Test Data
For PMP10652
06/1/2015
Contents
1. Design Specifications ... 3
2. Circuit Description and PCB details .. 3
3. PMP10652 Board Photos .. 5
4. Thermal Data .. 6
5. Efficiency ... 8
 5.1 Efficiency Chart – Input Voltage Vs Efficiency with all output fully Loaded .. 8
 5.3 Efficiency Data .. 9
6. Waveforms ... 10
 6.1 Reverse Protection – Smart diode .. 10
 6.2 Input Overvoltage Protection – PFET Fault switch ... 12
 6.3 Power Up and Power Down sequencing – LM3880 .. 14
 6.4 Output Voltage Ripple and Switch Node Voltage ... 20
 6.4.1 LM53603Q1 output -3.3Vout .. 20
 6.4.2 TPS57114Q1 output – 1.2V .. 22
 6.4.3 LM26420Q1 Dual output – 1.8V and 1.5V .. 23
 6.4.4 TPS60150 Charge Pump output -5V .. 24
 6.5 Load Transient Response ... 25
 6.5.1 TPS57114Q1 outputs .. 25
 6.5.2 LM53603 outputs .. 26
 6.5.3 LM26420 Output .. 28
 6.5.4 TPS60150 – 5V .. 29
7. Conducted Emissions ... 30
1. Design Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin Minimum</td>
<td>4.8VDC</td>
</tr>
<tr>
<td>Vin Maximum</td>
<td>30 VDC (OVP at 20V)</td>
</tr>
<tr>
<td>Vout1</td>
<td>3.3 VDC Slave</td>
</tr>
<tr>
<td>Iout 1</td>
<td>0.5A</td>
</tr>
<tr>
<td>Vout2</td>
<td>1.2VDC Slave</td>
</tr>
<tr>
<td>Iout 2</td>
<td>4A</td>
</tr>
<tr>
<td>Vout3</td>
<td>3.3VDC Master</td>
</tr>
<tr>
<td>Iout 3</td>
<td>0.500A</td>
</tr>
<tr>
<td>Vout4</td>
<td>1.2VDC Master</td>
</tr>
<tr>
<td>Iout4</td>
<td>4A</td>
</tr>
<tr>
<td>Vout5</td>
<td>1.8V_PLLDVDD</td>
</tr>
<tr>
<td>Iout5</td>
<td>0.6A</td>
</tr>
<tr>
<td>Vout6</td>
<td>1.5V_AVDD</td>
</tr>
<tr>
<td>Iout6</td>
<td>0.6A</td>
</tr>
<tr>
<td>Vout7</td>
<td>5V_CAN</td>
</tr>
<tr>
<td>Iout7</td>
<td>140mA</td>
</tr>
<tr>
<td>Vout8,9,10</td>
<td>Linear Reg for noise sensitive supply</td>
</tr>
<tr>
<td>Approximate Switching Frequency</td>
<td>2.1MHz Approx(all the DC/DC converters)</td>
</tr>
<tr>
<td>ISO Pulse test</td>
<td>TVS diode used for protection</td>
</tr>
<tr>
<td>EMI</td>
<td>CISPR25 Class 3 (Class 5 upto 30MHz domain)</td>
</tr>
<tr>
<td>Protection</td>
<td>Input Overvoltage, Reverse polarity , Short Circuit protections at Outputs, Load Dump protection</td>
</tr>
</tbody>
</table>

2. Circuit Description and PCB details

PMP10652 is a System optimized (CISPR 25 Class 3) 30W design for Surround View ADAS system.

The design has various protections such as Load dump through TVS (ISO pulse testing), Reverse Voltage (Innovative Smart diode with very low Iq), Battery Disconnect Switch with OVP protection (PFET) and is EMI optimized to meet Conductive EMI limits of CISPR25 Class3 (overall) and Class5 upto 30MHz Range.

Input voltage range is between 4.5V to 30V with OVP at 20V and hence will operate in Cold Cranking conditions.

LM74610 is used for Battery reverse protection which utilizes a charge pump to drive an N-channel FET to provide a resistive path for the bypass current to flow. LM53603Q1 is used as front end DC/DC Buck converter which is 2.2MHz switching, Synchronous rectified Wide Vin Buck Converter which can take transient upto 42V. TPS57114Q1 is used to provide power to the cores and it is a high current 2.2MHz switching buck converter. LM26420 is a dual 2.2MHz switching buck converter which is used for generating other required supplies.

LM3880 sequencer is used for all the power up and power down sequencing requirements.
The Board dimension of PMP9487 PCB is 2500mil * 8000mil. Four layer PCB was used for the design.
3. PMP10652 Board Photos

Board Photo (Top)

Board Photo (Bottom)
4. Thermal Data

IR thermal image taken at steady state with 12Vin and all the outputs at full load (no airflow)
IR thermal image taken at steady state with 12Vin and zoomed on protection FETs
5. Efficiency

5.1 Efficiency Chart – Input Voltage Vs Efficiency with all output fully Loaded

![Efficiency Chart]

- Efficiency with all the outputs fully loaded
- Efficiency with different input voltages (from 5 to 20 V).
- Efficiency values range from 30.0% to 75.0%.
- The chart shows the full load efficiency for various input voltages.
5.3 Efficiency Data

Efficiency of total System Vs Input Voltage

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>lin (A)</th>
<th>Vout 1 (V)</th>
<th>Iout 1(A)</th>
<th>Vout 2 (V)</th>
<th>Iout 2(A)</th>
<th>Vout 3 (V)</th>
<th>Iout 3(A)</th>
<th>Vout 4 (V)</th>
<th>Iout 4(A)</th>
<th>Vout 5 (V)</th>
<th>Iout 5(A)</th>
<th>Pin (W)</th>
<th>Pou t (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4.3</td>
<td>3.33</td>
<td>1</td>
<td>1.2</td>
<td>4</td>
<td>1.2</td>
<td>4</td>
<td>1.8</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>21.51</td>
<td>14.91</td>
<td>69.4%</td>
</tr>
<tr>
<td>6</td>
<td>3.5</td>
<td>3.33</td>
<td>1</td>
<td>1.2</td>
<td>4</td>
<td>1.2</td>
<td>4</td>
<td>1.8</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>21.24</td>
<td>14.91</td>
<td>70.2%</td>
</tr>
<tr>
<td>7.0</td>
<td>3</td>
<td>3.33</td>
<td>1</td>
<td>1.2</td>
<td>4</td>
<td>1.2</td>
<td>4</td>
<td>1.8</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>21.12</td>
<td>14.91</td>
<td>70.6%</td>
</tr>
<tr>
<td>9</td>
<td>2.3</td>
<td>3.33</td>
<td>1</td>
<td>1.2</td>
<td>4</td>
<td>1.2</td>
<td>4</td>
<td>1.8</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>20.79</td>
<td>14.91</td>
<td>71.8%</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
<td>3.33</td>
<td>1</td>
<td>1.2</td>
<td>4</td>
<td>1.2</td>
<td>4</td>
<td>1.8</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>20.7</td>
<td>14.91</td>
<td>72.1%</td>
</tr>
<tr>
<td>12</td>
<td>1.7</td>
<td>3.33</td>
<td>1</td>
<td>1.2</td>
<td>4</td>
<td>1.2</td>
<td>4</td>
<td>1.8</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>20.76</td>
<td>14.91</td>
<td>71.9%</td>
</tr>
<tr>
<td>14</td>
<td>1.5</td>
<td>3.33</td>
<td>1</td>
<td>1.2</td>
<td>4</td>
<td>1.2</td>
<td>4</td>
<td>1.8</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>21.12</td>
<td>14.91</td>
<td>70.7%</td>
</tr>
<tr>
<td>16</td>
<td>1.3</td>
<td>3.33</td>
<td>1</td>
<td>1.2</td>
<td>4</td>
<td>1.2</td>
<td>4</td>
<td>1.8</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>21.12</td>
<td>14.91</td>
<td>70.6%</td>
</tr>
</tbody>
</table>
6. Waveforms

6.1 Reverse Protection – Smart diode

C1 - Input

C2 - Vin_IC

Continuous Reverse Voltage at Input
C1- Input

C2- Vin_IC

Transition to Reverse Voltage at Input
6.2 Input Overvoltage Protection – PFET Fault switch

C1- Input
C2- Vin_IC
C3- Q2 PFET’s gate

Transition to Overvoltage condition.
C1- Input

C2- Vin_IC

C3- Q2 PFET’s gate

Transition From Overvoltage to normal condition
6.3 Power Up and Power Down sequencing – LM3880

C1- 3.3V_Master
C2- 3.3V_Slave
C3-1.2V_Slave
C4-1.8V_PLLDVDD

No Load Power up sequencing at 12 Vin as per Controller’s requirements
C1- 3.3V_Master
C2- 3.3V_Slave
C3- 1.2V_Slave
C4- 1.8V_PLLDVDD

No Load Power up sequencing at 4.5 Vin as per Controller’s requirements
C1- 3.3V_Master
C2- 3.3V_Slave
C3- 1.2V_Slave
C4- 1.8V_PLLDVDD

Full Load Power up sequencing at 12 Vin as per Controller’s requirements
C1 - 3.3V_Master
C2 - 3.3V_Slave
C3 - 1.2V_Slave
C4 - 1.8V_PLLDVDD

Full Load Power up sequencing at 4.5 Vin as per Controller’s requirements
C1- 3.3V_Master
C2- 3.3V_Slave
C3- 1.2V_Slave
C4-1.8V_PLLDVDD

Full Load Power down sequencing at 12 Vin as per Controller’s requirements
C1- 3.3V_Master
C2- 3.3V_Slave
C3- 1.2V_Slave
C4- 1.8V_PLLDVDD

Full Load Power down sequencing at 4.5 Vin as per Controller's requirements
6.4 Output Voltage Ripple and Switch Node Voltage

6.4.1 LM53603Q1 output -3.3Vout

Switch Node Voltage and Output Voltage Ripple at 12 Vin and Full Load on all the outputs (Vripple < 50mVp-p)

Ch2-Vout1 (AC Coupled)

Ch1-Switching Waveform
Switch Node Voltage and Output Voltage Ripple at 4.5 Vin and Full Load on all the outputs (Vripple < 50mVp-p)

Ch2-Vout1 (AC Coupled)

Ch1-Switching Waveform
6.4.2 TPS57114Q1 output – 1.2V

Switch Node Voltage and Output Voltage Ripple at 12 Vin and Full Load on all the outputs (Vripple < 50mVp-p)

Ch2-Vout2 (AC Coupled)

Ch1-Switching Waveform
6.4.3 LM26420Q1 Dual output – 1.8V and 1.5V

Switch Node Voltage and Output Voltage Ripple at 12 Vin and Full Load on all the outputs (Vripple < 50mVp-p)

Ch2-Vout5 (AC Coupled)

Ch1-Switching Waveform
6.4.4 TPS60150 Charge Pump output -5V

Switch Node Voltage and Output Voltage Ripple at 12 Vin and Full Load on all the outputs (Vripple < 50mVp-p)

Ch2-Vout7 (AC Coupled)

Ch1-Switching Waveform
6.5 Load Transient Response

6.5.1 TPS57114Q1 outputs

Load Transient Response at 12 Vin and 50%-to-100% Load Step on 1.2 V Output Vout2 (Full Load were connected to all other outputs)

Ch2 – Vout2 (AC coupled)

Ch4- Iout 2
Load Transient Response at 12 Vin and 50%-to-100% Load Step on 3.3 V Output Vout1 (Full Load were connected to all other outputs)

Ch2 – Vout1 (AC coupled)

Ch4- Iout 1
Load Transient Response at 4.5 Vin and 50%-to-100% Load Step on 3.3 V Output Vout1 (Full Load were connected to all other outputs)

Ch2 – Vout1 (AC coupled)

Ch4 - Iout 1
6.5.3 LM26420 Output

Load Transient Response at 12 Vin and 50%-to-100% Load Step on 1.8 V Output Vout5 (Full Load were connected to all other outputs)

Ch2 – Vout5 (AC coupled)

Ch4 - Iout 5
6.5.4 TPS60150 – 5V

Load Transient Response at 12 Vin and 50%-to-100% Load Step on 5 V Output Vout5 (Full Load were connected to all other outputs)

Ch2 – Vout7 (AC coupled)

Ch4- Iout 7
7. Conducted Emissions

The conducted emissions is tested followed the of CISPR 25 standards. The frequency band examined spans from 150 kHz to 108 MHz covering the AM, FM radio bands, VHF band, and TV band specified in the CISPR 25.

The test results are shown in below two Figures. The first Figure show the test result using peak detector and Average detector measurement respectively up to 30MHz , and the last Figure show the test result using average detector and Peak Detector measurement from 30MHz to 108MHz. The limit lines shown in red are the Class 5 limits(up to 30MHz) and Class 3 limits (30MHz to 108MHz) for conducted disturbances specified in the CISPR 25; the yellow(Peak Detector measurement) and blue(Average detector measurement) traces is the test result. It can be seen that the power supply operates quietly and the noise is below the Class 3 limits overall.
Test result - Upto 30MHz Conducted Emission - Peak and Average Detection

Ref Lvl
50 dBμV

<table>
<thead>
<tr>
<th>RBW</th>
<th>100 kHz</th>
<th>RF Att</th>
<th>0 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBW</td>
<td>300 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWT</td>
<td>10 s</td>
<td>Unit</td>
<td>dBμV</td>
</tr>
</tbody>
</table>

Test result - 30MHz to 108MHz Conducted Emission - Peak and Average Detection

Date: 28.MAY.2015 21:50:35
Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products. TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs. Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use. Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated