

SN65LVDS93

SLLS302G-MAY 1998-REVISED MAY 2009

LVDS SERDES TRANSMITTER

FEATURES

- 28:4 Data Channel Compression at up to 1.904 Gigabits per Second Throughput
- Suited for Point-to-Point Subsystem Communication With Very Low EMI
- 28 Data Channels Plus Clock in Low-Voltage TTL and 4 Data Channels Plus Clock Out Low-Voltage Differential
- Selectable Rising or Falling Clock Edge Triggered Inputs
- Bus Pins Tolerate 6-kV HBM ESD
- Operates From a Single 3.3-V Supply and 250 mW (Typ)
- 5-V Tolerant Data Inputs
- Packaged in Thin Shrink Small-Outline Package With 20 Mil Terminal Pitch
- Consumes <1 mW When Disabled
- Wide Phase-Lock Input Frequency Range 20 MHz to 68 MHz
- No External Components Required for PLL
- Outputs Meet or Exceed the Requirements of ANSI EIA/TIA-644 Standard
- Industrial Temperature Qualified T_A = -40°C to 85°C
- Replacement for the DS90CR285

DESCRIPTION

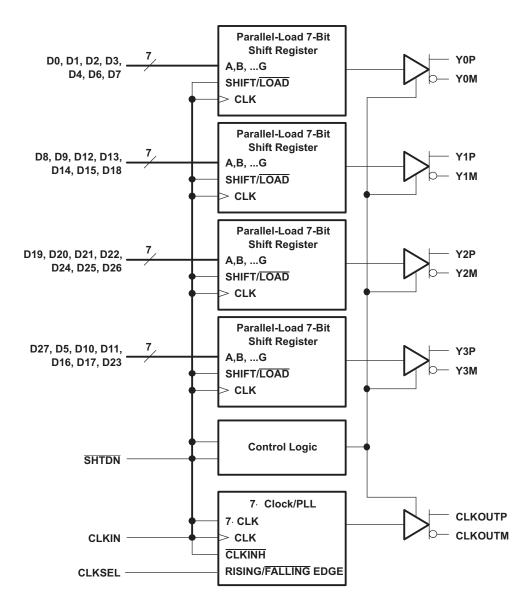
The SN65LVDS93 LVDS serdes (serializer/ deserializer) transmitter contains four 7-bit parallelload serial-out shift registers, a 71clock synthesizer, and five low-voltage differential signaling (LVDS) drivers in a single integrated circuit. These functions allow 28 bits of single-ended LVTTL data to be synchronously transmitted over five balanced-pair conductors for receipt by a compatible receiver, such as the SN65LVDS94. When transmitting, data bits D0 through D27 are each loaded into registers upon the edge of the input clock signal (CLKIN). The rising or falling edge of the clock can be selected via the clock select (CLKSEL) pin. The frequency of CLKIN is multiplied seven times and then used to serially unload the data registers in 7-bit slices. The four serial streams and a phase-locked clock (CLKOUT) are then output to LVDS output drivers. The frequency of CLKOUT is the same as the input clock, CLKIN.

DGG PACKAGE (TOP VIEW)										
V _{CC} [D5 [D6 [D7 [GND [D8 [D9 [D10 [D11 [D12 [D13 [D14 [D15 [D16 [D17 [D18 [D17 [D18 [D17 [D18 [D19 [D19 [D19 [D10 [(TOP V) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	56 55 54 53 53 52 51 50 49 48 47 46 43 44 43 44 43 33 38 37 36 35	D4 D3 D2 GND D1 D0 D27 LVDSGND Y1M Y1P Y2M Y2P LVDSV _{CC} LVDSGND Y3M Y3P CLKOUTM CLKOUTP Y4M Y4P LVDSGND PLLGND							
9		— В								
D21 [23	34	PLLV _{CC}							
D22 [24	33	PLLGND							
D23 [25	32	SHTDN							
V _{CC} D24	26 27	31 30								
D24 [D25 [28	29	D26 GND							
1										

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65LVDS93

SLLS302G-MAY 1998-REVISED MAY 2009



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

The SN65LVDS93 requires no external components and little or no control. The data bus appears the same at the input to the transmitter and output of the receiver with the data transmission transparent to the user(s). The only user intervention is selecting a clock rising edge by inputting a high level to CLKSEL or a falling edge with a low-level input and the possible use of the shutdown/clear (SHTDN). SHTDN is an active-low input to inhibit the clock and shut off the LVDS output drivers for lower power consumption. A low level on this signal clears all internal registers at a low level.

The SN65LVDS93 is characterized for operation over ambient air temperatures of -40°C to 85°C.

FUNCTIONAL BLOCK DIAGARAM

SN65LVDS93 SLLS302G-MAY 1998-REVISED MAY 2009

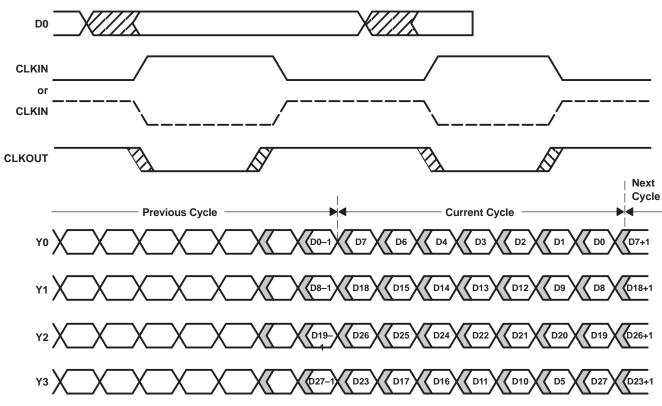
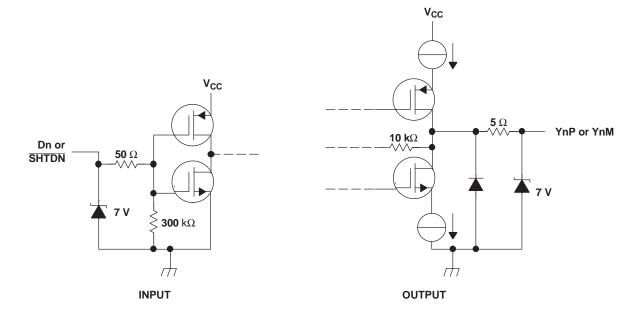



Figure 1. Typical 'LVDS93 Load and Shift Sequences

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

SN65LVDS93

SLLS302G-MAY 1998-REVISED MAY 2009

www.ti.com

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			UNIT
V_{CC}	Supply voltage range ⁽²⁾		–0.5 V to 4 V
Vo	Voltage range at any output te	-0.5 V to V _{CC} + 0.5 V	
VI	Voltage range at any input tern	–0.5 V to 5.5 V	
	Electrostatic discharge ⁽³⁾	Bus Pins (Class 3A)	6 KV
		Bus Pins (Class 2B)	400 V
		Bus Pins (Class 2A)	6 KV
		Bus Pins (Class 2B)	200 V
	Continuous total power dissipa	tion	See Dissipation Rating Table
T _A	Operating free-air temperature	range	–40°C to 85°C
T _{stg}	Storage temperature range	–65°C to 150°C	
	Lead temperature 1,6 mm (1/1	6 inch) from case for 10 seconds	260°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to the GND terminals.
(3) This rating is measured using MIL-STD-883C Method, 3015.7.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR ⁽¹⁾	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
DGG	1377 mW	11 mW/°C	882 mW	717 mW

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	3	3.3	3.6	V
V_{IH}	High-level input voltage	2			V
V_{IL}	Low-level input voltage			0.8	V
ZL	Differential load impedance	90		132	Ω
T _A	Operating free-air temperature	-40		85	°C

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _T	Input voltage threshold			1.4		V
V _{OD}	Differential steady-state output voltage magnitude		247		454	mV
$\Delta V_{OD} $	Change in the steady-state differential output voltage magnitude between opposite binary states	$R_L = 100 \Omega$, See Figure 3			50	mV
V _{OC(SS)}	Steady-state common-mode output voltage	See Figure 3	1.125		1.375	V
V _{OC(PP)}	Peak-to-peak common-mode output voltage				150	mV
I _{IH}	High-level input current	$V_{IH} = V_{CC}$			20	μA
I _{IL}	Low-level input current	$V_{IL} = 0 V$			±10	μA
-	Chart singuit autout surgest	V _{OY} = 0 V			±24	mA
los	Short-circuit output current	V _{OD} = 0 V			±12	mA
I _{OZ}	High-impedance state output current	$V_{O} = 0 V$ to V_{CC}			±20	μΑ
		Disabled, All inputs at GND			350	μΑ
I _{CC(AVG)}	Quiescent current (average)	Enabled, $R_L = 100 \Omega$ (5 places), Worst-case pattern (see Figure 4), $t_c = 15.38$ ns		95	120	mA
Ci	Input capacitance			3		pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

TIMING REQUIREMENTS

		MIN	NOM	MAX	UNIT
t _c	Input clock period	14.7	t _c	50	ns
tw	High-level input clock pulse width duration	0.4t _c		0.6t _c	ns
t _t	Input signal transition time			5	ns
t _{su}	Data setup time, D0 through D27 before CLKIN↑ or CLKIN↓ (see Figure 2)	3			ns
t _h	Data hold time, D0 through D27 after CLKIN↓ or CLKIN↑ (see Figure 2)	1.5			ns

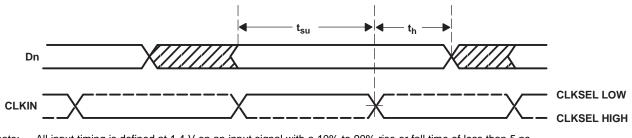
SN65LVDS93

SLLS302G-MAY 1998-REVISED MAY 2009

www.ti.com

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

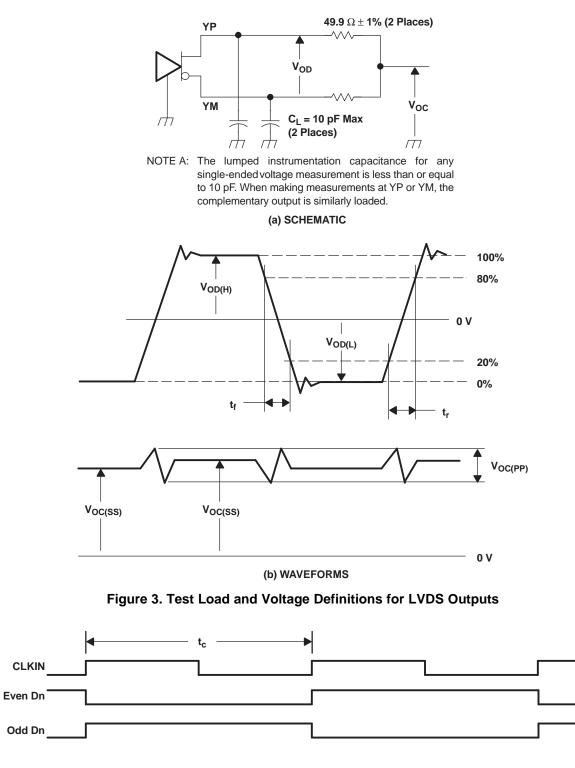

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t ₀	Delay time, CLKOUT↑ to serial bit position 0		-0.20	0	0.20	ns
t ₁	Delay time, CLKOUT↑ to serial bit position 1		$\frac{1}{7}t_{C}^{} - 0.20$		$\frac{1}{7}t_{c} + 0.20$	ns
t ₂	Delay time, CLKOUT↑ serial bit position 2		$\frac{2}{7}t_{C}^{}-0.20$		$\frac{2}{7}t_{c} + 0.20$	ns
t ₃	Delay time, CLKOUT↑ serial bit position 3	t _c = 15.38 ns (±0.2%),	$\frac{3}{7}t_{C}^{} - 0.20$		$\frac{3}{7}t_{c} + 0.20$	ns
t ₄	Delay time, CLKOUT↑ to serial bit position 4	Input clock jitter < 50 ps ⁽²⁾ , See Figure 5	$\frac{4}{7}t_{C}^{}-0.20$		$\frac{4}{7}t_{C} + 0.20$	ns
t ₅	Delay time, CLKOUT↑ to serial bit position 5		$\frac{5}{7}t_{C}^{} - 0.20$		$\frac{5}{7}t_{C} + 0.20$	ns
t ₆	Delay time, CLKOUT↑ to serial bit position 6		$\frac{6}{7}t_{C}^{} - 0.20$		$\frac{6}{7}t_{C} + 0.20$	ns
t _{sk(o)}	Output skew, $t_n - \frac{n}{7}t_c$		-0.20		0.20	ns
t ₇	Delay time, CLKIN \downarrow or CLKIN \uparrow to CLKOUT \uparrow	$t_c = 15.38$ ns (±0.2%), Input clock jitter < 50 ps ⁽²⁾ , See Figure 5		4.2		ns
t _{c(o)}	Output clock period			t _c		ps
۸+	Output clock cycle-to-cycle jitter ⁽³⁾	t_c = 15.38 ns + 0.75sin (2 π 500E3t) ± 0.05 ns, See Figure 6		±80		ps
$\Delta t_{c(o)}$		t_c = 15.38 ns + 0.75sin (2 π 3E6t) ± 0.05 ns, See Figure 6		±300		ns
t _w	High-level output clock pulse duration			$\frac{4}{7}t_{c}$		ps
tt	Differential output voltage transition time (t_r or t_f)	See Figure 3	260	700	1500	ps
t _{en}	Enable time, SHTDN↑ to phase lock (Yn valid)	See Figure 7		1		ms
t _{dis}	Disable time, $\overline{\text{SHTDN}}\downarrow$ to off-state (CLKOUT low)	See Figure 8		250		ns

(1)

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. Input clock jitter is the magnitude of the charge in the input clock period

(2) (3) The output clock jitter is the change in the output clock period from one cycle to the next cycle observed over 15,000 cycles.

PARAMETER MEASUREMENT INFORMATION



All input timing is defined at 1.4 V on an input signal with a 10% to 90% rise or fall time of less than 5 ns. note:

Figure 2. Setup and Hold Time Definition

PARAMETER MEASUREMENT INFORMATION (continued)

NOTE A: The worst-case test pattern produces nearly the maximum switching frequency for all of the LVDS outputs. Pattern with CLKSEL low shown.

Figure 4. Worst-Case Test Pattern (CLKSEL Low Shown)

TEXAS INSTRUMENTS

www.ti.com

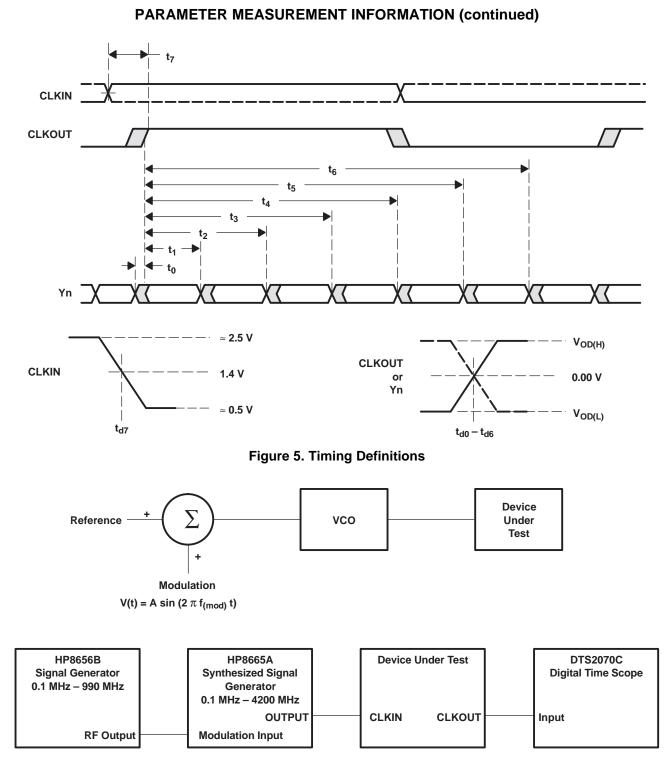


Figure 6. Output Clock Jitter Test Setup

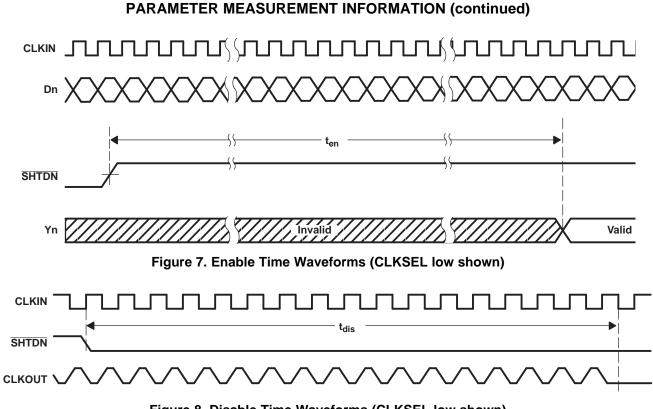
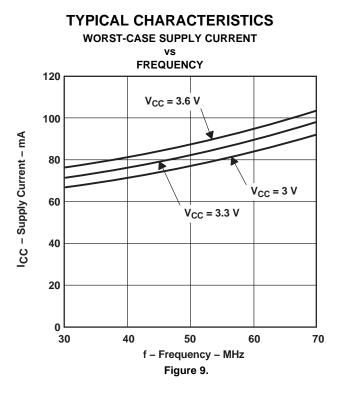



Figure 8. Disable Time Waveforms (CLKSEL low shown)

SN65LVDS93 SLLS302G-MAY 1998-REVISED MAY 2009

www.ti.com

APPLICATION INFORMATION

16-BIT BUS EXTENSION

In a 16-bit bus application (Figure 10), TTL data and clock coming from bus transceivers that interface the backplane bus arrive at the Tx parallel inputs of the LVDS serdes transmitter. The clock associated with the bus is also connected to the device. The on-chip PLL synchronizes this clock with the parallel data at the input. The data is then multiplexed into three different line drivers which perform the TTL to LVDS conversion. The clock is also converted to LVDS and presented to a separate driver. This synchronized LVDS data and clock at the receiver, which recovers the LVDS data and clock, performs a conversion back to TTL. Data is then demultiplexed into a parallel format. An on-chip PLL synchronizes the received clock with the parallel data, and then all are presented to the parallel output port of the receiver.

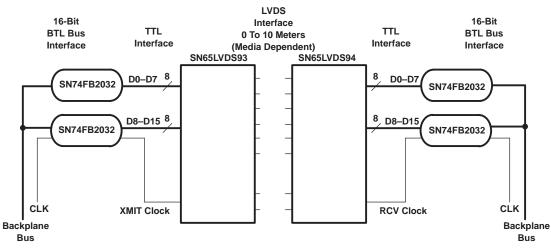


Figure 10. 16-Bit Bus Extension

16-BIT BUS EXTENSION WITH PARITY

In the previous application we did not have a checking bit that would provide assurance that the data crosses the link. If we add a parity bit to the previous example, we would have a diagram similar to the one in Figure 11. The device following the SN74FB2032 is a low-cost parity generator. Each transmit-side transceiver/parity generator takes the LVTTL data from the corresponding transceiver, performs a parity calculation over the byte, and then passes the bits with its calculated parity value on the parallel input of the LVDS serdes transmitter. Again, the on-chip PLL synchronizes this transmit clock with the eighteen parallel bits (16 data + 2 parity) at the input. The synchronized LVDS data/parity and clock arrive at the receiver.

The receiver performs the conversion from LVDS to LVTTL and the transceiver/parity generator performs the parity calculations. These devices compare their corresponding input bytes with the value received on the parity bit. The transceiver/parity generator will assert its parity error output if a mismatch is detected.

SN65LVDS93

SLLS302G-MAY 1998-REVISED MAY 2009

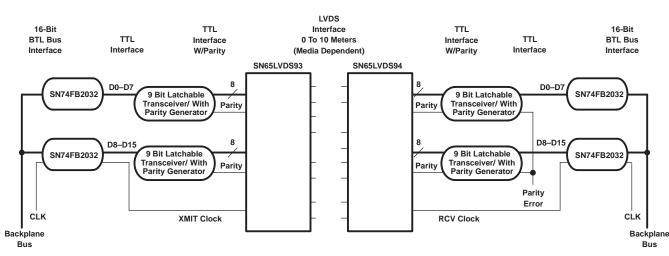


Figure 11. 16-Bit Bus Extension With Parity

low cost virtual backplane transceiver

Figure 12 represents LVDS serdes in an application as a virtual backplane transceiver (VBT). The concept of a VBT can be achieved by implementing individual LVDS serdes chipsets in both directions of subsystem serialized links.

Depending on the application, the designer will face varying choices when implementing a VBT. In addition to the devices shown in Figure 12, functions such as parity and delay lines for control signals could be included. Using additional circuitry, half-duplex or full-duplex operation can be achieved by configuring the clock and control lines properly.

The designer may choose to implement an independent clock oscillator at each end of the link and then use a PLL to synchronize LVDS serdes's parallel I/O to the backplane bus. Resynchronizing FIFOs may also be required.

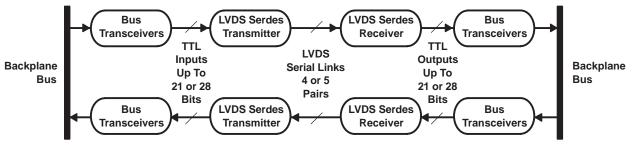


Figure 12. Virtual Backplane Transceiver

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN65LVDS93DGG	Active	Production	TSSOP (DGG) 56	35 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-	SN65LVDS93
SN65LVDS93DGG.B	Active	Production	TSSOP (DGG) 56	35 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SN65LVDS93
SN65LVDS93DGGG4	Active	Production	TSSOP (DGG) 56	35 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	See SN65LVDS93DGG	SN65LVDS93
SN65LVDS93DGGR	Active	Production	TSSOP (DGG) 56	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SN65LVDS93
SN65LVDS93DGGR.B	Active	Production	TSSOP (DGG) 56	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SN65LVDS93
SN65LVDS93DGGR1G4	Active	Production	TSSOP (DGG) 56	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SN65LVDS93
SN65LVDS93DGGR1G4.B	Active	Production	TSSOP (DGG) 56	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SN65LVDS93

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

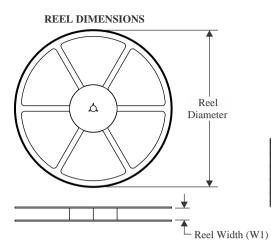
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

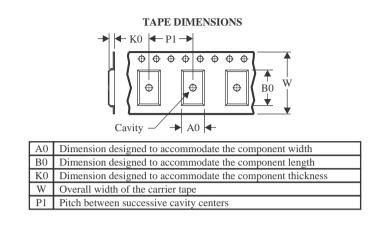
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

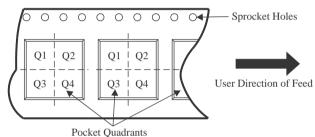
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


14-Jul-2025

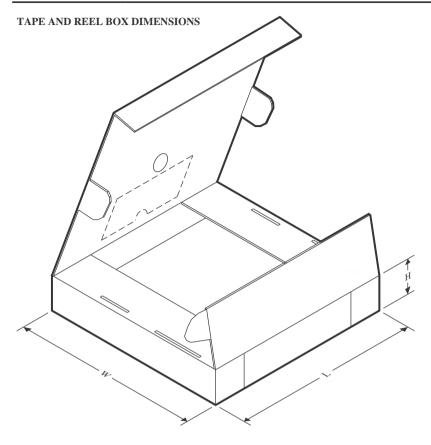


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

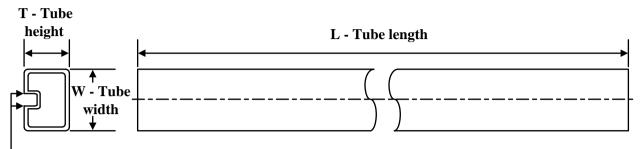


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVDS93DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN65LVDS93DGGR1G4	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

15-Jul-2025

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVDS93DGGR	TSSOP	DGG	56	2000	350.0	350.0	43.0
SN65LVDS93DGGR1G4	TSSOP	DGG	56	2000	350.0	350.0	43.0

TEXAS INSTRUMENTS

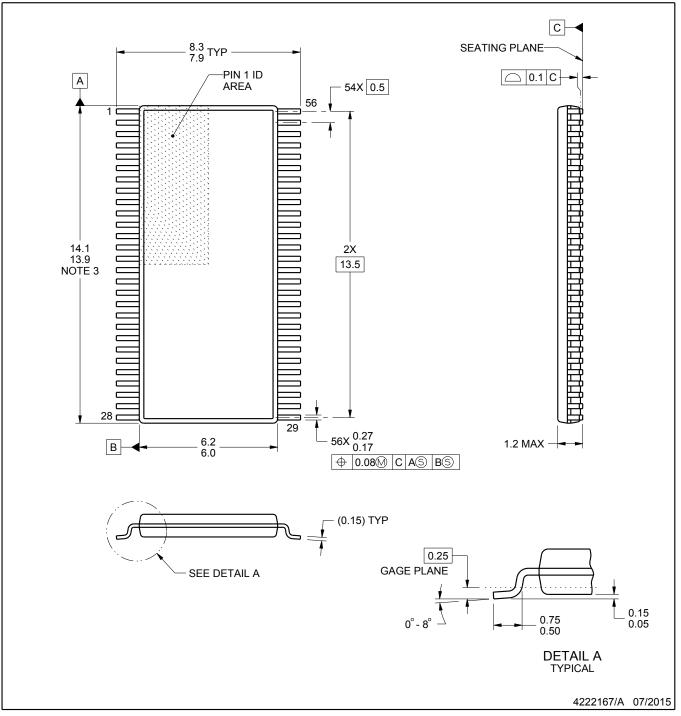
www.ti.com

15-Jul-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal


Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN65LVDS93DGG	DGG	TSSOP	56	35	530	11.89	3600	4.9
SN65LVDS93DGG.B	DGG	TSSOP	56	35	530	11.89	3600	4.9
SN65LVDS93DGGG4	DGG	TSSOP	56	35	530	11.89	3600	4.9

PACKAGE OUTLINE

DGG0056A

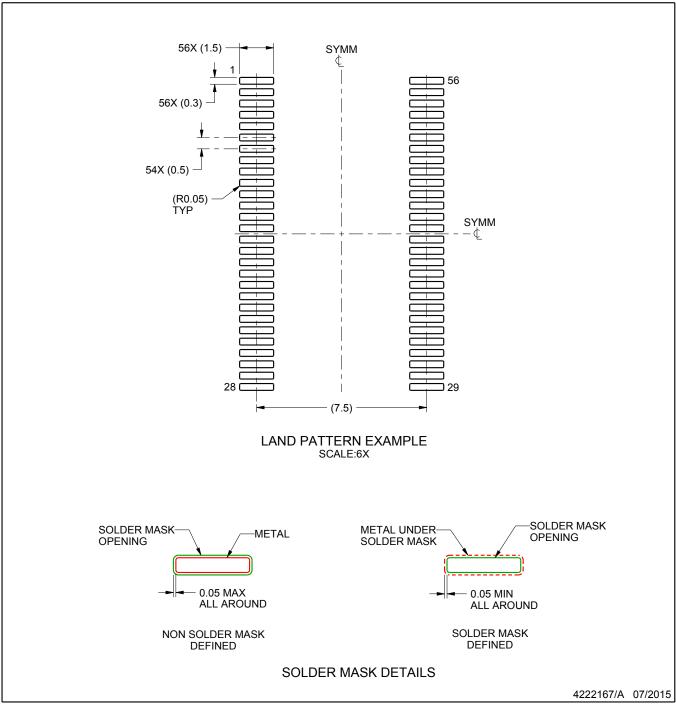
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153.



DGG0056A

EXAMPLE BOARD LAYOUT

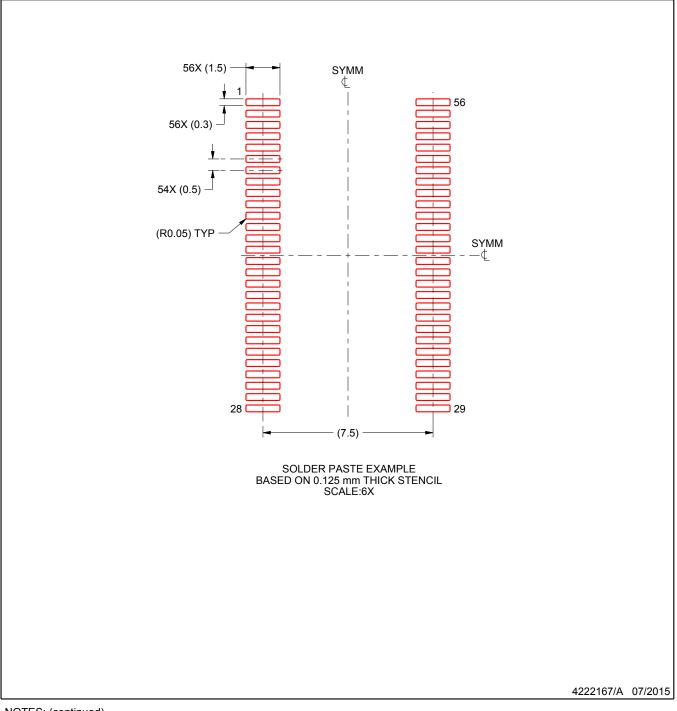
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGG0056A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated