SLLS041G - OCTOBER 1988 - REVISED JANUARY 2000

- Meet or Exceed the Requirements of TIA/EIA-232-F and ITU Recommendation V.28
- Low Supply Current . . . 420 μA Typ
- Preset On-Chip Input Noise Filter
- Built-in Input Hysteresis
- Response and Threshold Control Inputs
- Push-Pull Outputs
- Functionally Interchangeable and Pin-to-Pin Compatible With Texas Instruments SN75189/SN75189A and Motorola MC1489/MC1489A
- Package Options Include Plastic Small-Outline (D) and Shrink Small-Outline (DB) Packages, and Standard Plastic (N) DIP

The SN75C189 and SN75C189A are low-power, bipolar, quadruple line receivers that are used to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). These devices have been designed to conform to TIA/EIA-232-F.

The SN75C189 has a 0.33-V typical hysteresis, compared with 0.97 V for the SN75C189A. Each receiver has provision for adjustment of the overall input threshold levels. This is achieved by choosing external series resistors and voltages to provide bias levels for the response-control pins. The output is in the high logic state if the input is open circuit or shorted to ground.

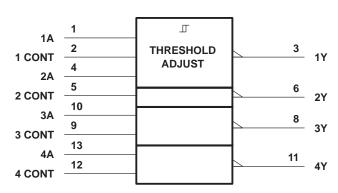
These devices have an on-chip filter that rejects input pulses of less than 1-µs duration. An external capacitor can be connected from the control pins to ground to provide further input noise filtering for each receiver.

The SN75C189 and SN75C189A have been designed using low-power techniques in a bipolar technology. In most applications, these receivers interface to single inputs of peripheral devices such as UARTs, ACEs, or microprocessors. By using sampling, such peripheral devices usually are insensitive to the transition times of the input signals. If this is not the case, or for other uses, it is recommended that the SN75C189 and SN75C189A outputs be buffered by single Schmitt input gates or single gates of the HCMOS, ALS, or 74F logic families.

The SN75C189 and SN75C189A are characterized for operation from 0°C to 70°C.

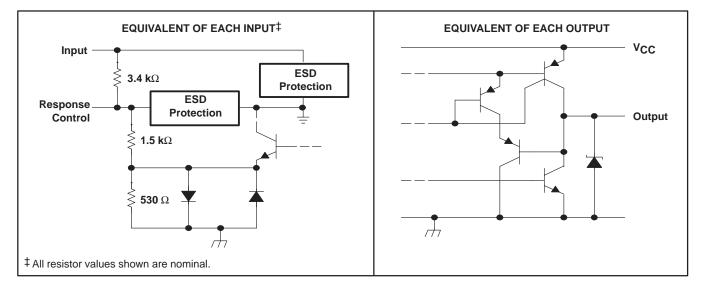
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2000, Texas Instruments Incorporated

D, DB, OR N PACKAGE (TOP VIEW)											
2 CONT	2 3 4 5	14 13 12 11 10 9 8] V _{CC}] 4A] 4 CONT] 4Y] 3A] 3 CONT] 3Y								


SLLS041G - OCTOBER 1988 - REVISED JANUARY 2000

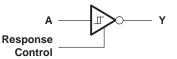
logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematic of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)§

Supply voltage, V _{CC} (see Note 1)		
Input voltage range, V _I		
Output voltage range, VO		-0.3 V to V _{CC} + 0.3 V
Package thermal impedance, θ_{JA} (see Note	2): D package	
	DB package .	
Lead temperature 1,6 mm (1/16 inch) from ca	ase for 10 seconds	
Storage temperature range, T _{stg}		–65°C to 150°C


Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to network GND.

2. The package thermal impedance is calculated in accordance with JESD 51.

logic diagram (each receiver)

SLLS041G - OCTOBER 1988 - REVISED JANUARY 2000

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage	4.5	5	6	V
Input voltage (see Note 3)	-25		25	V
High-level output current			-3.2	mA
Low-level output current			3.2	mA
Response-control current			±1	mA
Operating free-air temperature	0		70	°C
	Input voltage (see Note 3) High-level output current Low-level output current Response-control current	Supply voltage 4.5 Input voltage (see Note 3) -25 High-level output current -25 Low-level output current -25 Response-control current -25	Supply voltage4.55Input voltage (see Note 3)-25High-level output current-25Low-level output current-25Response-control current-25	Supply voltage4.556Input voltage (see Note 3)-2525High-level output current25-3.2Low-level output current3.2Response-control current±1

NOTE 3: The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only, e.g., if -10 V is a maximum, the typical value is a more negative voltage.

electrical characteristics over recommended free-air temperature range, V_{CC} = 5 V \pm 10% (unless otherwise noted) (see Note 4)

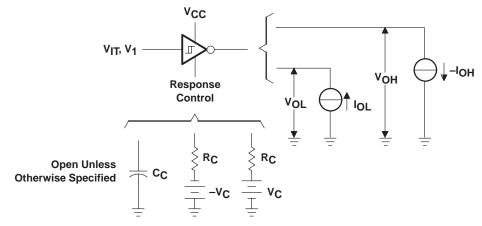
	PARAMETER	TEST COND	MIN	TYP [†]	MAX	UNIT				
		'C189	89		1		1.5	V		
VIT+	Positive-going input threshold voltage	'C189A	See Figure 1		1.6		2.25	V		
\/. _	Negative going input threshold veltage	'C189	See Figure 1		0.75		1.25	V		
VIT-	Negative-going input threshold voltage	'C189A	See Figure 1		0.75	1	1.25	v		
V .			Soo Figuro 1		0.15	0.33		V		
V _{hys}	Input hysteresis voltage (V _{IT+} – V _{IT} –)	'C189A	See Figure 1	See Figure 1				v		
			$V_{CC} = 4.5 V \text{ to } 6 V,$ $I_{OH} = -20 \mu A$	V _I = 0.75 V,	3.5			V		
VОН	VOH High-level output voltage				$V_{CC} = 4.5 V \text{ to } 6 V,$ $I_{OH} = -3.2 \text{ mA}$	V _I = 0.75 V,	2.5			V
VOL Low-level output voltage			$V_{CC} = 4.5 V \text{ to } 6 V,$ $I_{OL} = 3.2 \text{ mA}$	V _I = 3 V,			0.4	V		
				V _I = 25 V	3.6		8.3			
ін	High-level input current		See Figure 2	V _I = 3 V	0.43		1	mA		
1			See Figure 2	VI = -25 V	-3.6		-8.3	A		
IIL Low-level input current			See Figure 2	$V_{I} = -3 V$	-0.43		-1	mA		
los	Short-circuit output current		See Figure 3				-35	mA		
ICC			V _I = 5 V, See Figure 2	No load,		420	700	μΑ		

[†] All typical values are at $T_A = 25^{\circ}C$.

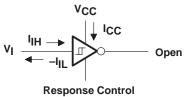
NOTE 4: All characteristics are measured with response-control terminal open.

switching characteristics, V_{CC} = 5 V $\pm 10\%,$ T_A = 25°C

	PARAMETER	Т	EST CONDITIC	MIN	TYP	MAX	UNIT	
^t PLH	Propagation delay time, low- to high-level output						6	μs
^t PHL	Propagation delay time, high- to low-level output						6	μs
^t TLH	Transition time, low- to high-level output \ddagger	$R_L = 5 k\Omega$,	C _L = 50 pF,	See Figure 4			500	ns
^t THL	Transition time, high- to low-level output [‡]						300	ns
^t w(N)	Duration of longest pulse rejected as noise \S				1		6	μs


[‡] Measured between 10% and 90% points of output waveform

\$ The receiver ignores any positive- or negative-going pulse that is less than the minimum value of $t_{W(N)}$ and accepts any postive- or negative-going pulse greater than the maximum of $t_{W(N)}$.


SLLS041G - OCTOBER 1988 - REVISED JANUARY 2000

PARAMETER MEASUREMENT INFORMATION

NOTE A: Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

Figure 1. V_{T+} , V_{IT-} , V_{OH} , V_{OL}

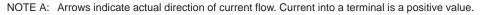
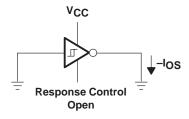
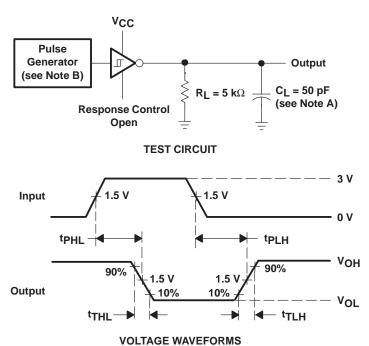



Figure 2. IIH, IIL, ICC

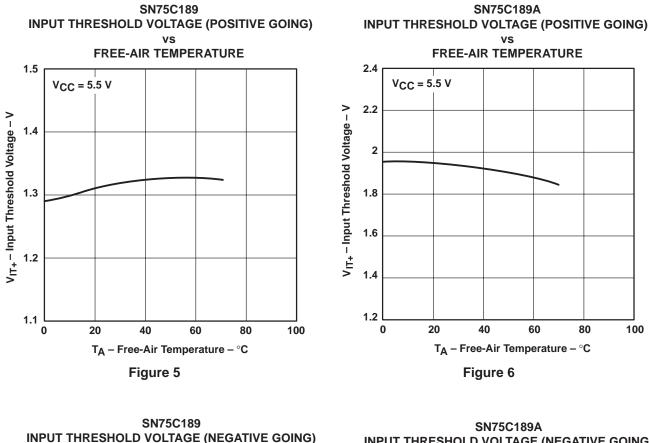


NOTE A: Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

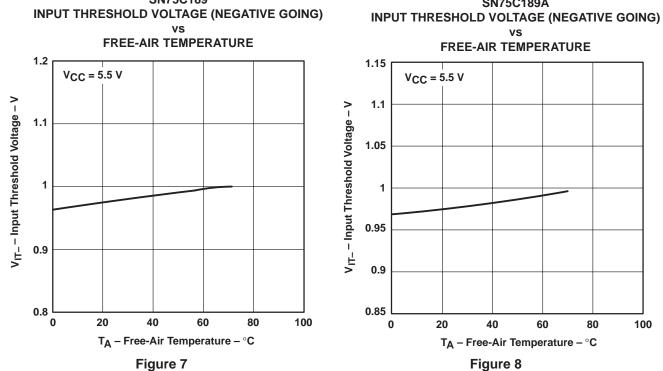
Figure 3. I_{OS}

SLLS041G - OCTOBER 1988 - REVISED JANUARY 2000

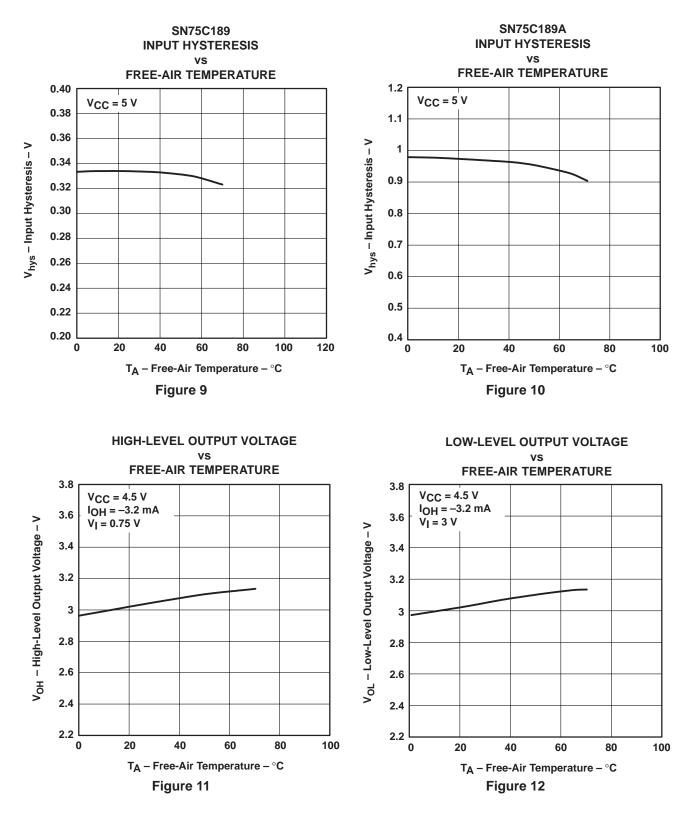
PARAMETER MEASUREMENT INFORMATION

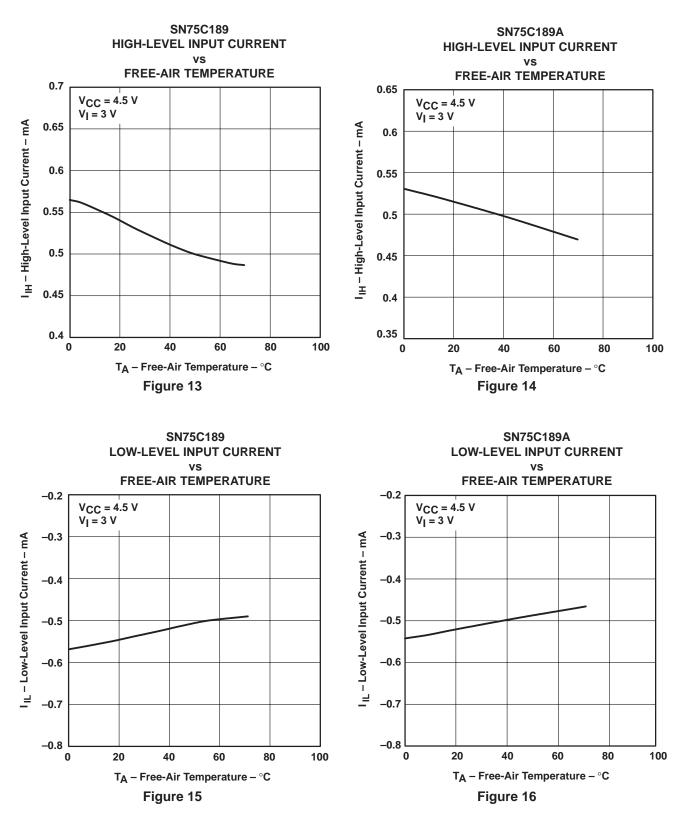

NOTES: A. CL includes probe and jig capacitances.

B. The pulse generator has the following characteristics: Z_{O} = 50 Ω , t_{W} = 25 μ s.

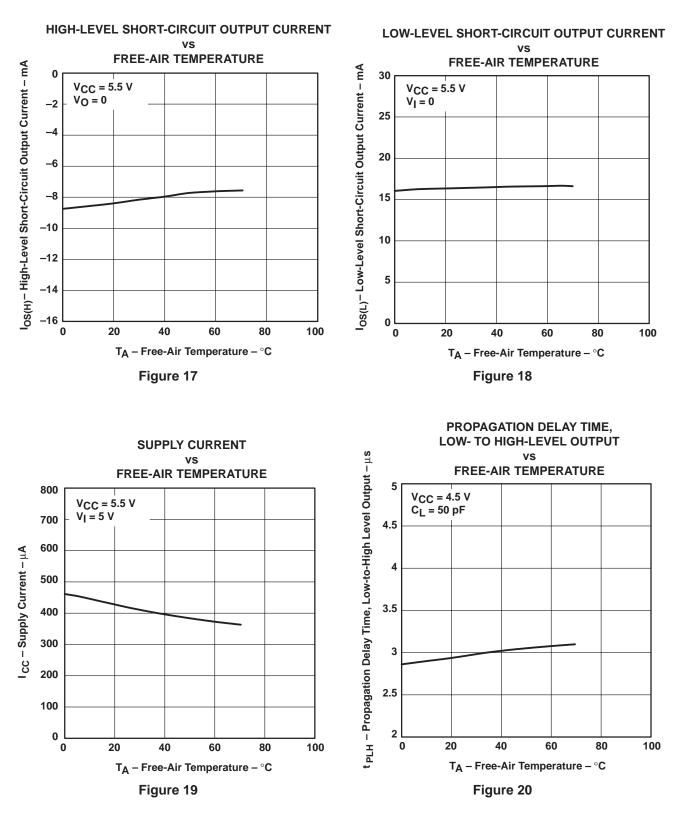

Figure 4. Test Circuit and Voltage Waveforms

SLLS041G - OCTOBER 1988 - REVISED JANUARY 2000

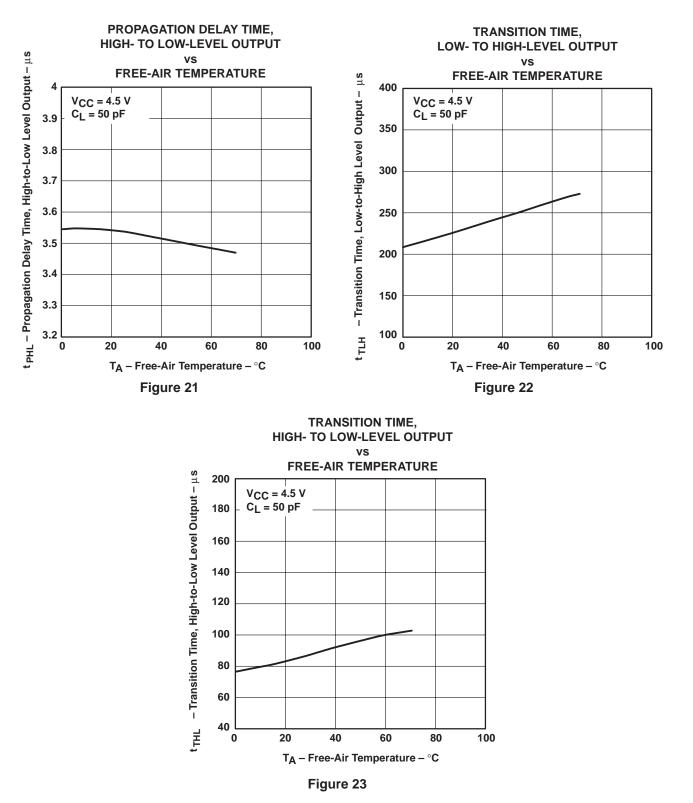




SLLS041G - OCTOBER 1988 - REVISED JANUARY 2000



SLLS041G - OCTOBER 1988 - REVISED JANUARY 2000



SLLS041G - OCTOBER 1988 - REVISED JANUARY 2000

SLLS041G - OCTOBER 1988 - REVISED JANUARY 2000

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
SN75C189AD	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	0 to 70	75C189A
SN75C189ADBR	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA189A
SN75C189ADBR.A	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA189A
SN75C189ADBRE4	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA189A
SN75C189ADR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	0 to 70	75C189A
SN75C189ADR.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75C189A
SN75C189AN	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75C189AN
SN75C189AN.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75C189AN
SN75C189ANE4	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75C189AN
SN75C189ANSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75C189A
SN75C189ANSR.A	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75C189A
SN75C189D	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	0 to 70	SN75C189
SN75C189DR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C189
SN75C189DR.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C189
SN75C189DRE4	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C189
SN75C189N	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75C189N
SN75C189N.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75C189N
SN75C189NSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75C189
SN75C189NSR.A	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75C189

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

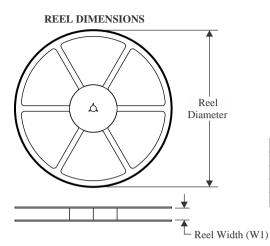
23-May-2025

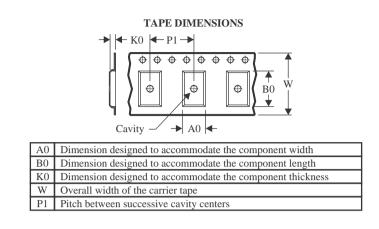
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

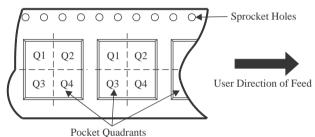
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

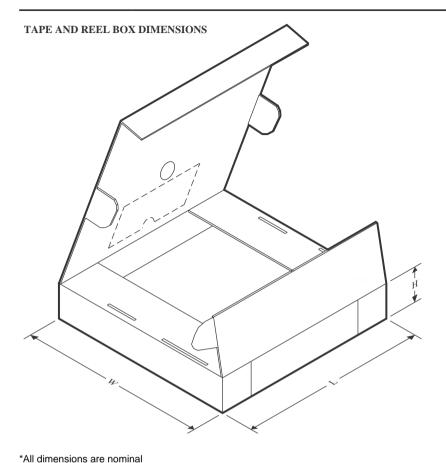

www.ti.com

Texas


STRUMENTS

TAPE AND REEL INFORMATION

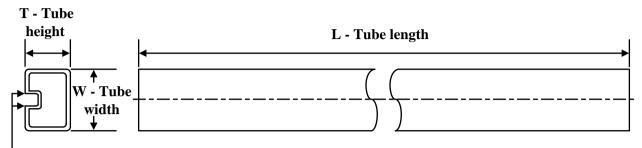
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75C189ADBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN75C189ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN75C189ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN75C189ANSR	SOP	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN75C189DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN75C189NSR	SOP	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

23-May-2025


All ulmensions are norminal							r
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75C189ADBR	SSOP	DB	14	2000	356.0	356.0	35.0
SN75C189ADR	SOIC	D	14	2500	353.0	353.0	32.0
SN75C189ADR	SOIC	D	14	2500	356.0	356.0	35.0
SN75C189ANSR	SOP	NS	14	2000	356.0	356.0	35.0
SN75C189DR	SOIC	D	14	2500	356.0	356.0	35.0
SN75C189NSR	SOP	NS	14	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

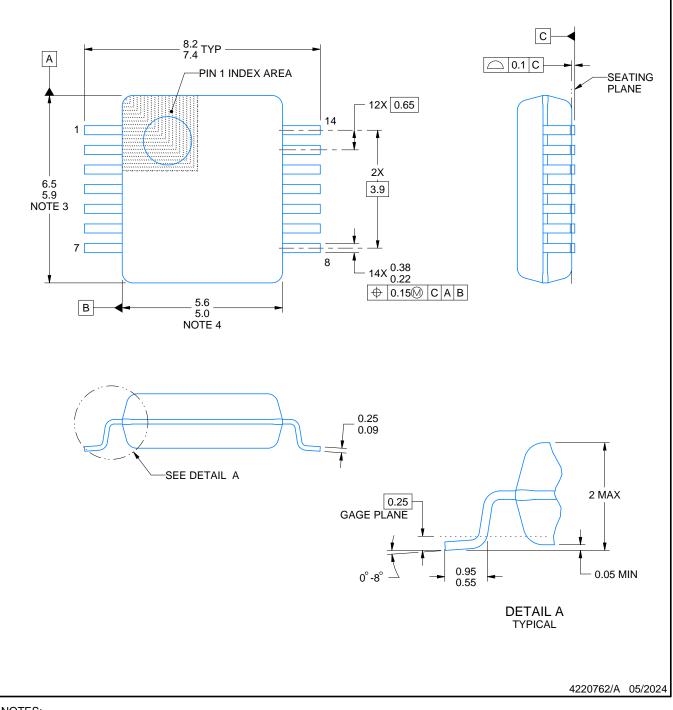
23-May-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN75C189AN	N	PDIP	14	25	506	13.97	11230	4.32
SN75C189AN.A	N	PDIP	14	25	506	13.97	11230	4.32
SN75C189ANE4	N	PDIP	14	25	506	13.97	11230	4.32
SN75C189N	N	PDIP	14	25	506	13.97	11230	4.32
SN75C189N.A	N	PDIP	14	25	506	13.97	11230	4.32


DB0014A

PACKAGE OUTLINE

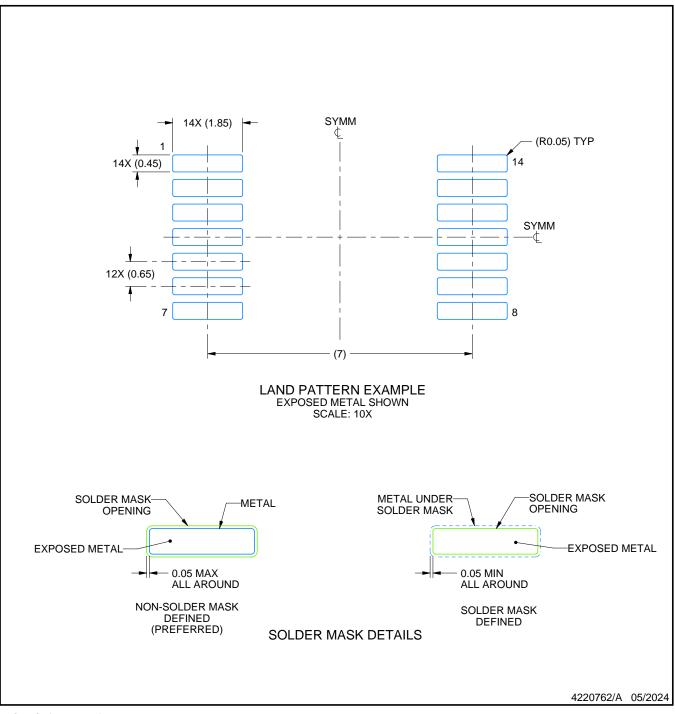
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-150.



DB0014A

EXAMPLE BOARD LAYOUT

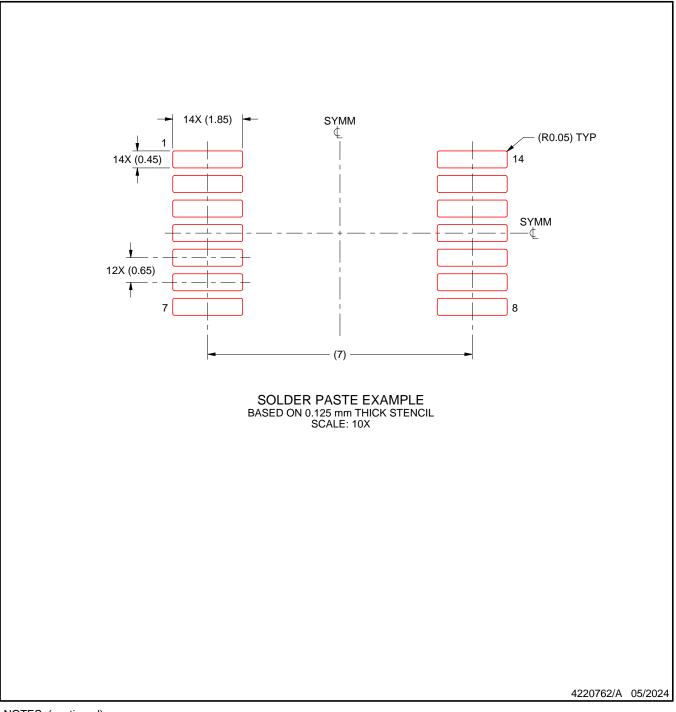
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0014A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

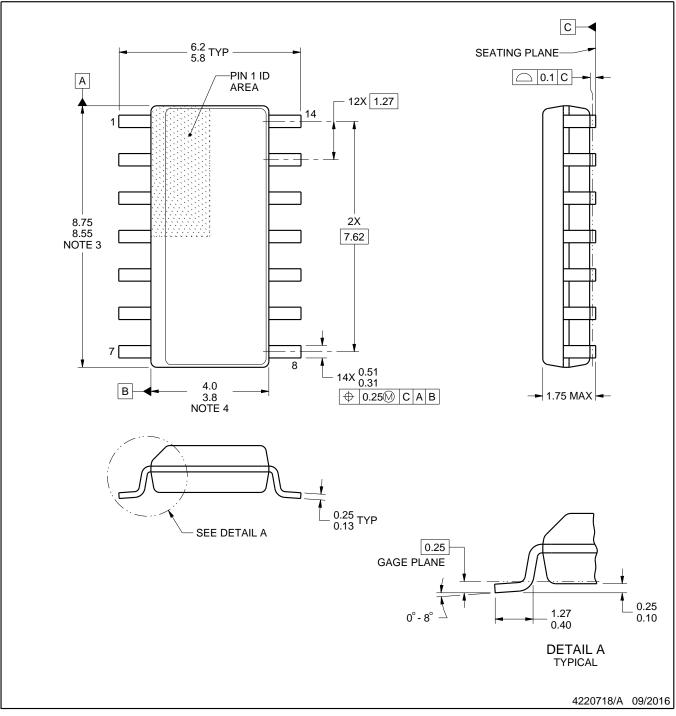
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


D0014A

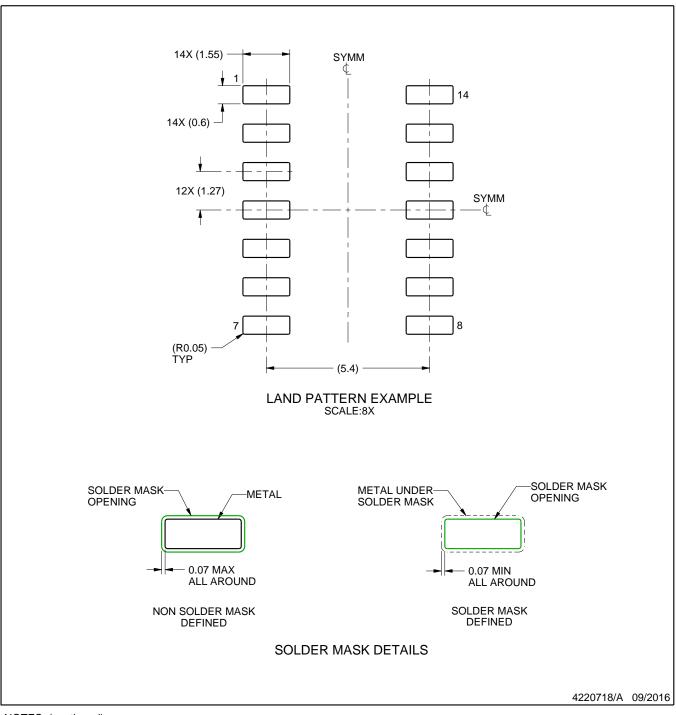
PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.



D0014A

EXAMPLE BOARD LAYOUT

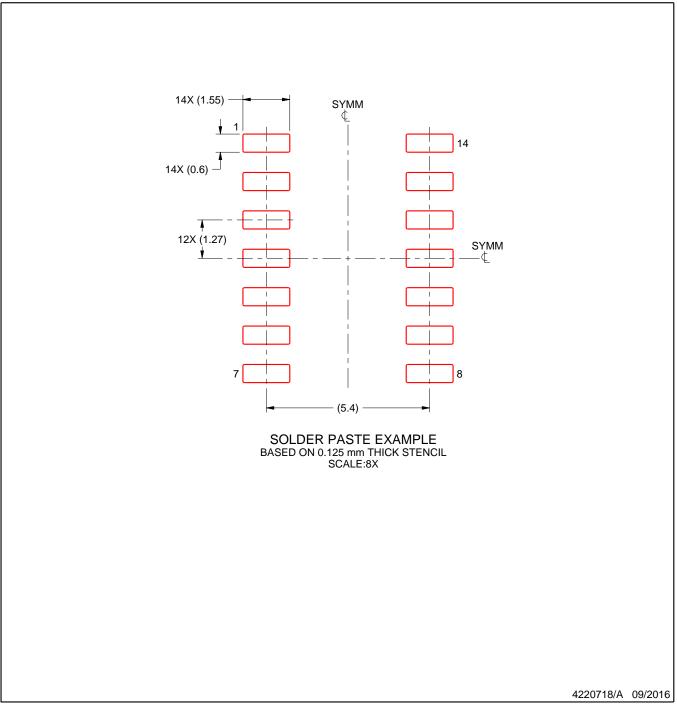
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0014A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated