 > RAM
.sysmem : {} > RAM
.stack : {3 > RAM (HIGH)
}

The HIGH specifier used on the .stack section placement causes the linker to attempt to allocate .stack
into the higher addresses within the RAM memory range. The .bss and .sysmem sections are allocated
into the lower addresses within RAM. Example 8-6 illustrates a portion of a map file that shows where the
given sections are allocated within RAM for a typical program.

216

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Command Files

Example 8-6. Linker Placement With the HIGH Specifier

-bss 0 00000200 00000270 UNINITIALIZED
00000200 0000011a rtsxxx.lib : defs.c.obj (.bss)
0000031a 00000088 : trgdrv.c.obj (.bss)
000003a2 00000078 : lowlev.c.obj (.bss)
0000041a 00000046 : exit.c.obj (-bss)
00000460 00000008 : memory.c.obj (.bss)
00000468 00000004 : _lock.c.obj (.bss)
0000046¢c 00000002 : fopen.c.obj (-bss)
0000046e 00000002 hello.c.obj (.bss)

-sysmem 0 00000470 00000120 UNINITIALIZED
00000470 00000004 rtsxxx .lib : memory.c.obj (.sysmem)

.stack 0 000008c0 00000140 UNINITIALIZED
000008c0 00000002 rtsxxx .lib : boot.c.obj (.stack)

As shown in Example 8-6 , the .bss and .sysmem sections are allocated at the lower addresses of RAM
(0x0200 - 0x0590) and the .stack section is allocated at address 0x08c0, even though lower addresses

are available.

Without using the HIGH specifier, the linker allocation would result in the code shown in Example 8-7

The HIGH specifier is ignored if it is used with specific address binding or automatic section splitting (>>

operator).

Example 8-7. Linker Placement

-bss 0 00000200 00000270 UNINITIALIZED
00000200 0000011a rtsxxx.lib : defs.c.obj (.bss)
0000031a 00000088 : trgdrv.c.obj (.bss)
000003a2 00000078 : lowlev.c.obj (.bss)
0000041a 00000046 : exit.c.obj (-bss)
00000460 00000008 : memory.c.obj (.bss)
00000468 00000004 : _lock.c.obj (.bss)
0000046¢ 00000002 : fopen.c.obj (-bss)
0000046e 00000002 hello.c.obj (.bss)

.stack 0 00000470 00000140 UNINITIALIZED
00000470 00000002 rtsxxx.lib : boot.c.obj (.stack)

-sysmem 0 000005b0 00000120 UNINITIALIZED
000005b0 00000004 rtsxxx.lib : memory.c.obj (.sysmem)

Without HIGH Specifier

8.5.5.2.5 Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an n-byte boundary, where n
is a power of 2, by using the align keyword. For example, the following code allocates .text so that it falls

on a 32-byte boundary:

-text: load = align(32)

Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n. The
specified block size must be a power of 2. For example, the following code allocates .bss so that the entire
section is contained in a single 128-byte block or begins on that boundary:

bss: load = block(0x0080)

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and
blocking cannot be used together.

SPNU118Y —September 1995—-Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Linker Description 217

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.5.2.6 Alignment With Padding

As with align, you can tell the linker to place an output section at an address that falls on an n-byte
boundary, where n is a power of 2, by using the palign keyword. In addition, palign ensures that the size
of the section is a multiple of its placement alignment restrictions, padding the section size up to such a
boundary, as needed.

For example, the following code lines allocate .text on a 2-byte boundary within the PMEM area. The .text
section size is guaranteed to be a multiple of 2 bytes. Both statements are equivalent:

-text: palign(2) {3 > PMEM

-text: palign = 2 {} > PMEM

If the linker adds padding to an initialized output section then the padding space is also initialized. By
default, padding space is filled with a value of O (zero). However, if a fill value is specified for the output
section then any padding for the section is also filled with that fill value. For example, consider the
following section specification:

-.mytext: palign(8), fill = Oxffffffff {3 > PMEM

In this example, the length of the .mytext section is 6 bytes before the palign operator is applied. The
contents of .mytext are as follows:

addr content

0000 0x1234
0002 0x1234
0004 0x1234

After the palign operator is applied, the length of .mytext is 8 bytes, and its contents are as follows:
addr content

0000 0x1234
0002 0x1234
0004 0x1234
0006 OXFFIf

The size of .mytext has been bumped to a multiple of 8 bytes and the padding created by the linker has
been filled with Oxff.

The fill value specified in the linker command file is interpreted as a 16-bit constant. If you specify this
code:

-mytext: palign(8), fill = Oxff {} > PMEM

The fill value assumed by the linker is 0x00ff, and .mytext will then have the following contents:
addr content

0000 0x1234
0002 0x1234
0004 0x1234
0006 OxOO0ff

If the palign operator is applied to an uninitialized section, then the size of the section is bumped to the
appropriate boundary, as needed, but any padding created is not initialized.

The palign operator can also take a parameter of power2. This parameter tells the linker to add padding to
increase the section's size to the next power of two boundary. In addition, the section is aligned on that
power of 2 as well. For example, consider the following section specification:

-.mytext: palign(power2) {} > PMEM

Assume that the size of the .mytext section is 120 bytes and PMEM starts at address 0x10020. After
applying the palign(power2) operator, the .mytext output section will have the following properties:

name addr size align

.mytext 0x00010080 0x80 128

218

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.5.3 Specifying Input Sections

An input section specification identifies the sections from input files that are combined to form an output
section. In general, the linker combines input sections by concatenating them in the order in which they
are specified. However, if alignment or blocking is specified for an input section, all of the input sections
within the output section are ordered as follows:

» All aligned sections, from largest to smallest
» All blocked sections, from largest to smallest
» All other sections, from largest to smallest

The size of an output section is the sum of the sizes of the input sections that it comprises.
Example 8-8 shows the most common type of section specification; note that no input sections are listed.

Example 8-8. The Most Common Method of Specifying Section Contents

SECTIONS
{
.text:
.data:
-bss:
}

In Example 8-8, the linker takes all the .text sections from the input files and combines them into the .text
output section. The linker concatenates the .text input sections in the order that it encounters them in the
input files. The linker performs similar operations with the .data and .bss sections. You can use this type of
specification for any output section.

You can explicitly specify the input sections that form an output section. Each input section is identified by
its filename and section name. If the filename is hyphenated (or contains special characters), enclose it
within quotes:

SECTIONS
{
-text : /* Build .text output section */
{
fl.c.obj(.text) /* Link .text section from fl.c.obj */
f2_c.obj(secl) /* Link secl section from f2.c.obj */
"“f3-new.c.obj" /* Link ALL sections from f3-new.c.obj */
f4.c.obj(.text,sec2) /* Link .text and sec2 from f4.c.obj */

f5.c.obj(-task??) /* Link _task00, .task0l, .taskXX, etc. from f5.c.obj */
f6.c.obj(*_ctable) /* Link sections ending in *"_ctable”™ from f6.c.obj */
X*.c.obj(.text) /* Link .text section for all files starting with */
/* "X" and ending in ".c.obj" */
}
}

It is not necessary for input sections to have the same name as each other or as the output section they
become part of. If a file is listed with no sections, all of its sections are included in the output section. If
any additional input sections have the same name as an output section but are not explicitly specified by
the SECTIONS directive, they are automatically linked in at the end of the output section. For example, if
the linker found more .text sections in the preceding example and these .text sections were not specified
anywhere in the SECTIONS directive, the linker would concatenate these extra sections after
f4.c.obj(sec2).

The specifications in Example 8-8 are actually a shorthand method for the following:

SECTIONS

{
text: { *(.text) }
.data: { *(.data) }
.bss: { *(.bss) }

3

SPNU118Y —September 1995—-Revised February 2020 Linker Description 219

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

The specification *(.text) means the unallocated .text sections from all input files. This format is useful if:

* You want the output section to contain all input sections that have a specified nhame, but the output
section name is different from the input sections' name.

* You want the linker to allocate the input sections before it processes additional input sections or
commands within the braces.

The following example illustrates the two purposes above:

SECTIONS
{
text @ {
abc.c.obj(xqt)
*(.text)
b
.data : {
*(.data)
fil.c.obj(table)
3
3

In this example, the .text output section contains a named section xqt from file abc.c.obj, which is followed
by all the .text input sections. The .data section contains all the .data input sections, followed by a named
section table from the file fil.c.obj. This method includes all the unallocated sections. For example, if one of
the .text input sections was already included in another output section when the linker encountered
*(.text), the linker could not include that first .text input section in the second output section.

Each input section acts as a prefix and gathers longer-named sections. For example, the pattern *(.data)
matches .dataspecial. This mechanism enables the use of subsections, which are described in the
following section.

8.5.5.4 Using Multi-Level Subsections

Subsections can be identified with the base section name and one or more subsection names separated
by colons. For example, A:B and A:B:C name subsections of the base section A. In certain places in a
linker command file specifying a base name, such as A, selects the section A as well as any subsections
of A, such as A:B or A:C:D.

A name such as A:B can specify a (sub)section of that name as well as any (multi-level) subsections
beginning with that name, such as A:B:C, A:B:OTHER, etc. All subsections of A:B are also subsections of
A. A and A:B are supersections of A:B:C. Among a group of supersections of a subsection, the nearest
supersection is the supersection with the longest name. Thus, among {A, A:B} the nearest supersection of
A:B:C:D is A:B. With multiple levels of subsections, the constraints are the following:

1. When specifying input sections within a file (or library unit) the section name selects an input section
of the same name and any subsections of that name.

2. Input sections that are not explicitly allocated are allocated in an existing output section of the same
name or in the nearest existing supersection of such an output section. An exception to this rule is that
during a partial link (specified by the --relocatable linker option) a subsection is allocated only to an
existing output section of the same name.

3. If no such output section described in 2) is defined, the input section is put in a newly created output
section with the same name as the base name of the input section

Consider linking input sections with the following names:

europe:north:norway europe:central:france europe:south:spain
europe:north:sweden europe:central:germany europe:south:italy
europe:north:finland europe:central:denmark europe:south:malta

europe:north:iceland

220 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTIONS {
nordic: {*(europe:north)
(europe:central :denmark)} / the nordic countries */

central: {*(europe:central)} /* france, germany */
therest: {*(europe)} /* spain, italy, malta */
¥
This SECTIONS specification allocates the input sections as indicated in the comments:
SECTIONS {
islands: {*(europe:south:malta)
(europe:north:iceland)} / malta, iceland */
europe:north:finland : {} /* finland */
europe:north {3 /* norway, sweden */
europe:central {3 /* germany, denmark */
europe:central:france: {} /* france */
/* (italy, spain) go into a linker-generated output section 'europe" */
3

Upward Compatibility of Multi-Level Subsections

NOTE: Existing linker commands that use the existing single-level subsection features and which do
not contain section hames containing multiple colon characters continue to behave as
before. However, if section names in a linker command file or in the input sections supplied
to the linker contain multiple colon characters, some change in behavior could be possible.
You should carefully consider the impact of the rules for multiple levels to see if it affects a
particular system link.

8.5.5.5 Specifying Library or Archive Members as Input to Output Sections

You can specify one or more members of an object library or archive for input to an output section.
Consider this SECTIONS directive:

Example 8-9. Archive Members to Output Sections

SECTIONS
{
boot > BOOT1
{
-1 rtsxX._.lib<boot.c.obj> (.text)
-1 rtsxX._.lib<exit.c.obj strcpy.c.obj> (.text)
}
.rts > BOOT2
{
-1 rtsxXX_lib (.text)
}
.text > RAM
{
* (.text)
}
}

In Example 8-9, the .text sections of boot.c.obj, exit.c.obj, and strcpy.c.obj are extracted from the run-time-
support library and placed in the .boot output section. The remainder of the run-time-support library object
that is referenced is allocated to the .rts output section. Finally, the remainder of all other .text sections are
to be placed in section .text.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 221

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

An archive member or a list of members is specified by surrounding the member name(s) with angle
brackets < and > after the library name. Any object files separated by commas or spaces from the
specified archive file are legal within the angle brackets.

The --library option (which normally implies a library path search be made for the named file following the
option) listed before each library in Example 8-9 is optional when listing specific archive members inside <
>. Using < > implies that you are referring to a library.

To collect a set of the input sections from a library in one place, use the --library option within the
SECTIONS directive. For example, the following collects all the .text sections from rtsv4_A_be_eabi.lib
into the .rtstest section:

SECTIONS

{

}

.rtstest { -1 rtsv4d_A_be_eabi.lib(.text) } > RAM

SECTIONS Directive Effect on --priority

NOTE: Specifying a library in a SECTIONS directive causes that library to be entered in the list of
libraries that the linker searches to resolve references. If you use the --priority option, the first
library specified in the command file will be searched first.

8.5.5.6 Allocation Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an output section can be
allocated. Consider the following example:

MEMORY

{
P_MEM1 : origin = 0x02000, UlIength = 0x01000
P_MEM2 : origin = 0x04000, length = 0x01000
P_MEM3 : origin = 0x06000, length = 0x01000
P_MEM4 : origin = 0x08000, length = 0x01000

}

SECTIONS

{
.text : { } > P_MEM1 | P_MEM2 | P_MEM4

}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated as a
whole into the first memory range in which it fits. The memory ranges are accessed in the order specified.
In this example, the linker first tries to allocate the section in P_MEML1. If that attempt fails, the linker tries
to place the section into P_MEM2, and so on. If the output section is not successfully allocated in any of
the named memory ranges, the linker issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly handle an output section
that grows beyond the available space of the memory range in which it is originally allocated. Instead of
modifying the linker command file, you can let the linker move the section into one of the other areas.

8.5.5.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The linker can split output sections among multiple memory ranges for efficient allocation. Use the >>
operator to indicate that an output section can be split, if necessary, into the specified memory ranges:

MEMORY

{
P_MEM1 : origin = 0x2000, length = 0x1000
P_MEM2 : origin = 0x4000, length = 0x1000
P_MEM3 : origin = 0x6000, length = 0x1000
P_MEM4 : origin = 0x8000, length = 0x1000
}
SECTIONS
{
.text: { *(.text) } >> P_MEM1 | P_MEM2 | P_MEM3 | P_MEM4
}
222 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

In this example, the >> operator indicates that the .text output section can be split among any of the listed
memory areas. If the .text section grows beyond the available memory in P_MEM1, it is split on an input
section boundary, and the remainder of the output section is allocated to P_MEM2 | P_MEMS3 | P_MEMA4.

The | operator is used to specify the list of multiple memory ranges.

You can also use the >> operator to indicate that an output section can be split within a single memory
range. This functionality is useful when several output sections must be allocated into the same memory
range, but the restrictions of one output section cause the memory range to be partitioned. Consider the
following example:

MEMORY

{
RAM : origin = 0x1000, length = 0x8000

}

SECTIONS

{
-special: { fl.c.obj(-text) } load = 0x4000

-text: { *(.text) } >> RAM
}

The .special output section is allocated near the middle of the RAM memory range. This leaves two
unused areas in RAM: from 0x1000 to 0x4000, and from the end of f1.c.obj(.text) to 0x8000. The
specification for the .text section allows the linker to split the .text section around the .special section and
use the available space in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory ranges that match a
specified attribute combination. For example:

MEMORY
{
P_MEM1 (RWX) : origin = 0x1000, length = 0x2000
P_MEM2 (RWI) : origin = 0x4000, length = 0x1000
3
SECTIONS
{
text: { *(.text) } > (RW)
3

The linker attempts to allocate all or part of the output section into any memory range whose attributes
match the attributes specified in the SECTIONS directive.

This SECTIONS directive has the same effect as:

SECTIONS

{

text: { *(.text) } >> P_MEM1 | P_MEM2}
}

Certain sections should not be split:

» Certain sections created by the compiler, including
— The .cinit section, which contains the autoinitialization table for C/C++ programs
— The .pinit section, which contains the list of global constructors for C++ programs

* An output section with an input section specification that includes an expression to be evaluated. The
expression may define a symbol that is used in the program to manage the output section at run time.

* An output section that has a START(), END(), OR SIZE() operator applied to it. These operators
provide information about a section's load or run address, and size. Splitting the section may
compromise the integrity of the operation.

* The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)
If you use the >> operator on any of these sections, the linker issues a warning and ignores the operator.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 223

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.6 Placing a Section at Different Load and Run Addresses

At times, you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in slow external memory. The code must be loaded into slow external
memory, but it would run faster in fast external memory.

The linker provides a simple way to accomplish this. You can use the SECTIONS directive to direct the
linker to allocate a section twice: once to set its load address and again to set its run address. For
example:

.Fir: load = SLOW_MEM, run = FAST_MEM
Use the load keyword for the load address and the run keyword for the run address.
See Section 3.5 for an overview on run-time relocation.

The application must copy the section from its load address to its run address; this does not happen
automatically when you specify a separate run address. (The TABLE operator instructs the linker to
produce a copy table; see Section 8.8.4.1.)

8.5.6.1 Specifying Load and Run Addresses

The load address determines where a loader places the raw data for the section. Any references to the
section (such as labels in it) refer to its run address. See Section 3.1.1 for an overview of load and run
addresses.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is allocated as if it were
two sections of the same size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides a way to overlay sections; see
Section 8.5.7.2.)

If either the load or run address has additional parameters, such as alignment or blocking, list them after
the appropriate keyword. Everything related to allocation after the keyword load affects the load address
until the keyword run is seen, after which, everything affects the run address. The load and run allocations
are completely independent, so any qualification of one (such as alignment) has no effect on the other.
You can also specify run first, then load. Use parentheses to improve readability.

The examples that follow specify load and run addresses.

In this example, align applies only to load:
.data: load = SLOW_MEM, align = 32, run = FAST_MEM

The following example uses parentheses, but has effects that are identical to the previous example:
.data: load = (SLOW_MEM align 32), run = FAST_MEM

The following example aligns FAST_MEM to 32 bits for run allocations and aligns all load allocations to 16
bits:
.data: run = FAST_MEM, align 32, load = align 16

For more information on run-time relocation see Section 3.5.

Uninitialized sections (such as .bss) are not loaded, so their only significant address is the run address.
The linker allocates uninitialized sections only once: if you specify both run and load addresses, the linker
warns you and ignores the load address. Otherwise, if you specify only one address, the linker treats it as
a run address, regardless of whether you call it load or run.

This example specifies load and run addresses for an uninitialized section;
.bss: load = 0x1000, run = FAST_MEM

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following examples
have the same effect. The .bss section is allocated in FAST_MEM.

.dbss: load = FAST_MEM

.bss: run = FAST_MEM

-bss: > FAST_MEM

224

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Command Files

8.5.6.2 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol refers to its run-time address. However, it may be necessary at run

time to refer to a load-time address. Specifically, the code that copies a section from its load address to its

run address must have access to the load address. The .label directive defines a special symbol that

refers to the section's load address. Thus, whereas normal symbols are relocated with respect to the run
address, .label symbols are relocated with respect to the load address. See Create a Load-Time Address
Label for more information on the .label directive.

Example 8-10 and Example 8-11 show the use of the .label directive to copy a section from its load
address in SLOW_MEM to its run address in FAST_MEM. Figure 8-3 illustrates the run-time execution of

Example 8-10.

If you use the table operator, the .label directive is not needed. See Section 8.8.4.1.

Example 8-10. Moving a Function from Slow to Fast Memory at Run Time

.sect "_fir"

-label fir_src ;
fir :

<code here>

-label fir_end ;

LDR r4, fir_s ;
LDR r5, fir_e ;
LDR r3, fir_a
$1: CMP r4, r5
LDRCC rO0, [r4], #4 ;

load address of section

; run address of section
; code for section

load address of section end

get fir load address start
get fir load address stop

; get fir run address

copy fir routine to its

; run address

STRCC rO, [r3], #4

B fir
fir_a -word Fir
fir_s -word Fir_start
fir_e -word TFir_end

Example 8-11. Linker Command File for Example 8-10

/

/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE */

/

MEMORY

{
FAST_MEM :
SLOW_MEM : orig

-
=]
|

3

SECTIONS

{
-text: load = FAST_MEM
-Fir: load =

3

origin = 0x00001000, length = 0x00001000
= 0x10000000, length

0x00001000

SLOW_MEM, run FAST_MEM

SPNU118Y —September 1995—-Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Linker Description

225

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Figure 8-3. Run-Time Execution of Example 8-10

0x00000000
FAST_MEM
text
_________ a
rfir (relocated |
: to run here) :V\
__________ 4
0x00001000
0x10000000
SLOW_MEM
l- _________ a
| fir (loads here) |
I]
0x10001000
OXFFFFFFFF

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.5.7 Using GROUP and UNION Statements

Two SECTIONS statements allow you to organize or conserve memory: GROUP and UNION. Grouping
sections causes the linker to allocate them contiguously in memory. Unioning sections causes the linker to
allocate them to the same run address.

8.5.7.1 Grouping Output Sections Together

The SECTIONS directive's GROUP option forces several output sections to be allocated contiguously and
in the order listed, unless the UNORDERED operator is used. For example, assume that a section named
term_rec contains a termination record for a table in the .data section. You can force the linker to allocate
.data and term_rec together:

Example 8-12. Allocate Sections Together

SECTIONS
{
-text /* Normal output section */
-bss /* Normal output section */
GROUP 0x00001000 : /* Specify a group of sections */
{
.data /* First section in the group */
term_rec /* Allocated immediately after .data */
3
}

You can use binding, alignment, or named memory to allocate a GROUP in the same manner as a single
output section. In the preceding example, the GROUP is bound to address 0x1000. This means that .data
is allocated at 0x1000, and term_rec follows it in memory.

226 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS

www.ti.com Linker Command Files

You Cannot Specify Addresses for Sections Within a GROUP

NOTE: When you use the GROUP option, binding, alignment, or allocation into named memory can
be specified for the group only. You cannot use binding, named memory, or alignment for
sections within a group.

8.5.7.2 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section that occupies the same address
during run time. For example, you may have several routines you want in fast external memory at different
stages of execution. Or you may want several data objects that are not active at the same time to share a
block of memory. The UNION statement within the SECTIONS directive provides a way to allocate several
sections at the same run-time address.

In Example 8-13, the .bss sections from filel.c.obj and file2.c.obj are allocated at the same address in
FAST_MEM. In the memory map, the union occupies as much space as its largest component. The
components of a union remain independent sections; they are simply allocated together as a unit.

Example 8-13. The UNION Statement

SECTIONS

{
-text: load = SLOW_MEM
UNION: run = FAST_MEM
{

-bss:partl: { filel.c.obj(.bss) }
.bss:part2: { file2.c.obj(.bss) }

}
-bss:part3: run = FAST_MEM { globals.c.obj(.bss) }

Allocation of a section as part of a union affects only its run address. Under no circumstances can
sections be overlaid for loading. If an initialized section is a union member (an initialized section, such as
.text, has raw data), its load allocation must be separately specified. See Example 8-14. (There is an
exception to this rule when combining an initialized section with uninitialized sections; see

Section 8.5.7.3.)

Example 8-14. Separate Load Addresses for UNION Sections

UNION run = FAST_MEM

{
.text:partl: load = SLOW_MEM, { filel.c.obj(.text) }
-text:part2: load = SLOW_MEM, { file2.c.obj(.text) }
}
SPNU118Y —September 1995—-Revised February 2020 Linker Description 227

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Linker Command Files

13 TEXAS

INSTRUMENTS

www.ti.com

Figure 8-4. Memory Allocation Shown in Example 8-13 and Example 8-14

FAST_MEM

.bss:part2

—

.bss:part1

.bss:part3

4

SLOW_MEM

text

Sections can run
as a union. This
is run-time alloca-
tion only.

Sections cannot

load as a union Y

FAST_MEM

.text 2 (run)

1N

.text 1 (run)

.bss:part3

SLOW_MEM

.text 1 (load)

.text 2 (load)

Copies at
run time

Since the .text sections contain raw data, they cannot load as a union, although they can be run as a
union. Therefore, each requires its own load address. If you fail to provide a load allocation for an
initialized section within a UNION, the linker issues a warning and allocates load space anywhere it can in

configured me

mory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a load

address for the union itself. For purposes of allocation, the union is treated as an uninitialized section: any
one allocation specified is considered a run address, and if both run and load addresses are specified, the
linker issues a warning and ignores the load address.

228

Linker Description

SPNU118Y —September 1995—Revised February 2020

Copyright © 1995-2020, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.7.3 Using Memory for Multiple Purposes

One way to reduce an application's memory requirement is to use the same range of memory for multiple
purposes. You can first use a range of memory for system initialization and startup. Once that phase is
complete, the same memory can be repurposed as a collection of uninitialized data variables or a heap.
To implement this scheme, use the following variation of the UNION statement to allow one section to be
initialized and the remaining sections to be uninitialized.

Generally, an initialized section (one with raw data, such as .text) in a union must have its load allocation
specified separately. However, one and only one initialized section in a union can be allocated at the
union's run address. By listing it in the UNION statement with no load allocation at all, it will use the
union's run address as its own load address.

For example:

UNION run = FAST_MEM
{ .cinit .bss }

In this example, the .cinit section is an initialized section. It will be loaded into FAST_MEM at the run
address of the union. In contrast, .bss is an uninitialized section. Its run address will also be that of the
union.

8.5.7.4 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the SECTIONS directive. By
nesting GROUP and UNION statements, you can express hierarchical overlays and groupings of sections.
Example 8-15 shows how two overlays can be grouped together.

Example 8-15. Nesting GROUP and UNION Statements

SECTIONS

GROUP 0x1000 : run = FAST_MEM
{
UNION:
{
mysectl: load
mysect2: load

SLOW_MEM
SLOW_MEM

}
UNTON:

{
mysect3: load
mysect4: load

SLOW_MEM
SLOW_MEM

}
}
}

For this example, the linker performs the following allocations:

e The four sections (mysectl, mysect2, mysect3, mysect4) are assigned unique, non-overlapping load
addresses. The name you defined with the .label directive is used in the SLOW_MEM memory region.
This assignment is determined by the particular load allocations given for each section.

» Sections mysectl and mysect2 are assigned the same run address in FAST_MEM.
» Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.

» The run addresses of mysectl/mysect2 and mysect3/mysect4 are allocated contiguously, as directed
by the GROUP statement (subject to alignment and blocking restrictions).

To refer to groups and unions, linker diagnostic messages use the notation:
GROUP_n UNION_n

where n is a sequential number (beginning at 1) that represents the lexical ordering of the group or union
in the linker control file without regard to nesting. Groups and unions each have their own counter.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 229

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.7.5 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for unions, groups, and sections.
The following rules are used:

* Run allocations are only allowed for top-level sections, groups, or unions (sections, groups, or unions
that are not nested under any other groups or unions). The linker uses the run address of the top-level
structure to compute the run addresses of the components within groups and unions.

» The linker does not accept a load allocation for UNIONSs.
* The linker does not accept a load allocation for uninitialized sections.

* In most cases, you must provide a load allocation for an initialized section. However, the linker does
not accept a load allocation for an initialized section that is located within a group that already defines
a load allocator.

» As a shortcut, you can specify a load allocation for an entire group, to determine the load allocations
for every initialized section or subgroup nested within the group. However, a load allocation is
accepted for an entire group only if all of the following conditions are true:

— The group is initialized (that is, it has at least one initialized member).
— The group is not nested inside another group that has a load allocator.
— The group does not contain a union containing initialized sections.

» If the group contains a union with initialized sections, it is necessary to specify the load allocation for
each initialized section nested within the group. Consider the following example:

SECTIONS

{
GROUP: load = SLOW_MEM, run = SLOW_MEM

{
-textl:

UNION:

{
-text2:

-text3:
3
}
b
The load allocator given for the group does not uniquely specify the load allocation for the elements
within the union: .text2 and .text3. In this case, the linker issues a diagnostic message to request that
these load allocations be specified explicitly.

8.5.7.6 Naming UNIONs and GROUPs
You can give a hame to a UNION or GROUP by entering the name in parentheses after the declaration.

For example:
GROUP(BSS_SYSMEM_STACK_GROUP)
{
-bss {3
.sysmem :{}
.stack :{}

} load=D_MEM, run=D_MEM

The name you defined is used in diagnostics for easy identification of the problem LCF area. For example:
warning: LOAD placement ignored for '"BSS_SYSMEM_STACK_GROUP'": object is uninitialized

UNIONCTEXT_CINIT_UNION)

{
.const :{}load=D_MEM, table(tablel)
-pinit :{}load=D_MEM, table(tablel)
}run=P_MEM

warning:table(tablel) operator ignored: table(tablel) has already been applied to a section
in the "UNION(TEXT_CINIT_UNION)" in which ".pinit" is a descendant

230 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Linker Command Files

8.5.8

8.5.9

Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)

You can assign the following special types to output sections: DSECT, COPY, NOLOAD, and NOINIT.
These types affect the way that the program is treated when it is linked and loaded. You can assign a type
to a section by placing the type after the section definition. For example:

SECTIONS
{

secl: load
sec2: load

0x00002000, type
0x00004000, type

DSECT {fl.c.obj}
COPY {f2.c.obj}

sec3: load = 0x00006000, type NOLOAD {f3.c.obj}
sec4: load 0x00008000, type NOINIT {f4.c.obj}
}

» The DSECT type creates a dummy section with the following characteristics:

— Itis not included in the output section memory allocation. It takes up no memory and is not included
in the memory map listing.

— It can overlay other output sections, other DSECTSs, and unconfigured memory.

— Global symbols defined in a dummy section are relocated normally. They appear in the output
module's symbol table with the same value they would have if the DSECT had actually been
loaded. These symbols can be referenced by other input sections.

— Undefined external symbols found in a DSECT cause specified archive libraries to be searched.

— The section's contents, relocation information, and line number information are not placed in the
output module.

In the preceding example, none of the sections from f1.c.obj are allocated, but all the symbols are
relocated as though the sections were linked at address 0x2000. The other sections can refer to any of
the global symbols in secl.

» A COPY section is similar to a DSECT section, except that its contents and associated information are
written to the output module. The .cinit section that contains initialization tables for the ARM C/C++
compiler has this attribute under the run-time initialization model.

» A NOLOAD section differs from a normal output section in one respect: the section's contents,
relocation information, and line number information are not placed in the output module. The linker
allocates space for the section, and it appears in the memory map listing.

* A NOINIT section is not C auto-initialized by the linker. It is your responsibility to initialize this section
as needed.

Configuring Error Correcting Code (ECC) with the Linker

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker
command file. ECC uses extra bits to allow errors to be detected and/or corrected by a device. To enable
ECC generation, you must include --ecc=on as a linker option on the command line. By default ECC
generation is off, even if the ECC directive and ECC specifiers are used in the linker command file. This
allows you to fully configure ECC in the linker command file while still being able to quickly turn the code
generation on and off via the command line.

The ECC support provided by the linker is compatible with the ECC support in Tl Flash memory on
various Tl devices. Tl Flash memory uses a modified Hamming(72,64) code, which uses 8 parity bits for
every 64 bits. Check the documentation for your Flash memory to see if ECC is supported. (ECC for read-
write memory is handled completely in hardware at run time.)

You can control the details of ECC generation using the ECC specifier in the memory map
(Section 8.5.9.1) and the ECC directive (Section 8.5.9.2).

See Section 8.4.12 for command-line options that introduce bit errors into code that has a corresponding
ECC section or into the ECC parity bits themselves. Use these options to test ECC error handling code.

ECC can be generated during linking. The ECC data is included in the resulting object file, alongside code
and data, as a data section located at the appropriate address. No extra ECC generation step is required
after compilation, and the ECC can be uploaded to the device along with everything else.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 231
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.9.1 Using the ECC Specifier in the Memory Map

To generate ECC, add a separate memory range to your memory map to hold ECC data and to indicate
which memory range contains the Flash data that corresponds to this ECC data. If you have multiple
memory ranges for Flash data, you should add a separate ECC memory range for each Flash data range.

The definition of an ECC memory range can also provide parameters for how to generate the ECC data.
The memory map for a device supporting Flash ECC may look something like this:

MEMORY {
VECTORS : origin=0x00000000 Iength=0x000020
FLASHO : origin=0x00000020 length=0x17FFEO
FLASH1 : origin=0x00180000 length=0x180000
STACKS : origin=0x08000000 Iength=0x000500
RAM : origin=0x08000500 length=0x03FB0OO

ECC_VEC : origin=0xf0400000 length=0x000004 ECC={ input_range=VECTORS }
ECC_FLAO : origin=0xf0400004 length=0x02FFFC ECC={ input_range=FLASHO }
ECC_FLA1 : origin=0xf0430000 length=0x030000 ECC={ input_range=FLASH1 }

}
The specification syntax for ECC memory ranges is as follows:
MEMORY {
<memory specifierl> : <memory attributes> [vFfill=<fill value>]
<memory specifier2> : <memory attributes> ECC = {
input_range = <memory specifierl>
[algorithm = <algorithm name>]
[fill = [true, false] 1]
}
}

The "ECC" specifier attached to the ECC memory ranges indicates the data memory range that the ECC
range covers. The ECC specifier supports the following parameters:

input_range = <range> The data memory range covered by this ECC data range. Required.

algorithm = <ECC alg name> The name of an ECC algorithm defined later in the command file using
the ECC directive. Optional if only one algorithm is defined. (See
Section 8.5.9.2.)

fill = true | false Whether to generate ECC data for holes in the initialized data of the input
range. The default is "true". Using fill=false produces behavior similar to
the nowECC tool. The input range can be filled normally or using a virtual
fill (see Section 8.5.9.3).

232

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.9.2 Using the ECC Directive

In addition to specifying ECC memory ranges in the memory map, the linker command file must specify
parameters for the algorithm that generates ECC data. You might need multiple ECC algorithm
specifications if you have multiple Flash devices.

Each TI device supporting Flash ECC has exactly one set of valid values for these parameters. The linker
command files provided with Code Composer Studio include the ECC parameters necessary for ECC
support on the Flash memory accessible by the device. Documentation is provided here for completeness.

You specify algorithm parameters with the top-level ECC directive in the linker command file. The
specification syntax is as follows:

ECC {
<algorithm name> : parity_mask = <8-bit integer>
mirroring = [FO21, FO35]
address_mask = <32-bit mask>
b
For example:
MEMORY {

FLASHO : origin=0x00000020 length=0x17FFEO
ECC_FLAO : origin=0xf0400004 length=0x02FFFC ECC={ input_range=FLASHO algorithm=F021 }

}

ECC { FO21 : parity_mask = Oxfc
mirroring = F021 }

This ECC directive accepts the following attributes:

algorithm_name Specify the name you would like to use for referencing the algorithm.
address_mask = <32-bit This mask determines which bits of the address of each 64-bit piece of
mask> memory are used in the calculation of the ECC byte for that memory.

Default is Oxffffffff, so that all bits of the address are used. (Note that the
ECC algorithm itself ignores the lowest bits, which are always zero for a
correctly-aligned input block.)

parity_mask = <8-bit mask> This mask determines which ECC bits encode even parity and which bits
encode odd parity. Default is 0, meaning that all bits encode even parity.

mirroring = F021 | FO35 This setting determines the order of the ECC bytes and their duplication
pattern for redundancy. Default is FO21.

8.5.9.3 Using the VFILL Specifier in the Memory Map

Normally, specifying a fill value for a MEMORY range creates initialized data sections to cover any
previously uninitialized areas of memory. To generate ECC data for an entire memory range, the linker
either needs to have initialized data in the entire range, or needs to know what value uninitialized memory
areas will have at run time.

In cases where you want to generate ECC for an entire memory range, but do not want to initialize the
entire range by specifying a fill value, you can use the "Vfill" specifier instead of a "fill" specifier to virtually

fill the range:
MEMORY {

FLASH : origin=0x0000 length=0x4000 vTfill=0xffffffff
3

The Vfill specifier is functionally equivalent to omitting a fill specifier, except that it allows ECC data to be
generated for areas of the input memory range that remain uninitialized. This has the benefit of reducing
the size of the resulting object file.

The Vfill specifier has no effect other than in ECC data generation. It cannot be specified along with a fill
specifier, since that would introduce ambiguity.

If fill is specified in the ECC specifier, but Vfill is not specified, Vfill defaults to 0xff.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 233

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.10 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols and assign values to them at
link time. You can use this feature to initialize a variable or pointer to an allocation-dependent value. See
Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.5.10.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assignment statements in the C
language:

symbol = expression; assigns the value of expression to symbol
symbol + = expression; adds the value of expression to symbol
symbol -= expression; subtracts the value of expression from symbol
symbol * = expression; multiplies symbol by expression

symbol /= expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new symbol and enters it into the
symbol table. The expression must follow the rules defined in Section 8.5.10.3. Assignment statements
must terminate with a semicolon.

The linker processes assignment statements after it allocates all the output sections. Therefore, if an
expression contains a symbol, the address used for that symbol reflects the symbol's address in the
executable output file.

For example, suppose a program reads data from one of two tables identified by two external symbols,
Tablel and Table2. The program uses the symbol cur_tab as the address of the current table. The
cur_tab symbol must point to either Tablel or Table2. You could accomplish this in the assembly code,
but you would need to reassemble the program to change tables. Instead, you can use a linker
assignment statement to assign cur_tab at link time:

prog.c.obj /* Input file */

cur_tab = Tablel; /* Assign cur_tab to one of the tables */

8.5.10.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the section program counter (SPC)
during allocation. The SPC keeps track of the current location within a section. The linker's . symbol is
analogous to the assembler's $ symbol. The . symbol can be used only in assignment statements within a
SECTIONS directive because . is meaningful only during allocation and SECTIONS controls the allocation
process. (See Section 8.5.5.)

The . symbol refers to the current run address, not the current load address, of the section.

For example, suppose a program needs to know the address of the beginning of the .data section. By
using the .global directive (see Identify Global Symbols), you can create an external undefined variable
called Dstart in the program. Then, assign the value of . to Dstart:

SECTIONS

{
-text: s
.data: {Dstart = _;}
-bss : s

¥

This defines Dstart to be the first linked address of the .data section. (Dstart is assigned before .data is
allocated.) The linker relocates all references to Dstart.

A special type of assignment assigns a value to the . symbol. This adjusts the SPC within an output
section and creates a hole between two input sections. Any value assigned to . to create a hole is relative
to the beginning of the section, not to the address actually represented by the . symbol. Holes and
assignments to . are described in Section 8.5.11.

234

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Command Files

8.5.10.3 Assignment Expressions

These rules apply to linker expressions:

Expressions can contain global symbols, constants, and the C language operators listed in Table 8-11.
All numbers are treated as long (32-bit) integers.

Constants are identified by the linker in the same way as by the assembler. That is, numbers are
recognized as decimal unless they have a suffix (H or h for hexadecimal and Q or q for octal). C
language prefixes are also recognized (0 for octal and Ox for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

Symbols within an expression have only the value of the symbol's address. No type-checking is
performed.

Linker expressions can be absolute or relocatable. If an expression contains any relocatable symbols
(and 0 or more constants or absolute symbols), it is relocatable. Otherwise, the expression is absolute.
If a symbol is assigned the value of a relocatable expression, it is relocatable; if it is assigned the value
of an absolute expression, it is absolute.

The linker supports the C language operators listed in Table 8-11 in order of precedence. Operators in the
same group have the same precedence. Besides the operators listed in Table 8-11, the linker also has an
align operator that allows a symbol to be aligned on an n-byte boundary within an output section (n is a
power of 2). For example, the following expression aligns the SPC within the current section on the next
16-byte boundary. Because the align operator is a function of the current SPC, it can be used only in the
same context as . —that is, within a SECTIONS directive.

. = align(16);

Table 8-11. Groups of Operators Used in Expressions (Precedence)

Group 1 (Highest Precedence) Group 6
! Logical NOT
~ Bitwise NOT & Bitwise AND
- Negation
Group 2 Group 7
* Multiplication
/ Division Bitwise OR
% Modulus
Group 3 Group 8
+ Addition .
Subtraction && Logical AND
Group 4 Group 9
>> Arithmetic right shift .
<< Arithmetic left shift I Logical OR
Group 5 Group 10 (Lowest Precedence)
== Equal to _ .
= Not equal to B Assignment .
> Greater than += A+=B is equivalentto A=A+B
< Less than -= A-=B is equivalentto A=A-B
<= Less than or equal to * = A*=B is equivalentto A=A*B
5= Greater than or equal to /= Al/=B is equivalentto A=A/B
SPNU118Y —September 1995—-Revised February 2020 Linker Description 235

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.10.4 Symbols Automatically Defined by the Linker

The linker automatically defines the following symbols for C/C++ support when the --ram_model or --
rom_model option is used.

__TI_STACK_SIZE is assigned the size of the .stack section.
__TI_STACK_END is assigned the end of the .stack section.
Tl SYSMEM_SIZE is assigned the size of the .sysmem section.

These linker-defined symbols can be accessed in any assembly language module if they are declared with
a .global directive (see Identify Global Symbols).

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.5.10.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol

The code generation tools currently support the ability to load program code in one area of (slow) memory
and run it in another (faster) area. This is done by specifying separate load and run addresses for an
output section or group in the linker command file. Then execute a sequence of instructions (the copying
code in Example 8-10) that moves the program code from its load area to its run area before it is needed.

There are several responsibilities that a programmer must take on when setting up a system with this
feature. One of these responsibilities is to determine the size and run-time address of the program code to
be moved. The current mechanisms to do this involve use of the .label directives in the copying code. A
simple example is illustrated in Example 8-10.

This method of specifying the size and load address of the program code has limitations. While it works
fine for an individual input section that is contained entirely within one source file, this method becomes
more complicated if the program code is spread over several source files or if the programmer wants to
copy an entire output section from load space to run space.

Another problem with this method is that it does not account for the possibility that the section being
moved may have an associated far call trampoline section that needs to be moved with it.

236

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.10.6 Why the Dot Operator Does Not Always Work

The dot operator (.) is used to define symbols at link-time with a particular address inside of an output
section. It is interpreted like a PC. Whatever the current offset within the current section is, that is the
value associated with the dot. Consider an output section specification within a SECTIONS directive:

outsect:

{
sl.c.obj(-text)
end_of_sl1 = .3
start_of_s2 = _;
s2.c.obj(-text)
end_of s2 = _;

3

This statement creates three symbols:

» end_of_sl—the end address of .text in s1.c.obj
» start_of_s2—the start address of .text in s2.c.obj
e end_of s2—the end address of .text in s2.c.obj

Suppose there is padding between sl1.c.obj and s2.c.obj created as a result of alignment. Then
start_of s2 is not really the start address of the .text section in s2.c.obj, but it is the address before the
padding needed to align the .text section in s2.c.obj. This is due to the linker's interpretation of the dot
operator as the current PC. It is also true because the dot operator is evaluated independently of the input
sections around it.

Another potential problem in the above example is that end_of_s2 may not account for any padding that
was required at the end of the output section. You cannot reliably use end_of s2 as the end address of
the output section. One way to get around this problem is to create a dummy section immediately after the
output section in question. For example:

GROUP

{

outsect:

{

start_of _outsect = _;

}

dummy: { size_of outsect = . - start _of_outsect; }

8.5.10.7 Address and Dimension Operators
Six operators allow you to define symbols for load-time and run-time addresses and sizes:

LOAD_START(sym) Defines sym with the load-time start address of related allocation unit
START(sym)

LOAD_END(sym) Defines sym with the load-time end address of related allocation unit

END(sym)

LOAD_SIZE(sym) Defines sym with the load-time size of related allocation unit

SIZE(sym)

RUN_START(sym) Defines sym with the run-time start address of related allocation unit
RUN_END(sym) Defines sym with the run-time end address of related allocation unit
RUN_SIZE(sym) Defines sym with the run-time size of related allocation unit

LAST(sym) Defines sym with the run-time address of the last allocated byte in the related

memory range.

Linker Command File Operator Equivalencies --

NOTE: LOAD_START() and START() are equivalent, as are LOAD_END()/END() and
LOAD_SIZE()/SIZE(). The LOAD names are recommended for clarity.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 237

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

These address and dimension operators can be associated with several different kinds of allocation units,
including input items, output sections, GROUPs, and UNIONs. The following sections provide some
examples of how the operators can be used in each case.

These symbols defined by the linker can be accessed at runtime using the _symval operator, which is
essentially a cast operation. For example, suppose your linker command file contains the following:

-text: RUN_START(text_run_start), RUN_SIZE(text_run_size) { *(.text) }
Your C program can access these symbols as follows:

extern char text_run_start, text_run_size;

printf(*.text load start is %Ix\n", _symval(&text_run_start));
printf(".text load size is %Ix\n", _symval(&text_run_size));

See Section 8.6.1 for more information about referring to linker symbols in C/C++ code.

8.5.10.7.1 Input Iltems
Consider an output section specification within a SECTIONS directive:

outsect:
{
sl.c.obj(-text)
end_of_sl = _;
start_of_s2 = _;
s2.c.obj(-text)
end_of s2 = _;
3
This can be rewritten using the START and END operators as follows:
outsect:
{
sl.c.obj(-text) { END(end_of_s1) }
s2.c.obj(-text) { START(start_of _s2), END(end_of _s2) }
3

The values of end_of_s1 and end_of_s2 will be the same as if you had used the dot operator in the
original example, but start_of s2 would be defined after any necessary padding that needs to be added
between the two .text sections. Remember that the dot operator would cause start_of s2 to be defined
before any necessary padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls for braces { } to enclose the
operator list. The operators in the list are applied to the input item that occurs immediately before the list.

8.5.10.7.2 Output Section

The START, END, and SIZE operators can also be associated with an output section. Here is an example:

outsect: START(start_of outsect), SIZE(size_of_outsect)
{

}

In this case, the SIZE operator defines size_of _outsect to incorporate any padding that is required in the
output section to conform to any alignment requirements that are imposed.

<list of input items>

The syntax for specifying the operators with an output section does not require braces to enclose the
operator list. The operator list is simply included as part of the allocation specification for an output
section.

238 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.10.7.3 GROUPs

Here is another use of the START and SIZE operators in the context of a GROUP specification:

GROUP
{

outsectl: { ... }
outsect2: { ... }
} load = ROM, run = RAM, START(group_start), SIZE(group_size);

This can be useful if the whole GROUP is to be loaded in one location and run in another. The copying
code can use group_start and group_size as parameters for where to copy from and how much is to be
copied. This makes the use of .label in the source code unnecessary.

8.5.10.7.4 UNIONSs

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to distinguish between the size of a
UNION's load space and the size of the space where its constituents are going to be copied before they
are run. Here is an example:
UNION: run = RAM, LOAD_START(union_Jload_addr),

LOAD_SI1ZE(union_Id_sz), RUN_SIZE(union_run_sz)

{
.textl: load

-text2: load

ROM, SIZE(textl_size) { fl.c.obj(.text) }
ROM, SIZE(text2_size) { f2.c.obj(.text) }

}

Here union_Id_sz is going to be equal to the sum of the sizes of all output sections placed in the union.
The union_run_sz value is equivalent to the largest output section in the union. Both of these symbols
incorporate any padding due to blocking or alignment requirements.

8.5.10.8 LAST Operator

The LAST operator is similar to the START and END operators that were described previously. However,
LAST applies to a memory range rather than to a section. You can use it in a MEMORY directive to define
a symbol that can be used at run-time to learn how much memory was allocated when linking the
program. See Section 8.5.4.2 for syntax detalils.

For example, a memory range might be defined as follows:
D_MEM : org = 0x20000020 len = 0x20000000 LAST(dmem_end)

Your C program can then access this symbol at runtime using the _symval operator. For example:
extern char dmem_end;

printf("End of D_MEM memory is %Ix\n", _symval(&dmem_end));
See Section 8.6.1 for more information about referring to linker symbols in C/C++ code.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 239

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.11 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have nothing linked into
them. These areas are called holes. In special cases, uninitialized sections can also be treated as holes.
This section describes how the linker handles holes and how you can fill holes (and uninitialized sections)
with values.

8.5.11.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of output sections. An output section contains either:
» Raw data for the entire section
* No raw data

A section that has raw data is referred to as initialized. This means that the object file contains the actual
memory image contents of the section. When the section is loaded, this image is loaded into memory at
the section's specified starting address. The .text and .data sections always have raw data if anything was
assembled into them. Named sections defined with the .sect assembler directive also have raw data.

By default, the .bss section (see Reserve Space in the .bss Section) and sections defined with the .usect
directive (see Reserve Uninitialized Space) have no raw data (they are uninitialized). They occupy space
in the memory map but have no actual contents. Uninitialized sections typically reserve space in fast
external memory for variables. In the object file, an uninitialized section has a normal section header and
can have symbols defined in it; no memory image, however, is stored in the section.

8.5.11.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the linker to leave
extra space between input sections within an output section. When such a hole is created, the linker must
supply raw data for the hole.

Holes can be created only within output sections. Space can exist between output sections, but such
space is not a hole. To fill the space between output sections, see Section 8.5.4.2.

To create a hole in an output section, you must use a special type of linker assignment statement within
an output section definition. The assignment statement modifies the SPC (denoted by .) by adding to it,
assigning a greater value to it, or aligning it on an address boundary. The operators, expressions, and
syntaxes of assignment statements are described in Section 8.5.10.

The following example uses assignment statements to create holes in output sections:

SECTIONS
{

outsect:

{
filel.c.obj(.text)

. += 0x0100 /* Create a hole with size 0x0100 */
file2.c.obj(.text)

. = align(16); /* Create a hole to align the SPC */
file3.c.obj(.text)

}

The output section outsect is built as follows:

1. The .text section from filel.c.obj is linked in.

The linker creates a 256-byte hole.

The .text section from file2.c.obj is linked in after the hole.

The linker creates another hole by aligning the SPC on a 16-byte boundary.
Finally, the .text section from file3.c.obj is linked in.

ok~ wbn

240

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

All values assigned to the . symbol within a section refer to the relative address within the section. The
linker handles assignments to the . symbol as if the section started at address 0 (even if you have
specified a binding address). Consider the statement . = align(16) in the example. This statement
effectively aligns the file3.c.obj .text section to start on a 16-byte boundary within outsect. If outsect is
ultimately allocated to start on an address that is not aligned, the file3.c.obj .text section will not be aligned
either.

The . symbol refers to the current run address, not the current load address, of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid to use the -= operator in an
assignment to the . symbol. The most common operators used in assignments to the . symbol are += and
align.

If an output section contains all input sections of a certain type (such as .text), you can use the following
statements to create a hole at the beginning or end of the output section.

-text: { .+= 0x0100; } /* Hole at the beginning */
-data: { *(.data)
. += 0x0100; } /* Hole at the end */

Another way to create a hole in an output section is to combine an uninitialized section with an initialized
section to form a single output section. In this case, the linker treats the uninitialized section as a hole and
supplies data for it. The following example illustrates this method:

SECTIONS

{

outsect:

{
filel.c.obj(.text)

filel.c.obj(.bss) /* This becomes a hole */
}
}

Because the .text section has raw data, all of outsect must also contain raw data. Therefore, the
uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with initialized sections. If several
uninitialized sections are linked together, the resulting output section is also uninitialized.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 241

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.11.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw data to fill it. The linker fills
holes with a 32-bit fill value that is replicated through memory until it fills the hole. The linker determines
the fill value as follows:

1. If the hole is formed by combining an uninitialized section with an initialized section, you can specify a
fill value for the uninitialized section. Follow the section hame with an = sign and a 32-bit constant. For
example:

SECTIONS
{ outsect:

{

Ffilel.c.obj(.text)
file2.c.obj(.bss)= OxFFOOFFOO /* Fill this hole with OxFFOOFFOO */
¥
¥

2. You can also specify a fill value for all the holes in an output section by supplying the fill value after the
section definition:

SECTIONS
{ outsect:fill = OxFFOOFFOO /* Fills holes with OxFFOOFFOO */
{
. += 0x0010; /* This creates a hole */
Ffilel.c.obj(.text)
filel.c.obj(-bss) /* This creates another hole */
3
}

3. If you do not specify an initialization value for a hole, the linker fills the hole with the value specified
with the --fill_value option (see Section 8.4.14). For example, suppose the command file link.cmd
contains the following SECTIONS directive:

SECTIONS { _text: { .= 0x0100; } /* Create a 100 word hole */ }
Now invoke the linker with the --fill_value option:
armcl --run_linker --Ffill_value=OxFFFFFFFF link.cmd
This fills the hole with OXFFFFFFFF.
4. If you do not invoke the linker with the --fill_value option or otherwise specify a fill value, the linker fills
holes with Os.

Whenever a hole is created and filled in an initialized output section, the hole is identified in the link map
along with the value the linker uses to fill it.

8.5.11.4 Explicit Initialization of Uninitialized Sections

You can force the linker to initialize an uninitialized section by specifying an explicit fill value for it in the
SECTIONS directive. This causes the entire section to have raw data (the fill value). For example:

SECTIONS
{

}

-bss: Fill = 0x12341234 /* Fills _bss with 0x12341234 */

Filling Sections

NOTE: Because filling a section (even with 0s) causes raw data to be generated for the entire
section in the output file, your output file will be very large if you specify fill values for large
sections or holes.

242 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Linker Symbols

8.6

8.6.1

Linker Symbols

This section provides information about using and resolving linker symbols.

Using Linker Symbols in C/C++ Applications

Linker symbols have a hame and a value. The value is a 32-bit unsigned integer, even if it represents a
pointer value on a target that has pointers smaller than 32 bits.

The most common kind of symbol is generated by the compiler for each function and variable. The value
represents the target address where that function or variable is located. When you refer to the symbol by
name in the linker command file or in an assembly file, you get that 32-bit integer value.

However, in C and C++ names mean something different. If you have a variable named x that contains
the value Y, and you use the name "x" in your C program, you are actually referring to the contents of
variable x. If "x" is used on the right-hand side of an expression, the compiler fetches the value Y. To
realize this variable, the compiler generates a linker symbol named x with the value &x. Even though the
C/C++ variable and the linker symbol have the same name, they don't represent the same thing. In C, x is
a variable name with the address &x and content Y. For linker symbols, x is an address, and that address
contains the value Y.

Because of this difference, there are some tricks to referring to linker symbols in C code. The basic
technique is to cause the compiler to create a "fake" C variable or function and take its address. The
details differ depending on the type of linker symbol.

Linker symbols that represent a function address: In C code, declare the function as an extern
function. Then, refer to the value of the linker symbol using the same name. This works because function
pointers "decay" to their address value when used without adornment. For example:

extern void _c_int0O0(void);

printf(*"_c_int00 %Ix\n", (unsigned long)&_ c_int00);

Suppose your linker command file defines the following linker symbol:
func_sym=printf+100;

Your C application can refer to this symbol as follows:

extern void func_sym(void);

printf("func_sym %Ix\n", _symval(&func_sym)); /* these two are equivalent */
printf(*"func_sym %Ix\n", (unsigned long)&func_sym);

Linker symbols that represent a data address: In C code, declare the variable as an extern variable.
Then, refer to the value of the linker symbol using the & operator. Because the variable is at a valid data
address, we know that a data pointer can represent the value.

Suppose your linker command file defines the following linker symbols:

data_sym=_data+100;

Xyz=12345

Your C application can refer to these symbols as follows:

extern char data_sym;
extern int xyz;

printf(*'data_sym %Ix\n", _symval(&data_sym)); /* these two are equivalent */
printf(*'data_sym %p\n', &data_sym);

myvar = &xyz;

SPNU118Y —September 1995—-Revised February 2020 Linker Description 243
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Symbols www.ti.com

8.6.2

8.6.3

Linker symbols for an arbitrary address: In C code, declare this as an extern symbol. The type does
not matter. If you are using GCC extensions, declare it as "extern void". If you are not using GCC
extensions, declare it as "extern char". Then, refer to the value of the linker symbol mySymbol as
_symval(&mySymbol). You must use the _symval operator, which is equivalent to a cast, because the 32-
bit value of the linker symbol could be wider than a data pointer. The compiler treats _symval(&mySymbol)
in a special way that can represent all 32 bits, even when pointers are 16 bits. Targets that have 32-bit
pointers can usually use &mySymbol instead of the _symval operator. However, the portable way to
access such linker symbols across Tl targets is to use _symval(&mySymbol).

Suppose your linker command file defines the following linker symbol:
abs_sym=0x12345678;

Your C application can refer to this symbol as follows:

extern char abs_sym;

printf('abs_sym %Ix\n", _symval(&abs_sym));

Declaring Weak Symbols

In a linker command file, an assignment expression outside a MEMORY or SECTIONS directive can be
used to define a linker-defined symbol. To define a weak symbol in a linker command file, use the "weak"
operator in an assignment expression to designate that the symbol as eligible for removal from the output
file's symbol table if it is not referenced. For example, you can define "ext_addr_sym" as follows:

weak(ext_addr_sym) = 0x12345678;
When the linker command file is used to perform the final link, then "ext_addr_sym" is presented to the

linker as a weak absolute symbol; it will not be included in the resulting output file if the symbol is not
referenced.

See Section 2.6.3 for details about how weak symbols are handled by the linker.

Resolving Symbols with Object Libraries

An object library is a partitioned archive file that contains object files as members. Usually, a group of
related modules are grouped together into a library. When you specify an object library as linker input, the
linker includes any members of the library that define existing unresolved symbol references. You can use
the archiver to build and maintain libraries. Section 7.1 contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable module. Normally, if an object
file that contains a function is specified at link time, the file is linked whether the function is used or not;
however, if that same function is placed in an archive library, the file is included only if the function is
referenced.

The order in which libraries are specified is important, because the linker includes only those members
that resolve symbols that are undefined at the time the library is searched. The same library can be
specified as often as necessary; it is searched each time it is included. Alternatively, you can use the --
reread_libs option to reread libraries until no more references can be resolved (see Section 8.4.18.3). A
library has a table that lists all external symbols defined in the library; the linker searches through the table
until it determines that it cannot use the library to resolve any more references.

The following examples link several files and libraries, using these assumptions:

« Input files f1.c.obj and f2.c.obj both reference an external function named clrscr.
» Input file f1.c.obj references the symbol origin.

* Input file f2.c.obj references the symbol fillclr.

* Member 0 of library libc.lib contains a definition of origin.

* Member 3 of library liba.lib contains a definition of fillclr.

* Member 1 of both libraries defines clrscr.

244

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS

INSTRUMENTS

www.ti.com Default Placement Algorithm

8.7

If you enter:
armcl --run_linker fl.c.obj f2.c.obj liba.lib libc.lib

then:

 Member 1 of liba.lib satisfies the fl1.c.obj and f2.c.obj references to clrscr because the library is
searched and the definition of clrscr is found.

* Member 0 of libc.lib satisfies the reference to origin.

» Member 3 of liba.lib satisfies the reference to fillclr.

If, however, you enter:

armcl --run_linker fl.c.obj f2.c.obj libc.lib liba.lib

then the references to clrscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use the --undef_sym option to
force the linker to include a library member. (See Section 8.4.35.) The next example creates an undefined
symbol routl in the linker's global symbol table:

armcl --run_linker --undef_sym=routl libc.lib
If any member of libc.lib defines routl, the linker includes that member.

Library members are allocated according to the SECTIONS directive default allocation algorithm; see
Section 8.5.5.

Section 8.4.18 describes methods for specifying directories that contain object libraries.

Default Placement Algorithm

The MEMORY and SECTIONS directives provide flexible methods for building, combining, and allocating
sections. However, any memory locations or sections you choose not to specify must still be handled by
the linker. The linker uses algorithms to build and allocate sections in coordination with any specifications
you do supply.

If you do not use the MEMORY and SECTIONS directives, the linker allocates output sections as though
the memory map and section definitions were as shown in Example 8-16 were specified.

Example 8-16. Default Allocation for ARM Devices

{
RAM : origin = 0x00000000, length = OxFFFFFFFF
3
SECTIONS
{
.text : ALIGN(4) {3} > RAM
.const: ALIGN(4) {} > RAM
.data : ALIGN(4) {3} > RAM
.bss : ALIGN(4) {3} > RAM
.cinit: ALIGN(4) {} > RAM /* -c option only */
-pinit: ALIGN(4) {3 > RAM /* -c option only */
3
See Section 2.5.1 for information about default memory allocation.
All .text input sections are concatenated to form a .text output section in the executable output file, and all
.data input sections are combined to form a .data output section.
If you use a SECTIONS directive, the linker performs no part of this default allocation. Instead, allocation
is performed according to the rules specified by the SECTIONS directive and the general algorithm
described next in Section 8.7.1.
SPNU118Y —September 1995—-Revised February 2020 Linker Description 245

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Default Placement Algorithm www.ti.com

8.7.1

8.7.2

8.8

8.8.1

How the Allocation Algorithm Creates Output Sections
An output section can be formed in one of two ways:

Method 1 As the result of a SECTIONS directive definition

Method 2 By combining input sections with the same name into an output section that is not defined in
a SECTIONS directive

If an output section is formed as a result of a SECTIONS directive, this definition completely determines
the section's contents. (See Section 8.5.5 for examples of how to define an output section's content.)

If an output section is formed by combining input sections not specified by a SECTIONS directive, the
linker combines all such input sections that have the same name into an output section with that name.
For example, suppose the files f1.c.obj and f2.c.obj both contain named sections called Vectors and that
the SECTIONS directive does not define an output section for them. The linker combines the two Vectors
sections from the input files into a single output section named Vectors, allocates it into memory, and
includes it in the output file.

By default, the linker does not display a message when it creates an output section that is not defined in
the SECTIONS directive. You can use the --warn_sections linker option (see Section 8.4.36) to cause the
linker to display a message when it creates a hew output section.

After the linker determines the composition of all output sections, it must allocate them into configured
memory. The MEMORY directive specifies which portions of memory are configured. If there is no
MEMORY directive, the linker uses the default configuration as shown in Example 8-16. (See

Section 8.5.4 for more information on configuring memory.)

Reducing Memory Fragmentation

The linker's allocation algorithm attempts to minimize memory fragmentation. This allows memory to be
used more efficiently and increases the probability that your program will fit into memory. The algorithm
comprises these steps:

1. Each output section for which you supply a specific binding address is placed in memory at that
address.

2. Each output section that is included in a specific, named memory range or that has memory attribute
restrictions is allocated. Each output section is placed into the first available space within the named
area, considering alignment where necessary.

3. Any remaining sections are allocated in the order in which they are defined. Sections not defined in a
SECTIONS directive are allocated in the order in which they are encountered. Each output section is
placed into the first available memory space, considering alignment where necessary.

If you want to control the order in which code and data are placed in memory, see the FAQ topic on
section placement.

Using Linker-Generated Copy Tables

The linker supports extensions to the linker command file syntax that enable the following:

« Make it easier for you to copy objects from load-space to run-space at boot time

» Make it easier for you to manage memory overlays at run time

» Allow you to split GROUPs and output sections that have separate load and run addresses

For an introduction to copy tables and their use, see Section 3.3.3.

Using Copy Tables for Boot Loading

In some embedded applications, there is a need to copy or download code and/or data from one location
to another at boot time before the application actually begins its main execution thread. For example, an
application may have its code and/or data in FLASH memory and need to copy it into on-chip memory
before the application begins execution.

246

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_FAQ#Q:_How_can_I_get_the_linker_to_place_a_piece_of_code_or_data_so_that_it_comes_before_all_the_rest.3F
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_FAQ#Q:_How_can_I_get_the_linker_to_place_a_piece_of_code_or_data_so_that_it_comes_before_all_the_rest.3F

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Using Linker-Generated Copy Tables

One way to develop such an application is to create a copy table in assembly code that contains three
elements for each block of code or data that needs to be moved from FLASH to on-chip memory at boot
time:

* The load address

e The run address

* The size

The process you follow to develop such an application might look like this:

1. Build the application to produce a .map file that contains the load and run addresses of each section
that has a separate load and run placement.

2. Edit the copy table (used by the boot loader) to correct the load and run addresses as well as the size
of each block of code or data that needs to be moved at boot time.

3. Build the application again, incorporating the updated copy table.
4. Run the application.
This process puts a heavy burden on you to maintain the copy table (by hand, no less). Each time a piece

of code or data is added or removed from the application, you must repeat the process in order to keep
the contents of the copy table up to date.

8.8.2 Using Built-in Link Operators in Copy Tables
You can avoid some of this maintenance burden by using the LOAD_START(), RUN_START(), and
SIZE() operators that are already part of the linker command file syntax . For example, instead of building
the application to generate a .map file, the linker command file can be annotated:
SECTIONS
-Flashcode: { app_tasks.c.obj(.text) }

load = FLASH, run = PMEM,

LOAD_START(_flash_code_Id_start),

RUN_START(_flash_code_rn_start),

SIZE(_flash_code_size)
3
In this example, the LOAD_START(), RUN_START(), and SIZE() operators instruct the linker to create
three symbols:
Symbol Description
_flash_code_Id_start Load address of .flashcode section
_flash_code_rn_start Run address of .flashcode section
_flash_code_size Size of .flashcode section
These symbols can then be referenced from the copy table. The actual data in the copy table will be
updated automatically each time the application is linked. This approach removes step 1 of the process
described in Section 8.8.1.
While maintenance of the copy table is reduced markedly, you must still carry the burden of keeping the
copy table contents in sync with the symbols that are defined in the linker command file. Ideally, the linker
would generate the boot copy table automatically. This would avoid having to build the application twice
and free you from having to explicitly manage the contents of the boot copy table.
For more information on the LOAD_START(), RUN_START(), and SIZE() operators, see Section 8.5.10.7.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 247

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Using Linker-Generated Copy Tables www.ti.com

8.8.3 Overlay Management Example

Consider an application that contains a memory overlay that must be managed at run time. The memory
overlay is defined using a UNION in the linker command file as illustrated in Example 8-17:

Example 8-17. Using a UNION for Memory Overlay

SECTIONS
{
UNION
{
GROUP

{
-taskl: { taskl.c.obj(-text) }

.task2: { task2.c.obj(-text) }
} load = ROM, LOAD_START(taskl2_load_start), SIZE(taskl2_size)

GROUP

{
.task3: { task3.c.obj(.text) }

.task4: { task4.c.obj(-text) }

} load = ROM, LOAD_START(task34_load_start), SIZE(_task_34_size)
} run = RAM, RUN_START(task_run_start)

The application must manage the contents of the memory overlay at run time. That is, whenever any
services from .taskl or .task2 are needed, the application must first ensure that .task1l and .task2 are
resident in the memory overlay. Similarly for .task3 and .task4.

To affect a copy of .taskl and .task2 from ROM to RAM at run time, the application must first gain access
to the load address of the tasks (_task12 load_start), the run address (_task_run_start), and the size
(_task12_size). Then this information is used to perform the actual code copy.

8.8.4 Generating Copy Tables With the table() Operator

The linker supports extensions to the linker command file syntax that enable you to do the following:

» ldentify any object components that may need to be copied from load space to run space at some
point during the run of an application

» Instruct the linker to automatically generate a copy table that contains (at least) the load address, run
address, and size of the component that needs to be copied

» Instruct the linker to generate a symbol specified by you that provides the address of a linker-
generated copy table. For instance, Example 8-17 can be written as shown in Example 8-18:

248 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Using Linker-Generated Copy Tables

Example 8-18. Produce Address for Linker Generated Copy Table

SECTIONS
{

UNION

{
GROUP

{
.taskl: { taskl.c.obj(.-text) }

.task2: { task2.c.obj(-text) }
} load = ROM, table(_taskl12_copy_table)

GROUP

{
.task3: { task3.c.obj(-text) }
.task4: { task4.c.obj(-text) }

} load = ROM, table(_task34_copy_table)

} run = RAM

Using the SECTIONS directive from Example 8-18 in the linker command file, the linker generates two
copy tables named: task12 copy table and task34 copy table. Each copy table provides the load
address, run address, and size of the GROUP that is associated with the copy table. This information is
accessible from application source code using the linker-generated symbols, _task12_copy_table and
_task34 _copy_table, which provide the addresses of the two copy tables, respectively.

Using this method, you need not worry about the creation or maintenance of a copy table. You can
reference the address of any copy table generated by the linker in C/C++ or assembly source code,
passing that value to a general purpose copy routine, which will process the copy table and affect the
actual copy.

8.8.4.1 The table() Operator

You can use the table() operator to instruct the linker to produce a copy table. A table() operator can be
applied to an output section, a GROUP, or a UNION member. The copy table generated for a particular
table() specification can be accessed through a symbol specified by you that is provided as an argument
to the table() operator. The linker creates a symbol with this name and assigns it the address of the copy
table as the value of the symbol. The copy table can then be accessed from the application using the
linker-generated symbol.

Each table() specification you apply to members of a given UNION must contain a unique name. If a
table() operator is applied to a GROUP, then none of that GROUP's members may be marked with a
table() specification. The linker detects violations of these rules and reports them as warnings, ignoring
each offending use of the table() specification. The linker does not generate a copy table for erroneous
table() operator specifications.

Copy tables can be generated automatically; see Section 8.8.4. The table operator can be used with
compression; see Section 8.8.5.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 249

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Using Linker-Generated Copy Tables www.ti.com

8.8.4.2 Boot-Time Copy Tables

The linker supports a special copy table name, BINIT (or binit), that you can use to create a boot-time
copy table. This table is handled before the .cinit section is used to initialize variables at startup. For
example, the linker command file for the boot-loaded application described in Section 8.8.2 can be
rewritten as follows:

SECTIONS

{
.flashcode: { app_tasks.c.obj(.text) }
load = FLASH, run = PMEM,
table(BINIT)

}

For this example, the linker creates a copy table that can be accessed through a special linker-generated
symbol, __binit__, which contains the list of all object components that need to be copied from their load
location to their run location at boot-time. If a linker command file does not contain any uses of
table(BINIT), then the __binit__ symbol is given a value of -1 to indicate that a boot-time copy table does
not exist for a particular application.

You can apply the table(BINIT) specification to an output section, GROUP, or UNION member. If used in
the context of a UNION, only one member of the UNION can be designated with table(BINIT). If applied to
a GROUP, then none of that GROUP's members may be marked with table(BINIT).The linker detects
violations of these rules and reports them as warnings, ignoring each offending use of the table(BINIT)
specification.

8.8.4.3 Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you can apply the same table()
operator to several different object components. In addition, if you want to manage a particular object
component in multiple ways, you can apply more than one table() operator to it. Consider the linker
command file excerpt in Example 8-19:

Example 8-19. Linker Command File to Manage Object Components

SECTIONS
{
UNION
{
-First: { al.c.obj(-text), bl.c.obj(.text), cl.c.obj(-text) }
load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)

.second: { a2.c.obj(-text), b2.c.obj(.text) }
load = EMEM, run = PMEM, table(_second_ctbl)

}

.extra: load = EMEM, run = PMEM, table(BINIT)

b
In this example, the output sections .first and .extra are copied from external memory (EMEM) into
program memory (PMEM) at boot time while processing the BINIT copy table. After the application has
started executing its main thread, it can then manage the contents of the overlay using the two overlay
copy tables named: _first _ctbl and _second_ctbl.
250 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Using Linker-Generated Copy Tables

8.8.4.4 Linker-Generated Copy Table Sections and Symbols

The linker creates and allocates a separate input section for each copy table that it generates. Each copy
table symbol is defined with the address value of the input section that contains the corresponding copy
table.

The linker generates a unique name for each overlay copy table input section. For example,
table(_first_ctbl) would place the copy table for the .first section into an input section called
.ovly:_first_ctbl. The linker creates a single input section, .binit, to contain the entire boot-time copy table.

Example 8-20 illustrates how you can control the placement of the linker-generated copy table sections
using the input section names in the linker command file.

Example 8-20. Controlling the Placement of the Linker-Generated Copy Table Sections

SECTIONS

{
UNION

{
First: { al.c.obj(-text), bl.c.obj(.-text), cl.c.obj(-text) }

load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)

.second: { a2.c.obj(-text), b2.c.obj(.text) }
load = EMEM, run = PMEM, table(_second_ctbl)

}

.extra: load = EMEM, run = PMEM, table(BINIT)

.ovly: { } > BMEM
-binit: { } > BMEM
}

For the linker command file in Example 8-20, the boot-time copy table is generated into a .binit input
section, which is collected into the .binit output section, which is mapped to an address in the BMEM
memory area. The _first _ctbl is generated into the .ovly:_first_ctbl input section and the _second_ctbl is
generated into the .ovly:_second_ctbl input section. Since the base names of these input sections match
the name of the .ovly output section, the input sections are collected into the .ovly output section, which is
then mapped to an address in the BMEM memory area.

If you do not provide explicit placement instructions for the linker-generated copy table sections, they are
allocated according to the linker's default placement algorithm.

The linker does not allow other types of input sections to be combined with a copy table input section in
the same output section. The linker does not allow a copy table section that was created from a partial link
session to be used as input to a succeeding link session.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 251

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Using Linker-Generated Copy Tables www.ti.com

8.8.4.5 Splitting Object Components and Overlay Management

It is possible to split sections that have separate load and run placement instructions. The linker can
access both the load address and run address of every piece of a split object component. Using the
table() operator, you can tell the linker to generate this information into a copy table. The linker gives each
piece of the split object component a COPY_RECORD entry in the copy table object.

For example, consider an application which has seven tasks. Tasks 1 through 3 are overlaid with tasks 4
through 7 (using a UNION directive). The load placement of all of the tasks is split among four different
memory areas (LMEM1, LMEM2, LMEM3, and LMEM4). The overlay is defined as part of memory area
PMEM. You must move each set of tasks into the overlay at run time before any services from the set are
used.

You can use table() operators in combination with splitting operators, >>, to create copy tables that have
all the information needed to move either group of tasks into the memory overlay as shown in Example 8-
21.

Example 8-21. Creating a Copy Table to Access a Split Object Component

SECTIONS

{

}

UNION

-tasklto3: { *(.taskl), *(.task2), *(.task3) }
load >> LMEM1 | LMEM2 | LMEM4, table(_taskl3_ctbl)

GROUP

{
.task4: { *(.task4) }
.task5: { *(.task5) }
-task6: { *(.task6) }
.task7: { *(.task7) }

} load >> LMEM1 | LMEM3 | LMEM4, table(_task47_ctbl)

} run = PMEM

.ovly: > LMEM4

252

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Using Linker-Generated Copy Tables

Example 8-22 illustrates a possible driver for such an application.

Example 8-22. Split Object Component Driver

#include <cpy_tbl._h>

extern far COPY_TABLE taskl13_ctbl;
extern far COPY_TABLE task47_ctbl;

extern void taskl(void);
extern void task7(void);

main()

{

copy_in(&taskl3_ctbl);
taskl1(Q);
task2();
task3();

copy_in(&task47_ctbl);
task4(Q);
task5Q);
task6();
task7(Q);

You must declare a COPY_TABLE object as far to allow the overlay copy table section placement to be
independent from the other sections containing data objects (such as .bss).

The contents of the .task1to3 section are split in the section’s load space and contiguous in its run space.
The linker-generated copy table, task13_cthl, contains a separate COPY_RECORD for each piece of the
split section .task1to3. When the address of _task13_cthl is passed to copy_in(), each piece of .task1to3
is copied from its load location into the run location.

The contents of the GROUP containing tasks 4 through 7 are also split in load space. The linker performs
the GROUP split by applying the split operator to each member of the GROUP in order. The copy table for
the GROUP then contains a COPY_RECORD entry for every piece of every member of the GROUP.
These pieces are copied into the memory overlay when the _task47_ctbl is processed by copy_in().

The split operator can be applied to an output section, GROUP, or the load placement of a UNION or
UNION member. The linker does not permit a split operator to be applied to the run placement of either a
UNION or of a UNION member. The linker detects such violations, emits a warning, and ignores the
offending split operator usage.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 253

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Using Linker-Generated Copy Tables www.ti.com

8.8.5 Compression

When automatically generating copy tables, the linker provides a way to compress the load-space data.
This can reduce the read-only memory foot print. This compressed data can be decompressed while
copying the data from load space to run space.

You can specify compression in two ways:

e The linker command line option --copy_compression=compression_kind can be used to apply the
specified compression to any output section that has a table() operator applied to it.

» The table() operator accepts an optional compression parameter. The syntax is: .
table(name , compression= compression_kind)
The compression_kind can be one of the following types:
— off. Don't compress the data.
— rle. Compress data using Run Length Encoding.
— lzss. Compress data using Lempel-Ziv-Storer-Szymanski compression.
A table() operator without the compression keyword uses the compression kind specified using the
command line option --copy_compression.

When you choose compression, it is not guaranteed that the linker will compress the load data. The linker
compresses load data only when such compression reduces the overall size of the load space. In some
cases even if the compression results in smaller load section size the linker does not compress the data if
the decompression routine offsets for the savings.

For example, assume RLE compression reduces the size of sectionl by 30 bytes. Also assume the RLE
decompression routine takes up 40 bytes in load space. By choosing to compress sectionl the load space
is increased by 10 bytes. Therefore, the linker will not compress sectionl. On the other hand, if there is
another section (say section2) that can benefit by more than 10 bytes from applying the same
compression then both sections can be compressed and the overall load space is reduced. In such cases
the linker compresses both the sections.

You cannot force the linker to compress the data when doing so does not result in savings.
You cannot compress the decompression routines or any member of a GROUP containing .cinit.

8.8.5.1 Compressed Copy Table Format

The copy table format is the same irrespective of the compression_kind. The size field of the copy record
is overloaded to support compression. Figure 8-5 illustrates the compressed copy table layout.

Figure 8-5. Compressed Copy Table

Rec size Rec cnt
Load address Run address |Size (0 if load data is compressed)l

In Figure 8-5, if the size in the copy record is non-zero it represents the size of the data to be copied, and
also means that the size of the load data is the same as the run data. When the size is 0, it means that
the load data is compressed.

8.8.5.2 Compressed Section Representation in the Object File

The linker creates a separate input section to hold the compressed data. Consider the following table()
operation in the linker command file.

SECTIONS

{

}

The output object file has one output section named .taskl which has different load and run addresses.
This is possible because the load space and run space have identical data when the section is not
compressed.

-taskl: load = ROM, run = RAM, table(_taskl_table)

254

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Using Linker-Generated Copy Tables

Alternatively, consider the following:

SECTIONS
{

}

If the linker compresses the .taskl section then the load space data and the run space data are different.
The linker creates the following two sections:

» .taskl : This section is uninitialized. This output section represents the run space image of section
taskl.

» .taskl.load : This section is initialized. This output section represents the load space image of the
section taskl. This section usually is considerably smaller in size than .task1 output section.

-taskl: load = ROM, run = RAM, table(_taskl_table, compression=rle)

The linker allocates load space for the .taskl.load input section in the memory area that was specified for
load placement for the .task1 section. There is only a single load section to represent the load placement
of .taskl - .taskl.load. If the .taskl data had not been compressed, there would be two allocations for the
.taskl input section: one for its load placement and another for its run placement.

8.8.5.3 Compressed Data Layout
The compressed load data has the following layout:

8-bit index ‘ Compressed data ‘

The first 8 bits of the load data are the handler index. This handler index is used to index into a handler
table to get the address of a handler function that knows how to decode the data that follows. The handler
table is a list of 32-bit function pointers as shown in Figure 8-6.

Figure 8-6. Handler Table

_Tl_Handler_Table_Base:

32-bit handler address 1

32-bit handler address N

_TI_Handler_Table_Limit:

The linker creates a separate output section for the load and run space. For example, if .taskl.load is
compressed using RLE, the handler index points to an entry in the handler table that has the address of
the run-time-support routine __ TI_decompress_rle().

8.8.5.4 Run-Time Decompression

During run time you call the run-time-support routine copy_in() to copy the data from load space to run
space. The address of the copy table is passed to this routine. First the routine reads the record count.
Then it repeats the following steps for each record:

1. Read load address, run address and size from record.

If size is zero go to step 5.

Call memcpy passing the run address, load address and size.
Go to step 1 if there are more records to read.

Read the first byte from the load address. Call this index.
Read the handler address from (&__TI_Handler_Base)[index].
Call the handler and pass load address + 1 and run address.
Go to step 1 if there are more records to read.

© N O A WD

The routines to handle the decompression of load data are provided in the run-time-support library.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 255

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Using Linker-Generated Copy Tables www.ti.com

8.8.5.5 Compression Algorithms

The following subsections provide information about decompression algorithms for the RLE and LZSS
formats. To see example decompression algorithms, refer to the following functions in the Run-Time
Support library:

* RLE: The __TI_decompress_rle() function in the copy_decompress_rle.c file.
e LZSS: The __TI_decompress_lzss() function in the copy_decompress_lzss.c file.

Run Length Encoding (RLE):

8-bit index ‘ Initialization data compressed using run length encoding

The data following the 8-bit index is compressed using run length encoded (RLE) format. ARM uses a
simple run length encoding that can be decompressed using the following algorithm. See
copy_decompress_rle.c for details.

1. Read the first byte, Delimiter (D).

2. Read the next byte (B).

3. If B !=D, copy B to the output buffer and go to step 2.
4. Read the next byte (L).

a. If L ==0, then length is either a 16-bit or 24-bit value or we've reached the end of the data, read
the next byte (L).

1. If L==0, length is a 24-bit value or the end of the data is reached, read next byte (L).
a. If L ==0, the end of the data is reached, go to step 7.
b. Else L <<= 16, read next two bytes into lower 16 bits of L to complete 24-bit value for L.
2. Else L <<= 8, read next byte into lower 8 bits of L to complete 16-bit value for L.
b. Elseif L >0 and L < 4, copy D to the output buffer L times. Go to step 2.
c. Else, length is 8-bit value (L).
5. Read the next byte (C); C is the repeat character.
6. Write C to the output buffer L times; go to step 2.
7. End of processing.
The ARM run-time support library has a routine __ Tl _decompress_rle24() to decompress data

compressed using RLE. The first argument to this function is the address pointing to the byte after the 8-
bit index. The second argument is the run address from the C auto initialization record.

RLE Decompression Routine

NOTE: The previous decompression routine, __TI_decompress_rle(), is included in the run-time-
support library for decompressing RLE encodings that are generated by older versions of the
linker.

Lempel-Ziv-Storer-Szymanski Compression (LZSS):

8-bit index ‘ Data compressed using LZSS ‘

The data following the 8-bit index is compressed using LZSS compression. The ARM run-time-support
library has the routine __ TI_decompress_lzss() to decompress the data compressed using LZSS. The first
argument to this function is the address pointing to the byte after the 8-bit Index, and the second argument
is the run address from the C auto initialization record.

See copy_decompress_lzss.c for details on the LZSS algorithm.

256

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Using Linker-Generated Copy Tables

8.8.6 Copy Table Contents

To use a copy table generated by the linker, you must know the contents of the copy table. This
information is included in a run-time-support library header file, cpy_tbl.h, which contains a C source
representation of the copy table data structure that is generated by the linker. Example 8-23 shows the
copy table header file.

Example 8-23. ARM cpy_tbl.h File

/ /
/* cpy_tbl_h v */
/* Copyright (c) 2003 Texas Instruments Incorporated */
/* */
/* Specification of copy table data structures which can be automatically */
/* generated by the linker (using the table() operator in the LCF). */
/ /

#ifndef _CPY_TBL
#define _CPY_TBL

#ifdef _ cplusplus
extern "C" namespace std {
#endif /* __cplusplus */

/ /
/* Copy Record Data Structure */
/ /
typedef struct copy_record

{

unsigned int load_addr;
unsigned int run_addr;
unsigned Int size;

} COPY_RECORD;

/ /
/* Copy Table Data Structure */
/ /
typedef struct copy_table

{

unsigned short rec_size;

unsigned short num_recs;

COPY_RECORD recs[1];
} COPY_TABLE;

/ /
/* Prototype for general purpose copy routine. */
/ /

extern void copy_in(COPY_TABLE *tp);

#ifdef _ cplusplus
} /7* extern "C" namespace std */

#ifndef _CPP_STYLE_HEADER
using std::COPY_RECORD;

using std::COPY_TABLE;

using std::copy_in;

#endif /* _CPP_STYLE_HEADER */
#endif /* _ cplusplus */
#endif /* 1_CPY_TBL */

For each object component that is marked for a copy, the linker creates a COPY_RECORD object for it.
Each COPY_RECORD contains at least the following information for the object component:

* The load address
e The run address
* The size

SPNU118Y —September 1995—-Revised February 2020 Linker Description 257

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Using Linker-Generated Copy Tables www.ti.com

8.8.7

The linker collects all COPY_RECORDSs that are associated with the same copy table into a
COPY_TABLE object. The COPY_TABLE object contains the size of a given COPY_RECORD, the
number of COPY_RECORD:s in the table, and the array of COPY_RECORD:s in the table. For instance, in
the BINIT example in Section 8.8.4.2, the .first and .extra output sections will each have their own
COPY_RECORD entries in the BINIT copy table. The BINIT copy table will then look like this:
COPY_TABLE _ binit__ = { 12, 2,
{ <load address of .first>,
<run address of _first>,
<size of .first> },
{ <load address of .extra>,
<run address of .extra>,
<size of .extra> } };

General Purpose Copy Routine

The cpy_tbl.h file in Example 8-23 also contains a prototype for a general-purpose copy routine, copy_in(),
which is provided as part of the run-time-support library. The copy_in() routine takes a single argument:
the address of a linker-generated copy table. The routine then processes the copy table data object and
performs the copy of each object component specified in the copy table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support source file shown in
Example 8-24.

Example 8-24. Run-Time-Support cpy_tbl.c File

/ /
/* cpy_tbl.c v */
/* */
/* General purpose copy routine. Given the address of a linker-generated */
/* COPY_TABLE data structure, effect the copy of all object components */
/* that are designated for copy via the corresponding LCF table() operator. */
/ /
#include <cpy_tbl_h>
#include <string.h>
typedef void (*handler_fptr)(const unsigned char *in, unsigned char *out)
/ /
/* COPY_INQ */
/ /
void copy_in(COPY_TABLE *tp)
{
unsigned short 1I;
for (1 = 0; I < tp->num_recs; I++)
{
COPY_RECORD crp = tp->recs[i];
unsigned char *ld_addr = (unsigned char *)crp.load_addr;
unsigned char *rn_addr = (unsigned char *)crp.run_addr;
it (crp.size)
{
/* __ */
/* Copy record has a non-zero size so the data is not compressed. */
/* Just copy the data. */
/* __ */
memcpy(rn_addr, ld_addr, crp.size);
3
3
}
258 Linker Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS

www.ti.com Linker-Generated CRC Tables

8.9

8.9.1

8.9.2

Linker-Generated CRC Tables

The linker supports an extension to the linker command file syntax that enables the verification of code or
data by means of Cyclic Redundancy Code (CRC). The linker computes a CRC value for the specified
region at link time, and stores that value in target memory such that it is accessible at boot or run time.
The application code can then compute the CRC for that region and ensure that the value matches the
linker-computed value.

The run-time-support library does not supply a routine to calculate CRC values at boot or run time.

Examples that perform cyclic redundancy checking using linker-generated CRC tables are provided in the
Tools Insider blog in TI's E2ZE community.

The crc_table() Operator

For any section that should be verified with a CRC, the linker command file must be modified to include
the crc_table() operator. The specification of a CRC algorithm is optional. The syntax is:

crc_table(user_specified_table_name[, algorithm=xxx])

The linker uses the CRC algorithm from any specification given in a crc_table() operator. If that
specification is omitted, the TMS570_CRC64_1SO algorithm is used. The linker includes CRC table
information in the map file. This includes the CRC value as well as the algorithm used for the calculation.

The CRC table generated for a particular crc_table() instance can be accessed through the table name
provided as an argument to the crc_table() operator. The linker creates a symbol with this name and
assigns the address of the CRC table as the value of the symbol. The CRC table can then be accessed
from the application using the linker-generated symbol.

The crc_table() operator can be applied to an output section, a GROUP, a GROUP member, a UNION, or
a UNION member. In a GROUP or UNION, the operator is applied to each member.

You can include calls in your application to a routine that will verify CRC values for relevant sections. You
must provide this routine. See below for more details on the data structures and suggested interface.

Restrictions

It is important to note that the CRC generator used by the linker is parameterized as described in the
crc_tbl.h header file (see Example 8-29). Any CRC calculation routine employed outside of the linker must
function in the same way to ensure matching CRC values. The linker cannot detect a mismatch in the
parameters. To understand these parameters, see A Painless Guide to CRC Error Detection Algorithms
by Ross Williams, which is likely located at http://www.ross.net/crc/download/crc_v3.txt.

Only CRC algorithm names and identifiers in crc_tbl.h are supported. All other names and ID values are
reserved for future use. Systems may not include built-in hardware that computes these CRC algorithms.
Consult documentation for your hardware for details. These CRC algorithms are supported:

« CRC8_PRIME
- CRC16_ALT

« CRC16_802_15 4
. CRC_CCITT

« CRC24_FLEXRAY
« CRC32_PRIME

« CRC32.C

« CRC64_ISO

The TMS570_CRC64_1SO algorithm has an initial value of 0. The details of the algorithm are available in
the MCRC documentation.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 259
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y
https://e2e.ti.com/blogs_/b/toolsinsider/archive/2017/02/27/from-the-experts-perform-cyclic-redundancy-checking-using-linker-generated-crc-tables
https://e2e.ti.com/blogs_/b/toolsinsider/archive/2017/02/27/from-the-experts-perform-cyclic-redundancy-checking-using-linker-generated-crc-tables
http://www.ross.net/crc/download/crc_v3.txt

13 TEXAS
INSTRUMENTS

Linker-Generated CRC Tables www.ti.com

There are also restrictions which will be enforced by the linker:
* CRC can only be requested at final link time.

* CRC can only be applied to initialized sections.

* CRC can be requested for load addresses only.

» Certain restrictions also apply to CRC table names. For example, BINIT may not be used as a CRC
table name.

8.9.3 Examples

The crc_table() operator is similar in syntax to the table() operator used for copy tables. A few simple
examples of linker command files follow.

Example 8-25. Using crc_table() Operator to Compute the CRC Value for .text Data

SECTIONS

{

}

-section_to_be_verified: {al.c.obj(-text)} crc_table(_my crc_table_for_al)

Example 8-25 defines a section named “.section_to_be_verified”, which contains the .text data from the
al.c.obj file. The crc_table() operator requests that the linker compute the CRC value for the .text data
and store that value in a table named “my_crc_table_for_al”. This table will contain all the information
needed to invoke a user-supplied CRC calculation routine, and verify that the CRC calculated at run time
matches the linker-generated CRC. The table can be accessed from application code using the symbol
my_crc_table for_al, which should be declared of type “extern CRC_TABLE". This symbol will be defined
by the linker. The application code might resemble the following.

#include "crc_tbl.h"
extern CRC_TABLE my_crc_table_for_al;

verify_al_text_contents()
{

/* Verify CRC value for .text sections of al.c.obj. */
if (my_check_CRC(&my_crc_table_for_al)) puts('OK'™);
3

The my_check_CRC() routine is shown in detail in Example 8-30.

Example 8-26. Specifying an Algorithm in the crc_table() Operator

SECTIONS

{

.section_to_be_verified_2: {bl.c.obj(.text)} load=SLOW_MEM, run=FAST_MEM,

crc_table(_my _crc_table_for_bl, algorithm=TMS570_CRC64_1S0)

.Tl.crctab: > CRCMEM

}

In Example 8-26, the CRC algorithm is specified in the crc_table() operator. The specified algorithm is
used to compute the CRC of the text data from bl.c.obj. The CRC tables generated by the linker are
created in the special section .Tl.crctab, which can be placed in the same manner as other sections. In
this case, the CRC table _my_crc_table_for_b1 is created in section .Tl.crctab:_my_crc_table_for_b1, and
that section is placed in the CRCMEM memory region.

260

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated CRC Tables

Example 8-27. Using a Single Table for Multiple Sections

SECTIONS

{
.section_to_be_verified_1: {al.c.obj(-text)}
crc_table(_my _crc_table_for_al_and_cl)

.section_to_be_verified_3: {cl.c.obj(-text)}
crc_table(_my crc_table_for_al_and_cl, algorithm=TMS570_CRC64_1S0)

In Example 8-27 the same identifier, _my crc_table for_al and_c1, is specified for both al.c.obj and
cl.c.obj. The linker creates a single table that contains entries for both text sections.

Example 8-28. Applying the crc_table() Operator to a GROUP or UNION

SECTIONS

{
UNTON

{
sectionl: {} crc_table(tablel)
section2:

} crc_table(table2)

}

When the crc_table() operator is applied to a GROUP or a UNION, the linker applies the table
specification to the members of the GROUP or UNION.

In Example 8-28 the linker creates two CRC tables, tablel and table2. tablel contains one entry for
sectionl. Because both sections are members of the UNION, table2 contains entries for sectionl and
section2. The order of the entries in table2 is unspecified.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 261

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker-Generated CRC Tables www.ti.com

8.9.4

Interface

The CRC generation function uses a mechanism similar to the copy table functionality. Using the syntax
shown above in the linker command file allows specification of code/data sections that have CRC values
computed and stored in the run time image. This section describes the table data structures created by
the linker, and how to access this information from application code.

The CRC tables contain entries as detailed in the run-time-support header file crc_tbl.h, as illustrated in
Figure 8-7.

Figure 8-7. CRC_TABLE Conceptual Model

table_name » rec_size=8

(such as linker—generated symbol num_recs=2
my_crc_table for_a1)

recs

— [algID address data size CRC value

alg ID address data size CRC value

The crc_tbl.h header file is included in Example 8-29. This file specifies the C structures created by the
linker to manage CRC information. It also includes the specifications of the supported CRC algorithms. A
full discussion of CRC algorithms is beyond the scope of this document, and the interested reader should
consult the referenced document for a description of the fields shown in the table. The following fields are
relevant to this document.

* Name - text identifier of the algorithm, used by the programmer in the linker command file.

» ID —the numeric identifier of the algorithm, stored by the linker in the crc_alg_ID member of each table
entry.

e Order — the number of bits used by the CRC calculation.
» Polynomial — used by the CRC computation engine.
» Initial Value — the initial value given to the CRC computation engine.

262

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Linker-Generated CRC Tables

Example 8-29. The CRC Table Header, crc_tbl.h

/ /
/* crc_tbl.h */
/* */
/* Specification of CRC table data structures which can be automatically */
/* generated by the linker (using the crc_table() operator in the linker */
/* command file). */
/ /
/* */
/* The CRC generator used by the linker is based on concepts from the */
/* document: */
/* "A Painless Guide to CRC Error Detection Algorithms" */
/* */
/* Author : Ross Williams (ross@guest.adelaide.edu.au.). */
/* Date : 3 June 1993. */
/* Status : Public domain (C code). */
/* */
/* Description : For more information on the Rocksoft~tm Model CRC */
/* Algorithm, see the document titled "A Painless Guide to CRC Error */
/* Detection Algorithms" by Ross Williams (ross@guest.adelaide.edu.au.). */
/* This document is likely to be in "ftp.adelaide.edu.au/pub/rocksoft"” or */
/* at http:www.ross.net/crc/download/crc_v3.txt. */
/* */
/* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adelaide, Australia. */
/ /
#include <stdint._h> /* For uintXX_t */
/ /
/* CRC Algorithm Specifiers */
/* */
/* The following specifications, based on the above cited document, are used */
/* by the linker to generate CRC values. */
/*
1D Name Order Polynomial Initial Ref Ref CRC XOR Zero
Value In Out Value Pad
10 "TMS570_CRC64_1S0", 64, 0x0000001b, 0x00000000, O, O, 0x00000000, 1

*/
/* Users should specify the name, such as TMS570_CRC64_1SO, in the linker */
/* command file. The resulting CRC_RECORD structure will contain the */
/* corresponding ID value in the crc_alg_ID field. */
/ /

#define TMS570_CRC64_1SO 10

/ /

/* CRC Record Data Structure */

/* NOTE: The list of fields and the size of each field */

/* varies by target and memory model. */

/ /

typedef struct crc_record

{

uint64_t crc_value;

uint32_t crc_alg_ID; /* CRC algorithm ID */

uint32_t addr; /* Starting address */

uint32_t size; /* size of data in bytes */

uint32_t padding; /* explicit padding so layout is the same */
/* for ELF */

} CRC_RECORD;

SPNU118Y —September 1995—-Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

Linker Description

263

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker-Generated CRC Tables www.ti.com

In the CRC_TABLE struct, the array recs[1] is dynamically sized by the linker to accommodate the number
of records contained in the table (num_recs). A user-supplied routine to verify CRC values should take a
table name and check the CRC values for all entries in the table. An outline of such a routine is shown in
Example 8-30.

Example 8-30. General Purpose CRC Check Routine

/
/*
Vi
/>
/*

/

General purpose CRC check routine. Given the address of a */
linker-generated CRC_TABLE data structure, verify the CRC */
of all object components that are designated with the */
corresponding LCF crc_table() operator. */

/

/

#include <crc_tbl.h>

/ /
/* MY_CHECK_CRC() - returns 1 if CRCs match, O otherwise */
/ /
unsigned int my_check CRC(CRC_TABLE *tp)
{
int i;
for (i = 0; 1 < tp-> num_recs; i++)
{
CRC_RECORD crc_rec = tp->recs[i];
/ /
/* COMPUTE CRC OF DATA STARTING AT crc_rec.addr */
/* FOR crc_rec.size UNITS. USE */
/* crc_rec.crc_alg_ID to select algorithm. */
/* COMPARE COMPUTED VALUE TO crc_rec.crc_value. */
/ /
3
if all CRCs match, return 1;
else return O;
3

8.9.5 A Note on the TMS570_CRC64_ISO Algorithm

The MCRC module calculates CRCs on 64-bit chunks of data. This is accomplished by writing a long long
value to two memory mapped registers. In C this looks like a normal write of a long long to memory. The
code generated to read/write a long long to memory is something like the following, where R2 contains the
most significant word and R3 contains the least significant word. So the most significant word is written to
the low address and the least significant word is written to the high address:

LDM RO, {R2, R3}
STM R1, {R2, R3}

The CRC memory mapped registers are in the reverse order from how the compiler performs the store.
The least significant word is mapped to the low address and the most significant word is mapped to the
high address.

This means that the words are actually swapped before performing the CRC calculation. It also means
that the calculated CRC value has the words swapped. The TMS570_CRC64_1SO algorithm takes these
issues into consideration and performs the swap when calculating the CRC value. The computed CRC
value stored in the table has the words swapped so the value is the same as it is in memory.

For the end user, these details should be transparent. If the run-time CRC routine is written in C, the long
long loads and stores will be generated correctly. The DMA mode of the MCRC module will also work
correctly.

264

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Partial (Incremental) Linking

Another issue with the algorithm is that it requires the run-time CRC calculation to be done with 64-bit
chunks. The MCRC module allows smaller chunks of data, but the values are padded to 64-bits. The
TMS570_CRC64_ISO algorithm does not perform any padding, so all CRC computations must be done
with 64-bit values. The algorithm will automatically pad the end of the data with zeros if it does not end on
a 64-bit boundary.

8.10 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is known as partial
linking or incremental linking. Partial linking allows you to patrtition large applications, link each part
separately, and then link all the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

« The intermediate files produced by the linker must have relocation information. Use the --relocatable
option when you link the file the first time. (See Section 8.4.3.2.)

* Intermediate files must have symbolic information. By default, the linker retains symbolic information in
its output. Do not use the --no_sym_table option if you plan to relink a file, because --no_sym_table
strips symbolic information from the output module. (See Section 8.4.24.)

» Intermediate link operations should be concerned only with the formation of output sections and not
with allocation. All allocation, binding, and MEMORY directives should be performed in the final link.

Since the ELF object file format is used, input sections are not combined into output sections during a
partial link unless a matching SECTIONS directive is specified in the link step command file.

» If the intermediate files have global symbols that have the same name as global symbols in other files
and you want them to be treated as static (visible only within the intermediate file), you must link the
files with the --make_static option (see Section 8.4.19.1).

e If you are linking C code, do not use --ram_model or --rom_maodel until the final linker. Every time you
invoke the linker with the --ram_model or --rom_model option, the linker attempts to create an entry
point. (See Section 8.4.27, Section 3.3.2.1, and Section 3.3.2.2.)

The following example shows how you can use partial linking:

Step 1: Link the file filel.com; use the --relocatable option to retain relocation information in the
output file tempoutl.out.
armcl --run_linker --relocatable --output_file=tempoutl filel.com
filel.com contains:
SECTIONS
{
ssl: {
fl.c.obj
f2.c.obj

fn.c.obj

SPNU118Y —September 1995—-Revised February 2020 Linker Description 265

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Linking C/C++ Code www.ti.com
Step 2: Link the file file2.com; use the --relocatable option to retain relocation information in the

8.11

output file tempout2.out.
armcl --run_linker --relocatable --output_file=tempout2 file2.com

file2.com contains:

SECTIONS
{

Ss2: {
gl.c.obj
g2.c.obj
gn.c.obj
}

}

Step 3: Link tempoutl.out and tempout2.out.
armcl --run_linker --map_file=Final_map --
output_file=final.out tempoutl.out tempout2.out

Linking C/C++ Code

The C/C++ compiler produces assembly language source code that can be assembled and linked. For
example, a C program consisting of modules progl, prog2, etc., can be assembled and then linked to
produce an executable file called prog.out:

armcl --run_linker --rom_model --

output_file prog.out progl.c.obj prog2.c.obj ... rtsv4 A _be_eabi.lib

The --rom_model option tells the linker to use special conventions that are defined by the C/C++
environment.

The archive libraries shipped by Tl contain C/C++ run-time-support functions.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support
functions and variables that can be called and referenced from both C and C++ will have the same
linkage.

For more information about the ARM C/C++ language, including the run-time environment and run-time-
support functions, see the ARM Optimizing C/C++ Compiler User's Guide.

8.11.1 Run-Time Initialization

All C/C++ programs must be linked with code to initialize and execute the program, called a bootstrap
routine, also known as the boot.c.obj object module. The symbol _c_int0O0 is defined as the program entry
point and is the start of the C boot routine in boot.c.obj; referencing _c_int00 ensures that boot.c.obj is
automatically linked in from the run-time-support library. When a program begins running, it executes
boot.c.obj first. The boot.c.obj symbol contains code and data for initializing the run-time environment and
performs the following tasks:

e Changes from system mode to user mode
e Sets up the user mode stack

» Processes the run-time .cinit initialization table and autoinitializes global variables (when the linker is
invoked with the --rom_model option)

« Calls main
The run-time-support object libraries contain boot.c.obj. You can:
» Use the archiver to extract boot.c.obj from the library and then link the module in directly.

* Include the appropriate run-time-support library as an input file (the linker automatically extracts
boot.c.obj when you use the --ram_model or --rom_model option).

266

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Linking C/C++ Code

8.11.2 Object Libraries and Run-Time Support

The ARM Optimizing C/C++ Compiler User's Guide describes additional run-time-support functions that
are included in rts.src. If your program uses any of these functions, you must link the appropriate run-time-
support library with your object files.

You can also create your own object libraries and link them. The linker includes and links only those
library members that resolve undefined references.

If you want to link object files created with the TI CodeGen tools with object files generated by other
compiler tool chains, the ARM standard specifies that you should define the
_AEABI_PORTABILITY_LEVEL preprocessor symbol as follows before #including any standard header
files, such as <stdlib.h>.

#define _AEABI_PORTABILITY_LEVEL 1

This definition enables full portability. Defining the symbol to 0 specifies that the "C standard" portability
level should be used.

8.11.3 Setting the Size of the Stack and Heap Sections

The C/C++ language uses two uninitialized sections called .sysmem and .stack for the memory pool used
by the malloc() functions and the run-time stacks, respectively. You can set the size of these by using the
--heap_size or --stack_size option and specifying the size of the section as a 4-byte constant immediately
after the option. If the options are not used, the default size of the heap is 2K bytes and the default size of
the stack is 2K bytes.

See Section 8.4.16 for setting heap sizes and Section 8.4.31 for setting stack sizes.

8.11.4 Initializing and Autolnitialzing Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option. See Section 3.3.2.1 for details.

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option. See Section 3.3.2.2 for details.

See Section 3.3.2.3 for information about the steps that are performed when you invoke the linker with the
--ram_model or --rom_model option.

8.11.5 Initialization of Cinit and Watchdog Timer Hold

You can use the --cinit_hold_wdt option on some devices to specify whether the watchdog timer should be
held (on) or not held (off) during cinit auto-initialization. Setting this option causes an RTS auto-
initialization routine to be linked in with the program to handle the desired watchdog timer behavior.

SPNU118Y —September 1995—-Revised February 2020 Linker Description 267

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Linker Example www.ti.com

8.12 Linker Example

This example links three object files named demo.c.obj, ctrl.c.obj, and tables.c.obj and creates a program
called demo.out.

Assume that target memory has the following program memory configuration:

Address Range Contents
0x00000000 to 0x00001000 SLOW_MEM
0x00001000 to 0x00002000 FAST _MEM
0x08000000 to 0x08000400 EEPROM

The output sections are constructed in the following manner:

Executable code, contained in the .text sections of demo.c.obj, ctrl.c.obj, and tables.c.obj, must be
linked into FAST_MEM.

A set of interrupt vectors, contained in the .intvecs section of tables.c.obj, must be linked at address
FAST_MEM.

A table of coefficients, contained in the .data section of tables.c.obj, must be linked into EEPROM. The
remainder of block FLASH must be initialized to the value OxFFOOFFOO.

A set of variables, contained in the .bss section of ctrl.c.obj, must be linked into SLOW_MEM and
preinitialized to 0x00000100.

The .bss sections of demo.c.obj and tables.c.obj must be linked into SLOW_MEM.

268

Linker Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Example

Example 8-31 shows the linker command file for this example. Example 8-32 shows the map file.

Example 8-31. Linker Command File, demo.cmd

/ /
V fakaiad Specify Link Options siaioV 4
/ /
--entry_point SETUP /* Define the program entry point */
--output_Tfile=demo.out /* Name the output file */
--map_TFile=demo.map /* Create an output map Ffile */
/ /
V fakaiad Specify the Input Files siaioV 4
/ /
demo.c.obj
ctrl.c.obj
tables.c.obj
/ /
V fakaiad Specify the Memory Configurations siaioV 4
/ /
MEMORY
FAST_MEM : org = 0x00000000 len = 0x00001000 /* PROGRAM MEMORY (ROM) */
SLOW_MEM : org = 0x00001000 len = 0x00001000 /* DATA MEMORY (RAM) */
EEPROM : org = 0x08000000 len = 0x00000400 /* COEFFICIENTS (EEPROM) */
b
/ /
/* Specify the Output Sections */
/ /
SECTIONS
{
-text : {3 > FAST_MEM /* Link all .text sections into ROM */
-intvecs : {} > Ox0 /* Link interrupt vectors at 0x0 */
.data : /* Link .data sections */
{
tables.c.obj(.data)
. = 0x400; /* Create hole at end of block */
} > EEPROM, fill = OXFFOOFFOO /* Fill and link into EEPROM */
ctrl_vars: /* Create new sections for ctrl variables */
{
ctrl.c.obj(.bss)
} > SLOW_MEM, fill = 0x00000100 /* Fill with 0x100 and link into RAM */
-bss : {3 > SLOW_MEM /* Link remaining .bss sections into RAM */
b
/ /
/x> End of Command File isieie’ 4
/ /

Invoke the linker by entering the following command:

armcl --run_linker demo.cmd

This creates the map file shown in Example 8-32 and an output file called demo.out that can be run on an

ARM device.

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Linker Description

269

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Linker Example

13 TEXAS
INSTRUMENTS

www.ti.com

Example 8-32. Output Map File, demo.map

OUTPUT FILE NAME: <demo.out>

ENTRY POINT SYMBOL: "'SETUP"
MEMORY CONFIGURATION
name origin length
FAST_MEM 00000000 000001000
SLOW_MEM 00001000 000001000
EEPROM 08000000 000000400
SECTION ALLOCATION MAP
output
section page origin length
text 0 00000020 00000138
00000020 000000a0
000000c0 00000000
000000c0 00000098
.intvecs O 00000000 00000020
00000000 00000020
.data 0 08000000 00000400
08000000 00000168
08000168 00000298
08000400 00000000
08000400 00000000
ctrl_var O 00001000 00000500
00001000 00000500
-bss 0 00001500 00000100
00001500 00000100
00001600 00000000

GLOBAL SYMBOLS
address name
000000d4 SETUP
00000020 clear
000000b8 set
000000c0 x42

[4 symbols]

address: 000000d4

attributes/
input sections

ctrl.c.obj (.text)
tables.c.obj (.text)
demo.c.obj (.text)

tables.c.obj (.intvecs)

tables.c.obj (.data)
--HOLE-- [fill = ffOOffO0]
ctrl.c.obj (.data)
demo.c.obj (.data)

ctrl_c.obj (.-bss) [fill = 00000100]
UNINITIALIZED

demo.c.obj (.bss)

tables.c.obj (.bss)

address
00000020
000000b8
000000c0
000000d4

x42
SETUP

270 Linker Description

SPNU118Y —September 1995—Revised February 2020

Copyright © 1995-2020, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Chapter 9
I -{IE)S(’?gUMENTS SPNU118Y —September 1995—Revised February 2020

Absolute Lister Description

The ARM absolute lister is a debugging tool that accepts linked object files as input and creates .abs files
as output. These .abs files can be assembled to produce a listing that shows the absolute addresses of
object code. Manually, this could be a tedious process requiring many operations; however, the absolute
lister utility performs these operations automatically.

Topic Page
9.1 Producing an ADSOIULE LiStiNg ...ueuiuieeieieiiieieee et e e et e e eeeeeeaes 272
9.2 INVOKING the ADSOIULE LISTEr ...cueeiiiee ettt e e e e e eeees 273
9.3 ADSOlUte LisSter EXamPle uoueuiiiiiiiiii e e 274

SPNU118Y —September 1995—-Revised February 2020

Absolute Lister Description 271
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Producing an Absolute Listing www.ti.com

9.1 Producing an Absolute Listing
Figure 9-1 illustrates the steps required to produce an absolute listing.

Figure 9-1. Absolute Lister Development Flow

)
Step 1: Assembler First, assemble a source file.
source file

1

Assembler

file

Absolute
lister

272 Absolute Lister Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Absolute Lister

9.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

‘ armabs [-options] input file

armabs is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use. Options are not case sensitive
and can appear anywhere on the command line following the command. Precede each
option with a hyphen (-). The absolute lister options are as follows:

-e enables you to change the default naming conventions for filename extensions on
assembly files, C source files, and C header files. The valid options are:

» ea [.]Jasmext for assembly files (default is .asm)

e ec [.Jeext for C source files (default is .c)

» eh [.]Jhext for C header files (default is .h)

* ep [.]Jpext for CPP source files (default is cpp)

The . in the extensions and the space between the option and the extension are

optional.
-q (quiet) suppresses the banner and all progress information.
input file names the linked object file. If you do not supply an extension, the absolute lister

assumes that the input file has the default extension .out. If you do not supply an input
filename when you invoke the absolute lister, the absolute lister prompts you for one.

The absolute lister produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

Assemble these files with the --absolute_listing assembler option as follows to create the absolute listing:
armcl --absolute_listing filename .abs

The -e options affect both the interpretation of filenames on the command line and the names of the
output files. They should always precede any filename on the command line.

The -e options are useful when the linked object file was created from C files compiled with the debugging
option (--symdebug:dwarf compiler option). When the debugging option is set, the resulting linked object
file contains the name of the source files used to build it. In this case, the absolute lister does not generate
a corresponding .abs file for the C header files. Also, the .abs file corresponding to a C source file uses
the assembly file generated from the C source file rather than the C source file itself.

For example, suppose the C source file hello.csr is compiled with the debugging option set; the debugging
option generates the assembly file hello.s. The hello.csr file includes hello.hsr. Assuming the executable
file created is called hello.out, the following command generates the proper .abs file:

armabs -ea s -ec csr -eh hsr hello.out

An .abs file is not created for hello.hsr (the header file), and hello.abs includes the assembly file hello.s,
not the C source file hello.csr.

SPNU118Y —September 1995—-Revised February 2020 Absolute Lister Description 273

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Absolute Lister Example www.ti.com

9.3 Absolute Lister Example

This example uses three source files. The files modulel.asm and module2.asm both include the file
globals.def.

modulel.asm

-text

-bss dflag, 1

-bss array, 100
dflag_a -word dflag
array_a -word array
offst_a .word offst

.copy globals.def

LDR r4, array_a
LDR r5, offst_a
LDR r3, dflag_a
LDR rO, [r4, r5]
STR ro, [r3]

module2.asm

-text

-bss offst, 1
offst_a .word offst

.copy globals.def

LDR r4, offst_a
STR ro, [r4]
globals.def

-global array
-global offst
-global dflag

The following steps create absolute listings for the files modulel.asm and module2.asm:

Step 1: First, assemble modulel.asm and module2.asm:
armcl modulel
armcl module2

This creates two object files called modulel.obj and module2.obj.

Step 2: Next, link modulel.obj and module2.obj using the following linker command file, called
bttest.cmd:

--output_file=bttest.out
--map_TFile=bttest.map
modulel.obj

module2.obj

MEMORY
P_MEM : org = 0x00000000 lIen = 0x00001000
D_MEM : org = 0x00001000 len = 0x00001000
}
SECTIONS
{
.data: >D_MEM
.text: >P_MEM
.bss: >D_MEM
}

Invoke the linker:

armcl --run_linker bttest.cmd

This command creates an executable object file called bttest.out; use this file as input for the
absolute lister.

274 Absolute Lister Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
www.ti.com Absolute Lister Example
Step 3: Now, invoke the absolute lister:

armabs bttest.out
This command creates two files called modulel.abs and module2.abs:

modulel.abs:

-nolist

array .setsym 000001001h

dflag .setsym 000001000h

offst -setsym 000001068h

.data .setsym 000001000h

edata .setsym 000001000h

-text -setsym 000000000h

etext .setsym 00000002ch

-bss .setsym 000001000h

end -setsym 00000106¢ch
.setsect "' . text',000000000h
.setsect "' _data',000001000h
.setsect " .bss',000001000h
-list
-text
.copy "modulel.asm"

module2.abs:

-nolist

array .setsym 000001001h

dflag .setsym 000001000h

offst -setsym 000001068h

.data .setsym 000001000h

edata .setsym 000001000h

-text -setsym 000000000h

etext .setsym 00000002ch

-bss .setsym 000001000h

end -setsym 00000106ch
.setsect "' . text'™,000000020h
.setsect "' _data',000001000h
.setsect " .bss',000001068h
-list
-text
.copy "module2.asm"

These files contain the following information that the assembler needs for Step 4:

» They contain .setsym directives, which equate values to global symbols. Both files contain
global equates for the symbol dflag. The symbol dflag was defined in the file globals.def,
which was included in modulel.asm and module2.asm.

< They contain .setsect directives, which define the absolute addresses for sections.

e They contain .copy directives, which defines the assembly language source file to include.

The .setsym and .setsect directives are useful only for creating absolute listings, not normal

assembly.

Step 4: Finally, assemble the .abs files created by the absolute lister (remember that you must use
the --absolute_listing option when you invoke the assembler):

armcl --absolute_listing modulel.abs

armcl --absolute_listing module2._abs

This command sequence creates two listing files called modulel.lst and module2.lst; no

object code is produced. These listing files are similar to normal listing files; however, the

addresses shown are absolute addresses.

The absolute listing files created are modulel.Ist (see Example 9-1) and module2.Ist (see

Example 9-2).

SPNU118Y —September 1995—-Revised February 2020 Absolute Lister Description 275

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Absolute Lister Example

I

TEXAS
INSTRUMENTS

www.ti.com

Example 9-1. modulel.Ist

modulel.abs
15 00000000
16

Iy

00000000
00001000
00001001
00000000
00000004
00000008

OCOWNREP~NOOOORMWN

0000000c
10 00000010
11 00000014
12 00000018
13 0000001c

>>>>>P>O0WI>>>>>> >

00001000- dflag_a
00001001- array_a
00001068! offst_a

E51F4010
E51F5010
E51F301C
E7940005
E5830000

No Errors, No Warnings

Example 9-2. module2.Ist

module2.abs

15 00000020
16

1 00000020
00001068
00000020

2
3
4
1
2
3
5

6 00000024
7 00000028

00001068- offst_a

E51F400C
E5840000

o Errors, No Warnings

-text

.copy
-text
.bss
.bss
-word
-word
-word
.copy
-global
-global
-global

LDR
LDR
LDR
LDR
STR

-text

.copy
-text
-bss
-word
.copy
-global
-global
-global

LDR
STR

“modulel.asm"

dflag, 1
array, 100
dflag

array
offst
globals.def
array
offst

dflag

r4, array_a
r5, offst_a
r3, dflag_a
ro, [r4, r5]
ro, [r3]

""module2.asm"

offst, 1
offst
globals.def
array
offst

dflag

r4, offst_a
ro, [r4]

PAGE

PAGE

1

1

276 Absolute Lister Description

SPNU118Y —September 1995—Revised February 2020

Copyright © 1995-2020, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Chapter 10
I -{IE)S(’?gUMENTS SPNU118Y —September 1995—Revised February 2020

Cross-Reference Lister Description

The ARM cross-reference lister is a debugging tool. This utility accepts linked object files as input and

produces a cross-reference listing as output. This listing shows symbols, their definitions, and their
references in the linked source files.

Topic

Page
10.1 Producing a Cross-Reference LiStiNg......cocueuieieiiiiiiiiieiiieieieeeie e e reeeeaenns 278
10.2 Invoking the CroSS-ReferenCe LiStercocie it e eeees 279
10.3 Cross-Reference Listing EXamMpPle. ...t e e e 280
SPNU118Y —September 1995—-Revised February 2020 Cross-Reference Lister Description 277

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Producing a Cross-Reference Listing www.ti.com
10.1 Producing a Cross-Reference Listing
Figure 10-1 illustrates the steps required to produce a cross-reference listing.
Figure 10-1. The Cross-Reference Lister Development Flow
)
Step 1: Assembler First, invoke the assembler with the compiler
source file --cross_reference option. This produces
T a cross-reference table in the listing file and
adds to the object file cross-reference infor-
Assembler mation. By default, only global symbols are
cross-referenced. If you use the compiler
--output_all_syms option, local symbols are
- cross-referenced as well.
_______ Object -
file
Step 2: Link the object file (.obj) to obtain an
executable object file (.out).
Linker
Linked object
file
Invoke the cross-reference lister. The
following section provides the command
Cross-reference | syntax for invoking the cross-reference lister
lister utility.
Cross-reference
listing
278 Cross-Reference Lister Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Cross-Reference Lister

10.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct options and then linked into
an executable file. Assemble the assembly language files with the --cross_reference option. This option
creates a cross-reference listing and adds cross-reference information to the object file. By default, the
assembler cross-references only global symbols, but if the assembiler is invoked with the --
output_all_syms option, local symbols are also added. Link the object files to obtain an executable file.

To invoke the cross-reference lister, enter the following:

‘armxref [options] [input filename [output filename]]

armxref is the command that invokes the cross-reference utility.
options identifies the cross-reference lister options you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.

-l (lowercase L) specifies the number of lines per page for the output file. The format
of the -l option is -Inum, where num is a decimal constant. For example, -130 sets
the number of lines per page in the output file to 30. The space between the
option and the decimal constant is optional. The default is 60 lines per page.

-q suppresses the banner and all progress information (run quiet).
input filename s a linked object file. If you omit the input filename, the utility prompts for a filename.

output filename is the name of the cross-reference listing file. If you omit the output filename, the default
filename is the input filename with an .xrf extension.

SPNU118Y —September 1995—-Revised February 2020 Cross-Reference Lister Description 279

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Cross-Reference Listing Example www.ti.com

10.3 Cross-Reference Listing Example

These terms defined appear in the cross-reference listing in Example 10-1:

Symbol Name of the symbol listed

Filename Name of the file where the symbol appears

RTYP The symbol's reference type in this file. The possible reference types are:

STAT The symbol is defined in this file and is not declared as global.
EDEF The symbol is defined in this file and is declared as global.

EREF The symbol is not defined in this file but is referenced as global.
UNDF The symbol is not defined in this file and is not declared as global.

AsmVal This hexadecimal number is the value assigned to the symbol at assembly time. A
value may also be preceded by a character that describes the symbol's attributes.
Table 10-1 lists these characters and names.

LnkVal This hexadecimal number is the value assigned to the symbol after linking.

DefLn The statement number where the symbol is defined.

RefLn The line number where the symbol is referenced. If the line number is followed by an
asterisk (*), then that reference can modify the contents of the object. A blank in this
column indicates that the symbol was never used.

Table 10-1. Symbol Attributes in Cross-Reference Listing
Character Meaning
Symbol defined in a .text section
Symbol defined in a .data section
+ Symbol defined in a .sect section
Symbol defined in a .bss or .usect section
280 Cross-Reference Lister Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Cross-Reference Listing Example

Example 10-1 is an example of cross-reference listing.

Example 10-1. Cross-Reference Listing

File: bttest.out Wed Nov 13 17:07:42 XXXX Page: 1

Symbol: array

Filename RTYP Asmval LnkVval DeflLn RefLn RefLn RefLn
modulel.asm EDEF -00000001 00001001 3 1A 5

Symbol: array_a

Filename RTYP AsmVal LnkVval DeflLn ReflLn ReflLn ReflLn
modulel.asm STAT "00000004 00000004 5 9

Symbol: dflag

Filename RTYP AsmVval Lnkval DefLn RefLn RefLn RefLn
modulel.asm EDEF -00000000 00001000 2 3A 4

Symbol: dflag_a

Filename RTYP AsmVval LnkVval DeflLn RefLn RefLn RefLn
modulel.asm STAT *00000000 00000000 4 11

Symbol: offst

Filename RTYP AsmVal LnkVval DeflLn ReflLn ReflLn ReflLn
modulel.asm EREF 00000000 00001068 2A 6
module2.asm EDEF -00000000 00001068 2 2A 3

Symbol: offst_a

Filename RTYP AsmVal LnkVval DeflLn ReflLn ReflLn ReflLn
modulel.asm STAT "00000008 00000008 6 10

module2.asm STAT *00000000 00000020 3 6

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Cross-Reference Lister Description

281

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

Chapter 11

SPNU118Y —September 1995—Revised February 2020

TeEXAS
INSTRUMENTS

Object File Utilities

This chapter describes how to invoke the following utilities:

The object file display utility prints the contents of object files, executable files, and/or archive
libraries in both text and XML formats.

The disassembler accepts object files and executable files as input and produces an assembly listing
as output. This listing shows assembly instructions, their opcodes, and the section program counter
values.

The name utility prints a list of names defined and referenced in an object file, executable files, and/or
archive libraries.

The strip utility removes symbol table and debugging information from object and executable files.

The objcopy, objdump, readelf, and size utilities, which function like the corresponding Unix utilities.
The executable names for these utilities are as follows on Microsoft Windows. The Unix versions are
the same but without the .exe suffix.

— arm-none-eabi-objcopy.exe
— arm-none-eabi-objdump.exe
— arm-none-eabi-readelf.exe

— arm-none-eabi-size.exe

Topic Page
11.1 Invoking the Object File Display Utilitycccoeiuiiiiiii e e 283
11.2 Invoking the DiSASSEMDIEreieiie et e e e e e e e aaaas 284
11.3 INvOKING the NamMeE ULty ...uuieiiiiiii et a s e e e e e e e aaneaes 286
11.4 INVOKING the STHP ULty cuoueeieiiiiie ettt e e et e e e a e n s e e e e e nannnas 287
282 Object File Utilities SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Invoking the Object File Display Utility

11.1 Invoking the Object File Display Utility

The object file display utility, armofd, prints the contents of object files (.obj), executable files (.out), and/or
archive libraries (.lib) in both text and XML formats. Hidden symbols are listed as no name, while localized

symbols are listed like any other local symbol.

To invoke the object file display utility, enter the following:

’armofd [options] input filename [input filename]

armofd is the command that invokes the object file display utility.

input filename names the object file (.obj), executable file (.out), or archive library (.lib) source file.
The filename must contain an extension.

options identify the object file display utility options that you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.
Precede each option with a hyphen.

--call_graph

--dwarf_display=attributes

--dynamic_info
--dwarf

--help
--output=filename

--obj_display attributes

--verbose
--xml
--xml_indent=num

Prints function stack usage and callee information in XML
format. While the XML output may be accessed by a
developer, this option was primarily designed to be used
by tools such as Code Composer Studio to display an
application’s worst case stack usage.

Controls the DWARF display filter settings by specifying a
comma-delimited list of attributes. When prefixed with no,
an attribute is disabled instead of enabled.

Examples: --dwarf_display=nodabbrev,nodline
--dwarf_display=all,nodabbrev
--dwarf_display=none,dinfo,types

The ordering of attributes is important (see --obj_display).

The list of available display attributes can be obtained by

invoking armofd --dwarf_display=help.

Outputs dynamic linking information.

Appends DWARF debug information to program output.

Displays help

Sends program output to filename rather than to the
screen.

Controls the object file display filter settings by specifying
a comma-delimited list of attributes. When prefixed with
no, an attribute is disabled instead of enabled.

Examples: --0bj_display=rawdata,nostrings
--0bj_display=all,norawdata
--obj_display=none,header

The ordering of attributes is important. For instance, in "--

obj_display=none,header", armofd disables all output,

then re-enables file header information. If the attributes
are specified in the reverse order, (header,none), the file
header is enabled, the all output is disabled, including the
file header. Thus, nothing is printed to the screen for the
given files. The list of available display attributes can be
obtained by invoking armofd --obj_display=help.

Prints verbose text output.

Displays output in XML format.

Sets the number of spaces to indent nested XML tags.

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Object File Utilities 283

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Invoking the Disassembler www.ti.com

If an archive file is given as input to the object file display utility, each object file member of the archive is
processed as if it was passed on the command line. The object file members are processed in the order in
which they appear in the archive file.

If the object file display utility is invoked without any options, it displays information about the contents of
the input files on the console screen.

Object File Display Format

NOTE: The object file display utility produces data in a text format by default. This data is not
intended to be used as input to programs for further processing of the information. XML
format should be used for mechanical processing.

11.2 Invoking the Disassembler
The disassembler, armdis, examines the output of the assembler or linker. This utility accepts an object
file or executable file as input and writes the disassembled object code to standard output or a specified
file.
To invoke the disassembler, enter the following:
‘armdis [options] input filename[.] [output filename]
armdis is the command that invokes the disassembler.
options identifies the name utility options you want to use. Options are not case sensitive and
can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:
armdis is the command that invokes the disassembler.
options identifies the name utility options you want to use. Options are not case sensitive and
can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:
-a disables printing of address along with label names within
instructions.
-b displays data as bytes instead of words.
-be8 disassembles in BE-8 mode.
-C dumps the object file information.
--copy_tables (aliased as -y, or -Y) displays copy tables and the sections copied.
The table information is dumped first, then each record followed by
its load and run data. See Example 11-3.
-d disables display of data sections.
-e displays integer values in hexadecimal.
-h shows the current help screen.
-i disassembles data sections as text.
-1 disassembles text as data.
-n dumps the symbol table.
-q (quiet mode) suppresses the banner and all progress information.
-qq (super quiet mode) suppresses all headers.
-r uses raw register IDs (RO, R1, etc.).
-R shows run-time address if different from load-time address.
-S suppresses printing of address and data words.
284 Object File Utilities SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Invoking the Disassembler

nput

filename[.ext]

output filename

is the name of the input file. If the optional extension is not specified, the file is
searched for in this order:

1. infile

2. infile.out, an executable file
3. infile.obj, an object file

is the name of the optional output file to which the disassembly will be written. If an

output filename is not specified, the disassembly is written to standard output.

When the example file in Example 11-1 is compiled, the assembler produces an object file,
memcpy32.0bj.

Example 11-1. Object File memcpy32.asm

C_MEMC

_aln:

-global C_MEMCPY
PY: _asmfunc stack usage(12)

CMP r2, #0
BXEQ Ir

STMFD sp!, {roO,
TST rl, #0x3
BNE _unaln
TST ro, #0x3
BNE _saln

CMP r2, #16
BCC _116
STMFD sp!, {r4}
SuUB r2, r2, #

Ir}

16

; CHECK FOR n ==

; SAVE RETURN VALUE AND ADDRESS

; CHECK ADDRESS ALIGNMENT
IF NOT WORD ALIGNED, HANDLE SPECIALLY

; CHECK FOR n >= 16

As shown in Example 11-2, the disassembler can produce disassembly from the object file,
memcpy32.obj. The first two lines are entered on the command line.

Example 11-2. Disassembly From memcpy32.asm

TEXT Section .text, 0x180 bytes at O0x0
000000:
000000:

000000:

000004:

000008:

00000c:

000010:

000014:

000018:

00001c:

000020:

000024:

000028:

E3520000

012FFF1E

E92D4001

E3110003

1A00002B

E3100003

1A00002F

E3520010

3A000008

E92D0010

E2422010

C_MEMCPY:
.state32
CMP
BXEQ
STMFD
TST
BNE
TST
BNE
CMP
BCC

STMFD

SUB

R2, #0

R14

R13!, {RO, R14}
R1, #3
0x000000C4

RO, #3
0x000000DC

R2, #16
0x00000048
R13!, {R4}

R2, R2, #16

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Object File Utilities

285

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Invoking the Disassembler www.ti.com

Example 11-3 provides an example of how the output would appear if a copy record refers to different
load and run sections and the --copy_table option is used.

Example 11-3. Partial Copy Record Output With Different Load and Run Address

COPY TABLE: _data2_ctbl, 0x30 at Ox5E10, 1 record(s)
_data2_ctbl[0]: load addr=0x200158, size=0x12B, encoding=lzss

DATA Section .data2_scn.load, 0x12B bytes at 0x200158
200158: $d:
200158: 020f0000
20015c: beef0003

-word 0x020f0000
-word Oxbeef0003

_data2_ctbI[0]: run addr=0x52A0, size=0x960

DATA Section .datal_scn, 0x960 bytes at 0x52A0

0052a0: datal:
0052a0: $d:
0052a0: .datal_scn:

-word 0x0000beef
-word 0x0000beef

0052a0: 0000beef
0052a4: 0000beef

11.3 Invoking the Name Utility

The name utility, armnm, prints the list of names defined and referenced in an object file, executable file,
or archive library. It also prints the symbol value and an indication of the kind of symbol. Hidden symbols
are listed as "'*. To invoke the name utility, enter the following:

‘ armnm [-options] [input filenames]

armnm is the command that invokes the name utility.
input filename is an object file (.obj), executable file (.out), or archive library (.lib).
options identifies the name utility options you want to use. Options are not case sensitive and

can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:

--all (-a) prints all symbols.

--prep_fname (-f) prepends file name to each symbol.
--global (-g) prints only global symbols.

--help (-h) shows the current help screen.

--format:long ()
--sort:value (-n)

--output (-o) file

--sort:none (-p)

--quiet (-q)

--sort:reverse (-r)
--dynamic (-s)

--undefined (-u)

produces a detailed listing of the symbol information.
sorts symbols numerically rather than alphabetically.
outputs to the given file.

causes the name utility to not sort any symbols.

(quiet mode) suppresses the banner and all progress
information.

sorts symbols in reverse order.

lists symbols in the dynamic symbol table for an ELF
object module.

only prints undefined symbols.

286 Object File Utilities SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Strip Utility

11.4 Invoking the Strip Utility

The strip utility, armstrip, removes symbol table and debugging information from object and executable
files. To invoke the strip utility, enter the following:

armstrip [-p] input filename [input filename]

armstrip is the command that invokes the strip utility.
input filename is an object file (.obj) or an executable file (.out).
options identifies the strip utility options you want to use. Options are not case sensitive and can

appear anywhere on the command line following the invocation. Precede each option
with a hyphen (-). The strip utility option is as follows:

--help (-h) displays help information.
--outfile (-o) filename writes the stripped output to filename.
--postlink (-p) removes all information not required for execution. This

option causes more information to be removed than the
default behavior, but the object file is left in a state that
cannot be linked. This option should be used only with

executable (.out) files.

--rom Strip readonly sections and segments.
When the strip utility is invoked without the -0 option, the input object files are replaced with the stripped
version.
SPNU118Y —September 1995—-Revised February 2020 Object File Utilities 287

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

ji Chapter 12

TE S SPNU118Y —September 1995—Revised February 2020

INSTRUMENTS

Hex Conversion Utility Description

The ARM assembler and linker create object files which are in binary formats that encourage modular
programming and provide powerful and flexible methods for managing code segments and target system
memory.

Most EPROM programmers do not accept object files as input. The hex conversion utility converts an
object file into one of several standard ASCIl hexadecimal formats, suitable for loading into an EPROM
programmer. The utility is also useful in other applications requiring hexadecimal conversion of an object
file (for example, when using debuggers and loaders).

The hex conversion utility can produce these output file formats:

» ASCII-Hex, supporting 16-bit addresses (see Section 12.15.1)

* Binary file in 8-bit format (see Section 12.3.2)

» Extended Tektronix (Tektronix) (see Section 12.15.4)

* Intel MCS-86 (Intel) (see Section 12.15.2)

e Motorola Exorciser (Motorola-S), supporting 16-bit addresses (see Section 12.15.3)

» Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses (see Section 12.15.5)

» Texas Instruments TI-TXT format, supporting 16-bit addresses (see Section 12.15.6)

o C arrays

Topic Page
12.1 The Hex Conversion Utility's Role in the Software Development FIOW 289
12.2 Invoking the Hex Conversion ULHItYcceieieieiie et e e e e ae e 290
12.3 Understanding Memory WIdths ... e 293
12.4 The ROMS DirCHIVE ..cuituieiuitiiit ittt e e s e et e s e s et s s e e a s e e e e e 298
12.5 The SECTIONS DIlr€CHIVE t.uvuiuiuitiiuiiiuieisiiis s eis et es e ea s e es e ens e saseaenns 301
12.6 The Load Image Format (--load_image OPtion)......cccoeeuieieiiieiiieei e eenenenes 302
12.7 Excluding a Specified SECHION ... ui ittt e e e e e aeaens 303
12.8 Assigning OUtPUL FilENAMESuiie et e e e e e e e e e eanns 304
12.9 Image Mode and the —-fill OPtioNcuieieiiii et e e e e e aes 305
12,10 Array OULPUL FOIMAL ... ettt atsaeeeae e s eesan e aassaneansane e aansansansaneannsansnnes 306
12.11 Building a Table for an On-Chip BOOt LOAENcviviiiiiiiiiiiiiiiieieieeeeevaeeeenenee 307
12.12 Using Secure Flash Boot on TMS320F2838X DEVICES ...cuvuvuiuiureieieeeeneninaenenenannns 313
12.13 Controlling the ROM DeViCe AQUIESScuiuiuieinieiiaeeeneeieeeeeeenea e e eenenanraaeneaes 314
12.14 Control Hex Conversion Utility DiagnOStiCSucueueieieiiiiiit et eeeaeeanes 315
12.15 Description of the ObJeCt FOrMALScuiuiiiieiiii it e e e ae e 316

288 Hex Conversion Utility Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com The Hex Conversion Utility's Role in the Software Development Flow

12.1 The Hex Conversion Utility's Role in the Software Development Flow
Figure 12-1 highlights the role of the hex conversion utility in the software development process.

Figure 12-1. The Hex Conversion Utility in the ARM Software Development Flow

C/C++
source
files

Macro
source CiC++
files compiler

C/C++ name

Asserpbler demangling
source utility
Macro
library Assembler
Object Librat_ryll_-tbuild Del:uglging
files Uiy o0
L Run-time-
Library of support
object library
files

Executable
object file

Hex-conversion
utility

EPROM
programmer

Cross-reference | Object file

Absoluts lister lister utilities

SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Description 289

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Invoking the Hex Conversion Utility

13 TEXAS
INSTRUMENTS

www.ti.com

12.2 Invoking the Hex Conversion Utility

There are two basic methods for invoking the hex conversion utility:
» Specify the options and filenames on the command line. The following example converts the file

firmware.out into TI-Tagged format, producing two output files, firm.Isb and firm.msb.

armhex -t firmware -o firm.Isb -o firm.msb

» Specify the options and filenames in a command file. You can create a file that stores command
line options and filenames for invoking the hex conversion utility. The following example invokes the
utility using a command file called hexutil.cmd:

armhex hexutil.cmd

In addition to regular command line information, you can use the hex conversion utility ROMS and
SECTIONS directives in a command file.

12.2.1 Invoking the Hex Conversion Utility From the Command Line

To invoke the hex conversion utility, enter:

‘ armhex [options] filename

armhex is the command that invokes the hex conversion utility.
options supplies additional information that controls the hex conversion process. You can use
options on the command line or in a command file. Table 12-1 lists the basic options.
» All options are preceded by a hyphen and are not case sensitive.
e Several options have an additional parameter that must be separated from the option
by at least one space.
e Options with multi-character names must be spelled exactly as shown in this
document; no abbreviations are allowed.
« Options are not affected by the order in which they are used. The exception to this rule
is the --quiet option, which must be used before any other options.
filename names an object file or a command file (for more information, see Section 12.2.2).
Table 12-1. Basic Hex Conversion Utility Options
Option Alias Description See
General Options
_ } Number output locations by bytes rather than by target _
byte byte addressing
—entrypoint=addr e Spe(_:lfy the entry point at which to begin execution after boot Table 12-2
loading
--exclude={fname(sname) |) If the filename (fname) is omitted, all sections matching)
shame} exclude shame will be excluded. Section 12.7
--fill=value fill Fill holes with value Section 12.9.2
Display the syntax for invoking the utility and list available
--help -options, -h options. If the option is followed by another option or phrase, Section 12.2.2
detailed information about that option or phrase is displayed.
--image -image Select image mode Section 12.9.1
--linkerfill -linkerfill Include linker fill sections in images -
--map=filename -map Generate a map file Section 12.4.2
--memwidth=value -memwidth Define the system memory word width (default 16 bits) Section 12.3.2
--outfile=filename -0 Specify an output filename Section 12.8
--quiet -q Run quietly (when used, it must appear before other options) Section 12.2.2
Specify the ROM device width (default depends on format
--romwidth=value -romwidth used). This option is ignored for the TI-TXT, binary, and TI- Section 12.3.3

Tagged formats.

290 Hex Conversion Utility

Description

SPNU118Y —September 1995—

Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

TEXAS
INSTRUMENTS

www.ti.com

Invoking the Hex Conversion Utility

Table 12-1. Basic Hex Conversion Utility Options (continued)

Option Alias Description See
--zero -zero, -z Reset the address origin to 0 in image mode Section 12.9.3
Diagnostic Options
--diag_error=id Categorizes the diagnostic identified by id as an error Section 12.14
--diag_remark=id Categorizes the diagnostic identified by id as a remark Section 12.14
--diag_suppress=id Suppresses the diagnostic identified by id Section 12.14
--diag_warning=id Categorizes the diagnostic identified by id as a warning Section 12.14
--display_error_number Displays a diagnostic's identifiers along with its text Section 12.14
--issue_remarks Issues remarks (nonserious warnings) Section 12.14
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 12.14
e o e 0" "7 ST Secton 1214
Boot Options
e o ey T 52 I SECUIe. oo 12.12
Output Options
--array Select array output format Section 12.10
--ascii -a Select ASCII-Hex Section 12.15.1
--binary -b Select binary (Must have memory width of 8 bits.) -
--intel -i Select Intel Section 12.15.2
--motorola=1 -ml Select Motorola-S1 Section 12.15.3
--motorola=2 -m2 Select Motorola-S2 Section 12.15.3
--motorola=3 -m3 Select Motorola-S3 (default -m option) Section 12.15.3
—tekironix x f:éi(i:fti;ie)ktronix (default format when no output option is Section 12.15.4
--ti_tagged -t Select TI-Tagged (Must have memory width of 16 bits.) Section 12.15.5
--ti_txt Select TI-Txt (Must have memory width of 8 bits.) Section 12.15.6
Load Image Options
--load_image Select load image Section 12.6
--section_name_prefix=string Specify the section name prefix for load image object files Section 12.6

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Hex Conversion Utility Description 291

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Invoking the Hex Conversion Utility www.ti.com

12.2.2 Invoking the Hex Conversion Utility With a Command File

A command file is useful if you plan to invoke the utility more than once with the same input files and
options. It is also useful if you want to use the ROMS and SECTIONS hex conversion utility directives to
customize the conversion process.

Command files are ASCII files that contain one or more of the following:

e Options and filenames. These are specified in a command file in exactly the same manner as on the
command line.

 ROMS directive. The ROMS directive defines the physical memory configuration of your system as a
list of address-range parameters. (See Section 12.4.)

» SECTIONS directive. The hex conversion utility SECTIONS directive specifies which sections from the
object file are selected. (See Section 12.5.)

e Comments. You can add comments to your command file by using the /* and */ delimiters. For
example:
/* This is a comment. */

To invoke the utility and use the options you defined in a command file, enter:

armhex command_filename

You can also specify other options and files on the command line. For example, you could invoke the
utility by using both a command file and command line options:

armhex firmware.cmd --map=Firmware.mxp

The order in which these options and filenames appear is not important. The utility reads all input from the

command line and all information from the command file before starting the conversion process. However,
if you are using the -g option, it must appear as the first option on the command line or in a command file.

The --help option displays the syntax for invoking the compiler and lists available options. If the --help
option is followed by another option or phrase, detailed information about the option or phrase is
displayed. For example, to see information about options associated with generating a boot table use --
help boot.

The --quiet option suppresses the hex conversion utility's normal banner and progress information.

* Assume that a command file named firmware.cmd contains these lines:

firmware.out /* input file */
--ti-tagged /* Tl-Tagged */
—-outfile=firm.Isb /* output file */
--outfile=firm.msb /* output file */
You can invoke the hex conversion utility by entering:

armhex Firmware.cmd

» This example shows how to convert a file called appl.out into eight hex files in Intel format. Each output
file is one byte wide and 4K bytes long.

appl.out /* input file */
--intel /* Intel format */
--map=appl -mxp /* map file */
ROMS

{

ROW1: origin=0x00000000 1en=0x4000 romwidth=8
Files={ appl.u0 appl.ul appl.u2 appl.u3 }

ROW2: origin=0x00004000 1en=0x4000 romwidth=8
Ffiles={ appl.u4 appl.u5 appl.u6 appl.u7 }

}
SECTIONS
{ .text, .data, .cinit, .sectl, .vectors, .const:
}
292 Hex Conversion Utility Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Understanding Memory Widths
12.3 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by allowing you to specify
memory and ROM widths. To use the hex conversion utility, you must understand how the utility treats
word widths. Three widths are important in the conversion process:

e Target width
* Memory width
* ROM width

The terms target word, memory word, and ROM word refer to a word of such a width.

Figure 12-2 illustrates the separate and distinct phases of the hex conversion utility's process flow.
Figure 12-2. Hex Conversion Utility Process Flow
Raw data in object files is
/ represented in the target’s
addressable units. For the
(Inputfle) ARM device, this is 32 bits.

The raw data in the object file
is grouped into words according
Phase | to the size specified by the
--memwidth option.

The memwidth-sized words are
broken up according to the size
specified by the --romwidth option
and are written to a file(s)
according to the specified format
(i.e., Intel, Tektronix, etc.).

Phase I

(outputfile(s))

12.3.1 Target Width

Target width is the unit size (in bits) of the target processor's word. The width is fixed for each target and
cannot be changed. The ARM targets have a width of 32 bits.

SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Description 293
Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Understanding Memory Widths www.ti.com

12.3.2 Specifying the Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the memory system is
physically the same width as the target processor width: a 16-bit processor has a 32-bit memory
architecture. However, some applications require target words to be broken into multiple, consecutive, and
narrower memory words.

By default, the hex conversion utility sets memory width to the target width (in this case, 32 hits).
You can change the memory width (except for TI-TXT, binary, and TI-Tagged formats) by:
» Using the --memwidth option. This changes the memory width value for the entire file.

» Setting the memwidth parameter of the ROMS directive. This changes the memory width value for the
address range specified in the ROMS directive and overrides the --memwidth option for that range.
See Section 12.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 16 only when you need to break single target words
into consecutive, narrower memory words.

Binary Format is 8 Bits Wide

NOTE: You cannot change the memory width of the Binary format. The Binary hex format supports
an 8-bit memory width only. See Section 12.15.6 for more about using the ROMS directive
with an 8-bit format.

TI-TXT Format is 8 Bits Wide

NOTE: You cannot change the memory width of the TI-TXT format. The TI-TXT hex format supports
an 8-bit memory width only. See Section 12.15.6 for more about using the ROMS directive
with the TI-TXT hex format.

294

Hex Conversion Utility Description SPNU118Y —September 1995—Revised February 2020
Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Understanding Memory Widths

Figure 12-3 demonstrates how the memory width is related to object file data.

Figure 12-3. Object File Data and Memory Widths

Source file

word OAABBCCDDh
word 011223344h

L

Object file data (assumed to be in big-endian format)

| Aa|/BB||cc||pD|
111/ 22][33][44]

* &

Data after
phase |
of armhex

Memaory widths (variable)

--memwidth=32 (default) --memwidth=16 —-memwidth==8

AABBCCDD

11223344

- & &

AABB
CCDD

L]
-
-

1122
3344

B f|m || = O|lm|| >
Bllw|lm]]|—= O @[=

12.3.3 Partitioning Data Into Output Files

ROM width determines how the hex conversion utility partitions the data into output files. ROM width
specifies the physical width (in bits) of each ROM device and corresponding output file (usually one byte
or eight bits). After the object file data is mapped to the memory words, the memory words are broken into
one or more output files. The number of output files is determined by the following formulas:

* If memory width =2 ROM width:

number of files = memory width + ROM width
e If memory width < ROM width:

number of files = 1

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Hex Conversion Utility Description 295

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Understanding Memory Widths www.ti.com

For example, for a memory width of 32, you could specify a ROM width value of 32 and get a single
output file containing 32-bit words. Or you can use a ROM width value of 16 to get two files, each
containing 16 bits of each word.

The default ROM width that the hex conversion utility uses depends on the output format:

» All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the default ROM width for these
formats is 8 bits.

» TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16 bits.

The TI-Tagged Format is 16 Bits Wide

NOTE: You cannot change the ROM width of the TI-Tagged format. The TI-Tagged format supports
a 16-bit ROM width only.

TI-TXT Format is 8 Bits Wide

NOTE: You cannot change the ROM width of the TI-TXT format. The TI-TXT hex format supports
only an 8-bit ROM width. See Section 12.15.6 for more about using the ROMS directive with
the TI-TXT hex format.

You can change ROM width (except for TI-Tagged and TI-TXT formats) by:
* Using the --romwidth option. This option changes the ROM width value for the entire object file.

» Setting the romwidth parameter of the ROMS directive. This parameter changes the ROM width value
for a specific ROM address range and overrides the --romwidth option for that range. See
Section 12.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format, the utility simply writes
multibyte fields into the file. The --romwidth option is ignored for the TI-TXT and TI-Tagged formats.

Figure 12-4 illustrates how the object file data, memory, and ROM widths are related to one another.

Memory width and ROM width are used only for grouping the object file data; they do not represent
values. Thus, the byte ordering of the object file data is maintained throughout the conversion process. To
refer to the partitions within a memory word, the bits of the memory word are always numbered from right
to left as follows:

--memwidth=32
AABBCCDD11223344
31 0
296 Hex Conversion Utility Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
www.ti.com Understanding Memory Widths
Figure 12-4. Data, Memory, and ROM Widths
Source file
word O0AABBCCDDh
word 011223344h
Object file data (assumed to be in big-endian format)
AA||BB ||CC || DD
11112213344
AABBCCDD
11223344
Data after
phase |
of armhex m
Data after
phase Il
of armhex

AABBCCDD11223344

BB DD 22 44

AA CC 11 33

AABBCCDD11223344

SPNU118Y —September 1995—Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Hex Conversion Utility Description

297

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

The ROMS Directive

13 TEXAS
INSTRUMENTS

www.ti.com

12.4 The ROMS Directive

The ROMS directive specifies the physical memory configuration of your system as a list of address-range

parameters.

Each address range produces one set of files containing the hex conversion utility output data that
corresponds to that address range. Each file can be used to program one single ROM device.

The ROMS directive is similar to the MEMORY directive of the ARM linker: both define the memory map
of the target address space. Each line entry in the ROMS directive defines a specific address range. The

general syntax is:

ROMS
{

romname : [origin=value,] [length=value,] [romwidth=value,]

[memwidth=value,] [fill=value]
[files={ filename ,, filename ,, ...}]

romname : [origin=value,] [length=value,] [romwidth=value,]

ROMS
romname

origin

[memwidth=value,] [fill=value]
[files={ filename ,, filename ,, ...}]

begins the directive definition.

identifies a memory range. The name of the memory range can be one to eight
characters in length. The name has no significance to the program; it simply identifies
the range, except when the output is for a load image in which case it denotes the
section name. (Duplicate memory range names are allowed.)

specifies the starting address of a memory range. It can be entered as origin, org, or o.
The associated value must be a decimal, octal, or hexadecimal constant. If you omit
the origin value, the origin defaults to 0. The following table summarizes the notation
you can use to specify a decimal, octal, or hexadecimal constant:

Constant

Notation Example

Hexadecimal
Octal
Decimal

Ox prefix or h suffix 0x77 or 077h
0 prefix 077
No prefix or suffix 77

length

romwidth

memwidth

fill

specifies the length of a memory range as the physical length of the ROM device. It
can be entered as length, len, or I. The value must be a decimal, octal, or hexadecimal
constant. If you omit the length, it defaults to the length of the entire address space.

specifies the physical ROM width of the range in bits (see Section 12.3.3). Any value
you specify here overrides the --romwidth option. The value must be a decimal, octal,
or hexadecimal constant that is a power of 2 greater than or equal to 8.

specifies the memory width of the range in bits (see Section 12.3.2). Any value you
specify here overrides the --memwidth option. The value must be a decimal, octal, or
hexadecimal constant that is a power of 2 greater than or equal to 8. When using the
memwidth parameter, you must also specify the paddr parameter for each section in
the SECTIONS directive. (See Section 12.5.)

specifies a fill value to use for the range. In image mode, the hex conversion utility
uses this value to fill any holes between sections in a range. A hole is an area between
the input sections that comprises an output section that contains no actual code or
data. The fill value must be a decimal, octal, or hexadecimal constant with a width
equal to the target width. Any value you specify here overrides the --fill option. When
using fill, you must also use the --image command line option. (See Section 12.9.2.)

298

Hex Conversion Utility Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
www.ti.com The ROMS Directive
files identifies the names of the output files that correspond to this range. Enclose the list of

names in curly braces and order them from least significant to most significant output
file, where the bits of the memory word are numbered from right to left. The number of
file names must equal the number of output files that the range generates. To calculate
the number of output files, see Section 12.3.3. The utility warns you if you list too many
or too few filenames.

Unless you are using the --image option, all of the parameters that define a range are optional; the
commas and equal signs are also optional. A range with no origin or length defines the entire address
space. In image mode, an origin and length are required for all ranges.

Ranges must not overlap and must be listed in order of ascending address.

12.4.1 When to Use the ROMS Directive

If you do not use a ROMS directive, the utility defines a single default range that includes the entire
address space. This is equivalent to a ROMS directive with a single range without origin or length.

Use the ROMS directive when you want to:

* Program large amounts of data into fixed-size ROMs. When you specify memory ranges
corresponding to the length of your ROMs, the utility automatically breaks the output into blocks that fit
into the ROMs.

» Restrict output to certain segments. You can also use the ROMS directive to restrict the conversion
to a certain segment or segments of the target address space. The utility does not convert the data
that falls outside of the ranges defined by the ROMS directive. Sections can span range boundaries;
the utility splits them at the boundary into multiple ranges. If a section falls completely outside any of
the ranges you define, the utility does not convert that section and issues no messages or warnings.
Thus, you can exclude sections without listing them by name with the SECTIONS directive. However, if
a section falls partially in a range and partially in unconfigured memory, the utility issues a warning and
converts only the part within the range.

* Use image mode. When you use the --image option, you must use a ROMS directive. Each range is
filled completely so that each output file in a range contains data for the whole range. Holes before,
between, or after sections are filled with the fill value from the ROMS directive, with the value specified
with the --fill option, or with the default value of 0.

12.4.2 An Example of the ROMS Directive

The ROMS directive in Example 12-1 shows how 16K bytes of 16-bit memory could be partitioned for two
8K-byte 8-bit EPROMSs. Figure 12-5 illustrates the input and output files.

Example 12-1. A ROMS Directive Example

infile.out
--image
--memwidth 16

ROMS
{
EPROM1: org = 0x00004000, len = 0x2000, romwidth = 8
files = { rom4000.b0, rom4000.b1}
EPROM2: org = 0x00006000, len = 0x2000, romwidth = 8,
fill = OxFFOOFFOO,
files = { rom6000.b0, rom6000.b1}
}
SPNU118Y —September 1995—-Revised February 2020 Hex Conversion Utility Description 299

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

The ROMS Directive www.ti.com

Figure 12-5. The infile.out File Partitioned Into Four Output Files

Qutput files:
infile.out EPROM1
rom4000.b0 rom4000.b1
0x00004000 0x00004000 '
text (org) dext text
0x00005B80 Oh oh
.data 0x00005B80
0x0000633F data data
0x00006700
0x00005FFF
table
Width = 8 bits
EPROM2
rom&000.b0 romG000.b1
0x00008000
0x00006340 data data
X FER 00K
0x00006700
table table
0x00007C80 TEn a0n
0x00007FFF

The map file (specified with the --map option) is advantageous when you use the ROMS directive with
multiple ranges. The map file shows each range, its parameters, names of associated output files, and a
list of contents (section names and fill values) broken down by address. Example 12-2 is a segment of the
map file resulting from the example in Example 12-1.

Example 12-2. Map File Output From Example 12-1 Showing Memory Ranges

OUTPUT FILES: rom4000.b0 [bO. .b7]
rom4000.b1 [b8. .b15]
CONTENTS: 00004000..0000487f .text
00004880. .00005b7F FILL = 00000000
00005b80. .00005FFf .data

OUTPUT FILES: rom6000.b0 [bO..b7]
rom6000.b1 [b8..b15]
CONTENTS: 00006000..0000633F _data
00006340. .000066FF FILL = FFOOFFOO
00006700. .00007c7f _table
00007c80. .00007FFF FILL = FFOOFFOO

300 Hex Conversion Utility Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com The SECTIONS Directive
EPROML1 defines the address range from 0x00004000 through 0xO0005FFF with the following sections:

This section ... Has this range ...
.text 0x00004000 through 0x0000487F
.data 0x00005B80 through 0X00005FFF

The rest of the range is filled with Oh (the default fill value), converted into two output files:
* rom4000.b0 contains bits 0 through 7
e rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 0x00006000 through 0x00007FFF with the following sections:

This section ... Has this range ...
.data 0x00006000 through 0x0000633F
.table 0x00006700 through 0x00007C7F

The rest of the range is filled with 0OxXFFOOFFO0O (from the specified fill value). The data from this range is
converted into two output files:

* rom6000.b0 contains bits O through 7
* rom6000.b1 contains bits 8 through 15

12.5 The SECTIONS Directive

You can convert specific sections of the object file by name with the hex conversion utility SECTIONS
directive. You can also specify those sections that you want to locate in ROM at a different address than
the load address specified in the linker command file. If you:

« Use a SECTIONS directive, the utility converts only the sections that you list in the directive and
ignores all other sections in the object file.

» Do not use a SECTIONS directive, the utility converts all initialized sections that fall within the
configured memory.

Uninitialized sections are never converted, whether or not you specify them in a SECTIONS directive.

Sections Generated by the C/C++ Compiler

NOTE: The ARM C/C++ compiler automatically generates these sections:
. Initialized sections: .text, .const, .cinit, and .switch
¢ Uninitialized sections: .bss, .stack, and .sysmem

Use the SECTIONS directive in a command file. (See Section 12.2.2.) The general syntax is:

SECTIONS
{

oname(sname)[:] [paddr=value]
oname(sname)[:] [paddr= boot]
oname(sname)[:] [boot]

}
SECTIONS begins the directive definition.
oname identifies the object filename the section is located within. The filename is optional
when only a single input file is given, but required otherwise.
sname identifies a section in the input file. If you specify a section that does not exist, the
utility issues a warning and ignores the name.
SPNU118Y —September 1995—-Revised February 2020 Hex Conversion Utility Description 301

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
The Load Image Format (--load_image Option) www.ti.com
paddr=value specifies the physical ROM address at which this section should be located. This value

12.6

overrides the section load address given by the linker. This value must be a decimal,
octal, or hexadecimal constant. It can also be the word boot (to indicate a boot table
section for use with a boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a paddr parameter.

boot configures a section for loading by a boot loader. This is equivalent to using
paddr=boot. Boot sections have a physical address determined by the location of the
boot table. The origin of the boot table is specified with the --bootorg option.

For more similarity with the linker's SECTIONS directive, you can use colons after the section names (in
place of the equal sign on the boot keyboard). For example, the following statements are equivalent:

SECTIONS { .text: .data: boot }

SECTIONS { .text: .data = boot }

In the example below, the object file contains six initialized sections: .text, .data, .const, .vectors, .coeff,
and .tables. Suppose you want only .text and .data to be converted. Use a SECTIONS directive to specify
this:

SECTIONS { .text: .data: }

To configure both of these sections for boot loading, add the boot keyword:

SECTIONS { .text = boot .data = boot }

The Load Image Format (--load_image Option)

A load image is an object file which contains the load addresses and initialized sections of one or more
executable files. The load image object file can be used for ROM masking or can be relinked in a
subsequent link step.

12.6.1 Load Image Section Formation

The load image sections are formed by collecting the initialized sections from the input executables. There
are two ways the load image sections are formed:
* Using the ROMS Directive. Each memory range that is given in the ROMS directive denotes a load

image section. The romname is the section name. The origin and length parameters are required. The
memwidth, romwidth, and files parameters are invalid and are ignored.

When using the ROMS directive and the load_image option, the --image option is required.

» Default Load Image Section Formation. If no ROMS directive is given, the load image sections are
formed by combining contiguous initialized sections in the input executables. Sections with gaps
smaller than the target word size are considered contiguous.

The default section names are image_1, image_2, ... If another prefix is desired, the --
section_name_ prefix=prefix option can be used.

302

Hex Conversion Utility Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com The Load Image Format (--load_image Option)

12.6.2 Load Image Characteristics

All load image sections are initialized data sections. In the absence of a ROMS directive, the load/run
address of the load image section is the load address of the first input section in the load image section. If
the SECTIONS directive was used and a different load address was given using the paddr parameter, this
address will be used.

The load image format always creates a single load image object file. The format of the load image object
file is determined based on the input files. The file is not marked executable and does not contain an entry
point. The default load image object file name is ti_load _image.obj. This can be changed using the --
outfile option. Only one --outfile option is valid when creating a load image, all other occurrences are
ignored.

Concerning Load Image Format
NOTE: These options are invalid when creating a load image:
e --memwidth
e --romwidth
e --Zero
* --byte

If a boot table is being created, either using the SECTIONS directive or the --boot option, the
ROMS directive must be used.

12.7 Excluding a Specified Section

The --exclude section_name option can be used to inform the hex utility to ignore the specified section. If
a SECTIONS directive is used, it overrides the --exclude option.

For example, if a SECTIONS directive containing the section name mysect is used and an --exclude
mysect is specified, the SECTIONS directive takes precedence and mysect is not excluded.

The --exclude option has a limited wildcard capability. The * character can be placed at the beginning or
end of the name specifier to indicate a suffix or prefix, respectively. For example, --exclude sect*
disqualifies all sections that begin with the characters sect.

If you specify the --exclude option on the command line with the * wildcard, use quotes around the section
name and wildcard. For example, --exclude"sect*". Using quotes prevents the * from being interpreted by
the hex conversion utility. If --exclude is in a command file, do not use quotes.

If multiple object files are given, the object file in which the section to be excluded can be given in the form
oname(sname). If the object filename is not provided, all sections matching the section name are
excluded. Wildcards cannot be used for the filename, but can appear within the parentheses.

SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Description 303

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Assigning Output Filenames www.ti.com

12.8 Assigning Output Filenames

When the hex conversion utility translates your object file into a data format, it partitions the data into one
or more output files. When multiple files are formed by splitting memory words into ROM words, filenames
are always assigned in order from least to most significant, where bits in the memory words are numbered
from right to left. This is true, regardless of target or endian ordering.

The hex conversion utility follows this sequence when assigning output filenames:

1. It looks for the ROMS directive. If a file is associated with a range in the ROMS directive and you
have included a list of files (files = {. . .}) on that range, the utility takes the filename from the list.

For example, assume that the target data is 32-bit words being converted to four files, each eight bits
wide. To name the output files using the ROMS directive, you could specify:

ROMS

{

RANGE1: romwidth=8, files={ xyz.b0 xyz.bl xyz.b2 xyz.b3 }

3
The utility creates the output files by writing the least significant bits to xyz.b0 and the most significant
bits to xyz.b3.

2. It looks for the --outfile options. You can specify names for the output files by using the --outfile
option. If no filenames are listed in the ROMS directive and you use --outfile options, the utility takes
the filename from the list of --outfile options. The following line has the same effect as the example
above using the ROMS directive:

--outfile=xyz.b0 --outfile=xyz._bl --outfile=xyz.b2 --outfile=xyz.b3
If both the ROMS directive and --outfile options are used together, the ROMS directive overrides the --
outfile options.

3. It assigns a default filename. If you specify no filenames or fewer names than output files, the utility
assigns a default filename. A default filename consists of the base name from the input file plus a 2- to
3-character extension. The extension has three parts:

a. A format character, based on the output format (see Section 12.15):
a for ASCII-Hex
[for Intel
m for Motorola-S
t for TI-Tagged
X for Tektronix
b. The range number in the ROMS directive. Ranges are numbered starting with 0. If there is no
ROMS directive, or only one range, the utility omits this character.
c. The file number in the set of files for the range, starting with 0 for the least significant file.
For example, assume a.out is for a 32-bit target processor and you are creating Intel format output.
With no output filenames specified, the utility produces four output files named a.i0, a.i1, a.i2, a.i3.
If you include the following ROMS directive when you invoke the hex conversion utility, you would have
eight output files:
ROMS
{
rangel: o = 0x00001000 1 = 0x1000
range2: o = 0x00002000 I = 0x1000
3
These output files ... Contain data in these locations ...
a.i00, a.i01, a.i02, a.i03 0x00001000 through 0x00001FFF
a.i10, a.ill, a.i12, a.i13 0x00002000 through 0x00002FFF
304 Hex Conversion Utility Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Image Mode and the --fill Option

12.9 Image Mode and the --fill Option

This section points out the advantages of operating in image mode and describes how to produce output
files with a precise, continuous image of a target memory range.

12.9.1 Generating a Memory Image

With the --image option, the utility generates a memory image by completely filling all of the mapped
ranges specified in the ROMS directive.

An object file consists of blocks of memory (sections) with assigned memory locations. Typically, all
sections are not adjacent: there are holes between sections in the address space for which there is no
data. When such a file is converted without the use of image mode, the hex conversion utility bridges
these holes by using the address records in the output file to skip ahead to the start of the next section. In
other words, there may be discontinuities in the output file addresses. Some EPROM programmers do not
support address discontinuities.

In image mode, there are no discontinuities. Each output file contains a continuous stream of data that
corresponds exactly to an address range in target memory. Any holes before, between, or after sections
are filled with a fill value that you supply.

An output file converted by using image mode still has address records, because many of the
hexadecimal formats require an address on each line. However, in image mode, these addresses are
always contiguous.

Defining the Ranges of Target Memory

NOTE: If you use image mode, you must also use a ROMS directive. In image mode, each output
file corresponds directly to a range of target memory. You must define the ranges. If you do
not supply the ranges of target memory, the utility tries to build a memory image of the entire
target processor address space. This is potentially a huge amount of output data. To prevent
this situation, the utility requires you to explicitly restrict the address space with the ROMS
directive.

12.9.2 Specifying a Fill Value

The -fill option specifies a value for filling the holes between sections. The fill value must be specified as
an integer constant following the --fill option. The width of the constant is assumed to be that of a word on
the target processor. For example, specifying --fill=OXFFFF results in a fill pattern of 0OXO000FFFF. The
constant value is not sign extended.

The hex conversion utility uses a default fill value of 0 if you do not specify a value with the fill option. The
--fill option is valid only when you use --image; otherwise, it is ignored.

12.9.3 Steps to Follow in Using Image Mode

Step 1: Define the ranges of target memory with a ROMS directive. See Section 12.4.

Step 2: Invoke the hex conversion utility with the --image option. You can optionally use the --zero
option to reset the address origin to O for each output file. If you do not specify a fill value
with the ROMS directive and you want a value other than the default of 0, use the --fill option.

SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Description 305

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Array Output Format www.ti.com

12.10 Array Output Format

The --array option causes the output to be generated in C array format. In this format, data contained in
initialized sections of an executable file are defined as C arrays. Output arrays may be compiled along
with a host program and used to initialize the target at runtime.

Arrays are formed by collecting the initialized sections from the input executable. There are two ways
arrays are formed:

e With the ROMS directive. Each memory range that is given in the ROMS directive denotes an array.
The romname is used as the array name. The origin and length parameters of the ROM directive are
required. The memwidth, romwidth, and files parameters are invalid and are ignored.

* No ROMS directive (default). If no ROMS directive is given, arrays are formed by combining
initialized sections within each page, beginning with the first initialized section. Arrays will reflect any
gaps that exist between sections.

The default The --array:name_prefix option can be used to override the default prefix for array names.
For example, use --array:name_prefix=myarray to cause the

The data type for array elements is uint8_t..

306 Hex Conversion Utility Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Building a Table for an On-Chip Boot Loader

12.11 Building a Table for an On-Chip Boot Loader

The ARM hex utility provides the ability to create a boot table for use with an on-chip boot loader. The
supported boot formats are intended for use on C28x devices with ARM cores. The boot table is stored in
memory or loaded from a device peripheral to initialize code or data.

See Section 3.1.2 for a general discussion of bootstrap loading.

12.11.1 Description of the Boot Table

The input for a boot loader is the boot table. The boot table contains records that instruct the on-chip
loader to copy blocks of data contained in the table to specified destination addresses. The table can be
stored in memory (such as EPROM) or read in through a device peripheral (such as a serial or
communications port).

The hex conversion utility automatically builds the boot table for the boot loader. Using the utility, you
specify the sections you want the boot loader to initialize and the table location. The hex conversion utility
builds a complete image of the table according to the format specified and converts it into hexadecimal in
the output files. Then, you can burn the table into ROM or load it by other means.

12.11.2 The Boot Table Format

The boot table format is simple. Typically, there is a header record containing a key value that indicates
memory width, entry point, and values for control registers. Each subsequent block has a header
containing the size and destination address of the block followed by data for the block. Multiple blocks can
be entered. The table ends with a header containing size zero.

12.11.3 How to Build the Boot Table
Table 12-2 summarizes the hex conversion utility options available for the boot loader.

Table 12-2. Boot-Loader Options

Option Description

--boot Convert all sections into bootable form (use instead of a SECTIONS directive).

--bootorg=value Specify the source address of the boot-loader table.

--entrypoint=value Specify the entry point at which to begin execution after boot loading. The value can be an
address or a global symbol.

--gpio8 Specify the source of the boot-loader table as the GP I/O port, 8-bit mode

--gpiol6 Specify the source of the boot-loader table as the GP I/O port, 16-bit mode

--lospcp=value Specify the initial value for the LOSPCP register. The value is used only for the spi8 boot table
format and is ignored for all other formats. A value greater than Ox7F is truncated to Ox7F.

--Spi8 Specify the source of the boot-loader table as the SPI-A port, 8-bit mode

--spibrr=value Specify the initial value for the SPIBRR register. The value is used only for the spi8 boot table

format and is ignored for all other formats. A value greater than Ox7F is truncated to Ox7F.

12.11.3.1 Building the Boot Table
To build the boot table, follow these steps:

Step 1: Link the file. Each block of the boot table data corresponds to an initialized section in the
object file. Uninitialized sections are not converted by the hex conversion utility (see
Section 12.5).

When you select a section for placement in a boot-loader table, the hex conversion utility
places the section's load address in the destination address field for the block in the boot
table. The section content is then treated as raw data for that block. The hex conversion
utility does not use the section run address. When linking, you need not worry about the
ROM address or the construction of the boot table; the hex conversion utility handles this.

SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Description 307

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Building a Table for an On-Chip Boot Loader www.ti.com
Step 2: Identify the bootable sections. You can use the --boot option to tell the hex conversion

utility to configure all sections for boot loading. Or, you can use a SECTIONS directive to
select specific sections to be configured (see Section 12.5). If you use a SECTIONS
directive, the --boot option is ignored.

Step 3: Set the boot table format. Specify the --gpio8, --gpiol6, or --spi8 options to set the source
format of the boot table. You do not need to specify the memwidth and romwidth as the utility
will set these formats automatically. If --memwidth and --romwidth are used after a format
option, they override the default for the format.

Step 4: Set the ROM address of the boot table. Use the --bootorg option to set the source address
of the complete table.

Step 5: Set boot-loader-specific options. Set entry point and control register values as needed.
Step 6: Describe your system memory configuration. See Section 12.3 and Section 12.4.

12.11.3.2 Leaving Room for the Boot Table

The complete boot table is similar to a single section containing all of the header records and data for the
boot loader. The address of this section is the boot table origin. As part of the normal conversion process,
the hex conversion utility converts the boot table to hexadecimal format and maps it into the output files
like any other section.

Be sure to leave room in your system memory for the boot table, especially when you are using the
ROMS directive. The boot table cannot overlap other nonboot sections or unconfigured memory. Usually,
this is not a problem; typically, a portion of memory in your system is reserved for the boot table. Simply
configure this memory as one or more ranges in the ROMS directive, and use the --bootorg option to
specify the starting address.

12.11.4 Booting From a Device Peripheral

You can choose the port to boot from by using the --gpio8, --gpiol6, or --spi8 boot table format option.

The initial value for the LOSPCP register can be specified with the --lospcp option. The initial value for the
SPIBRR register can be specified with the --spibrr option. Only the --spi8 format uses these control
register values in the boot table.

If the register values are not specified for the --spi8 format, the hex conversion utility uses the default
values 0x02 for LOSPCP and 0x7F for SPIBRR. When the boot table format options are specified and the
ROMS directive is not specified, the ASCII format hex utility output does not produce the address record.

12.11.5 Setting the Entry Point for the Boot Table

After completing the boot load process, execution starts at the default entry point specified by the linker
and contained in the object file. By using the --entrypoint option with the hex conversion utility, you can set
the entry point to a different address.

For example, if you want your program to start running at address 0x0123 after loading, specify --
entrypoint=0x0123 on the command line or in a command file. You can determine the --entrypoint address
by looking at the map file that the linker generates.

Valid Entry Points

NOTE: The value can be a constant, or it can be a symbol that is externally defined (for example,
with a .global) in the assembly source.

308

Hex Conversion Utility Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

12.11.6 Using the ARM Boot Loader

This subsection explains how to use the hex conversion utility with the boot loader for C28x devices with
ARM cores. The boot loader accepts the formats listed in Table 12-3.

Table 12-3. Boot Table Source Formats

Format Option
Parallel boot GP 1/0O 8 bit --gpio8
Parallel boot GP 1/0 16 bit --gpiol6
8-bit SPI boot --Spi8

The ARM on C28x devices with ARM cores can boot through the SPI-A 8-bit, GP 1/O 8-bit, or GP I/l 16-bit
interface. The format of the boot table is shown in Table 12-4.

Table 12-4. Boot Table Format

Description Bytes Content

Boot table header 1-2 Key value (0Ox10AA or 0X08AA)
3-18 Register initialization value or reserved for future use
19-22 Entry point

Block header 23-24 Block size in number of bytes (nl)
25-28 Destination address of the block

Block data 29-30 Raw data for the block (nl bytes)

Block header 31 +nl
Block data

Additional block headers and data,
as required

Block header with size 0

Block size in number of bytes
Destination address of the block
Raw data for the block

Content as appropriate

0x0000; indicates the end of the boot table.

The ARM on C28x devices with ARM cores can boot through either the serial 8-bit or parallel interface
with either 8- or 16-bit data. The format is the same for any combination: the boot table consists of a field
containing the destination address, a field containing the length, and a block containing the data. You can
boot only one section. If you are booting from an 8-bit channel, 8-bit bytes are stored in the table with
MSBs first; the hex conversion utility automatically builds the table in the correct format. Use the following

options to specify the boot table source:

* To boot from a SPI-A port, specify --spi8 when invoking the utility. Do not specify --memwidth or --
romwidth. Use --lospcp to set the initial value for the LOSPCP register and --spibrr to set the initial
value for the SPIBRR register. If the register values are not specified for the --spi8 format, the hex
conversion utility uses the default value 0x02 for LOSPCP and 0x7F for SPIBRR.

e To load from a general-purpose parallel I/O port, invoke the utility with --gpio8 or --gpio16. Do not

specify --memwidth or --romwidth.

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Hex Conversion Utility Description 309

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Building a Table for an On-Chip Boot Loader www.ti.com

The command file in Example 12-3 allows you to boot the .text and .cinit sections of test.out from a 16-bit-
wide EPROM at location Ox3FFCO00. The map file test.map is also generated.

Example 12-3. Sample Command File for Booting From 8-Bit SPI Boot

/* ___ */
/* Hex converter command file. */
/* ___ */
test.out /* Input file */
--ascii /* Select ASCII format */
--map=test.map /* Specify the map file */
--outfile=test_spi8.hex /* Hex utility out file */
--boot /* Consider all the input sections as boot sections */
--spi8 /* Specify the SP1 8-bit boot format */
--lospcp=0x3F /* Set the initial value for the LOSPCP as Ox3F */
/* The -spibrr option is not specified to show that */
/* the hex utility uses the default value (Ox7F) */

--entrypoint=0x3F0000 /* Set

the entry point */

The command file in Example 12-3 generates the out file in Figure 12-6. The control register values are
coded in the boot table header and that header has the address that is specified with the --entrypoint

option.

310

Hex Conversion Utility Description

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Building a Table for an On-Chip Boot Loader

Figure 12-6. Sample Hex Converter Out File for Booting From 8-Bit SPI Boot

— Key value

SPIBRR register initial value
LOSPCP initial value
J: Reserved for future use Entry point
)\ .

08 AR 3F 7F 00 00 00 00 00 00 00 00 OO QO 00 00 00 00 00 3F 00 00 01 20

~—T~

Length of first block in bytes

Address of the first block

—

3F 00 00 00 42 B8 00 9A 04 28 05 00 06 00 AD 28 88 10 69 FF 1F 56 16 56
1A 56 40 29 1F 76 00 00 02 29 1B 76 22 76 A9 28 90 00 AB 28 3F 00 01 09
1D 61 FF 76 90 00 04 29 OF 6F 00 9B A9 24 01 DF 04 6C 04 29 A8 24 01 DF
A6 1E Al F7 86 24 AT 06 Al 81 01 09 A7 1E A9 24 03 63 5C FF 04 3B A9 59
00 77 00 77 01 DF 09 00 EA FF 1A 76 A9 28 FF FF AB 28 FF FF 01 09 0E 61
FF 76 FF FF 06 6F 01 DF BD C3 A7 1E 67 3E BE C5 A9 24 01 DF A8 24 58 FF
F7 60 7F 76 00 00 7F 76 4B 00 BD B2 42 BS BD AA (02 C5 67 3E 40 BB 00 59
Al 92 0D EC 03 56 Al 01 A9 08 40 10 A9 5A 82 DA C2 C5 67 3E Al 92 FF 9C
A9 59 FA ED 40 B8 02 06 03 EC A7 1E 67 3E 40 B8 04 06 03 EC A7 1E 67 3E
00 77 00 6F 42 B8 BD B2 02 C5 A4 BB 67 3E 40 BB 00 92 20 52 06 64 42 B8
00 C5 67 3E 01 9A 0D 6F 00 93 00 OA 03 56 A8 01 A9 5C B4 08 40 10 42 B8
c4 B2 00 C5 67 3E 00 94 BE BB 06 00 00 eF 06 00 42 BB 02 AB 06 00 42 BB
00 A8 06 00

Length of second block in bytes
Address of the second block

—_—

00 34 00 3F 01 20 04 00 84 10 01 00 02 00 03 00 04 00 01 0O 00 10 00 0O
02 00 02 10 00 0O 00 00 0Z 0O 04 10 OO0 0O 00 00 02 00 B8O 10 89 00 3F 00
02 00 82 10 89 00 3F 0O 00 00 00 0O

Terminating header with length zero

The command file in Example 12-4 allows you to boot the .text and .cinit sections of test.out from the 16-

bit parallel GP 1/0O port. The map file test.map is also generated.

Example 12-4. Sample Command File for ARM 16-Bit Parallel Boot GP I/O

Y o */
/* Hex converter command file. */
/* ___ */
test.out /* Input file */
--ascii /* Select ASCII format */
--map=test.map /* Specify the map file */
--outfile=test_gpiol6.hex /* Hex utility out file */
--gpiol6 /* Specify the 16-bit GP 1/0 boot format */
SECTIONS
{
_text: paddr=BOOT
.cinit: paddr=BOOT
}
The command file in Example 12-4 generates the out file in Figure 12-7.
SPNU118Y —September 1995—-Revised February 2020 Hex Conversion Utility Description 311

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Building a Table for an On-Chip Boot Loader

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 12-7. Sample Hex Converter Out File for ARM 16-Bit Parallel Boot GP I/O

00 3F
56 1A
61 1D
1E A6
77 00
76 FF
60 F7
92 Al
59 A9
77 00
C5 00
B2 C4
A8 00

Key value

Reserved for future use

Entry point

|

o0
29
76
F7
77
FF
76
EC
ED
6F
3E
c5
o0

00
40
FF
Al
00
FF
TF
0D
FA
0o
67
00
06

Address of the first block

S

9A
00
29
06
00
DF
76
01
06
B2
6F
9A

00
0o
04
A7
09
01
7F
al
02
BD
0D
00

04
0z
OF
Al
EA
BD
4B
A9
03
02
00
BE

Length of second block in bytes

[Address of the second block

00 34 00 3F 00 90 00 04 10 84 00 01
00 02 10 02 00 00 00 00 00 02 10 04
00 02 10 82 00 89 00 3F 00 00 0O 0O

M—T—J

00
76
9B
09
76
1E
B2
10
1E
8B
oA
00

05
1B
00
01
1a
AT
BD
40
AT
Ad
00
06

00
76
24
1E
28
3E
B8
5A
3E
3E
56
6F

00

10 AA 00 00 00 00 00 00 00 00 00 00 00 00

06
22
A9
AT
A9
67

A9
67
67
03
00

02

ao

28
28
DF
24
FF
Cc5

DA
B8
B8
01
0o

00

00

AD
A9
01
A9
FF
BE

g2
40
40
AB
06

03

00 00 00 00

Terminating header with length zero

00 00 00 3F 00 05 01 20

asssasanany

Length of first block in bytes

10 88 FF 69 56 1F 56 16
00 90 28 AB 00 3F 09 01
6C 04 29 04 24 AB DF 01
63 03 FF 5C 3B 04 59 A9
28 A8 FF FF 09 01 61 OE
24 A9 DF 01 24 AB FF 58
C5 02 3E 67 B8 40 59 00

06 04 EC 03 1E A7 3E 67
92 00 52 20 64 06 B8 42
5C A9 08 a4 10 40 B8 42
BE8 42 AB 02 00 06 BB 42

00 04 00 01 10 0O 00 00
00 02 10 80 00 89 00 3F

312

Hex Conversion Utility Description

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Using Secure Flash Boot on TMS320F2838x Devices

12.12 Using Secure Flash Boot on TMS320F2838x Devices

The hex conversion utility supports the secure flash boot capability provided by TMS320F2838x devices,
which have both C28 and ARM cores. The secure flash boot applies the Cipher-based Message
Authentication Protocol (CMAC) algorithm to verify CMAC tags for regions of allocated memory.

Secure flash boot is similar to the regular flash boot mode in that the boot flow branches to the configured
memory address in flash. The difference is that this branch occurs only after the flash memory contents
have been authenticated. The flash authentication uses CMAC to authenticate 16 KB of flash. The CMAC
calculation requires a 128-bit key that you define. Additionally, you must calculate a golden CMAC tag
based on the 16 KB flash memory range and store it along with the application code at a hardcoded
address in flash. During secure flash boot, the calculated CMAC tag is compared to the golden CMAC tag
in flash to determine the pass/fail status of the CMAC authentication. If authentication passes, the boot
flow continues and branches to flash to begin executing the application. See the TMS320F2838x
Microcontrollers Technical Reference Manual (SPRUII0) for further details about secure flash boot and the
CMAC algorithm.

In order to apply the CMAC algorithm to the appropriate regions in allocated memory, use the hex
conversion utility as follows:

» Use the --cmac=file option. The file should contain a 128-bit hex CMAC key.

The CMAC key in the file specified by the --cmac command-line option must use the format
OxkeyOkeylkey2key3 in order to access the device registers for CMACKEYO0-3. For example, the
following file contents represent CMACKEY registers containing key0=0x7c0b7db9, key1=0x81110d0,
key2=0x0e476c7a, and key3=0x0d92f6e0.

0x7c0b7db9811F10d00e476c7a0d92F6e0
» Use either the --image option or the --load_image option when using the --cmac option.
— If you use the --image option, set both --memwidth and --romwidth to the same value.

» If you use the --boot option (and other boot table options described in Section 12.11) with the --cmac
option, the CMAC algorithm assumes that a fill value of 1 is used for gaps between boot table regions.
Because of this assumption, you should also set --fill=OxFFFFFFFF when using the --boot and --cmac
options together.

» Specify a HEX directive with one entry that represents all the allocated flash memory. Use a 128-bit
aligned length and specify the optional fill value. (The default fill is set to 0's.)

» Define the global CMAC tags in C code.

The CMAC feature uses four secure flash boot memory regions that are hardcoded for start/end/tag
addresses, and one flexible CMAC region. The flexible region can encompass the entire allocated region
as input in the HEX directive or user-specified start/end addresses defined in C code.

C code definitions like the following are required to reserve space for the CMAC tag symbols.

struct CMAC_TAG

{ uint8_t tag[l6];
uint32_t start;
uint32_t end;

}:

#pragma RETAIN(cmac_sb_1)
#pragma LOCATION(cmac_sb_1, 0x00200004)
const uint8_t cmac_sb_1[16] = { 0 };

#pragma RETAIN(cmac_sb_2)
#pragma LOCATION(cmac_sb_2, 0x00210004)
const uint8_t cmac_sb_2[16] = { 0 };

#pragma RETAIN(cmac_sb_3)
#pragma LOCATION(cmac_sb_3, 0x00250004)
const uint8_t cmac_sb _3[16] = { 0 };

#pragma RETAIN(cmac_sb_4)
#pragma LOCATION(cmac_sb_4, 0x0027C004)
const uint8_t cmac_sb_4[16] = { 0 };

SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Description 313

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y
http://www.ti.com/lit/pdf/SPRUII0

13 TEXAS
INSTRUMENTS

Controlling the ROM Device Address www.ti.com

#pragma RETAIN(cmac_all)
#pragma LOCATION(cmac_all, 0x00204004)
const struct CMAC_TAG cmac_all = { { 0 }, Ox0, OxO0};

The four secure flash boot region CMAC tags are stored in the cmac_sb_1 through cmac_sb_4 symbols.
The cmac_all symbol stores the CMAC tag for the flexible user-specified region. For cmac_all:

» If the start and end CMAC_TAG struct members are zero, then the CMAC algorithm runs over entire
memory region specified in the HEX directive. The hex conversion utility populates the start and end
memory locations with the addresses input from the HEX directive entry.

» If the start and end members are non-zero, then the CMAC algorithm is instead applied between the
specified addresses.

RETAIN pragmas are required in the C code if these symbols are not accessed in the application code.

LOCATION pragmas are required to place symbols at the required memory locations. The LOCATION
entries for cmac_sb_1 through cmac_sb_4 are at fixed addresses. The LOCATION address for cmac_all
can be user-specified. However, it must not be located within any secure flash boot regions, because the
ROM CMAC implementation on the devices does not support this.

The CMAC algorithm is applied prior to the hex conversion. No changes are made to the original input
ELF executable.

The hex conversion utility applies the CMAC algorithm only to CMAC regions that have global symbols
defined. So if an ELF executable defines only cmac_sb_1 and cmac_all, then only those two CMAC tags
will be generated and populated in the generated hex output file.

12.13 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device address. The EPROM
programmer burns the data into the location specified by the hex conversion utility output file address field.
The hex conversion utility offers some mechanisms to control the starting address in ROM of each
section. However, many EPROM programmers offer direct control of the location in ROM in which the
data is burned.

The address field of the hex-conversion utility output file is controlled by the following items, which are
listed from low to high priority:

1. The linker command file. By default, the address field of the hex conversion utility output file is the
load address (as given in the linker command file).

2. The paddr parameter of the SECTIONS directive. When the paddr parameter is specified for a
section, the hex conversion utility bypasses the section load address and places the section in the
address specified by paddr.

3. The --zero option. When you use the --zero option, the utility resets the address origin to 0 for each
output file. Since each file starts at 0 and counts upward, any address records represent offsets from
the beginning of the file (the address within the ROM) rather than actual target addresses of the data.

You must use the --zero option in conjunction with the --image option to force the starting address in
each output file to be zero. If you specify the --zero option without the --image option, the utility issues
a warning and ignores the --zero option.

4. The --byte option. Some EPROM programmers may require the output file address field to contain a
byte count rather than a word count. If you use the —byte option, the output file address increments
once for each byte. For example, if the starting address is Oh, the first line contains eight words, and
you use no —byte option, the second line would start at address 8 (8h). If the starting address is Oh, the
first line contains eight words, and you use the —byte option, the second line would start at address 16
(010h). The data in both examples are the same; —byte affects only the calculation of the output file
address field, not the actual target processor address of the converted data.

The --byte option causes the address records in an output file to refer to byte locations within the file,
whether the target processor is byte-addressable or not.

314 Hex Conversion Utility Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Control Hex Conversion Utility Diagnostics

12.14 Control Hex Conversion Utility Diagnostics

The hex conversion utility uses certain C/C++ compiler options to control hex-converter-generated

diagnostics.

--diag_error=id

--diag_remark=id

--diag_suppress=id

--diag_warning=id

--display_error_number

--issue_remarks
--no_warnings
--set_error_limit=count

--verbose_diagnostics

Categorizes the diagnostic identified by id as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_error=id to recategorize the
diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

Categorizes the diagnostic identified by id as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_remark=id to recategorize the
diagnostic as a remark. You can only alter the severity of discretionary
diagnostics.

Suppresses the diagnostic identified by id. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_suppress=id to suppress the diagnostic.
You can only suppress discretionary diagnostics.

Categorizes the diagnostic identified by id as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_warning=id to recategorize the
diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and --
diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the ARM Optimizing C/C++ Compiler User's Guide for
more information on understanding diagnostic messages.

Issues remarks (nonserious warnings), which are suppressed by default.
Suppresses warning diagnostics (errors are still issued).

Sets the error limit to count, which can be any decimal value. The linker
abandons linking after this number of errors. (The default is 100.)

Provides verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Description 315

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.15 Description of the Object Formats

The hex conversion utility has options that identify each format. Table 12-5 specifies the format options.
They are described in the following sections.

e You should use only one of these options on the command line. If you use more than one option, the
last one you list overrides the others.

» The default format is Tektronix (--tektronix option).

Table 12-5. Options for Specifying Hex Conversion Formats

Option Alias Format Address Bits Default Width
--ascii -a ASCII-Hex 16 8
--intel -i Intel 32 8
--motorola=1 -m1 Motorola-S1 16 8
--motorola=2 -m2 Motorola-S2 24 8
--motorola=3 -m3 Motorola-S3 32 8
--ti-tagged -t TI-Tagged 16 16
--ti_txt TI_TXT 8 8
--tektronix -X Tektronix 32 8

Address bits determine how many bits of the address information the format supports. Formats with 16-
bit addresses support addresses up to 64K only. The utility truncates target addresses to fit in the number
of available bits.

The default width determines the default output width of the format. You can change the default width by
using the --romwidth option or by using the romwidth parameter in the ROMS directive. You cannot
change the default width of the TI-Tagged format, which supports a 16-bit width only.

12.15.1 ASCII-Hex Object Format (--ascii Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists of a byte stream with bytes
separated by spaces. Figure 12-8 illustrates the ASCII-Hex format.

Figure 12-8. ASCII-Hex Object Format

Nonprintable
Nonprintable Address end code

start code 1_‘ Jj

"B $AXXXXXXXX,
XX XX XX XX XX XX XX XX XX XX. . ."C

Data byte

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an ASCII ETX character (ctrl-C,
03h). Address records are indicated with SAXXXXXXX, in which XXXXXXXX is a 8-digit (16-bit)
hexadecimal address. The address records are present only in the following situations:

* When discontinuities occur
* When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the --image and --zero options. This
creates output that is simply a list of byte values.

316

Hex Conversion Utility Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.15.2 Intel MCS-86 Object Format (--intel Option)

The Intel object format supports 16-bit addresses and 32-bit extended addresses. Intel format consists of
a 9-character (4-field) prefix (which defines the start of record, byte count, load address, and record type),
the data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record
01 End-of-file record
04 Extended linear address record

Record type00, the data record, begins with a colon (:) and is followed by the byte count, the address of
the first data byte, the record type (00), and the checksum. The address is the least significant 16 bits of a
32-bit address; this value is concatenated with the value from the most recent 04 (extended linear
address) record to create a full 32-bit address. The checksum is the 2s complement (in binary form) of the
preceding bytes in the record, including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed by the byte count, the
address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16 address bits. It begins with a
colon (:), followed by the byte count, a dummy address of Oh, the record type (04), the most significant
16 bits of the address, and the checksum. The subsequent address fields in the data records contain the
least significant bytes of the address.

Figure 12-9 illustrates the Intel hexadecimal object format.

Figure 12-9. Intel Hexadecimal Object Format

Start
character
Address

Extended linear
address record
Most significant 16 bits

:2000000000000100020003000400050006000700080009000A000B000C0O00DO00OEOOOF0068
$2000200010001100120013001400150016001700180019001A001B001C001D001E001F0048 | Data
:2000400000000100020003000400050006000700080009000A000B000C0O00DO0O0OEOOOF0028 records

:2000600010001100120013001400150016001700180019001A001B001C001D001EO01F0008
:00000001FF (]
T |
‘ Checksum
Byte Record End-of-file
count type record
SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Description 317

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.15.3 Motorola Exorciser Object Format (--motorola Option)

The Motorola S1, S2, and S3 formats support 16-bit, 24-bit, and 32-bit addresses, respectively. The
formats consist of a start-of-file (header) record, data records, and an end-of-file (termination) record.
Each record consists of five fields: record type, byte count, address, data, and checksum. The three
record types are:

Record Type Description

SO Header record

S1 Code/data record for 16-bit addresses (S1 format)
S2 Code/data record for 24-bit addresses (S2 format)
S3 Code/data record for 32-bit addresses (S3 format)
S7 Termination record for 32-bit addresses (S3 format)
S8 Termination record for 24-bit addresses (S2 format)
S9 Termination record for 16-bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and byte count itself.

The checksum is the least significant byte of the 1s complement of the sum of the values represented by
the pairs of characters making up the byte count, address, and the code/data fields.

Figure 12-10 illustrates the Motorola-S object format.

Figure 12-10. Motorola-S Format

Record Address Checksum

type
S00600004844521B _F Header record
S$32200DD
S31A0001FFEB00FA Data records
S70500000000FA T} Termination

record
Checksum
Byte count
Address for S3 records
318 Hex Conversion Utility Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.15.4 Extended Tektronix Object Format (--tektronix Option)
The Tektronix object format supports 32-bit addresses and has two types of records:

Data records contains the header field, the load address, and the object code.
Termination records signifies the end of a module.

The header field in the data record contains the following information:

Number of ASCII

Item Characters Description

% 1 Data type is Tektronix format

Block length 2 Number of characters in the record, minus the %
Block type 1 6 = data record

8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the record except the % and the
checksum itself.

The load address in the data record specifies where the object code will be located. The first digit
specifies the address length; this is always 8. The remaining characters of the data record contain the
object code, two characters per byte.

Figure 12-11 illustrates the Tektronix object format.

Figure 12-11. Extended Tektronix Object Format

Checksum: 21h = 1+5+6+8+1+0+0+0+0+0+0+
0+

Block length o 2+0+2+0+2+0+2+0+2+0+2+

1ah = 26 4'_‘_‘ I: Object code: 6 bytes

Header %$15621810000000202020202020

character T
Load address: 10000000h
Block type: 6 Length of
(data) load address
SPNU118Y —September 1995—-Revised February 2020 Hex Conversion Utility Description 319

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.15.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)

The Texas Instruments SDSMAC (TI-Tagged) object format supports 16-bit addresses, including start-of-
file record, data records, and end-of-file record. Each data records consists of a series of small fields and
is signified by a tag character:

Tag Character Description

K Followed by the program identifier
Followed by a checksum

Followed by a dummy checksum (ignored)
Followed by a 16-bit load address
Followed by a data word (four characters)
Identifies the end of a data record

*+ M W © 0

Followed by a data byte (two characters)

Figure 12-12 illustrates the tag characters and fields in TI-Tagged object format.

Figure 12-12. TI-Tagged Object Format
Start-of-file Load

record Program address Tag characters
identifier ‘

9 e e e e S A A A A

KOOOOCOFFTOTI90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EF3DF
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EE37F Data

BFFFFIBXFFFFBFFFFlBlFFFFXBXFFFFXBXFFFFXBXFFFFXBXFFFFBFFFFBFFFFI71F2451F _ records
T [I I I I I I I]
End-of-file Data
record words Checksum

If any data fields appear before the first address, the first field is assigned address 0000h. Address fields
may be expressed but not required for any data byte. The checksum field, preceded by the tag character
7, is the 2s complement of the sum of the 8-bit ASCII values of characters, beginning with the first tag
character and ending with the checksum tag character (7 or 8). The end-of-file record is a colon (:).

320 Hex Conversion Utility Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.15.6 TI-TXT Hex Format (--ti_txt Option)

The TI-TXT hex format supports 8-bit hexadecimal data. It consists of section start addresses, data byte,
and an end-of-file character. These restrictions apply:

* The number of sections is unlimited.

» Each hexadecimal start address must be even.

» Each line must have 8 data bytes, except the last line of a section.

» Data bytes are separated by a single space.

* The end-of-file termination tag q is mandatory.

Because the TI-TXT format (along with the binary format) supports only an 8-bit physical memory width
and an 8-bit ROM width, the ROMS directive needs to have the origin and length specifications doubled
when moving from a 16-bit format to an 8-bit format. If you receive a warning like the following, check the
ROMS directive.

warning: section file.out(.data) at 07e000000h falls in unconfigured memory

For example, suppose the ROMS directive for a format that uses 16-bit ROM widths, such as ASCII-Hex
with the --romwidth=16 option used, is as follows:

/* Memory counted as 16-bit words */
ROMS

{
}

You would double the address and length in the ROMS directive when using an 8-bit ROM width:

/* Memory counted as 8-bit bytes */
ROMS

{

}
The data record contains the following information:

FLASH: origin=0x3f000000, length=0x1000

FLASH: origin=0x7e000000, length=0x2000

Iltem Description
@ADDR Hexadecimal start address of a section
DATAN Hexadecimal data byte
q End-of-file termination character

Figure 12-13. TI-TXT Object Format

Section
start

@ADDR1
DATAOl DATAO2 DATAL6
Data
bytes DATALl7 DATA32 ...eeenn DATA32
DATAM «oeeeenn DATAnNn

Section —{ @ADDR2
St DATAOL vvvereiieiieieenn DATAn }— Data
bytes
q
End-of-line
character

Example 12-5. TI-TXT Object Format

@F000

31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3
21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F

@FFFE

00 FO

Q

SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Description 321

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

i Chapter 13

TE S SPNU118Y —September 1995—Revised February 2020

INSTRUMENTS
Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes
between C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code.

Topic Page
13.1 Overview Of the .CAECIS DIr€CHIVE ...uuiuiiiiiii i et e e as 323
13.2 NOLES ON C/CH+ CONVEISIONS 1uiiuiutiuiitiiitttineaetaeantataneaeaneaneeansaeansaeaneasaneanaaeanennss 323
13.3 Notes 0N C++ SPECITIC CONVEISIONS c.uuuiuiiiiiitieieeiieet et iee ettt saee et aaanaaenes 327
13.4 Special ASSEMDIEr SUPPOIT uuuieieiiiiii et r et e e a e a s e eaeaeanananes 328
322 Sharing C/C++ Header Files With Assembly Source SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com Overview of the .cdecls Directive

13.1

13.2

13.2.

Overview of the .cdecls Directive

The .cdecls directive allows programmers in mixed assembly and C/C++ environments to share C headers
containing declarations and prototypes between the C and assembly code. Any legal C/C++ can be used
in a .cdecls block and the C/C++ declarations will cause suitable assembly to be generated automatically.
This allows the programmer to reference the C/C++ constructs in assembly code — calling functions,
allocating space, and accessing structure members — using the equivalent assembly mechanisms. While
function and variable definitions are ignored, most common C/C++ elements are converted to assembly:
enumerations, (non function-like) macros, function and variable prototypes, structures, and unions.

See the .cdecls directive description for details on the syntax of the .cdecls assembler directive.

The .cdecls directive can appear anywhere in an assembly source file, and can occur multiple times within
a file. However, the C/C++ environment created by one .cdecls is not inherited by a later .cdecls; the
C/C++ environment starts over for each .cdecls instance.

For example, the following code causes the warning to be issued:

.cdecls C,NOLIST
%{

%}

#define ASMTEST 1

.cdecls C,NOLIST
%{
#ifndef ASMTEST
#warn "ASMTEST not defined!" /* will be issued */
#endif

%}
Therefore, a typical use of the .cdecls block is expected to be a single usage near the beginning of the
assembly source file, in which all necessary C/C++ header files are included.

Use the compiler --include_path=path options to specify additional include file paths needed for the header
files used in assembly, as you would when compiling C files.

Any C/C++ errors or warnings generated by the code of the .cdecls are emitted as they normally would for
the C/C++ source code. C/C++ errors cause the directive to fail, and any resulting converted assembly is
not included.

C/C++ constructs that cannot be converted, such as function-like macros or variable definitions, cause a
comment to be output to the converted assembly file. For example:

; ASM HEADER WARNING - variable definition "ABCD" ignored

The prefix ASM HEADER WARNING appears at the beginning of each message. To see the warnings,
either the WARN parameter needs to be specified so the messages are displayed on STDERR, or else
the LIST parameter needs to be specified so the warnings appear in the listing file, if any.

Finally, note that the converted assembly code does not appear in the same order as the original C/C++
source code and C/C++ constructs may be simplified to a normalized form during the conversion process,
but this should not affect their final usage.

Notes on C/C++ Conversions

The following sections describe C and C++ conversion elements that you need to be aware of when
sharing header files with assembly source.

1 Comments

Comments are consumed entirely at the C level, and do not appear in the resulting converted assembly
file.

SPNU118Y —September 1995—Revised February 2020 Sharing C/C++ Header Files With Assembly Source 323
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Notes on C/C++ Conversions www.ti.com

13.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)

Conditional compilation is handled entirely at the C level during the conversion step. Define any necessary
macros either on the command line (using the compiler --define=name=value option) or within a .cdecls
block using #define. The #if, #ifdef, etc. C/C++ directives are not converted to assembly .if, .else, .elseif,
and .endif directives.

13.2.3 Pragmas

Pragmas found in the C/C++ source code cause a warning to be generated as they are not converted.
They have no other effect on the resulting assembly file. See the .cdecls topic for the WARN and
NOWARN parameter discussion for where these warnings are created.

13.2.4 The #error and #warning Directives

These preprocessor directives are handled completely by the compiler during the parsing step of
conversion. If one of these directives is encountered, the appropriate error or warning message is emitted.
These directives are not converted to .emsg or .wmsg in the assembly output.

13.2.5 Predefined symbol _ ASM_HEADER__

The C/C++ macro __ASM_HEADER___is defined in the compiler while processing code within .cdecls.
This allows you to make changes in your code, such as not compiling definitions, during the .cdecls
processing.

Be Careful With the __ ASM_HEADER__ Macro

NOTE: You must be very careful not to use this macro to introduce any changes in the code that
could result in inconsistencies between the code processed while compiling the C/C++
source and while converting to assembly.

13.2.6 Usage Within C/C++ asm() Statements

The .cdecls directive is not allowed within C/C++ asm() statements and will cause an error to be
generated.

13.2.7 The #include Directive

The C/C++ #include preprocessor directive is handled transparently by the compiler during the conversion
step. Such #includes can be nested as deeply as desired as in C/C++ source. The assembly directives
.include and .copy are not used or needed within a .cdecls. Use the command line --include_path option to
specify additional paths to be searched for included files, as you would for C compilation.

13.2.8 Conversion of #define Macros

Only object-like macros are converted to assembly. Function-like macros have no assembly
representation and so cannot be converted. Pre-defined and built-in C/C++ macros are not converted to
assembly (i.e., _ FILE_ , _TIME__, _ TI_COMPILER_VERSION__, etc.). For example, this code is
converted to assembly because it is an object-like macro:

#define NAME Charley

This code is not converted to assembly because it is a function-like macro:
#define MAX(X,y) x>y ? X - Yy)
Some macros, while they are converted, have no functional use in the containing assembly file. For

example, the following results in the assembly substitution symbol FOREVER being set to the value
while(1), although this has no useful use in assembly because while(1) is not legal assembly code.

#define FOREVER while(1)

324 Sharing C/C++ Header Files With Assembly Source SPNU118Y —-September 1995—Revised February 2020
Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Notes on C/C++ Conversions

Macro values are not interpreted as they are converted. For example, the following results in the
assembler substitution symbol OFFSET being set to the literal string value 5+12 and not the value 17.
This happens because the semantics of the C/C++ language require that macros are evaluated in context
and not when they are parsed.

#define OFFSET 5+12

Because macros in C/C++ are evaluated in their usage context, C/C++ printf escape sequences such as
\n are not converted to a single character in the converted assembly macro. See Section 13.2.11 for
suggestions on how to use C/C++ macro strings.

Macros are converted using the .define directive (see Section 13.4.2), which functions similarly to the .asg
assembler directive. The exception is that .define disallows redefinitions of register symbols and
mnemonics to prevent the conversion from corrupting the basic assembly environment. To remove a
macro from the assembly scope, .undef can be used following the .cdecls that defines it (see

Section 13.4.3).

The macro functionality of # (stringize operator) is only useful within functional macros. Since functional
macros are not supported by this process, # is not supported either. The concatenation operator ## is only
useful in a functional context, but can be used degenerately to concatenate two strings and so it is
supported in that context.

13.2.9 The #undef Directive
Symbols undefined using the #undef directive before the end of the .cdecls are not converted to assembly.

13.2.10 Enumerations

Enumeration members are converted to .enum elements in assembly. For example:
enum state { ACTIVE=0x10, SLEEPING=0x01, INTERRUPT=0x100, POWEROFF, LAST};

is converted to the following assembly code:

state .enum

ACTIVE .emember 16

SLEEPING .emember 1

NTERRUPT .emember 256

POWEROFF .emember 257

LAST .emember 258
-endenum

The members are used via the pseudo-scoping created by the .enum directive.
The usage is similar to that for accessing structure members, enum_name.member.

This pseudo-scoping is used to prevent enumeration member names from corrupting other symbols within
the assembly environment.

13.2.11 C Strings

Because C string escapes such as \n and \t are not converted to hex characters 0x0OA and 0x09 until their
use in a string constant in a C/C++ program, C macros whose values are strings cannot be represented
as expected in assembly substitution symbols. For example:

#define MSG ""\tHI\n"

becomes, in assembly:
.define """\tHI\n""""",MSG ; 6 quoted characters! not 5!

When used in a C string context, you expect this statement to be converted to 5 characters (tab, H, I,
newline, NULL), but the .string assembler directive does not know how to perform the C escape
conversions.

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly
handled as they would in C/C++. Using the above symbol MSG with a .cstring directive results in 5
characters of memory being allocated, the same characters as would result if used in a C/C++ strong
context. (See Section 13.4.7 for the .cstring directive syntax.)

SPNU118Y —September 1995—Revised February 2020 Sharing C/C++ Header Files With Assembly Source 325

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Notes on C/C++ Conversions www.ti.com

13.2.12 C/C++ Built-In Functions

The C/C++ built-in functions, such as sizeof(), are not translated to their assembly counterparts, if any, if
they are used in macros. Also, their C expression values are not inserted into the resulting assembly
macro because macros are evaluated in context and there is no active context when converting the
macros to assembly.

Suitable functions such as $$sizeof() are available in assembly expressions. However, as the basic types
such as int/char/float have no type representation in assembly, there is no way to ask for $$sizeof(int), for
example, in assembly.

13.2.13 Structures and Unions

C/C++ structures and unions are converted to assembly .struct and .union elements. Padding and ending
alignments are added as necessary to make the resulting assembly structure have the same size and
member offsets as the C/C++ source. The primary purpose is to allow access to members of C/C++
structures, as well as to facilitate debugging of the assembly code. For nested structures, the assembly
.tag feature is used to refer to other structures/unions.

The alignment is also passed from the C/C++ source so that the assembly symbol is marked with the
same alignment as the C/C++ symbol. (See Section 13.2.3 for information about pragmas, which may
attempt to modify structures.) Because the alignment of structures is stored in the assembly symbol, built-
in assembly functions like $$sizeof() and $$alignof() can be used on the resulting structure name symbol.
When using unnamed structures (or unions) in typedefs, such as:

typedef struct { int a_member; } mystrname;

This is really a shorthand way of writing:
struct temporary_name { int a_member; };
typedef temporary_name mystrname;

The conversion processes the above statements in the same manner: generating a temporary name for
the structure and then using .define to output a typedef from the temporary name to the user name. You
should use your mystrname in assembly the same as you would in C/C++, but do not be confused by the
assembly structure definition in the list, which contains the temporary name. You can avoid the temporary
name by specifying a hame for the structure, as in:

typedef struct a_st name { ... } mystrname;

If a shorthand method is used in C to declare a variable with a particular structure, for example:
extern struct a_name { int a_member; } a_variable;

Then after the structure is converted to assembly, a .tag directive is generated to declare the structure of
the external variable, such as:

_a variable .tag a_st _name

This allows you to refer to _a_variable.a_member in your assembly code.

13.2.14 Function/Variable Prototypes

Non-static function and variable prototypes (not definitions) will result in a .global directive being generated
for each symbol found.

See Section 13.3.1 for C++ name mangling issues.

Function and variable definitions will result in a warning message being generated (see the
WARN/NOWARN parameter discussion for where these warnings are created) for each, and they will not
be represented in the converted assembly.

The assembly symbol representing the variable declarations will not contain type information about those
symbols. Only a .global will be issued for them. Therefore, it is your responsibility to ensure the symbol is
used appropriately.

See Section 13.2.13 for information on variables names which are of a structure/union type.

326

Sharing C/C++ Header Files With Assembly Source SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com Notes on C/C++ Conversions

13.2.15 C Constant Suffixes

The C constant suffixes u, |, and f are passed to the assembly unchanged. The assembler will ignore
these suffixes if used in assembly expressions.

13.2.16 Basic C/C++ Types

13.3

Only complex types (structures and unions) in the C/C++ source code are converted to assembly. Basic
types such as int, char, or float are not converted or represented in assembly beyond any existing .int,
.char, .float, etc. directives that previously existed in assembly. Typedefs of basic types are therefore also
not represented in the converted assembly.

Notes on C++ Specific Conversions

The following sections describe C++ specific conversion elements that you need to be aware of when
sharing header files with assembly source.

13.3.1 Name Mangling

C++ compilers use name mangling to avoid conflicts between identically named functions and variables. If
name mangling were not used, symbol name clashes can occur.

You can use the demangler (armdem) to demangle names and identify the correct symbols to use in
assembly. See the "C++ Name Demangler" chapter of the ARM Optimizing C/C++ Compiler User's Guide
for details.

To defeat name mangling in C++ for symbols where polymorphism (calling a function of the same name
with different kinds of arguments) is not required, use the following syntax:

extern "C" void somefunc(int arg);

The above format is the short method for declaring a single function. To use this method for multiple
functions, you can also use the following syntax:

extern "'C"

{

void somefunc(int arg);
int anotherfunc(int arg);

}

13.3.2 Derived Classes

Derived classes are only partially supported when converting to assembly because of issues related to
C++ scoping which does not exist in assembly. The greatest difference is that base class members do not
automatically become full (top-level) members of the derived class. For example:

class base

{
public:
int bl;

¥

class derived : public base

{
public:
int di;

}

In C++ code, the class derived would contain both integers b1 and d1. In the converted assembly
structure "derived”, the members of the base class must be accessed using the name of the base class,
such as derived.__b_base.bl rather than the expected derived.bl.

A non-virtual, non-empty base class will have __b_ prepended to its name within the derived class to
signify it is a base class name. That is why the example above is derived.__b_base.b1 and not simply
derived.base.bl.

SPNU118Y —September 1995—Revised February 2020 Sharing C/C++ Header Files With Assembly Source 327
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Notes on C++ Specific Conversions www.ti.com

13.3.3 Templates

No support exists for templates.

13.3.4 Virtual Functions

No support exists for virtual functions, as they have no assembly representation.

13.4 Special Assembler Support

13.4.1 Enumerations (.enum/.emember/.endenum)

The following directives support a pseudo-scoping for enumerations:

ENUM_NAME .enum

MEMBER1 .emember [value]
MEMBER2 .emember [value]
.endenum

The .enum directive begins the enumeration definition and .endenum terminates it.
The enumeration name (ENUM_NAME) cannot be used to allocate space; its size is reported as zero.
To use a member's value, the format is ENUM_NAME.MEMBER, similar to using a structure member.

The .emember directive optionally accepts the value to set the member to, just as in C/C++. If not
specified, the member takes a value one more than the previous member. As in C/C++, member names
cannot be duplicated, although values can be. Unless specified with .emember, the first enumeration
member will be given the value 0 (zero), as in C/C++,

The .endenum directive cannot be used with a label, as structure .endstruct directives can, because the
.endenum directive has no value like the .endstruct does (containing the size of the structure).

Conditional compilation directives (.if/.else/.elseif/.endif) are the only other non-enumeration code allowed
within the .enum/.endenum sequence.

13.4.2 The .define Directive

The .define directive functions in the same manner as the .asg directive, except that .define disallows
creation of a substitution symbol that has the same name as a register symbol or mnemonic. It does not
create a new symbol name space in the assembler, rather it uses the existing substitution symbol name
space. The syntax for the directive is:

.define substitution string , substitution symbol name

The .define directive is used to prevent corruption of the assembly environment when converting C/C++
headers.

13.4.3 The .undefine/.unasg Directives

The .undef directive is used to remove the definition of a substitution symbol created using .define or .asg.
This directive will remove the named symbol from the substitution symbol table from the point of the .undef
to the end of the assembly file. The syntax for these directives is:

.undefine substitution symbol name
.unasg substitution symbol name

This can be used to remove from the assembly environment any C/C++ macros that may cause a
problem. Also see Section 13.4.2, which covers the .define directive.

328

Sharing C/C++ Header Files With Assembly Source SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com Special Assembler Support

13.4.4 The $$defined() Built-In Function

The $$defined directive returns true/1 or false/0 depending on whether the name exists in the current
substitution symbol table or the standard symbol table. In essence $$defined returns TRUE if the
assembler has any user symbol in scope by that name. This differs from $$isdefed in that $$isdefed only
tests for NON-substitution symbols. The syntax is:

$$defined(substitution symbol name)
A statement such as ".if $$defined(macroname)"” is then similar to the C code "#ifdef macroname".
See Section 13.4.2 and Section 13.4.3 for the use of .define and .undef in assembly.

13.4.5 The $$sizeof Built-In Function

The assembly built-in function $$sizeof() can be used to query the size of a structure in assembly. It is an
alias for the already existing $$structsz(). The syntax is:

$$sizeof(structure name)
The $$sizeof function can then be used similarly to the C built-in function sizeof().

The assembler's $$sizeof() built-in function cannot be used to ask for the size of basic C/C++ types, such
as $$sizeof(int), because those basic type names are not represented in assembly. Only complex types
are converted from C/C++ to assembly.

Also see Section 13.2.12, which notes that this conversion does not happen automatically if the C/C++
sizeof() built-in function is used within a macro.

13.4.6 Structure/Union Alignment and $$alignof()

The assembly .struct and .union directives take an optional second argument which can be used to
specify a minimum alignment to be applied to the symbol name. This is used by the conversion process to
pass the specific alignment from C/C++ to assembly.

The assembly built-in function $$alignof() can be used to report the alignment of these structures. This
can be used even on assembly structures, and the function will return the minimum alignment calculated
by the assembler.

13.4.7 The .cstring Directive

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly
handled as they would in C/C++.

.cstring "String with C escapes.\nWill be NULL terminated.\012"

See Section 13.2.11 for more information on the .cstring directive.

SPNU118Y —September 1995—Revised February 2020 Sharing C/C++ Header Files With Assembly Source 329
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Appendix A
I -{IE)S(’?gUMENTS SPNU118Y —September 1995—Revised February 2020

Symbolic Debugging Directives

The assembler supports several directives that the ARM C/C++ compiler uses for symbolic debugging.

These directives are not meant for use by assembly-language programmers. They require arguments that
can be difficult to calculate manually, and their usage must conform to a predetermined agreement
between the compiler, the assembler, and the debugger. This appendix documents these directives for
informational purposes only.

Topic Page
A.1 DWARF Debugging FOIMALcocuiuinieiiiiieieee et ee et e e e e e e e e e e e e eenens 331
A.2 DeDUQ Dir€CHIVE SYNMTAX «ueuiuinieiiiiininitieaeeen et eaeeea et eeaenan e e e eenen e anaenenns 331
330 Symbolic Debugging Directives SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I

TEXAS
INSTRUMENTS

www.ti.com DWARF Debugging Format

Al

A.2

DWARF Debugging Format

A subset of the DWARF symbolic debugging directives are always listed in the assembly language file that
the compiler creates for program analysis purposes. To list the complete set used for full symbolic debug,
invoke the compiler with the --symdebug:dwarf option, as shown below:

armcl --symdebug:dwarf --keep_asm input_file
The --keep_asm option instructs the compiler to retain the generated assembly file.

To disable the generation of all symbolic debug directives, invoke the compiler with the -symdebug:none
option:

armcl --symdebug:none --keep_asm input_file

The DWARF debugging format consists of the following directives:

* The .dwtag and .dwendtag directives define a Debug Information Entry (DIE) in the .debug_info
section.

e The .dwattr directive adds an attribute to an existing DIE.
» The .dwpsn directive identifies the source position of a C/C++ statement.

» The .dwcie and .dwendentry directives define a Common Information Entry (CIE) in the .debug_frame
section.

» The .dwfde and .dwendentry directives define a Frame Description Entry (FDE) in the .debug_frame
section.

» The .dwcfi directive defines a call frame instruction for a CIE or FDE.

Debug Directive Syntax

Table A-1 is an alphabetical listing of the symbolic debugging directives. For information on the C/C++
compiler, refer to the ARM Optimizing C/C++ Compiler User's Guide.

Table A-1. Symbolic Debugging Directives

Label Directive Arguments

.dwattr DIE label , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value) [, ...]
.dwcfi call frame instruction opcode[, operand|, operand]]
CIE label .dwcie version , return address register
.dwendentry
.dwendtag
.dwfde CIE label
.dwpsn " filename ", line number , column number
DIE label .dwtag DIE tag name , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value)

[

SPNU118Y —September 1995—Revised February 2020 Symbolic Debugging Directives 331
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Appendix B
I -{IE)S(’?gUMENTS SPNU118Y —September 1995—Revised February 2020

XML Link Information File Description

The ARM linker supports the generation of an XML link information file via the --xml_link_info file option.
This option causes the linker to generate a well-formed XML file containing detailed information about the
result of a link. The information included in this file includes all of the information that is currently produced
in a linker-generated map file.

As the linker evolves, the XML link information file may be extended to include additional information that
could be useful for static analysis of linker results.

This appendix enumerates all of the elements that are generated by the linker into the XML link
information file.

Topic Page
B.1 XML Information File El€mMent Ty PeS . uuuiuiiiiitieiiiiiieeetitiesiee et ea e seneaeae e enananenen 333
= B To Yol U1 1= L =T =T PP 888
332 XML Link Information File Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

XML Information File Element Types

B.1 XML Information File Element Types

These element types will be generated by the linker:

Container elements represent an object that contains other elements that describe the object.
Container elements have an id attribute that makes them accessible from other elements.

String elements contain a string representation of their value.
Constant elements contain a 32-bit unsigned long representation of their value (with a 0x prefix).

Reference elements are empty elements that contain an idref attribute that specifies a link to another
container element.

In Section B.2, the element type is specified for each element in parentheses following the element
description. For instance, the <link_time> element lists the time of the link execution (string).

B.2 Do

cument Elements

The root element, or the document element, is <link_info>. All other elements contained in the XML link
information file are children of the <link_info> element. The following sections describe the elements that
an XML information file can contain.

B.2.1 Header Elements

The first elements in the XML link information file provide general information about the linker and the link
session:

The <banner> element lists the name of the executable and the version information (string).
The <copyright> element lists the Tl copyright information (string).

The <link_time> is a timestamp representation of the link time (unsigned 32-bit int).

The <output_file> element lists the name of the linked output file generated (string).

The <entry_point> element specifies the program entry point, as determined by the linker (container)
with two entries:

— The <name> is the entry point symbol name, if any (string).
— The <address> is the entry point address (constant).

Example B-1. Header Element for the hi.out Output File
<banner>TMS320Cxx Linker Version x.xx (Jan 6 2008)</banner>
<copyright>Copyright (c) 1996-2008 Texas Instruments Incorporated</copyright>
<link_time>0x43dfd8a4</link_time>
<output_file>hi.out</output_file>
<entry_point>
<name>_c_int00</name>
<address>0xaf80</address>
</entry_point>
SPNU118Y —September 1995—Revised February 2020 XML Link Information File Description 333

Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Document Elements

13 TEXAS
INSTRUMENTS

www.ti.com

B.2.2

Input File List

The next section of the XML link information file is the input file list, which is delimited with a
<input_file_list> container element. The <input_file_list> can contain any number of <input_file>

elements.

Each <input_file> instance specifies the input file involved in the link. Each <input_file> has an id attribute
that can be referenced by other elements, such as an <object_component>. An <input_file> is a container
element enclosing the following elements:

» The <path> element names a directory path, if applicable (string).

» The <kind> element specifies a file type, either archive or object (string).

* The <file> element specifies an archive name or filename (string).
» The <name> element specifies an object file name, or archive member name (string).

Example B-2. Input File List for the hi.out Output File

<input_file_list>

<input_file id="fI-1">
<kind>object</kind>
<file>hi.obj</file>
<name>hi.obj</name>

</input_file>

<input_file id="fl1-2">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>boot.obj</name>

</input_file>

<input_file id="f1-3">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>exit.obj</name>

</input_file>

<input_file id="fl1-4">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>printf.obj</name>

</input_file>

</input_file_list>

334

XML Link Information File Description

SPNU118Y —September 1995—Revised February 2020

Copyright © 1995-2020, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Document Elements

B.2.3 Object Component List

The next section of the XML link information file contains a specification of all of the object components
that are involved in the link. An example of an object component is an input section. In general, an object
component is the smallest piece of object that can be manipulated by the linker.

The <object_component_list> is a container element enclosing any humber of <object_component>
elements.

Each <object_component> specifies a single object component. Each <object_component> has an id
attribute so that it can be referenced directly from other elements, such as a <logical_group>. An
<object_component> is a container element enclosing the following elements:

e The <name> element names the object component (string).

» The <load_address> element specifies the load-time address of the object component (constant).
» The <run_address> element specifies the run-time address of the object component (constant).

» The <size> element specifies the size of the object component (constant).

» The <input_file_ref> element specifies the source file where the object component originated
(reference).

Example B-3. Object Component List for the fl-4 Input File

<object_component id="oc-20">
<name>.text</name>
<load_address>0xac00</load_address>
<run_address>0xac00</run_address>
<size>0xc0</size>
<input_file_ref idref="fl1-4"/>
</object_component>
<object_component id="oc-21">
<name>.data</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>
<size>0x0</size>
<input_file_ref idref="f1-4"/>
</object_component>
<object_component id="oc-22">
<name>._bss</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>
<size>0x0</size>
<input_file_ref idref="fl1-4"/>
</object_component>

SPNU118Y —September 1995—Revised February 2020 XML Link Information File Description 335

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Document Elements www.ti.com

B.2.4 Logical Group List

The <logical_group_list> section of the XML link information file is similar to the output section listing in a
linker-generated map file. However, the XML link information file contains a specification of GROUP and
UNION output sections, which are not represented in a map file. There are three kinds of list items that
can occur in a <logical_group_list>:

The <logical_group> is the specification of a section or GROUP that contains a list of object
components or logical group members. Each <logical_group> element is given an id so that it may be
referenced from other elements. Each <logical_group> is a container element enclosing the following
elements:

— The <name> element names the logical group (string).

— The <load_address> element specifies the load-time address of the logical group (constant).
— The <run_address> element specifies the run-time address of the logical group (constant).
— The <size> element specifies the size of the logical group (constant).

— The <contents> element lists elements contained in this logical group (container). These elements
refer to each of the member objects contained in this logical group:

» The <object_component_ref> is an object component that is contained in this logical group
(reference).

* The <logical_group_ref>is a logical group that is contained in this logical group (reference).

The <overlay> is a special kind of logical group that represents a UNION, or a set of objects that
share the same memory space (container). Each <overlay> element is given an id so that it may be
referenced from other elements (like from an <allocated_space> element in the placement map). Each
<overlay> contains the following elements:

— The <name> element names the overlay (string).
— The <run_address> element specifies the run-time address of overlay (constant).
— The <size> element specifies the size of logical group (constant).

— The <contents> container element lists elements contained in this overlay. These elements refer to
each of the member objects contained in this logical group:

» The <object_component_ref> is an object component that is contained in this logical group
(reference).

* The <logical_group_ref>is a logical group that is contained in this logical group (reference).

The <split_section> is another special kind of logical group that represents a collection of logical
groups that is split among multiple memory areas. Each <split_section> element is given an id so that
it may be referenced from other elements. The id consists of the following elements.

— The <name> element names the split section (string).

— The <contents> container element lists elements contained in this split section. The
<logical_group_ref> elements refer to each of the member objects contained in this split section,
and each element referenced is a logical group that is contained in this split section (reference).

336 XML Link Information File Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Document Elements

Example B-4. Logical Group List for the fl-4 Input File

<logical_group_list>

<logical_group id="1g-7">
<name>.text</name>
<load_address>0x20</load_address>
<run_address>0x20</run_address>
<size>0xb240</size>
<contents>
<object_component_ref idref="o0c-34"/>
<object_component_ref idref="o0c-108"/>
<object_component_ref idref="oc-e2'"/>

</contents>
</logical_group>

<overlay id="lg-b">
<name>UNION_1</name>
<run_address>0xb600</run_address>
<size>0xc0</size>
<contents>
<object_component_ref idref="oc-45"/>
<logical_group_ref idref="1g-8"/>
</contents>
</overlay>

<split_section id="1g-12">
<name>.task_scn</name>
<size>0x120</size>
<contents>
<logical_group_ref idref="1g-10"/>
<logical_group_ref idref="I1g-11"/>
</contents>

</logical_group_list>

SPNU118Y —September 1995—-Revised February 2020 XML Link Information File Description 337

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Document Elements www.ti.com

B.2.5 Placement Map

The <placement_map> element describes the memory placement details of all named memory areas in
the application, including unused spaces between logical groups that have been placed in a particular
memory area.

The <memory_area> is a description of the placement details within a named memory area (container).
The description consists of these items:

The <name> names the memory area (string).

The <page_id> gives the id of the memory page in which this memory area is defined (constant).
The <origin> specifies the beginning address of the memory area (constant).

The <length> specifies the length of the memory area (constant).

The <used_space> specifies the amount of allocated space in this area (constant).

The <unused_space> specifies the amount of available space in this area (constant).

The <attributes> lists the RWXI attributes that are associated with this area, if any (string).

The <fill_value> specifies the fill value that is to be placed in unused space, if the fill directive is
specified with the memory area (constant).

The <usage_details> lists details of each allocated or available fragment in this memory area. If the
fragment is allocated to a logical group, then a <logical_group_ref> element is provided to facilitate
access to the details of that logical group. All fragment specifications include <start_address> and
<size> elements.

— The <allocated_space> element provides details of an allocated fragment within this memory area
(container):

» The <start_address> specifies the address of the fragment (constant).
» The <size> specifies the size of the fragment (constant).

e The <logical_group_ref> provides a reference to the logical group that is allocated to this
fragment (reference).

— The <available_space element provides details of an available fragment within this memory area
(container):

» The <start_address> specifies the address of the fragment (constant).
» The <size> specifies the size of the fragment (constant).

Example B-5. Placement Map for the fl-4 Input File

<placement_map>
<memory_area>

<name>PMEM</name>
<page_id>0x0</page_id>
<origin>0x20</origin>
<length>0x100000</length>
<used_space>0xb240</used_space>
<unused_space>0xf4dcO</unused_space>
<attributes>RWXI</attributes>
<usage_details>

<allocated_space>
<start_address>0x20</start_address>
<size>0xb240</size>
<logical_group_ref idref="1g-7"/>

</allocated_space>

<available_space>
<start_address>0xb260</start_address>
<size>0xf4dcO</size>

</available_space>

</usage_details>

</memory_area>

</placement_map>

338

XML Link Information File Description SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Document Elements

B.2.6

Far Call Trampoline List

The <far_call_trampoline_list> is a list of <far_call_trampoline> elements. The linker supports the
generation of far call trampolines to help a call site reach a destination that is out of range. A far call
trampoline function is guaranteed to reach the called function (callee) as it may utilize an indirect call to
the called function.

The <far_call_trampoline_list> enumerates all of the far call trampolines that are generated by the linker
for a particular link. The <far_call_trampoline_list> can contain any number of <far_call_trampoline>
elements. Each <far_call_trampoline> is a container enclosing the following elements:

The <callee_name> element names the destination function (string).
The <callee_address> is the address of the called function (constant).

The <trampoline_object_component_ref> is a reference to an object component that contains the
definition of the trampoline function (reference).

The <trampoline_address> is the address of the trampoline function (constant).

The <caller_list> enumerates all call sites that utilize this trampoline to reach the called function
(container).

The <trampoline_call_site> provides the details of a trampoline call site (container) and consists of
these items:

— The <caller_address> specifies the call site address (constant).

— The <caller_object_component_ref> is the object component where the call site resides
(reference).

Example B-6. Fall Call Trampoline List for the fl-4 Input File

<far_call_trampoline_list>

<far_call_trampoline>

</far_

</far_

<callee_name>_foo</cal lee_name>
<callee_address>0x08000030</cal lee_address>
<trampoline_object_component_ref idref="0c-123"/>
<trampoline_address>0x2020</trampoline_address>
<caller_list>
<call_site>
<caller_address>0x1800</caller_address>
<caller_object_component_ref idref="0c-23"/>
</call_site>
<call_site>
<caller_address>0x1810</caller_address>
<caller_object_component_ref idref="oc-23"/>
</call_site>
</caller_list>
call_trampoline>

call_trampoline_list>

SPNU118Y —September 1995—-Revised February 2020 XML Link Information File Description
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

339

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Document Elements www.ti.com

B.2.7 Symbol Table

The <symbol_table> contains a list of all of the global symbols that are included in the link. The list
provides information about a symbol's name and value. In the future, the symbol_table list may provide
type information, the object component in which the symbol is defined, storage class, etc.

The <symbol> is a container element that specifies the name and value of a symbol with these elements:
e The <name> element specifies the symbol name (string).
e The <value> element specifies the symbol value (constant).

Example B-7. Symbol Table for the fl-4 Input File

<symbol_table>

<symbol>
<name>_c_int00</name>
<value>0xaf80</value>

</symbol>

<symbol>
<name>_main</name>
<value>0xbleO</value>

</symbol>

<symbol>
<name>_printf</name>
<value>0xac00</value>

</symbol>

</symbol_table>

340 XML Link Information File Description SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I3 TEXAS
INSTRUMENTS

Appendix C

SPNU118Y —September 1995—Revised February 2020

Hex Conversion Utility Examples

The flexible hex conversion utility offers many options and capabilities. Once you understand the proper
ways to configure your EPROM system and the requirements of the EPROM programmer, you will find
that converting a file for a specific application is easy.

The three scenarios in this appendix show how to develop a hex conversion command file for avoiding
holes, using 16-BIS (16-bit instruction set) code, and using multiple-EPROM systems. The scenarios use
this assembly code:

* Assemble two words into section ''secA" *

.sect "'secA"
-word 012345678h
-word Oabcd1234h

* Assemble two words into section "'secB" *

.sect ''secB"
-word 087654321h
-word 04321dcbah

Before you use this appendix, read Chapter 12 to understand how to use the hex conversion utility.

Topic Page

C.1 Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM... 342

C.2 Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code................. 346
C.3 Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMs....... 349
SPNU118Y —September 1995—-Revised February 2020 Hex Conversion Utility Examples 341

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM www.ti.com

C.1 Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM

Scenario 1 shows how to build the hex conversion command file for converting an object file for the
memory system shown in Figure C-1. In this system, there is one external 128K x 8-bit EPROM
interfacing with a TMS470 target processor.

Figure C-1. EPROM Memory System for Scenario 1

D

ARM CPU

128K 8
ROMO

Width: 32 bits V

ROM width: 8 bits

;\/—/

EPROM system memory width: 8 bits

A object file consists of blocks of memory (sections) with assigned memory locations. Typically, all
sections are not adjacent: there are holes between sections in the address space for which there is no
data. Scenario 1 shows how you can use the hex conversion utility's image mode to fill any holes before,
between, or after sections with a fill value.

For this scenario, the application code resides in the program memory (ROM) on the TMS470 CPU, but
the data tables used by this code reside in an off-chip EPROM.

The circuitry of the target board handles the access to the data; the native TMS470 address of 0x1000
accesses location 0x0 on the EPROM.

To satisfy the address requirements for the code, this scenario requires a linker command file that
allocates sections and memory as follows:

e The program/application code (represented in this scenario by the secA section shown in Example C-
1) must be linked so that its address space resides in the program memory (ROM) on the TMS470
CPU.

» To satisfy the condition that the data be loaded on the EPROM at address 0x0 but be referenced by
the application code at address 0x1000, secB (the section that contains the data for this application)
must be assigned a linker load address of 0x1000 so that all references to data in this section will be
resolved with respect to the TMS470 CPU address. In the hex conversion utility command file, the
paddr option must be used to burn the section of data at EPROM address 0x0. This value overrides
the section load address given by the linker.

Example C-1 shows the linker command file that resolves the addresses needed in the stated
specifications.

342 Hex Conversion Utility Examples SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM

Example C-1. Linker Command File and Link Map for Scenario 1

/ /
/* Scenario 1 Link Command */
/* */
/* Usage: armlnk <obj files...> -0 <out File> -m <map file> Ink32.cmd */
/* armcl <src files...> -z -0 <out file> -m <map Ffile> Ink32.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS470 C */
/* compiler. Use it as a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rts32.1ib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* @) If the runtime-support library you are using is not */
/* named rts32.1ib, be sure to use the correct name here. */
/ /

-m examplel._map
/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
1_MEM : org = 0x00000000 len = 0x00000020 /* INTERRUPTS */
D_MEM : org = 0x00000020 len = 0x00010000 /* DATA MEMORY (RAM) */
P_MEM : org = 0x00010020 len = 0x00100000 /* PROGRAM MEMORY (ROM) */
b
/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */
SECTIONS
{
secA: load = P_MEM
secB: load = 0x1000
3

You must create a hex conversion command file to generate a hex output with the correct addresses and

format for the EPROM programmer.

In the memory system outlined in Figure C-1, only the application data is stored on the EPROM; the data

resides in secB of the object file created by the linker. By default, the hex conversion utility converts all

initialized sections that appear in the object file. To prevent the conversion of the application code in secA,

a SECTIONS directive must be defined in the hex conversion command file to list explicitly the section(s)

to be converted. In this case, secB must be listed explicitly as the section to be converted.

The EPROM programmer in this scenario has the following system requirements:

e« The EPROM programmer loads only a complete ROM image. A complete ROM image is one in which
there is a contiguous address space (there are no holes in the addresses in the converted file), and
each address in the range contains a known value. Creating a complete ROM image requires the use
of the —image option and the ROMS directive.

— Using the —-image option causes the hex conversion utility to create an output file that has
contiguous addresses over the specified memory range and forces the utility to fill address spaces
that are not previously filled by raw data from sections defined in the input object file. By default,
the value used to fill the unused portions of the memory range is 0.

— Because the -image option operates over a known range of memory addresses, a ROMS directive
is needed to specify the origin and length of the memory for the EPROM.

» To burn the section of data at EPROM address 0x0, the paddr option must be used. This value
overrides the section load address given by the linker.

* In this scenario, the EPROM is 128K x 8 bits. Therefore, the memory addresses for the EPROM must
range from 0x0 to 0x20000.

SPNU118Y —September 1995—-Revised February 2020 Hex Conversion Utility Examples 343

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM www.ti.com

» Because the EPROM memory width is eight bits, the memwidth value must be set to 8.

» Because the physical width of the ROM device is eight bits, the romwidth value must be set to 8.
» Intel format must be used.

Since memwidth and romwidth have the same value, only one output file is generated (the number of

output files is determined by the ratio of memwidth to romwidth). The output file is named with the -0
option.

The hex conversion command file for Scenario 1 is shown in Example C-2. This command file uses the
following options to select the requirements of the system:

Option Description

-i Create Intel format

-image Generate a memory image

-map examplel.mxp Generate examplel.mxp as the map file of the conversion
-0 examplel.hex Name examplel.hex as the output file

-memwidth 8 Set EPROM system memory width to 8

-romwidth 8 Set physical ROM width to 8

Example C-2. Hex Conversion Command File for Scenario 1

/* Hex Conversion Command file for Scenario 1 */

a.out /* linked object file, input */

-1 /* Intel format */

-image

-map examplel._mxp /* Generate a map of the conversion */

-0 examplel._hex /* Resulting hex output file */

-memwidth 8 /* EPROM memory system width */

-romwidth 8 /* Physical width of ROM */

ROMS

{

EPROM: origin = 0x0, length = 0x20000

}

SECTIONS

{

secB: paddr = Ox0O /* Select only section, secB, for conversion */

3
Example C-3 shows the contents of the resulting map file (examplel.mxp). Figure C-2 shows the contents
of the resulting hex output file (examplel.hex). The hex conversion utility places the data tables, secB, at
address 0 and then fills the remainder of the address space with the default fill value of 0. For more
information about the Intel MCS-86 object format, see Figure 12-9.

344 Hex Conversion Utility Examples SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM

Example C-3. Contents of Hex Map File examplel.mxp

TMS470 Hex Converter Version X.xX

Mon Sep 18 15:57:00 1995

INPUT FILE NAME: <a.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS
Default data width: 8
Default memory width: 8
Default output width: 8

OUTPUT TRANSLATION MAP

00000000. .0001FFFF Page=0 ROM Width=8 Memory Width=8 "EPROM"

OUTPUT FILES: examplel.hex [bO..b7]

CONTENTS: 00000000..00000007 Data Width=1 secB
00000007. .0001FFFF FILL = 00000000

Figure C-2. Contents of Hex Output File examplel.hex

Start character
’L Adldress secB ?atatables

[| [|
:20000000876543214321DCBA0096

:20002000C0O
:20004000A0

:20FFE001
:020000040001F<F—— Extended linear address record

:2000E0
:20002000CO

:20FFC00021
:20FFE001

:00000001FE]
L L[I L— End-of-file record Checksum
| Record type
Byte count
SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Examples 345

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS
Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code www.ti.com
C.2 Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code

Scenario 2 shows how to build the hex conversion command file to generate the correct converted file for
the application code and data that will reside on a single 16-bit EPROM. The EPROM memory system for
this scenario is shown in Figure C-3. For this scenario, the TMS470 CPU operates with the T control bit
set, so the processor executes instructions in 16-BIS mode.

Figure C-3. EPROM Memory System for Scenario 2

ARM CPU

128K 16
ROMO
Width: 32 bits ;\/_/
ROM width: 16 bits
EPROM system memory width: 16 bits
For this scenario, the application code and data reside on the EPROM: the lower 64K words of EPROM
memory are dedicated to application code space and the upper 64K words are dedicated to the data
tables. The application code is loaded starting at address 0x0 on the EPROM but maps to the TMS470
CPU at address 0x3000. The data tables are loaded starting at address 0x1000 on the EPROM and map
to the TMS470 CPU address 0x20.
346 Hex Conversion Utility Examples SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code

Example C-4 shows the linker command file that resolves the addresses needed for the load on EPROM
and the TMS470 CPU access.

Example C-4. Linker Command File for Scenario 2

/ /
/* Scenario 2 Link Command */
/* */
/* Usage: armlnk <obj files...> -0 <out file> -m <map file> Inkl6.cmd */
/* armcl <src files...> -z -0 <out file> -m <map file> Inkl6.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS470 C */
/* compiler. Use it as a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rtsl16.lib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/*) If the runtime-support library you are using is not */
/* named rtsl6.lib, be sure to use the correct name here. */
/ /

-m example2.map

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY

{
1_MEM : org = 0x00000000 len = 0x00000020 /* INTERRUPTS */
D_MEM : org = 0x00000020 len = 0x00010000 /* DATA MEMORY (RAM) */
P_MEM : org = 0x00010020 len = 0x00100000 /* PROGRAM MEMORY (ROM) */

3

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
secA: load = 0x3000
secB: load = 0x20
3
You must create a hex conversion command file to generate a hex output with the correct addresses and
format for the EPROM programmer. The EPROM programmer in this scenario has the following system
requirements:
* Because the EPROM memory width is 16 bits, the memwidth value must be set to 16.
» Because the physical width of the ROM device is 16 bits, the romwidth value must be set to 16.
» Intel format must be used.
The EPROM programmer does not require a ROM image, so the addresses in the input hex output file do
not need to be contiguous.
Because memwidth and romwidth have the same value, only one output file is generated (the number of
output files is determined by the ratio of memwidth to romwidth). The output file is named with the -0
option.
A ROMS directive is used in this scenario since the paddr option is used to relocate both secA and secB.
SPNU118Y —September 1995—-Revised February 2020 Hex Conversion Utility Examples 347

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code www.ti.com

The hex conversion command file for Scenario 2 is shown in Example C-5. This command file uses the
following options to select the requirements of the system:

Option Description

-i Create Intel format

-map example2.mxp Generate example2.mxp as the map file of the conversion
-0 example2.hex Name example2.hex as the output file

-memwidth 8 Set EPROM system memory width to 8

-romwidth 8 Set physical ROM width to 8

Example C-5. Hex Conversion Command File for Scenario 2

/* Hex Conversion Command file for Scenario 2 */
a.out /* linked object file, input */
-1 /* Intel format */

/* The following two options are optional */
-map example2._mxp /* Generate a map of the conversion */
-0 example2._hex /* Resulting Hex Output file */

/* Specify EPROM system Memory Width and Physical ROM width */
-memwidth 16 /* EPROM memory system width */
-romwidth 16 /* Physical width of ROM */

ROMS
{

}
SECTIONS

{

EPROM: origin = 0x0, length = 0x20000

secA: paddr = 0x0
secB: paddr = 0x1000
3

Example C-6 shows the contents of the resulting map file (example2.mxp). Figure C-4 shows the contents
of the resulting hex output file (example2.hex).

Example C-6. Contents of Hex Map File example2.mxp

TMS470 Hex Converter Version X.xX

Mon Sep 18 19:34:47 1995

INPUT FILE NAME: <a.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS
Default data width: 8
Default memory width: 16
Default output width: 16

OUTPUT TRANSLATION MAP

OUTPUT FILES: example2.hex [b0..bl5]

CONTENTS: 00000000..00000003 Data Width=1 secA
00001000..00001003 Data Width=1 secB

348 Hex Conversion Utility Examples SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMs

Figure C-4. Contents of Hex Output File example2.hex

Start character

Address Data

T ‘ 1T ‘ 1
:0800000012345678ABCD123426
:08100000876543214321DCBAYE

:00000001FF Y Ghecksum
‘T‘ o End-of-file record
Record type
Byte count

C.3 Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMSs

Scenario 3 shows how to build the hex conversion command file for converting a object file for the
memory system shown in Figure C-5. In this system, there are two external 64K x 16-bit EPROMs
interfacing with the TMS470 target processor. The application code and data will be burned on the
EPROM starting at address 0x20. The application code will be burned first, followed by the data tables.

Figure C-5. EPROM Memory System for Scenario 3

Upper 16 bits
Lower 16 bits

ARM CPU
64K 16 64K 16
ROMO ROM1
Width: 32 bits
V V
ROM width: ROM width:
16 bits 16 bits
V

EPROM system memory width: 32 bits

In this scenario, the EPROM load address for the application code and for the data also corresponds to
the TMS470 CPU address that accesses the code and data. Therefore, only a load address needs to be
specified.

SPNU118Y —September 1995—Revised February 2020 Hex Conversion Utility Examples 349
Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMs

13 TEXAS
INSTRUMENTS

www.ti.com

Example C-7 shows the linker command file for this scenario.

Example C-7. Linker Command File for Scenario 3

/

/* Scenario 3 Link Command

/*
/* Usage:
/*
/*

ar
ar

mInk <obj files...> -0 <out file> -m <map file> Ink32.cmd
mcl <src files...> -z -0 <out file> -m <map file> Ink32.cmd

/* Description: This file is a sample command file that can be used

/*
/*
/*
/*
/*
/* Notes: (
/*
/*
/*
/*
/* (¢
/*

)

2)

for linking programs built with the TMS470 C

compiler. Use it as a guideline; you may want to change
the allocation scheme according to the size of your
program and the memory layout of your target system.

You must specify the directory in which rts32.1ib is
located. Either add a "-i<directory>" line to this
file, or use the system environment variable C_DIR to
specify a search path for libraries.

If the runtime-support library you are using is not
named rts32.1ib, be sure to use the correct name here.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/

-m example3.m

ap

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY

{
1_MEM
D_MEM
P_MEM

T

: org = 0x00000000 len = 0x00000020 /* INTERRUPTS
: org = 0x00000020 len = 0x00010000 /* DATA MEMORY (RAM)
: org = 0x00010020 len = 0x00100000 /* PROGRAM MEMORY (ROM)

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{

secA: load
secB: load

0x20
D_MEM

*/
*/
*/

You must create a hex conversion command file to generate a hex output with the correct addresses and
format for the EPROM programmer.

The EPROM programmer in this scenario has the following system requirements:

* In the memory system outlined in Figure C-5, the EPROM system memory width is 32 bits because
each of the physical ROMs provides 16 bits of a 32-bit word. Because the EPROM system memory
width is 32 bits, the memwidth value must be set to 32.

» Because the width of each of the physical ROMs is 16 bits, the romwidth value must be set to 16.
» Intel format must be used.

With a memwidth of 32 and a romwidth of 16, two output files are generated by the hex conversion utility
(the number of files is determined by the ratio of memwidth to romwidth). In previous scenarios, the output
filename was specified with the -o option. Another way to specify the output filename is to use the files
keyword within a ROMS directive. When you use -o or the files keyword, the first output filename always
contains the low-order bytes of the word.

350 Hex Conversion Utility Examples

Copyright © 1995-2020, Texas Instruments Incorporated

SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com

Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMs

The hex conversion command file for Scenario 3 is shown in Example C-8. This command file uses the
following options to select the requirements of the system:

Description

Option

-i

-map example3.mxp
-memwidth 32
-romwidth 16

Create Intel format

Generate example3.mxp as the map file of the conversion
Set EPROM system memory width to 32

Set physical ROM width to 16

The files keyword is used within the ROMS directive to specify the output filenames.

Example C-8. Hex Conversion Command File for Scenario 3

/* Hex Conversion Command
a.out /*
-1 /*
/* Optional Commands */
-map example3.mxp /*
/* Specify EPROM system
-memwidth 32 /*
-romwidth 16 /*
ROMS
{

file for Scenario 3 */
linked object file, input */
Intel format */

Generate a map of the conversion */
memory width and physical ROM width */
EPROM memory system width */

Physical width of ROM */

EPROM: org = 0x0, length = 0x20000
files={ lowerl6.bit, upperl6.bit }

}

Example C-9 shows the contents of the resulting map file (example3.mxp).

Example C-9. Contents of Hex Map File example3.mxp

TMS470 Hex Converter

Version X.xX

Tue Sep 19 07:41:28 1995

INPUT FILE NAME: <a.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS

Default data width:
Default memory width:
Default output width:

OUTPUT TRANSLATION MAP

8
32
16

OUTPUT FILES: lowerl6.bit [bO..bl5]
upperl6.bit [b16..b31]

CONTENTS: 00000020..00000021 Data Width=1 secA
00000028..00000029 Data Width=1 secB

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

Hex Conversion Utility Examples

351

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMs www.ti.com

The contents of the output files lower16.bit and upperl16.bit are shown in Figure C-6 and Figure C-7,
respectively. The low-order 16 bits of the 32-bit output word are stored in the lower16.bit file, while the
upper 16 bits are stored in the upperl16.bit file.

Figure C-6. Contents of Hex Output File lower16.bit

Start character
Ad‘dress Dz‘ata

[[
:0400200056781234C8

:040028004321DCBADA
:00000001FF
Checksum

T a8 End-of-file record
Record type
Byte count

Figure C-7. Contents of Hex Output File upperl6.bit

Start character
L Ad‘dress Data

l
[1 1
:040020001234ABCD1E

:040028008765432184
:00000001FF L Checksum
T H End-of-file record
Record type
Byte count
352 Hex Conversion Utility Examples SPNU118Y —-September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

Appendix D
I -{IE)S(’?IEUMENTS SPNU118Y —September 1995—Revised February 2020

Glossary

D.1 Terminology

ABI — Application binary interface.
absolute address — An address that is permanently assigned to a ARM memory location.

absolute constant expression — An expression that does not refer to any external symbols or any
registers or memory reference. The value of the expression must be knowable at assembly time.

absolute lister — A debugging tool that allows you to create assembler listings that contain absolute
addresses.

address constant expression — A symbol with a value that is an address plus an addend that is an
absolute constant expression with an integer value.

alignment — A process in which the linker places an output section at an address that falls on an n-byte
boundary, where n is a power of 2. You can specify alignment with the SECTIONS linker directive.

allocation — A process in which the linker calculates the final memory addresses of output sections.

ANSI — American National Standards Institute; an organization that establishes standards voluntarily
followed by industries.

archive library — A collection of individual files grouped into a single file by the archiver.

archiver — A software program that collects several individual files into a single file called an archive
library. With the archiver, you can add, delete, extract, or replace members of the archive library.

ASCIl — American Standard Code for Information Interchange; a standard computer code for
representing and exchanging alphanumeric information.

assembler — A software program that creates a machine-language program from a source file that
contains assembly language instructions, directives, and macro definitions. The assembler
substitutes absolute operation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assembly-time constant — A symbol that is assigned a constant value with the .set directive.

big endian — An addressing protocol in which bytes are numbered from left to right within a word. More
significant bytes in a word have lower numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also little endian

binding — A process in which you specify a distinct address for an output section or a symbol.
BIS — Bit instruction set.
block — A set of statements that are grouped together within braces and treated as an entity.

.bss section — One of the default object file sections. You use the assembler .bss directive to reserve a
specified amount of space in the memory map that you can use later for storing data. The .bss
section is uninitialized.

byte — Per ANSI/ISO C, the smallest addressable unit that can hold a character.

SPNU118Y —September 1995—Revised February 2020 Glossary 353

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Terminology www.ti.com

C/C++ compiler — A software program that translates C source statements into assembly language
source statements.

command file — A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

comment — A source statement (or portion of a source statement) that documents or improves
readability of a source file. Comments are not compiled, assembled, or linked; they have no effect
on the object file.

compiler program — A utility that lets you compile, assemble, and optionally link in one step. The
compiler runs one or more source modules through the compiler (including the parser, optimizer,
and code generator), the assembler, and the linker.

conditional processing — A method of processing one block of source code or an alternate block of
source code, according to the evaluation of a specified expression.

configured memory — Memory that the linker has specified for allocation.
constant — A type whose value cannot change.
constant expression — An expression that does not in any way refer to a register or memory reference.

cross-reference lister — A utility that produces an output file that lists the symbols that were defined,
what file they were defined in, what reference type they are, what line they were defined on, which
lines referenced them, and their assembler and linker final values. The cross-reference lister uses
linked object files as input.

cross-reference listing — An output file created by the assembler that lists the symbols that were
defined, what line they were defined on, which lines referenced them, and their final values.

.data section — One of the default object file sections. The .data section is an initialized section that
contains initialized data. You can use the .data directive to assemble code into the .data section.

directives — Special-purpose commands that control the actions and functions of a software tool (as
opposed to assembly language instructions, which control the actions of a device).

DWARF — A standardized debugging data format that was originally designed along with ELF, although it
is independent of the object file format.

EABI — An embedded application binary interface (ABI) that provides standards for file formats, data
types, and more.

ELF — Executable and linking format; a system of object files configured according to the System V
Application Binary Interface specification.

emulator — A hardware development system that duplicates the ARM operation.
entry point — A point in target memory where execution starts.

environment variable — A system symbol that you define and assign to a string. Environmental
variables are often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

epilog — The portion of code in a function that restores the stack and returns.
executable module — A linked object file that can be executed in a target system.

expression — A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

external symbol — A symbol that is used in the current program module but defined or declared in a
different program module.

field — For the ARM, a software-configurable data type whose length can be programmed to be any
value in the range of 1-32 bits.

354

Glossary SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Terminology

global symbol — A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

GROUP — An option of the SECTIONS directive that forces specified output sections to be allocated
contiguously (as a group).

hex conversion utility — A utility that converts object files into one of several standard ASCII
hexadecimal formats, suitable for loading into an EPROM programmer.

high-level language debugging — The ability of a compiler to retain symbolic and high-level language
information (such as type and function definitions) so that a debugging tool can use this
information.

hole — An area between the input sections that compose an output section that contains no code.
identifier— Names used as labels, registers, and symbols.
immediate operand — An operand whose value must be a constant expression.

incremental linking — Linking files in several passes. Incremental linking is useful for large applications,
because you can patrtition the application, link the parts separately, and then link all of the parts
together.

initialization at load time — An autoinitialization method used by the linker when linking C/C++ code.
The linker uses this method when you invoke it with the --ram_maodel link option. This method
initializes variables at load time instead of run time.

initialized section — A section from an object file that will be linked into an executable module.
input section — A section from an object file that will be linked into an executable module.

ISO — International Organization for Standardization; a worldwide federation of national standards
bodies, which establishes international standards voluntarily followed by industries.

label — A symbol that begins in column 1 of an assembler source statement and corresponds to the
address of that statement. A label is the only assembler statement that can begin in column 1.

linker — A software program that combines object files to form an object module that can be allocated
into system memory and executed by the device.

listing file — An output file, created by the assembiler, that lists source statements, their line numbers,
and their effects on the section program counter (SPC).

literal constant — A value that represents itself. It may also be called a literal or an immediate value.

little endian — An addressing protocol in which bytes are numbered from right to left within a word. More
significant bytes in a word have higher numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also big endian

loader — A device that places an executable module into system memory.
macro — A user-defined routine that can be used as an instruction.
macro call — The process of invoking a macro.

macro definition — A block of source statements that define the name and the code that make up a
macro.

macro expansion — The process of inserting source statements into your code in place of a macro call.

macro library — An archive library composed of macros. Each file in the library must contain one macro;
its name must be the same as the macro name it defines, and it must have an extension of .asm.

map file — An output file, created by the linker, that shows the memory configuration, section
composition, section allocation, symbol definitions and the addresses at which the symbols were
defined for your program.

SPNU118Y —September 1995—Revised February 2020 Glossary 355

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

Terminology www.ti.com

member — The elements or variables of a structure, union, archive, or enumeration.
memory map — A map of target system memory space that is partitioned into functional blocks.

memory reference operand — An operand that refers to a location in memory using a target-specific
syntax.

mnemonic — An instruction name that the assembler translates into machine code.

model statement — Instructions or assembler directives in a macro definition that are assembled each
time a macro is invoked.

named section — An initialized section that is defined with a .sect directive.
object file — An assembled or linked file that contains machine-language object code.
object library — An archive library made up of individual object files.

object module — A linked, executable object file that can be downloaded and executed on a target
system.

operand — An argument of an assembly language instruction, assembler directive, or macro directive
that supplies information to the operation performed by the instruction or directive.

optimizer — A software tool that improves the execution speed and reduces the size of C programs.

options — Command-line parameters that allow you to request additional or specific functions when you
invoke a software tool.

output module — A linked, executable object file that is downloaded and executed on a target system.
output section — A final, allocated section in a linked, executable module.

partial linking — Linking files in several passes. Incremental linking is useful for large applications
because you can partition the application, link the parts separately, and then link all of the parts
together.

guiet run — An option that suppresses the normal banner and the progress information.
raw data — Executable code or initialized data in an output section.
register operand — A special pre-defined symbol that represents a CPU register.

relocatable constant expression— An expression that refers to at least one external symbol, register, or
memory location. The value of the expression is not known until link time.

relocation — A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

ROM width — The width (in bits) of each output file, or, more specifically, the width of a single data value
in the hex conversion utility file. The ROM width determines how the utility partitions the data into
output files. After the target words are mapped to memory words, the memory words are broken
into one or more output files. The number of output files is determined by the ROM width.

run address — The address where a section runs.

run-time-support library — A library file, rts.src, that contains the source for the run time-support
functions.

section — A relocatable block of code or data that ultimately will be contiguous with other sections in the
memory map.

section program counter (SPC) — An element that keeps track of the current location within a section;
each section has its own SPC.

sign extend — A process that fills the unused MSBs of a value with the value's sign bit.

356

Glossary SPNU118Y —September 1995—Revised February 2020

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS
INSTRUMENTS

www.ti.com Terminology

simulator — A software development system that simulates ARM operation.

source file — A file that contains C/C++ code or assembly language code that is compiled or assembled
to form an object file.

static variable — A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous value is resumed
when the function or program is reentered.

storage class — An entry in the symbol table that indicates how to access a symbol.

string table — A table that stores symbol names that are longer than eight characters (symbol nhames of
eight characters or longer cannot be stored in the symbol table; instead they are stored in the string
table). The name portion of the symbol's entry points to the location of the string in the string table.

structure — A collection of one or more variables grouped together under a single name.

subsection — A relocatable block of code or data that ultimately will occupy continuous space in the
memory map. Subsections are smaller sections within larger sections. Subsections give you tighter
control of the memory map.

symbol — A name that represents an address or a value.
symbolic constant — A symbol with a value that is an absolute constant expression.

symbolic debugging — The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as an emulator or simulator.

tag — An optional type name that can be assigned to a structure, union, or enumeration.
target memory — Physical memory in a system into which executable object code is loaded.

.text section — One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text section.

unconfigured memory — Memory that is not defined as part of the memory map and cannot be loaded
with code or data.

uninitialized section — A object file section that reserves space in the memory map but that has no
actual contents. These sections are built with the .bss and .usect directives.

UNION — An option of the SECTIONS directive that causes the linker to allocate the same address to
multiple sections.

union — A variable that can hold objects of different types and sizes.
unsigned value — A value that is treated as a nonnegative number, regardless of its actual sign.
variable — A symbol representing a quantity that can assume any of a set of values.

veneer — A sequence of instructions that serves as an alternate entry point into a routine if a state
change is required.

well-defined expression — A term or group of terms that contains only symbols or assembly-time
constants that have been defined before they appear in the expression.

word — A 32-bit addressable location in target memory

SPNU118Y —September 1995—-Revised February 2020 Glossary 357

Submit Documentation Feedback
Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

I3 TEXAS
INSTRUMENTS

E.1 Recent Revisions

Appendix E

SPNU118Y —September 1995—Revised February 2020

Revision History

This table lists significant changes made to this document. The left column identifies the first version of
this document in which a particular change appeared.

Version

Added Chapter Location Additions / Modifications / Deletions
Program . Corrected information about RAM and ROM model use of CINIT for
SPNU118Y Loading Section 3.3.2.3 initialization.
Clarified that either --rom_model or --ram_model is required if only the linker is
SPNU118Y | Linker Section 8.4.27 being run, but --rom_model is the default if the compiler runs on C/C++ files on
the same command line.
SPNU118Y | Linker Section 8.4.38 _Clarlfled that_ zero initialization take_s p!ace only if the --rom_model linker option
is used, not if the --ram_model option is used.
Section 8.5.4.2,
SPNU118Y | Linker Section 8.5.10.7, Added LAST operator to define a symbol with the run-time address of the last
and allocated byte in the related memory range.
Section 8.5.10.8
Hex
SPNU118Y | Conversion Section 12.2.1 The binary output format for the hex conversion utility is now supported.
Utility
Hex . . -
. . Boot tables can now be used with the hex conversion utility's Secure Flash
SPNU118Y qu_\versmn Section 12.12 Boot (--cmac) capability.
Utility
Hex
. . Provided example showing the effects of 8-bit memory width vs. 16-bit memory
SPNU118Y Sgl?t\;ersmn Section 12.15.6 width on the ROMS directive syntax.

Previous Revisions:

The default file extensions for object files created by the compiler have been
changed in order to prevent conflicts when C and C++ files have the same

SPNU118X -- throughout -- names. Object files generated from C source files have the .c.obj extension.
Object files generated from C++ source files have the .cpp.obj extension.
Object files generated from assembly source files still have the .obj extension.
Hex - .
SPNU118X | Conversion Section 12.12 Adqed support for the secure flash boot capability provided by TMS320F2838x
o devices.
Utility
Object
SPNU118W Modules Section 2.6 Revised information about types of symbols for clarity.
Assembler . . o - o
SPNU118W Directives .bits topic Modified the description of the .bits directive.
SPNU118W A§sembler .symdepe_nd topic, Split .symdepend and .weak directive topics.
Directives .weak topic
SPNU118W | Linker Section 8.4 Added the --emit_references:file linker option.
Section 8.4
. . ' Added the --ecc=on linker option, which enables ECC generation. Note that
SPNU118V | Linker Sect!on 8.4.12, and ECC generation is now off by default.
Section 8.5.9
SPNU118V | Linker Section 8.5.7.3 Added linker syntax to combine initialized section with uninitialized sections.
SPNU118V | Linker Section 8.5.10.4 Removed list of global symbols defined by the linker for COFF, since COFF is
no longer used.
SPNU118V Stlijlji?i:tsl:”e Chapter 11 Added objcopy, objdump, readelf, and size utilities.

358 Revision History

SPNU118Y —September 1995—Revised February 2020
Submit Documentation Feedback

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y

13 TEXAS

INSTRUMENTS

www.ti.com

Recent Revisions

ROl Chapter Location Additions / Modifications / Deletions
Added
Hex . . .
. Section 12.2.1 and | Added the --array option, which causes the array output format to be
SPNU118U qujversmn Section 12.10 generated.
Utility
Linker . Provided a link to an E2E blog post that provides examples that perform cyclic
SPNUL18R Description Section 8.9 redundancy checking using linker-generated CRC tables.
Linker . _AEABI_PORTABILITY_LEVEL can be defined to enable full object file
SPNU118R Description Section 8.11.2 portability when headers files are included.
Linker . . . A
SPNU118Q Description Section 8.5.9 Documented revised behavior of ECC directives.
Several linker options have been deprecated, removed, or renamed. The linker
Linker continues to accept some of the deprecated options, but they are not
SPNU118P Description Section 8.4 recommended for use. See the Compiler Option Cleanup wiki page for a list of
P deprecated and removed options, options that have been removed from CCS,
and options that have been renamed.
Linker . The default for --cinit_compression and --copy_compression has been changed
SPNU118P Description Section 8.4.6 from RLE to LZSS.
Linker . Information about accessing files and libraries from a linker command file has
SPNU1180 Description Section 8.5.3 been added.
Linker
SPNU1180 Description Section 8.9.2 The list of available CRC algorithms has been expanded.
Object File . A —cg option has been added to the Object File Display utility to display
SPNU1180 Utilities Section 11.1 function stack usage and callee information in XML format.
The COFF object file format is no longer supported. The ARM Code
Generation Tools now support only the Embedded Application Binary Interface
(EABI) ABI, which works only with object files that use the ELF object file
bi format and the DWARF debug format. Sections of this document that referred
spnu1isN | © Jdeclt Section 2.1 to the COFF format have been removed or simplified. If you would like to
Modules produce COFF output files, please use v5.2 of the ARM Code Generation
Tools and refer to SPNU118M for documentation.
The .clink directive and the --no_sym_merge linker option have been
deprecated.
32’;323 Section 2.6.3, Weak symbols can be declared using assembly or the linker command file. The
SPNU118N Directive’s .weak topic, and linker removes weak symbols from the output file if the symbol is not required
and Linker Section 8.6.2 to resolve any references.
SPNU118N | Linker Section 8.5.4.4 Added the ALIAS statement.
SPNU118N | Linker Section 8.4.21 Added modules as a filter for the --mapfile_contents linker option.
SPNU118N | Linker Section 8.5.5.2.1 Added an example for placing functions in RAM.
SPNU118M 3%&&25 Section 2.4.4 Added information about the current section and how directives interact with it.
Object Section 2.6 and) . -
SPNU118M Modules Section 2.6.4 Added information about various types of symbols and about symbol tables.
SPNU118M Assen_ﬂbl_er Section 4.8.6 Added __TI_ ARM_V7M4__ predefined macro name for Cortex-M4.
Description — - - —
Assembler . S .)
SPNU118M Description Section 4.10.1 Built-in functions use a prefix of $$.
Section 8.4.2,
SPNU118M | Linker Section 8.5.10.7, Added information about referencing linker symbols.
and Section 8.6.1
SPNU118M | Linker Section 8.4.11 Added a list of the linker's predefined macros.
SPNU118M | Linker Section 8.5.5.1 Removed invalid syntax for load and fill properties.
SPNU118M | Linker Section 8.11.5 Added the --cinit_hold_wdt linker option.

SPNU118Y —September 1995—-Revised February 2020
Submit Documentation Feedback

Revision History 359

Copyright © 1995-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Y
http://processors.wiki.ti.com/index.php/Compiler_option_cleanup
http://www.ti.com/lit/pdf/spnu118m

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Preface
	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 Tools Descriptions

	2 Introduction to Object Modules
	2.1 Object File Format Specifications
	2.2 Executable Object Files
	2.3 Introduction to Sections
	2.3.1 Special Section Names

	2.4 How the Assembler Handles Sections
	2.4.1 Uninitialized Sections
	2.4.2 Initialized Sections
	2.4.3 User-Named Sections
	2.4.4 Current Section
	2.4.5 Section Program Counters
	2.4.6 Subsections
	2.4.7 Using Sections Directives

	2.5 How the Linker Handles Sections
	2.5.1 Combining Input Sections
	2.5.2 Placing Sections

	2.6 Symbols
	2.6.1 Global (External) Symbols
	2.6.2 Local Symbols
	2.6.3 Weak Symbols
	2.6.4 The Symbol Table

	2.7 Symbolic Relocations
	2.8 Loading a Program

	3 Program Loading and Running
	3.1 Loading
	3.1.1 Load and Run Addresses
	3.1.2 Bootstrap Loading
	3.1.2.1 Boot, Load, and Run Addresses
	3.1.2.2 Primary Bootloader
	3.1.2.3 Secondary Bootloader
	3.1.2.4 Boot Table
	3.1.2.5 Bootloader Routine

	3.2 Entry Point
	3.3 Run-Time Initialization
	3.3.1  The _c_int00 Function
	3.3.2 RAM Model vs. ROM Model
	3.3.2.1 Autoinitializing Variables at Run Time (--rom_model)
	3.3.2.2 Initializing Variables at Load Time (--ram_model)
	3.3.2.3 The --rom_model and --ram_model Linker Options

	3.3.3 About Linker-Generated Copy Tables
	3.3.3.1 BINIT
	3.3.3.2 CINIT

	3.4 Arguments to main
	3.5 Run-Time Relocation
	3.6 Additional Information

	4 Assembler Description
	4.1 Assembler Overview
	4.2 The Assembler's Role in the Software Development Flow
	4.3 Invoking the Assembler
	4.4 Controlling Application Binary Interface
	4.5 Naming Alternate Directories for Assembler Input
	4.5.1 Using the --include_path Assembler Option
	4.5.2 Using the TI_ARM_A_DIR Environment Variable

	4.6 Source Statement Format
	4.6.1 Label Field
	4.6.2 Mnemonic Field
	4.6.3 Operand Field
	4.6.3.1 Operand Syntaxes for Instructions
	4.6.3.2 Immediate Values as Operands for Directives

	4.6.4 Comment Field

	4.7 Literal Constants
	4.7.1 Integer Literals
	4.7.1.1 Binary Integer Literals
	4.7.1.2 Octal Integer Literals
	4.7.1.3 Decimal Integer Literals
	4.7.1.4 Hexadecimal Integer Literals
	4.7.1.5 Character Literals

	4.7.2 Character String Literals
	4.7.3 Floating-Point Literals

	4.8 Assembler Symbols
	4.8.1 Identifiers
	4.8.2 Labels
	4.8.3 Local Labels
	4.8.4 Symbolic Constants
	4.8.5 Defining Symbolic Constants (--asm_define Option)
	4.8.6 Predefined Symbolic Constants
	4.8.7 Registers
	4.8.8 Substitution Symbols

	4.9 Expressions
	4.9.1 Mathematical and Logical Operators
	4.9.2 Relational Operators and Conditional Expressions
	4.9.3 Well-Defined Expressions
	4.9.4 Relocatable Symbols and Legal Expressions
	4.9.5 Expression Examples

	4.10 Built-in Functions and Operators
	4.10.1 Built-In Math and Trigonometric Functions

	4.11 Unified Assembly Language Syntax Support
	4.12 Source Listings
	4.13 Debugging Assembly Source
	4.14 Cross-Reference Listings

	5 Assembler Directives
	5.1 Directives Summary
	5.2 Directives that Define Sections
	5.3 Directives that Change the Instruction Type
	5.4 Directives that Initialize Values
	5.5 Directives that Perform Alignment and Reserve Space
	5.6 Directives that Format the Output Listings
	5.7 Directives that Reference Other Files
	5.8 Directives that Enable Conditional Assembly
	5.9 Directives that Define Union or Structure Types
	5.10 Directives that Define Enumerated Types
	5.11 Directives that Define Symbols at Assembly Time
	5.12 Miscellaneous Directives
	5.13 Directives Reference

	6 Macro Language Description
	6.1 Using Macros
	6.2 Defining Macros
	6.3 Macro Parameters/Substitution Symbols
	6.3.1 Directives That Define Substitution Symbols
	6.3.2 Built-In Substitution Symbol Functions
	6.3.3 Recursive Substitution Symbols
	6.3.4 Forced Substitution
	6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols
	6.3.6 Substitution Symbols as Local Variables in Macros

	6.4 Macro Libraries
	6.5 Using Conditional Assembly in Macros
	6.6 Using Labels in Macros
	6.7 Producing Messages in Macros
	6.8 Using Directives to Format the Output Listing
	6.9 Using Recursive and Nested Macros
	6.10 Macro Directives Summary

	7 Archiver Description
	7.1 Archiver Overview
	7.2 The Archiver's Role in the Software Development Flow
	7.3 Invoking the Archiver
	7.4 Archiver Examples
	7.5 Library Information Archiver Description
	7.5.1 Invoking the Library Information Archiver
	7.5.2 Library Information Archiver Example
	7.5.3 Listing the Contents of an Index Library
	7.5.4 Requirements

	8 Linker Description
	8.1 Linker Overview
	8.2 The Linker's Role in the Software Development Flow
	8.3 Invoking the Linker
	8.4 Linker Options
	8.4.1 Wildcards in File, Section, and Symbol Patterns
	8.4.2 Specifying C/C++ Symbols with Linker Options
	8.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)
	8.4.3.1 Producing an Absolute Output Module (--absolute_exe option)
	8.4.3.2 Producing a Relocatable Output Module (--relocatable option)
	8.4.3.3 Producing an Executable, Relocatable Output Module (-ar Option)

	8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)
	8.4.5 Changing Encoding of Big-Endian Instructions
	8.4.6 Compression (--cinit_compression and --copy_compression Option)
	8.4.7 Compress DWARF Information (--compress_dwarf Option)
	8.4.8 Control Linker Diagnostics
	8.4.9 Automatic Library Selection (--disable_auto_rts Option)
	8.4.10 Do Not Remove Unused Sections (--unused_section_elimination Option)
	8.4.11 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)
	8.4.12 Error Correcting Code Testing (--ecc Options)
	8.4.13 Define an Entry Point (--entry_point Option)
	8.4.14 Set Default Fill Value (--fill_value Option)
	8.4.15 Generate List of Dead Functions (--generate_dead_funcs_list Option)
	8.4.16 Define Heap Size (--heap_size Option)
	8.4.17 Hiding Symbols
	8.4.18 Alter the Library Search Algorithm (--library, --search_path, and TI_ARM_C_DIR)
	8.4.18.1 Name an Alternate Library Directory (--search_path Option)
	8.4.18.2 Name an Alternate Library Directory (TI_ARM_C_DIR Environment Variable)
	8.4.18.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

	8.4.19 Change Symbol Localization
	8.4.19.1 Make All Global Symbols Static (--make_static Option)

	8.4.20 Create a Map File (--map_file Option)
	8.4.21 Managing Map File Contents (--mapfile_contents Option)
	8.4.22 Disable Name Demangling (--no_demangle)
	8.4.23 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)
	8.4.24 Strip Symbolic Information (--no_symtable Option)
	8.4.25 Name an Output Module (--output_file Option)
	8.4.26 Prioritizing Function Placement (--preferred_order Option)
	8.4.27 C Language Options (--ram_model and --rom_model Options)
	8.4.28 Retain Discarded Sections (--retain Option)
	8.4.29 Create an Absolute Listing File (--run_abs Option)
	8.4.30 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)
	8.4.31 Define Stack Size (--stack_size Option)
	8.4.32 Enforce Strict Compatibility (--strict_compatibility Option)
	8.4.33 Mapping of Symbols (--symbol_map Option)
	8.4.34 Generate Far Call Trampolines (--trampolines Option)
	8.4.34.1 Advantages and Disadvantages of Using Trampolines
	8.4.34.2 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)
	8.4.34.3 Making Trampoline Reservations Adjacent (--trampoline_min_spacing Option)
	8.4.34.4 Carrying Trampolines From Load Space to Run Space

	8.4.35 Introduce an Unresolved Symbol (--undef_sym Option)
	8.4.36 Display a Message When an Undefined Output Section Is Created (--warn_sections)
	8.4.37 Generate XML Link Information File (--xml_link_info Option)
	8.4.38 Zero Initialization (--zero_init Option)

	8.5 Linker Command Files
	8.5.1 Reserved Names in Linker Command Files
	8.5.2 Constants in Linker Command Files
	8.5.3 Accessing Files and Libraries from a Linker Command File
	8.5.4 The MEMORY Directive
	8.5.4.1 Default Memory Model
	8.5.4.2 MEMORY Directive Syntax
	8.5.4.3 Expressions and Address Operators
	8.5.4.4 The ALIAS Statement

	8.5.5 The SECTIONS Directive
	8.5.5.1 SECTIONS Directive Syntax
	8.5.5.2 Section Allocation and Placement
	8.5.5.2.1 Example: Placing Functions in RAM
	8.5.5.2.2 Binding
	8.5.5.2.3 Named Memory
	8.5.5.2.4 Controlling Placement Using The HIGH Location Specifier
	8.5.5.2.5 Alignment and Blocking
	8.5.5.2.6 Alignment With Padding

	8.5.5.3 Specifying Input Sections
	8.5.5.4 Using Multi-Level Subsections
	8.5.5.5 Specifying Library or Archive Members as Input to Output Sections
	8.5.5.6 Allocation Using Multiple Memory Ranges
	8.5.5.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

	8.5.6 Placing a Section at Different Load and Run Addresses
	8.5.6.1 Specifying Load and Run Addresses
	8.5.6.2 Referring to the Load Address by Using the .label Directive

	8.5.7 Using GROUP and UNION Statements
	8.5.7.1 Grouping Output Sections Together
	8.5.7.2 Overlaying Sections With the UNION Statement
	8.5.7.3 Using Memory for Multiple Purposes
	8.5.7.4 Nesting UNIONs and GROUPs
	8.5.7.5 Checking the Consistency of Allocators
	8.5.7.6 Naming UNIONs and GROUPs

	8.5.8 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)
	8.5.9 Configuring Error Correcting Code (ECC) with the Linker
	8.5.9.1 Using the ECC Specifier in the Memory Map
	8.5.9.2 Using the ECC Directive
	8.5.9.3 Using the VFILL Specifier in the Memory Map

	8.5.10 Assigning Symbols at Link Time
	8.5.10.1 Syntax of Assignment Statements
	8.5.10.2 Assigning the SPC to a Symbol
	8.5.10.3 Assignment Expressions
	8.5.10.4 Symbols Automatically Defined by the Linker
	8.5.10.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol
	8.5.10.6 Why the Dot Operator Does Not Always Work
	8.5.10.7 Address and Dimension Operators
	8.5.10.7.1 Input Items
	8.5.10.7.2 Output Section
	8.5.10.7.3 GROUPs
	8.5.10.7.4 UNIONs

	8.5.10.8 LAST Operator

	8.5.11 Creating and Filling Holes
	8.5.11.1 Initialized and Uninitialized Sections
	8.5.11.2 Creating Holes
	8.5.11.3 Filling Holes
	8.5.11.4 Explicit Initialization of Uninitialized Sections

	8.6 Linker Symbols
	8.6.1 Using Linker Symbols in C/C++ Applications
	8.6.2 Declaring Weak Symbols
	8.6.3 Resolving Symbols with Object Libraries

	8.7 Default Placement Algorithm
	8.7.1 How the Allocation Algorithm Creates Output Sections
	8.7.2 Reducing Memory Fragmentation

	8.8 Using Linker-Generated Copy Tables
	8.8.1 Using Copy Tables for Boot Loading
	8.8.2 Using Built-in Link Operators in Copy Tables
	8.8.3 Overlay Management Example
	8.8.4 Generating Copy Tables With the table() Operator
	8.8.4.1 The table() Operator
	8.8.4.2 Boot-Time Copy Tables
	8.8.4.3 Using the table() Operator to Manage Object Components
	8.8.4.4 Linker-Generated Copy Table Sections and Symbols
	8.8.4.5 Splitting Object Components and Overlay Management

	8.8.5 Compression
	8.8.5.1 Compressed Copy Table Format
	8.8.5.2 Compressed Section Representation in the Object File
	8.8.5.3 Compressed Data Layout
	8.8.5.4 Run-Time Decompression
	8.8.5.5 Compression Algorithms

	8.8.6 Copy Table Contents
	8.8.7 General Purpose Copy Routine

	8.9 Linker-Generated CRC Tables
	8.9.1 The crc_table() Operator
	8.9.2 Restrictions
	8.9.3 Examples
	8.9.4 Interface
	8.9.5 A Note on the TMS570_CRC64_ISO Algorithm

	8.10 Partial (Incremental) Linking
	8.11 Linking C/C++ Code
	8.11.1 Run-Time Initialization
	8.11.2 Object Libraries and Run-Time Support
	8.11.3 Setting the Size of the Stack and Heap Sections
	8.11.4 Initializing and AutoInitialzing Variables at Run Time
	8.11.5 Initialization of Cinit and Watchdog Timer Hold

	8.12 Linker Example

	9 Absolute Lister Description
	9.1 Producing an Absolute Listing
	9.2 Invoking the Absolute Lister
	9.3 Absolute Lister Example

	10 Cross-Reference Lister Description
	10.1 Producing a Cross-Reference Listing
	10.2 Invoking the Cross-Reference Lister
	10.3 Cross-Reference Listing Example

	11 Object File Utilities
	11.1 Invoking the Object File Display Utility
	11.2 Invoking the Disassembler
	11.3 Invoking the Name Utility
	11.4 Invoking the Strip Utility

	12 Hex Conversion Utility Description
	12.1 The Hex Conversion Utility's Role in the Software Development Flow
	12.2 Invoking the Hex Conversion Utility
	12.2.1 Invoking the Hex Conversion Utility From the Command Line
	12.2.2 Invoking the Hex Conversion Utility With a Command File

	12.3 Understanding Memory Widths
	12.3.1 Target Width
	12.3.2 Specifying the Memory Width
	12.3.3 Partitioning Data Into Output Files

	12.4 The ROMS Directive
	12.4.1 When to Use the ROMS Directive
	12.4.2 An Example of the ROMS Directive

	12.5 The SECTIONS Directive
	12.6 The Load Image Format (--load_image Option)
	12.6.1 Load Image Section Formation
	12.6.2 Load Image Characteristics

	12.7 Excluding a Specified Section
	12.8 Assigning Output Filenames
	12.9 Image Mode and the --fill Option
	12.9.1 Generating a Memory Image
	12.9.2 Specifying a Fill Value
	12.9.3 Steps to Follow in Using Image Mode

	12.10 Array Output Format
	12.11 Building a Table for an On-Chip Boot Loader
	12.11.1 Description of the Boot Table
	12.11.2 The Boot Table Format
	12.11.3 How to Build the Boot Table
	12.11.3.1 Building the Boot Table
	12.11.3.2 Leaving Room for the Boot Table

	12.11.4 Booting From a Device Peripheral
	12.11.5 Setting the Entry Point for the Boot Table
	12.11.6 Using the ARM Boot Loader

	12.12 Using Secure Flash Boot on TMS320F2838x Devices
	12.13 Controlling the ROM Device Address
	12.14 Control Hex Conversion Utility Diagnostics
	12.15 Description of the Object Formats
	12.15.1 ASCII-Hex Object Format (--ascii Option)
	12.15.2 Intel MCS-86 Object Format (--intel Option)
	12.15.3 Motorola Exorciser Object Format (--motorola Option)
	12.15.4 Extended Tektronix Object Format (--tektronix Option)
	12.15.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)
	12.15.6 TI-TXT Hex Format (--ti_txt Option)

	13 Sharing C/C++ Header Files With Assembly Source
	13.1 Overview of the .cdecls Directive
	13.2 Notes on C/C++ Conversions
	13.2.1 Comments
	13.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)
	13.2.3 Pragmas
	13.2.4 The #error and #warning Directives
	13.2.5 Predefined symbol __ASM_HEADER__
	13.2.6 Usage Within C/C++ asm() Statements
	13.2.7 The #include Directive
	13.2.8 Conversion of #define Macros
	13.2.9 The #undef Directive
	13.2.10 Enumerations
	13.2.11 C Strings
	13.2.12 C/C++ Built-In Functions
	13.2.13 Structures and Unions
	13.2.14 Function/Variable Prototypes
	13.2.15 C Constant Suffixes
	13.2.16 Basic C/C++ Types

	13.3 Notes on C++ Specific Conversions
	13.3.1 Name Mangling
	13.3.2 Derived Classes
	13.3.3 Templates
	13.3.4 Virtual Functions

	13.4 Special Assembler Support
	13.4.1 Enumerations (.enum/.emember/.endenum)
	13.4.2 The .define Directive
	13.4.3 The .undefine/.unasg Directives
	13.4.4 The $$defined() Built-In Function
	13.4.5 The $$sizeof Built-In Function
	13.4.6 Structure/Union Alignment and $$alignof()
	13.4.7 The .cstring Directive

	A Symbolic Debugging Directives
	A.1 DWARF Debugging Format
	A.2 Debug Directive Syntax

	B XML Link Information File Description
	B.1 XML Information File Element Types
	B.2 Document Elements
	B.2.1 Header Elements
	B.2.2 Input File List
	B.2.3 Object Component List
	B.2.4 Logical Group List
	B.2.5 Placement Map
	B.2.6 Far Call Trampoline List
	B.2.7 Symbol Table

	C Hex Conversion Utility Examples
	C.1 Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM
	C.2 Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code
	C.3 Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMs

	D Glossary
	D.1 Terminology

	E Revision History
	E.1 Recent Revisions

	Important Notice

