
Nick Lethaby
IoT Ecosystem Manager
Texas Instruments

A more secure and reliable
OTA update architecture
for IoT devices

 I 2

A more secure and reliable OTA update architecture for IoT devices October 2018

Over-the-air (OTA) updates offer many benefits
for Internet of Things (IoT) devices. They
enable remote patching of bugs or security
flaws, rather than having expensive service
technicians or inexperienced users perform
the updates in-person.

How OTA update security and

reliability becomes compromised

It is first important to understand how and where

an OTA update can be compromised.

The process of downloading OTA update files

to an IoT device represents one set of risks.

Transmission errors may corrupt some of the file

contents and render them unusable. Hackers can

exploit security flaws to compromise the download.

For example, the IoT device might be tricked into

downloading from a different server, which could

substitute malware in place of the real OTA update.

Or a “man-in-the-middle” attack could substitute

files different from those sent by the original OTA

server. If an earlier version of the device software

contained known security vulnerabilities, an attacker

might attempt to have the device “update” to

the earlier (but flawed) software version and then

exploit any vulnerability. Hackers can also mount

physical attacks on IoT devices to read memory,

They also offer the potential for enhanced revenue streams, as the original equipment

manufacturer (OEM) can offer add-on services through an OTA update.

These benefits, however, must be balanced by the risks: a poorly executed OTA

update can result in “bricked” (nonfunctioning) devices and significant inconvenience

to consumers, as well as reputational damage to the OEM. In addition, OTA updates

offer a potential path for the introduction of malware on IoT devices and can therefore

compromise security for both consumers and the OEM. With millions of IoT devices,

even a small percentage of OTA failures or security breaches will result in thousands or

tens of thousands of affected consumers.

In this paper, I will look at the requirements for a secure and reliable OTA update

mechanism, focusing on the embedded software and hardware on the IoT device, while

also covering some of the services that must be available on the cloud side.

I will then examine an implementation based on the combination of Amazon FreeRTOS

and Texas Instruments (TI) SimpleLink™ Wi-Fi®-connected microcontrollers (MCUs).

 I 3

A more secure and reliable OTA update architecture for IoT devices October 2018

extracting the image and its associated metadata,

cryptographic keys, or other critical information that

could compromise future OTA updates.

Even after the successful storage of the correct OTA

update files, transitioning the IoT device to a new

image may fail. For example, a power failure during

reboot or a flaw in the update image may cause the

IoT device to lose network or service connectivity

and become unrecoverable.

As massive networks of IoT devices emerge, access

to device-management systems offers a third

source of potential compromise. These device-

management systems will typically originate large-

scale OTA update processes, and enforcing secured

access is critical.

Key elements of an OTA update

implementation

Let’s walk through the key elements of an OTA

update process in the context of potential threats

and mishaps:

• OTA deployment operator security.

 A device-management service will inform

 connected devices that an OTA update is

 available and how to obtain it. Giving only

 highly trusted users access to the

 device-management system will minimize

 the possibility of careless errors or hackers

 injecting malware into the system.

• Incremental roll-out of OTA updates.

 Simultaneously informing millions of devices

 that an update is available can result in significant

 negative consequences, such as the server being

 overwhelmed with upgrade requests. In addition,

 IoT devices may use different software versions,

 with some versions requiring a specific update

 (such as a security patch) that others do not.

 Thus, the ability to update only certain devices

 is critical. An incremental update approach

 also allows any major problems to surface

 before full deployment, thereby limiting the

 number of consumers adversely affected.

• Securely downloading the update.

 Once an IoT device is aware that an

 update is available, it will need to download

 it. One approach is to connect to a dedicated

 server and download the update image. But

 since an IoT device is typically already connected

 to the cloud via a secure telemetry channel,

 which typically operates using the Message

 Queuing Telemetry Transport (MQTT) protocol,

 using a separate mechanism for OTA updates

 increases the attack surface for hackers. An

 alternative is to download the OTA update via

 the MQTT channel. Using the MQTT channel is

 also more memory-efficient, as there is no

 need for an HTTP client or an

 additional Transport Layer Security (TLS)

 channel (although this is mostly beneficial

 when the MCU is executing the application and

 networking stack in the same memory space).

 Whether the OTA update downloads via the

 MQTT channel or from a separate HTTPS server,

 the device will need to support protocols such as

 TLS to first establish a secure connection.

• Security from physical attacks.

 Although remote attacks are the most common

 security threats, IoT device physical

 security is also important, especially

 since large deployments may attract more

 sophisticated attacks. To hinder physical

 attacks, the IoT device should prevent

 attackers from easily reading everything

 in memory. For example, JTAG ports

 should not be open for use on a

 production device. The IoT device

 must store security credentials and code

 images in an encrypted state, rendering

 them useless should an attacker find a

 way to read or write memory.

 I 4

A more secure and reliable OTA update architecture for IoT devices October 2018

• Authenticating the OTA update image.

 Connecting the IoT device to the correct

 source for the OTA update does not guarantee

 that the device will receive the correct image,as

 the image might be corrupted by transmission

 errors or replaced by a different one in a

 man-in-the-middle attack. An IoT device

 must be able to authenticate that the

 image is indeed the original sent by the

 OTA update service. This requires the

 IoT device OEM signs the image using

 their code-signing certificate and attaches

 metadata, such as a version number and

 company of origin. Performing a hash of the

 image and associated metadata with the private

 key in the OEM’s certificate generates a signature.

 The IoT device, which contains the OEM’s

 public signing certificate, decrypts the hash

 and compares it to a hash of the image it

 generated itself. If these match, the device knows

 that the image is authentic. The metadata

 enables additional checks, such as

 confirming that the image is a later one than what

 is already on the device (rather than a flawed

 earlier version). The device’s bootloader must

 also verify that any image it is attempting to boot

 is signed appropriately to ensure that the device

 will never boot an unauthorized image.

• Minimizing intrusion. Although prompt

 updating with the latest security patches is

 very important, the update process will often

 need to operate in the background as much

 as possible. For applications such as remote

 sensors that report data only periodically, it may

 be acceptable to cease normal operation and

 immediately boot the OTA update image. But an

 OTA update must not stop a robotic cleaner or

 smart coffee machine in the midst of a job.

• Reversion if the OTA image fails to boot

 successfully. The final step is for the IoT

 device to successfully boot the new

 image, which requires that the device

 pass some test criteria to prove that it

 is still functional. The test may be as

 simple as successfully connecting

 back to the IoT service, but will be application-

 specific. If the test fails, the IoT device must

 be able to revert to the previous image to

 maintain functionality; otherwise, the failed update

 may result in an unresponsive or bricked

 device. A failed OTA update might have

 several causes. For example, a power

 failure might occur because of a battery

 problem or an impatient user restarting

 a seemingly unresponsive device. Or the OTA

 update image may contain a bug that causes the

 device to lose network or service connectivity

 and become unrecoverable.

The OTA update process using

Amazon FreeRTOS and

SimpleLink Wi-Fi

An OTA update implementation based on a

combination of Amazon FreeRTOS and SimpleLink

Wi-Fi MCUs addresses security and reliability

challenges.

Amazon FreeRTOS is an embedded software

stack based on the FreeRTOS operating system,

optimized to reside on MCUs. Amazon FreeRTOS

is integrated with the cloud-based Amazon Web

Services (AWS) IoT platform, which provides device

management and telemetry. Device-management

services include support for OTA updates, which in

turn leverage other AWS services such as Amazon

 I 5

A more secure and reliable OTA update architecture for IoT devices October 2018

Certificate Management for code signing (see

Figure 1). The embedded software stack provides

an OTA agent that executes on the MCU as a

FreeRTOS task to coordinate OTA operations

such as downloading a new image from the cloud,

validating the image and handling any interruptions

during download.

The TI SimpleLink Wi-Fi family features MCUs

with built-in Wi-Fi capability, including a full TCP/

IP stack with TLS. These devices, including the

CC3100/CC3200 and CC3120/CC3220R/S/SF,

have been successfully used in a wide range of

IoT applications. SimpleLink Wi-Fi MCUs have a

dual-core architecture: the user application runs

on one core while the Wi-Fi stack and associated

cryptographic operations run on a dedicated

network processing core. Keys and certificates

are stored in encrypted memory that only

the network processor can directly access,

enhancing device security because reading

the application core’s memory will not reveal

the keys. SimpleLink Wi-Fi devices also include

cryptographic accelerators for symmetric and

asymmetric encryption operations, further

enhancing the performance of protocols like TLS.

The SimpleLink software development kit (SDK)

offers a uniform development environment for

multiple different wireless protocols,

including Wi-Fi, Bluetooth® low energy, Zigbee,

Thread and proprietary Sub-1 GHz.

The Amazon FreeRTOS implementation for

SimpleLink Wi-Fi MCUs uses components from

the SimpleLink SDK and secure bootloader to

implement its OTA update mechanism

(see Figure 2).

Let’s look at the specific implementation details of

the combined OTA solution:

• OTA deployment operator security. To initiate

 an OTA update with Amazon FreeRTOS,

 the operator (including any programs run

 from the command line to automate the update)

 must have appropriate permissions. The AWS

Cloud

Create OTA image

Sign image

Start OTA update job
for IoT device group(s)

Stream OTA update to
 IoT device

Check for updates

Download image

Authenticate image

Boot and test image

pass fail

Commit new
version

Revert to
previous version

MQTT
Topic

22°

 IoT device

User applications

OTA agent MQTT client

Free RTOS
Kernel

Wi-Fi
Manager

Secure Wi-Fi
stackCrypto utilities

Secure
Filesystem

Images

Keys

Manage Keys

Accelerators, RNG

TLS

TCP/IP

Device Drivers

Secure Bootloader (ROM’d)

SimpleLink W-Fi Device

Figure 1. The Amazon FreeRTOS OTA update service combines cloud services with an embedded OTA agent on the IoT device.

Figure 2. Amazon FreeRTOS (red) leverages many SimpleLink features (burgundy)
in its OTA update solution.

 I 6

A more secure and reliable OTA update architecture for IoT devices October 2018

 Identity and Access Management (IAM)

 service enforces these permissions. To create

 an OTA deployment, the operator must have

 read access to the storage containing the OTA

 image and have permissions to invoke the

 CreateDeployment, CreateJob and CreateStream

 APIs that will combine to transmit the image to

 the IoT device. IAM user authorizations provide

 strong protection against rogue OTA deployments.

• Incremental roll-out of OTA updates. The OTA

 manager uses the AWS IoT Jobs service to

 deploy a new firmware image to one or

 more IoT devices. The AWS IoT Jobs service

 manages scheduling, orchestration, notification

 and status reporting of OTA updates on

 distributed fleets of small devices. An OTA

 update job specifies which devices should

 perform the update and where to find the

 firmware image. To avoid triggering OTA

 updates simultaneously in a large number of

 devices, you can stagger updates by organizing

 devices into specific groups.

• Securely downloading the update. The AWS

 Streaming Service delivers OTA firmware updates

 over the existing AWS IoT MQTT link to IoT

 devices, eliminating the security risk from

 creating a second connection purely for

 OTA updates. This approach also means

 that the OTA update download mechanism

 is seamlessly integrated into the rest of AWS

 IoT device management, enabling easy use

 of any existing IoT device groupings to perform

 incremental device updates. The Streaming

 Service breaks up the firmware image into small

 chunks and delivers each chunk as an MQTT

 message to the updating devices. The chunk size

 corresponds to the size of the IoT device’s

 MQTT buffer, which on a small MCU will typically

 be about 1KB. The streaming service manages

 network traffic in a way that avoids swamping

 MCU memory resources in the case of large

 OTA updates (although this is less of a

 concern with SimpleLink Wi-Fi devices,

 which have a dedicated network processor

 and memory). The OTA agent reassembles

 these chunks into a complete image on

 the IoT device. To secure the MQTT link, AWS

 IoT leverages the SimpleLink Wi-Fi device’s built-in

 TLS capability so that each incoming and outgoing

 MQTT message undergoes strict authentication

 and authorization.

• Security from physical attacks. In SimpleLink

 Wi-Fi devices, the network processor

 maintains a secure file system and stores

 cryptographic keys in encrypted memory

 that the application processor cannot directly

 access. This prevents hackers from extracting

 the keys even if they have physical access to

 the hardware and the ability to read the application

 processor’s memory. The factory and OTA update

 images are encrypted using a device-specific key

 and stored in the secure file system. This prevents

 attackers from easily analyzing or running the

 image on another device, either for cloning

 purposes or to load an older image with known

 security vulnerabilities. SimpleLink Wi-Fi devices

 also have a tamper protection lockdown

 mechanism against unauthorized attempts to

 access application or data files. Production

 devices should always ship in secure mode, with

 the JTAG and debugging ports locked.

• Authenticating the OTA update image. The

 OEM uses the AWS Certificate Manager (ACM)

 to import their code-signing certificate.

 The Amazon FreeRTOS OTA update service

 uses the Code Signing for Amazon FreeRTOS

 service, which retrieves the certificate from

 ACM to automatically sign the image. The OTA

 agent on the IoT device uses the signature

 to perform integrity checks on the image to

 verify that it was not corrupted during transmission

 or replaced by another image, as well as verifying

 that the image includes the OTA agent library

 and that the agent’s version is more recent than

 the currently installed image before it the

 update. The OTA agent leverages the SimpleLink

 Wi-Fi device’s on-chip cryptographic accelerators,

 which include support for secure hash functions,

 to minimize central processing unit (CPU)

 overhead during the image validation process.

• Minimizing intrusion. Although the IoT device’s

 application can choose to initialize the OTA

 agent at any time, it is typically initialized

 at boot. Each time the OTA agent task runs,

 it checks to see if an update is available.

 Once the OTA agent detects an update, it

 initiates the download. The agent runs

 as a relatively low-priority task so that the device’s

 normal operations can continue, especially since

 the SimpleLink Wi-Fi MCU offloads networking

 onto a separate processor from the application

 MCU. Once the download is complete and

 validated, the agent informs the application via

 a callback function. This enables the application

 to complete any operations before deciding

 when to boot the new image.

• Reversion if the OTA image fails to boot

 successfully. Once the OTA agent verifies

 the download of a valid firmware update,

 it uses SimpleLink file system APIs to securely

 store the image and signature information,

 activate the image for testing, and to set

 the update image as the default if the tests

 are passed. The secure bootloader for

 SimpleLink Wi-Fi devices allows

 the booting of only correctly signed

 images. The OTA update image must

 contain the OTA update agent, as a

 number of AWS IoT functions are tested

 when the new image boots up. This ensures

 that the IoT device can securely connect to

 the IoT service and accept future OTA

 updates. A hook at the end of the AWS

 connectivity test enables a developer

 to add their own device-specific tests. The OTA

 agent uses the SimpleLink Wi-Fi bundle protection

 feature (see Figure 3) to prevent a failed update

 that results in a bricked device. Bundle

 protection enables the “test booting” of the

 image and sets a flag directing the bootloader to

 boot the OTA image prior to resetting the MCU.

 The bootloader starts by resetting the flag to use

 the previous working image for the next

 boot and sets a watchdog timer to trigger after an

 appropriate period. If the boot of the new image

 fails the self-test, hangs or experiences a power

 failure, the bootloader will simply revert to the

 previous image on the next boot. At that point, the

 OTA agent can restart the update process again. If

 the boot passes the self-test, the update image

 will be set as the default going forward.

Create failsafe files

Add files to bundle

Write image files to bundle

Restart processor
and set watchdog timer

Rollback back to the
previous version

Test image

pass

fail

Watchdog timeout

Power failure

Commit bundle as the new boot image

Figure 3. The Amazon FreeRTOS OTA update implementation leverages the bundle
protection mechanism of the SimpleLink file system to test-run the new OTA image.

© 2018 Texas Instruments Incorporated SWAY021
The platform bar, SimpleLink, and FemtoFET are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and
conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes
no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information
regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Summary

The ability to perform OTA updates more reliably and

securely is essential for creating viable IoT solutions. An

IoT device must have defenses against physical as well

as remote attacks by storing code and data (especially

security artifacts) in encrypted memory, and providing

secure TLS-based connectivity for OTA updates, but

the OEM must also sign the OTA update image itself so

that the IoT device can authenticate its origin.

To prevent flawed OTA updates from causing IoT

devices to cease functioning, the OTA update

process must also include a revert mechanism. When

combined with a TI SimpleLink Wi-Fi-connected MCU

and SimpleLink SDK, AWS IoT and Amazon FreeRTOS

offer a complete cloud-to-device OTA update

implementation that provides high reliability

and security.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

