I3 TEXAS

INSTRUMENTS

TivaWare™ Peripheral Driver Library

USER’S GUIDE

Literature Number: SPMU298E
March 2013 - Revised April 2020

SW-TM4C-DRL-UG-2.2.0.295 Copyright © 2006-2020
Texas Instruments Incorporated

Copyright

Copyright © 2006-2020 Texas Instruments Incorporated. All rights reserved. Tiva, TivaWare, Code Composer Studio are trademarks of Texas Instru-
ments. Arm, Cortex, Thumb are registered trademarks of Arm Limited. All other trademarks are the property of their respective owners.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments]

108 Wild Basin, Suite 350 I TEXAS

Austin, TX 78746

www.ti.com/tiva-c INSTRUMENTS

Cortex

Intelligent Processors by ARM®

a
L
oc
w
=
<)
o
|

Revision Information

This is version 2.2.0.295 of this document, last updated on April 02, 2020.

2 April 02, 2020

www.ti.com/tiva-c

Table of Contents

Table of Contents

Copyright e
Revision Information,
1 Introduction o e
2 ProgrammingModel
21 Introduction.
2.2 Direct Register Access Model
2.3 Software DriverModel
2.4 Combining TheModels
3 Analog Comparatorc.ccuuuunn.
3.1 Introduction.
3.2 APlIFunctions
3.3 Programming Example,
4 Analog to Digital Converter (ADC)

41 Introduction.
42 APlFunctions
4.3 Programming Example,
5 AES e e e e e e
51 Introduction.
52 APlIFunctions
5.3 Programming Example,
6 Controller Area Network (CAN)
6.1 Introduction.
6.2 APlFunctions
6.3 CANMessage Objects
6.4 Programming Examples L.
7 CRC. ... e e e
7.1 Introduction.
7.2 APlFunctions
7.3 Programming Example L.
8 DES e e e e e e
8.1 Introduction.
8.2 APlIFunctions
8.3 DES Programming Example
8.4 TDES Programming Example
9 EEPROM ittt ettt e e e e e
9.1 Introduction.
9.2 APlIFunctions
9.3 Programming Example
10 EthernetController.
10.1 Introduction.
10.2 APIFunctions
10.3 Programming Example
11 External Peripheral Interface (EPI)

11.1 Introduction
11.2 APIFunctions

April 02, 2020

Table of Contents

11.3 Programming Example e 237
12 Flash e 239
12.1 Introduction e e 239
12.2 APLFUNCLIONS e 239
12.3 Programming Example 248
13 Floating-Point Unit (FPU) et e e e e e e e e e e e e e e 249
13.1 Introduction e e 249
13.2 APILFuNnctions e e e e 250
13.3 Programming Example 254
14 GPIO . . . e e e e e e e e e e e e e e e e e e 255
14.1 Introduction 255
14.2 APl Functions e 256
14.3 Programming Example 287
15 Hibernation Module @i e e e e e 291
15.1 Introduction e e e e e 291
15.2 APl Functions e 291
15.3 Programming Example 319
16 Inter-Integrated Circuit (I2C) i i i i i i i e e e e e e e e e e 323
16.1 Introduction L e 323
16.2 APl Functions e 324
16.3 Programming Example e 351
17 Interrupt Controller (NVIC) o i i it e e e e e e e e e e e e 353
171 Introduction L . e 353
17.2 APIFunctions L e 354
17.3 Programming Example e 364
18 LCDController (LCD) i i it i e e e e e e e e e e e e et e e e e e e n 367
18.1 Introduction L e 367
18.2 APIFUNCLIONS 367
18.3 Programming Example e 395
19 Memory Protection Unit (MPU) o i e e e e e e e e e 399
19.1 Introduction e 399
19.2 APIFUNCLIONS 399
19.3 Programming Example 406
20 1-WireMaster Module i i e e e e e e e e 409
20.1 Introduction e 409
20.2 APIFuUNctions e e e 409
20.3 Programming Example e 417
21 Pulse Width Modulator (PWM)t e e e e e e e e e e e e e 419
21.1 Introduction e 419
21.2 APIFuUNctions e e 419
21.3 Programming Example 441
22 Quadrature Encoder (QEI) i i e e e e e e e 443
221 Introduction L L e e e 443
22.2 APIFuNnctions e e 443
22.3 Programming Example L e 453
23 SHA/MDS e 455
23.1 Introduction L L e e 455
23.2 APIFunctions e e 455
4 April 02, 2020

Table of Contents

23.3
23.4

24

241
24.2
24.3

25

25.1
25.2
25.3

26

26.1
26.2
26.3

27

271
27.2
27.3

28

28.1
28.2
28.3

29

29.1
29.2
29.3

30

30.1
30.2
30.3

31

31.1
31.2
31.3

32

32.1
32.2
32.3
32.4
32.5
32.6
32.7

33

33.1
33.2
33.3

34
34.1
34.2

Hashing Programming Example 465
HMAC Programming Example 465
Synchronous Serial Interface (SSI) i i i e e e e 467
Introduction L e 467
APLFUNCHIONS e e e e e 467
Programming Example e 481
Software CRC Module e e e e 483
Introduction e e e e e e e e e 483
APLFUNCLIONS o e e e 483
Programming Example 486
SystemControl e e e e e e e e e e e e e 487
Introduction L e e e e e e e 487
APIFUNCLiONS o e e e 488
Programming Example 525
System Exception Module it e e e e e 527
Introduction L e e e e 527
APIFUNCLiONS o e e 527
Programming Example e e 530
System Tick (SYSTiCK) v i i i e i i e e e e e e e e e 533
Introduction L e e e e 533
APLFUNCONS 533
Programming Example e e 537
1111 539
INtrodUCtioN e e e e e 539
APLFUNCONS e e 540
Programming Example e 562
UART . . . i e e e e e e e e e e e e e e e e e 565
Introduction L e e 565
APLFUNCLONS e 565
Programming Example e 589
UDMA Controller o i i it et e et e e e e e et e e e e 591
Introduction L e e 591
APLFUNCHIONS e e e e 592
Programming Example 612
USB Controller it e et e e e e e e e e e 615
Introduction e e e e e e e 615
General USB APl Functions e e 615
Using USB with the uDMA Controller o 658
Using the integrated USB DMA Controller i e 662
USB Link Power Management Functions 677
USB UTMI Low Pin Interface (ULPI) e e e 690
Programming Example e 694
Watchdog Timer i it e e e e e e e e et e e 695
Introduction L e 695
APLFUNCHIONS o e e e e e e 695
Programming Example 704
Usingthe ROM i i i e e et e et s e e e e s a e s 707
IntroducCtion e e e e e e e e e e 707
Direct ROM Calls e e e e e e e e 707

April 02, 2020 5

Table of Contents

34.3 Mapped ROM Calls e e 708
34.4 Firmware Update 709
35 ErrorHandling ¢ ¢ it e e e e e e e e e e e 713
IMPORTANT NOTICE e e e e e e e e e e e e et s e e e e e 714

April 02, 2020

Introduction

1 Introduction

The Texas Instruments® TivaWare™ Peripheral Driver Library is a set of drivers for accessing the
peripherals found on the Tiva™ family of ARM® Cortex™-M based microcontrollers. While they are
not drivers in the pure operating system sense (that is, they do not have a common interface and
do not connect into a global device driver infrastructure), they do provide a mechanism that makes
it easy to use the device’s peripherals.

The capabilities and organization of the drivers are governed by the following design goals:

m They are written entirely in C except where absolutely not possible.

m They demonstrate how to use the peripheral in its common mode of operation.
m They are easy to understand.

m They are reasonably efficient in terms of memory and processor usage.

m They are as self-contained as possible.

m Where possible, computations that can be performed at compile time are done there instead
of at run time.

m They can be built with more than one tool chain.
Some consequences of these design goals are:

m The drivers are not necessarily as efficient as they could be (from a code size and/or execution
speed point of view). While the most efficient piece of code for operating a peripheral would be
written in assembly and custom tailored to the specific requirements of the application, further
size optimizations of the drivers would make them more difficult to understand.

m The drivers do not support the full capabilities of the hardware. Some of the peripherals
provide complex capabilities which cannot be utilized by the drivers in this library, though
the existing code can be used as a reference upon which to add support for the additional
capabilities.

m The APIs have a means of removing all error checking code. Because the error checking is
usually only useful during initial program development, it can be removed to improve code size
and speed.

For many applications, the drivers can be used as is. But in some cases, the drivers will have to be
enhanced or rewritten in order to meet the functionality, memory, or processing requirements of the
application. If so, the existing driver can be used as a reference on how to operate the peripheral.

The Driver Library includes drivers for all classes of Tiva microcontrollers. Some drivers and pa-
rameters are only valid for certain classes. See the application report entitled, “Differences Among
Tiva Product Classes” for more information.

The following tool chains are supported:

m Keil™ RealView® Microcontroller Development Kit

m MentorGraphics Sourcery CodeBench for ARM EABI
m |AR Embedded Workbench®

m Texas Instruments Code Composer Studio™

m GNU Compiler Collection(GCC)

April 02, 2020 7

Introduction

Source Code Overview

The following is an overview of the organization of the peripheral driver library source code.

EULA.txt The full text of the End User License Agreement that covers the use of this
software package.

driverlib/ This directory contains the source code for the drivers.

hw_x.h Header files, one per peripheral, that describe all the registers and the bit
fields within those registers for each peripheral. These header files are used
by the drivers to directly access a peripheral, and can be used by application
code to bypass the peripheral driver library API.

inc/ This directory holds the part specific header files used for the direct register

access programming model.

makedefs A set of definitions used by make files.

8 April 02, 2020

Programming Model

2

2.1

2.2

Programming Model

INrOAUCH ON . e 9
Direct Register ACCESS MOAel e s 9
Software Driver MOGEI e e 10
Combining The MOTEIS e e e et 11
Introduction

The peripheral driver library provides support for two programming models: the direct register ac-
cess model and the software driver model. Each model can be used independently or combined,
based on the needs of the application or the programming environment desired by the developer.

Each programming model has advantages and disadvantages. Use of the direct register access
model generally results in smaller and more efficient code than using the software driver model.
However, the direct register access model requires detailed knowledge of the operation of each
register and bit field, as well as their interactions and any sequencing required for proper opera-
tion of the peripheral; the developer is insulated from these details by the software driver model,
generally requiring less time to develop applications.

Direct Register Access Model

In the direct register access model, the peripherals are programmed by the application by writing
values directly into the peripheral’s registers. A set of macros is provided that simplifies this process.
These macros are stored in part-specific header files contained in the inc directory; the name of
the header file matches the part number (for example, the header file for the TM4C123GH6PM
microcontroller is inc/ tm4cl123ghépm.h). By including the header file that matches the part
being used, macros are available for accessing all registers on that part, as well as all bit fields
within those registers. No macros are available for registers that do not exist on the part in question,
making it difficult to access registers that do not exist.

The defines used by the direct register access model follow a nhaming convention that makes it
easier to know how to use a particular macro. The rules are as follows:

m Values that end in _R are used to access the value of a register. For example, SST0_CRO_R
is used to access the CRO register in the SSI0 module.

m Values that end in _M represent the mask for a multi-bit field in a register. If the value placed in
the multi-bit field is a number, there is a macro with the same base name but ending with _s (for
example, SST_CRO_SCR_M and SSTI_CRO_SCR_S). If the value placed into the multi-bit field
is an enumeration, then there are a set of macros with the same base name but ending with
identifiers for the various enumeration values (for example, the SSI_CRO_FRF_M macro de-
fines the bit field, and the SSI_CRO_FRF_NMW, SSI_CRO_FRF_TI,and SSI_CRO_FRF_MOTO
macros provide the enumerations for the bit field).

m Values that end in _S represent the number of bits to shift a value in order to align it with a
multi-bit field. These values match the macro with the same base name but ending with _M.

April 02, 2020 9

Programming Model

2.3

m All other macros represent the value of a bit field.

m All register name macros start with the module name and instance number (for example, SS10
for the first SSI module) and are followed by the name of the register as it appears in the data
sheet (for example, the CRO register in the data sheet results in SST0_CRO_R).

m All register bit fields start with the module name, followed by the register name, and then
followed by the bit field name as it appears in the data sheet. For example, the ScCR bit field in
the CRO register in the SST module is identified by SSI_CRO_SCR. . .. In the case where the
bit field is a single bit, there is nothing further (for example, SSI_CRO_SPH is a single bit in the
CRO register). If the bit field is more than a single bit, there is a mask value (_M) and either a
shift (_s) if the bit field contains a number or a set of enumerations if not.

Given these definitions, the CRO register can be programmed as follows:

SSIO_CRO_R = ((5 << SSI_CRO_SCR_S) | SSI_CRO_SPH | SSI_CRO_SPO |
SSI_CRO_FRF_MOTO | SSI_CRO_DSS_8);

Alternatively, the following has the same effect (although it is not as easy to understand):

SSIO_CRO_R = 0x000005c7;

Extracting the value of the ScRr field from the CRO register is as follows:

ulvalue = (SSIO_CRO_R & SSI_CRO_SCR_M) >> SSIO_CRO_SCR_S;

The GPIO modules have many registers that do not have bit field definitions. For these registers,
the register bits represent the individual GPIO pins; so bit zero in these registers corresponds to
the Px0 pin on the part (where x is replaced by a GPIO module letter), bit one corresponds to the
Px1 pin, and so on.

Note:
The hw_x.h header files that are used by the drivers in the library contain many of the same
definitions as the header files used for direct register access. As a result, the two cannot
both be included into the same source file without the compiler producing warnings about the
redefinition of symbols.

Software Driver Model

In the software driver model, the API provided by the peripheral driver library is used by applications
to control the peripherals. Because these drivers provide complete control of the peripherals in their
normal mode of operation, it is possible to write an entire application without direct access to the
hardware. This method provides for rapid development of the application without requiring detailed
knowledge of how to program the peripherals.

Corresponding to the direct register access model example, the following call also programs the
CRO register in the SSI module (though the register name is hidden by the API):

SSIConfigSetExpClk (SSIO_BASE, 50000000, SSI_FRF_MOTO_MODE_3,
SSI_MODE_MASTER, 1000000, 8);

10

April 02, 2020

Programming Model

The resulting value in the CRO register might not be exactly the same because SSIConfigSetExp-
Clk() may compute a different value for the scR bit field than what was used in the direct register
access model example.

All example applications other than b1inky use the software driver model.

The drivers in the peripheral driver library are described in the remaining chapters in this document.
They combine to form the software driver model.

2.4 Combining The Models

The direct register access model and software driver model can be used together in a single ap-
plication, allowing the most appropriate model to be applied as needed to any particular situation
within the application. For example, the software driver model can be used to configure the periph-
erals (because this is not performance critical) and the direct register access model can be used
for operation of the peripheral (which may be more performance critical). Or, the software driver
model can be used for peripherals that are not performance critical (such as a UART used for data
logging) and the direct register access model for performance critical peripherals (such as the ADC
module used to capture real-time analog data).

April 02, 2020 11

Programming Model

12 April 02, 2020

Analog Comparator

3.1

3.2

3.2.1

Analog Comparator

I OAUCH ON ... e e e e e e e s 13
AP FUNCHIONS .. e e e e 13
Programming EXamIPIe ... e 19
Introduction

The comparator API provides a set of functions for programming and using the analog comparators.
A comparator can compare a test voltage against an individual external reference voltage, a shared
single external reference voltage, or a shared internal reference voltage. It can provide its output
to a device pin, acting as a replacement for an analog comparator on the board, or it can be
used to signal the application via interrupts or triggers to the ADC to start capturing a sample
sequence. The interrupt generation logic is independent from the ADC triggering logic. As a result,
the comparator can generate an interrupt based on one event and an ADC trigger based on another
event. For example, an interrupt can be generated on a rising edge and the ADC triggered on a
falling edge.

This driver is contained in driverlib/comp.c, with driverlib/comp.h containing the API
declarations for use by applications.

API Functions

Functions

void ComparatorConfigure (uint32_t ui32Base, uint32_t ui32Comp, uint32_t ui32Config)

void ComparatorIntClear (uint32_t ui32Base, uint32_t ui32Comp)

void ComparatorIntDisable (uint32_t ui32Base, uint32_t ui32Comp)

void ComparatorintEnable (uint32_t ui32Base, uint32_t ui32Comp)

void ComparatorintRegister (uint32_t ui32Base, uint32_t ui32Comp, void (xpfnHandler)(void))
bool ComparatorintStatus (uint32_t ui32Base, uint32_t ui32Comp, bool bMasked)

void ComparatorintUnregister (uint32_t ui32Base, uint32_t ui32Comp)

void ComparatorRefSet (uint32_t ui32Base, uint32_t ui32Ref)

m bool ComparatorValueGet (uint32_t ui32Base, uint32_t ui32Comp)

Detailed Description

The comparator API is fairly simple, like the comparators themselves. There are functions for
configuring a comparator and reading its output (ComparatorConfigure(), ComparatorRefSet() and
ComparatorValueGet()) and functions for dealing with an interrupt handler for the comparator (Com-
paratorIntRegister(), ComparatorintUnregister(), ComparatorintEnable(), ComparatorintDisable(),
ComparatorIntStatus(), and ComparatorintClear()).

April 02, 2020 13

Analog Comparator

3.2.2

3.2.2.1

Function Documentation

ComparatorConfigure

Configures a comparator.

Prototype:

void

ComparatorConfigure (uint32_t ui32Base,
uint32_t ui32Comp,
uint32_t ui32Config)

Parameters:

ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator to configure.
ui32Config is the configuration of the comparator.

Description:

This function configures a comparator. The wi32Config parameter is the result of a logical
OR operation between the COMP_TRIG_xxx, COMP_INT_xxx, COMP_ASRCP_xxx, and
COMP_OUTPUT _xxx values.

The COMP_TRIG_xxx term can take on the following values:

m COMP_TRIG_NONE to have no trigger to the ADC.

m COMP_TRIG_HIGH to trigger the ADC when the comparator output is high.

m COMP_TRIG_LOW to trigger the ADC when the comparator output is low.

m COMP_TRIG_FALL to trigger the ADC when the comparator output goes low.

m COMP_TRIG_RISE to trigger the ADC when the comparator output goes high.

m COMP_TRIG_BOTH to trigger the ADC when the comparator output goes low or high.

The COMP_INT_xxx term can take on the following values:

m COMP_INT_HIGH to generate an interrupt when the comparator output is high.

m COMP_INT_LOW to generate an interrupt when the comparator output is low.

m COMP_INT_FALL to generate an interrupt when the comparator output goes low.

m COMP_INT_RISE to generate an interrupt when the comparator output goes high.

m COMP_INT_BOTH to generate an interrupt when the comparator output goes low or high.

The COMP_ASRCP_xxx term can take on the following values:

m COMP_ASRCP_PIN to use the dedicated Comp+ pin as the reference voltage.

m COMP_ASRCP_PINO to use the Comp0+ pin as the reference voltage (this the same as
COMP_ASRCP_PIN for the comparator 0).

m COMP_ASRCP_REF to use the internally generated voltage as the reference voltage.

The COMP_OUTPUT_xxx term can take on the following values:

m COMP_OUTPUT_NORMAL to enable a non-inverted output from the comparator to a
device pin.

= COMP_OUTPUT_INVERT to enable an inverted output from the comparator to a device
pin.

Returns:

None.

14

April 02, 2020

Analog Comparator

3.2.2.2 ComparatorIntClear

Clears a comparator interrupt.

Prototype:

void
ComparatorIntClear (uint32_t ui32Base,
uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.

ui32Comp is the index of the comparator.

Description:
The comparator interrupt is cleared, so that it no longer asserts. This function must be called in
the interrupt handler to keep the handler from being called again immediately upon exit. Note
that for a level-triggered interrupt, the interrupt cannot be cleared until it stops asserting.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

3.2.2.3 ComparatorintDisable

Disables the comparator interrupt.

Prototype:

void
ComparatorIntDisable (uint32_t ui32Base,
uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.

ui32Comp is the index of the comparator.

Description:
This function disables generation of an interrupt from the specified comparator. Only enabled
comparator interrupts can be reflected to the processor.

Returns:
None.

April 02, 2020 15

Analog Comparator

3.2.2.4 ComparatorintEnable

Enables the comparator interrupt.

Prototype:

void
ComparatorIntEnable (uint32_t ui32Base,
uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.

ui32Comp is the index of the comparator.

Description:
This function enables generation of an interrupt from the specified comparator. Only enabled
comparator interrupts can be reflected to the processor.

Returns:
None.

3.2.2.5 ComparatorintRegister

Registers an interrupt handler for the comparator interrupt.

Prototype:
void
ComparatorIntRegister (uint32_t ui32Base,
uint32_t ui32Comp,
void (xpfnHandler) (void))

Parameters:
ui32Base is the base address of the comparator module.

ui32Comp is the index of the comparator.
pfnHandler is a pointer to the function to be called when the comparator interrupt occurs.

Description:
This function sets the handler to be called when the comparator interrupt occurs and enables
the interrupt in the interrupt controller. It is the interrupt handler’s responsibility to clear the
interrupt source via ComparatorintClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

3.2.2.6 ComparatorintStatus

Gets the current interrupt status.

16 April 02, 2020

Analog Comparator

3.2.2.7

3.2.2.8

Prototype:
bool
ComparatorIntStatus (uint32_t ui32Base,
uint32_t ui32Comp,
bool bMasked)

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

bMasked is false if the raw interrupt status is required and true if the masked interrupt status
is required.

Description:
This function returns the interrupt status for the comparator. Either the raw or the masked
interrupt status can be returned.

Returns:
true if the interrupt is asserted and false if it is not asserted.

ComparatorintUnregister

Unregisters an interrupt handler for a comparator interrupt.

Prototype:

void
ComparatorIntUnregister (uint32_t ui32Base,
uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.

ui32Comp is the index of the comparator.

Description:
This function clears the handler to be called when a comparator interrupt occurs. This function
also masks off the interrupt in the interrupt controller so that the interrupt handler no longer is
called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

ComparatorRefSet

Sets the internal reference voltage.

Prototype:
void
ComparatorRefSet (uint32_t ui32Base,
uint32_t ui32Ref)

April 02, 2020 17

Analog Comparator

Parameters:
ui32Base is the base address of the comparator module.

ui32Ref is the desired reference voltage.

Description:
This function sets the internal reference voltage value. The voltage is specified as one of the
following values:

m COMP_REF_OFF to turn off the reference voltage

m COMP_REF_0V to set the reference voltage to 0 V

m COMP_REF_0_1375V to set the reference voltage to 0.1375 V

m COMP_REF_0_275V to set the reference voltage to 0.275 V

m COMP_REF_0_4125V to set the reference voltage to 0.4125 V

m COMP_REF_0_55V to set the reference voltage to 0.55 V

m COMP_REF_0_6875V to set the reference voltage to 0.6875 V

m COMP_REF_0_825V to set the reference voltage to 0.825 V

m COMP_REF_0_928125V to set the reference voltage to 0.928125 V
m COMP_REF_0 9625V to set the reference voltage to 0.9625 V

m COMP_REF_1_03125V to set the reference voltage to 1.03125 V

m COMP_REF_1_134375V to set the reference voltage to 1.134375 V
m COMP_REF_1_1V to set the reference voltage to 1.1 V

m COMP_REF_1_2375V to set the reference voltage to 1.2375 V

m COMP_REF_1_340625V to set the reference voltage to 1.340625 V
m COMP_REF_1_375V to set the reference voltage to 1.375V

m COMP_REF_1_44375V to set the reference voltage to 1.44375 V

m COMP_REF_1_5125V to set the reference voltage to 1.5125 V

m COMP_REF_1_546875V to set the reference voltage to 1.546875 V
m COMP_REF_1_65V to set the reference voltage to 1.65 V

m COMP_REF_1_753125V to set the reference voltage to 1.753125 V
m COMP_REF_1_7875V to set the reference voltage to 1.7875 V

m COMP_REF_1_85625V to set the reference voltage to 1.85625 V

m COMP_REF_1_925V to set the reference voltage to 1.925 V

m COMP_REF_1_959375V to set the reference voltage to 1.959375 V
m COMP_REF_2 0625V to set the reference voltage to 2.0625 V

m COMP_REF_2_165625V to set the reference voltage to 2.165625 V
m COMP_REF_2_26875V to set the reference voltage to 2.26875 V

m COMP_REF_2_371875V to set the reference voltage to 2.371875 V

Returns:
None.

3.2.2.9 ComparatorValueGet

Gets the current comparator output value.

Prototype:
bool
ComparatorValueGet (uint32_t ui32Base,

uint32_t ui32Comp)

18

April 02, 2020

Analog Comparator

Parameters:

ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:

This function retrieves the current value of the comparator output.

Returns:

3.3

Returns true if the comparator output is high and false if the comparator output is low.

Programming Example

The following example shows how to use the comparator API to configure the comparator and read
its value.

//

// Enable the COMP module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_COMPO) ;

//

// Wait for the COMP module to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_COMPO))
{

}

//
// Configure the internal voltage reference.
//
ComparatorRefSet (COMP_BASE, COMP_REF_1_65V);

//

// Configure comparator 0.

//

ComparatorConfigure (COMP_BASE, O,
(COMP_TRIG_NONE | COMP_INT_BOTH |
COMP_ASRCP_REF | COMP_OUTPUT_NORMAL)) ;

//
// Delay for some time...

!/

//

// Read the comparator output value.
//

ComparatorValueGet (COMP_BASE, 0);

April 02, 2020

19

Analog Comparator

20 April 02, 2020

Analog to Digital Converter (ADC)

4.1

Analog to Digital Converter (ADC)

I OAUCH ON ... e e e e e e e s 21
AP FUNCHIONS .. e e e e 22
Programming EXamIPIe ... e 46
Introduction

The analog to digital converter (ADC) API provides a set of functions for programming and operating
the ADC. Functions are provided to configure the sample sequencers, read the captured data,
register a sample sequence interrupt handler, and handle interrupt masking/clearing.

Depending on the features of the individual microcontroller, the ADC supports up to twenty-four
input channels plus an internal temperature sensor. Four sampling sequencers, each with con-
figurable trigger events, can be captured. The first sequencer captures up to eight samples, the
second and third sequencers capture up to four samples, and the fourth sequencer captures a sin-
gle sample. Each sample can be the same channel, different channels, or any combination in any
order.

The sample sequencers have configurable priorities that determine the order in which they are
captured when multiple triggers occur simultaneously. The highest priority sequencer that is cur-
rently triggered is sampled first. Care must be taken with triggers that occur frequently (such as the
“always” trigger); if their priority is too high, it is possible to starve the lower priority sequencers.

Hardware oversampling of the ADC data is available for improved accuracy. An oversampling factor
of 2x, 4x, 8x, 16x, 32x, or 64x is supported, but reduces the throughput of the ADC by a corre-
sponding factor. Hardware oversampling is applied uniformly across all sample sequencers.

Software oversampling of the ADC data is also available (even when hardware oversampling is
available). An oversampling factor of 2x, 4x, or 8x is supported, but reduces the depth of the
sample sequencers by a corresponding amount. For example, the first sample sequencer captures
eight samples; in 4x oversampling mode, it can only capture two samples because the first four
samples are used for the first oversampled value and the second four samples are used for the
second oversampled value. The amount of software oversampling is configured on a per sample
sequencer basis.

A more sophisticated software oversampling can be used to eliminate the reduction of the sample
sequencer depth. By increasing the ADC trigger rate by 4x (for example) and averaging four trig-
gers worth of data, 4x oversampling is achieved without any loss of sample sequencer capability. In
this case, an increase in the number of ADC triggers (and presumably ADC interrupts) is the conse-
guence. Because this method requires adjustments outside of the ADC driver itself, it is not directly
supported by the driver (though nothing in the driver prevents it). The software oversampling APls
should not be used in this case.

This driver is contained in driverlib/adc.c, with driverlib/adc.h containing the APl dec-
larations for use by applications.

April 02, 2020 21

Analog to Digital Converter (ADC)

4.2

API Functions

Functions

bool ADCBusy (uint32_t ui32Base)

uint32_t ADCClockConfigGet (uint32_t ui32Base, uint32_t xpui32ClockDiv)

void ADCClockConfigSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32ClockDiv)
void ADCComparatorConfigure (uint32_t ui32Base, uint32_t ui32Comp, uint32_t ui32Config)
void ADCComparatorintClear (uint32_t ui32Base, uint32_t ui32Status)

void ADCComparatorintDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADCComparatorintEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)

uint32_t ADCComparatorintStatus (uint32_t ui32Base)

void ADCComparatorRegionSet (uint32_t ui32Base, uint32_t ui32Comp, uint32_t ui32LowRef,
uint32_t ui32HighRef)

void ADCComparatorReset (uint32_t ui32Base, uint32_t ui32Comp, bool bTrigger, bool bin-
terrupt)

void ADCHardwareOversampleConfigure (uint32_t ui32Base, uint32_t ui32Factor)
void ADCIntClear (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADClIntClearEx (uint32_t ui32Base, uint32_t ui32IntFlags)

void ADClIntDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADClIntDisableEx (uint32_t ui32Base, uint32_t ui32IntFlags)

void ADCIntEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADCIntEnableEx (uint32_t ui32Base, uint32_t ui32IntFlags)

void ADCIntRegister (uint32_t ui32Base, uint82_t ui32SequenceNum, void
(+xpfnHandler)(void))

uint32_t ADCIntStatus (uint32_t ui32Base, uint32_t ui32SequenceNum, bool bMasked)
uint32_t ADCIntStatusEx (uint32_t ui32Base, bool bMasked)

void ADClIntUnregister (uint32_t ui32Base, uint32_t ui32SequenceNum)

uint32_t ADCPhaseDelayGet (uint32_t ui32Base)

void ADCPhaseDelaySet (uint32_t ui32Base, uint32_t ui32Phase)

void ADCProcessorTrigger (uint32_t ui32Base, uint32_t ui32SequenceNum)

uint32_t ADCReferenceGet (uint32_t ui32Base)

void ADCReferenceSet (uint32_t ui32Base, uint32_t ui32Ref)

void ADCSequenceConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum, uint32_t
ui32Trigger, uint32_t uid2Priority)

int32_t ADCSequenceDataGet (uint32_t ui82Base, uint32_t ui32SequenceNum, uint32_t
xpui32Buffer)

void ADCSequenceDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADCSequenceDMADisable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceDMAEnNable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)
int32_t ADCSequenceOverflow (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceOverflowClear (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADCSequenceStepConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum, uint32_t
ui32Step, uint32_t ui32Config)

int32_t ADCSequenceUnderflow (uint32_t ui32Base, uint32_t ui32SequenceNum)

22

April 02, 2020

Analog to Digital Converter (ADC)

4.2.1

422

4.2.2.1

m void ADCSequenceUnderflowClear (uint32_t ui32Base, uint32_t ui32SequenceNum)

m void ADCSoftwareOversampleConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum,
uint32_t ui32Factor)

m void ADCSoftwareOversampleDataGet (uint32_t ui32Base, uint32_t ui32SequenceNum,
uint32_t xpui32Buffer, uint32_t ui32Count)

® void ADCSoftwareOversampleStepConfigure (uint32_t ui32Base, uint32_t
ui32SequenceNum, uint32_t ui32Step, uint32_t ui32Config)

Detailed Description

The analog to digital converter APl is broken into three groups of functions: those that deal with the
sample sequencers, those that deal with the processor trigger, and those that deal with interrupt
handling.

The sample sequencers are configured with ADCSequenceConfigure() and ADCSequenceStep-
Configure(). They are enabled and disabled with ADCSequenceEnable() and ADCSequenceDis-
able(). The captured data is obtained with ADCSequenceDataGet(). Sample sequencer FIFO
overflow and underflow is managed with ADCSequenceOverflow(), ADCSequenceOverflowClear(),
ADCSequenceUnderflow(), and ADCSequenceUnderflowClear().

Hardware oversampling of the ADC is controlled with ADCHardwareOversampleConfigure(). Soft-
ware oversampling of the ADC is controlled with ADCSoftwareOversampleConfigure(), ADCSoft-
wareOversampleStepConfigure(), and ADCSoftwareOversampleDataGet().

The processor trigger is generated with ADCProcessorTrigger().

The interrupt handler for the ADC sample sequencer interrupts are managed with ADCIntRegister()
and ADClIntUnregister(). The sample sequencer interrupt sources are managed with ADCIntDis-
able(), ADCIntEnable(), ADCIntStatus(), and ADCIntClear().

Function Documentation

ADCBusy

Determines whether the ADC is busy or not.

Prototype:
bool
ADCBusy (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the ADC.

Description:
This function allows the caller to determine whether or not the ADC is currently sampling . If
false is returned, then the ADC is not sampling data.

Use this function to detect that the ADC is finished sampling data before putting the device
into deep sleep. Before using this function, it is highly recommended that the event trigger
is changed to ADC_TRIGGER_NEVER on all enabled sequencers to prevent the ADC from
starting after checking the busy status.

April 02, 2020 23

Analog to Digital Converter (ADC)

4222

4.2.2.3

Returns:
Returns true if the ADC is sampling or false if all samples are complete.

ADCClockConfigGet

Returns the clock configuration for the ADC.

Prototype:
uint32_t
ADCClockConfigGet (uint32_t ui32Base,
uint32_t xpui32ClockDiv)

Parameters:
ui32Base is the base address of the ADC to configure, which must always be ADC0O_BASE.

pui32ClockDiv is a pointer to the input clock divider for the clock selected by the
ADC_CLOCK_SRC in use by the ADCs.

Description:
This function returns the ADC clock configuration and the clock divider for the ADCs.

Example: Read the current ADC clock configuration.

uint32_t ui32Config, uwi32ClockDiv;

//

// Read the current ADC clock configuration.

//

ui32Config = ADCClockConfigGet (ADCO_BASE, &ui32ClockDiv);

Returns:
The current clock configuration of the ADC defined as a combina-
tion of one of ADC_CLOCK_SRC_PLL, ADC_CLOCK_SRC_PIOSC,
ADC_CLOCK_SRC_MOSC, or ADC_CLOCK_SRC_ALTCLK logical ORed with one of
ADC_CLOCK_RATE_FULL, ADC_CLOCK_RATE_HALF, ADC_CLOCK_RATE_QUARTER,
or ADC_CLOCK_RATE_EIGHTH. See ADCClockConfigSet() for more information on these
values.

ADCClockConfigSet

Sets the clock configuration for the ADC.

Prototype:
void
ADCClockConfigSet (uint32_t ui32Base,
uint32_t ui32Config,
uint32_t ui32ClockDiv)

Parameters:
ui32Base is the base address of the ADC to configure, which must always be ADC0O_BASE.
ui32Config is a combination of the ADC_CLOCK_SRC_ and ADC_CLOCK_RATE_x values
used to configure the ADC clock input.
ui32ClockDiv is the input clock divider for the clock selected by the ADC_CLOCK_SRC value.

24

April 02, 2020

Analog to Digital Converter (ADC)

Description:

This function is used to configure the input clock to the ADC modules. The clock configuration
is shared across ADC units so ui32Base must always be ADCO_BASE. The ui32Config value
is logical OR of one of the ADC_CLOCK_RATE_ and one of the ADC_CLOCK_SRC_ values
defined below. The ADC_CLOCK_SRC_:x values determine the input clock for the ADC. Not
all values are available on all devices so check the device data sheet to determine value con-
figuration options. Regardless of the source, the final frequency for TM4C123x devices must
be 16 MHz and for TM4C129x parts after dividing must be between 16 and 32 MHz.

Note:
For TM4C123x devices, if the PLL is enabled, the PLL/25 is used as the ADC clock unless
ADC_CLOCK_SRC_PIOSC is specified. If the PLL is disabled, the MOSC is used as the clock
source unless ADC_CLOCK_SRC_PIOSC is specified.

m ADC_CLOCK_SRC_PLL - The main PLL output (TM4x129 class only).
m ADC_CLOCK SRC PIOSC - The internal PIOSC at 16 MHz.

m ADC_CLOCK_SRC_ALTCLK - The output of the ALTCLK in the system control module
(TM4x129 class only).

m ADC_CLOCK_SRC_MOSC - The external MOSC (TM4x129 class only).

ADC_CLOCK_RATE values control how often samples are provided back to the application. The
values are the following:

m ADC_CLOCK_RATE_FULL - All samples.

m ADC_CLOCK_RATE_HALF - Every other sample.

m ADC_CLOCK_RATE_QUARTER - Every fourth sample.
m ADC_CLOCK_RATE_EIGHTH - Every either sample.

The ui2ClockDiv parameter allows for dividing a higher frequency down into the valid range for the
ADCs. This parameter is typically only used ADC_CLOCK_SRC_PLL option because it is the only
clock value that can be with the in the correct range to use the divider. The actual value ranges
from 1 to 64.

Example: ADC Clock Configurations

//

// Configure the ADC to use PIOSC divided by one (16 MHz) and sample at

// half the rate.

//

ADCClockConfigSet (ADCO_BASE, ADC_CLOCK_SRC_PIOSC | ADC_CLOCK_RATE_HALF, 1);

//

// Configure the ADC to use PLL at 480 MHz divided by 24 to get an ADC

// clock of 20 MHz.

//

ADCClockConfigSet (ADCO_BASE, ADC_CLOCK_SRC_PLL | ADC_CLOCK_RATE_FULL, 24);

Returns:
None.

April 02, 2020 25

Analog to Digital Converter (ADC)

4224 ADCComparatorConfigure
Configures an ADC digital comparator.
Prototype:
void
ADCComparatorConfigure (uint32_t ui32Base,
uint32_t ui32Comp,
uint32_t ui32Config)
Parameters:
ui32Base is the base address of the ADC module.
ui32Comp is the index of the comparator to configure.
ui32Config is the configuration of the comparator.
Description:
This function configures a comparator. The ui32Config parameter is the result of a logical OR
operation between the ADC_COMP_TRIG_xxx, and ADC_COMP_INT_xxx values.
The ADC_COMP_TRIG_xxx term can take on the following values:

m ADC_COMP_TRIG_NONE to never trigger PWM fault condition.

m ADC_COMP_TRIG_LOW_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the low-band.

m ADC_COMP_TRIG_LOW_ONCE to trigger PWM fault condition once when ADC output
transitions into the low-band.

m ADC_COMP_TRIG_LOW_HALWAYS to always trigger PWM fault condition when ADC
output is in the low-band only if ADC output has been in the high-band since the last
trigger output.

m ADC_COMP_TRIG_LOW_HONCE to trigger PWM fault condition once when ADC output
transitions into low-band only if ADC output has been in the high-band since the last trigger
output.

m ADC_COMP_TRIG_MID_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the mid-band.

m ADC_COMP_TRIG_MID_ONCE to trigger PWM fault condition once when ADC output
transitions into the mid-band.

m ADC_COMP_TRIG_HIGH_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the high-band.

m ADC_COMP_TRIG_HIGH_ONCE to trigger PWM fault condition once when ADC output
transitions into the high-band.

m ADC_COMP_TRIG_HIGH_HALWAYS to always trigger PWM fault condition when ADC
output is in the high-band only if ADC output has been in the low-band since the last
trigger output.

m ADC_COMP_TRIG_HIGH_HONCE to trigger PWM fault condition once when ADC output
transitions into high-band only if ADC output has been in the low-band since the last trigger
output.

The ADC_COMP_INT_xxx term can take on the following values:

m ADC_COMP_INT_NONE to never generate ADC interrupt.

m ADC_COMP_INT_LOW_ALWAYS to always generate ADC interrupt when ADC output is
in the low-band.

26 April 02, 2020

Analog to Digital Converter (ADC)

ADC_COMP_INT_LOW_ONCE to generate ADC interrupt once when ADC output transi-
tions into the low-band.

ADC_COMP_INT_LOW_HALWAYS to always generate ADC interrupt when ADC output
is in the low-band only if ADC output has been in the high-band since the last trigger output.
ADC_COMP_INT_LOW_HONCE to generate ADC interrupt once when ADC output tran-
sitions into low-band only if ADC output has been in the high-band since the last trigger
output.

ADC_COMP_INT_MID_ALWAYS to always generate ADC interrupt when ADC output is
in the mid-band.

ADC_COMP_INT_MID_ONCE to generate ADC interrupt once when ADC output transi-
tions into the mid-band.

ADC_COMP_INT_HIGH_ALWAYS to always generate ADC interrupt when ADC output is
in the high-band.

ADC_COMP_INT_HIGH_ONCE to generate ADC interrupt once when ADC output transi-
tions into the high-band.

ADC_COMP_INT_HIGH_HALWAYS to always generate ADC interrupt when ADC output
is in the high-band only if ADC output has been in the low-band since the last trigger output.
ADC_COMP_INT_HIGH_HONCE to generate ADC interrupt once when ADC output tran-
sitions into high-band only if ADC output has been in the low-band since the last trigger
output.

Returns:

None.

4.2.2.5 ADCComparatorintClear

Clears sample sequence comparator interrupt source.

Prototype:

void
ADCComparatorIntClear (uint32_t ui32Base,

uint32_t ui32Status)

Parameters:

ui32Base is the base address of the ADC module.
ui32Status is the bit-mapped interrupts status to clear.

Description:

The specified interrupt status is cleared.

Returns:

None.

42.2.6 ADCComparatorintDisable

Disables a sample sequence comparator interrupt.

April 02, 2020

27

Analog to Digital Converter (ADC)

Prototype:
void
ADCComparatorIntDisable (uint32_t ui32Base,
uint32_t ui32SegquenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
This function disables the requested sample sequence comparator interrupt.

Returns:
None.
4.2.2.7 ADCComparatorintEnable
Enables a sample sequence comparator interrupt.
Prototype:
void
ADCComparatorIntEnable (uint32_t ui32Base,
uint32_t ui32SequenceNum)
Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
Description:
This function enables the requested sample sequence comparator interrupt.
Returns:
None.
4.2.2.8 ADCComparatorintStatus
Gets the current comparator interrupt status.
Prototype:
uint32_t
ADCComparatorIntStatus (uint32_t ui32Base)
Parameters:
ui32Base is the base address of the ADC module.
Description:
This function returns the digital comparator interrupt status bits. This status is sequence ag-
nostic.
Returns:
The current comparator interrupt status.
28 April 02, 2020

Analog to Digital Converter (ADC)

4229

4.2.210

ADCComparatorRegionSet

Defines the ADC digital comparator regions.

Prototype:
void
ADCComparatorRegionSet (uint32_t ui32Base,
uint32_t ui32Comp,
uint32_t ui32LowRef,
uint32_t ui32HighRef)

Parameters:
ui32Base is the base address of the ADC module.

ui32Comp is the index of the comparator to configure.
ui32LowRef is the reference point for the low/mid band threshold.
ui32HighRef is the reference point for the mid/high band threshold.

Description:
The ADC digital comparator operation is based on three ADC value regions:

m low-band is defined as any ADC value less than or equal to the ui32LowRef value.

m mid-band is defined as any ADC value greater than the ui32LowRef value but less than
or equal to the ui32HighRef value.

m high-band is defined as any ADC value greater than the ui32HighRef value.

Returns:
None.

ADCComparatorReset

Resets the current ADC digital comparator conditions.

Prototype:
void
ADCComparatorReset (uint32_t ui32Base,
uint32_t ui32Comp,
bool bTrigger,
bool bInterrupt)

Parameters:
ui32Base is the base address of the ADC module.

ui32Comp is the index of the comparator.
bTrigger is the flag to indicate reset of Trigger conditions.
binterrupt is the flag to indicate reset of Interrupt conditions.

Description:
Because the digital comparator uses current and previous ADC values, this function allows
the comparator to be reset to its initial value to prevent stale data from being used when a
sequence is enabled.

Returns:
None.

April 02, 2020 29

Analog to Digital Converter (ADC)

4.2.2.11 ADCHardwareOversampleConfigure
Configures the hardware oversampling factor of the ADC.
Prototype:
void
ADCHardwareOversampleConfigure (uint32_t ui32Base,
uint32_t ui32Factor)
Parameters:
ui32Base is the base address of the ADC module.
ui32Factor is the number of samples to be averaged.
Description:
This function configures the hardware oversampling for the ADC, which can be used to provide
better resolution on the sampled data. Oversampling is accomplished by averaging multiple
samples from the same analog input. Six different oversampling rates are supported; 2x, 4x,
8x, 16x, 32x, and 64x. Specifying an oversampling factor of zero disables hardware oversam-
pling.
Hardware oversampling applies uniformly to all sample sequencers. It does not reduce the
depth of the sample sequencers like the software oversampling APIls; each sample written into
the sample sequencer FIFO is a fully oversampled analog input reading.
Enabling hardware averaging increases the precision of the ADC at the cost of throughput. For
example, enabling 4x oversampling reduces the throughput of a 250 k samples/second ADC
to 62.5 k samples/second.
Returns:
None.
4.2.2.12 ADCIntClear
Clears sample sequence interrupt source.
Prototype:
void
ADCIntClear (uint32_t ui32Base,
uint32_t ui32SequenceNum)
Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
Description:
The specified sample sequence interrupt is cleared, so that it no longer asserts. This func-
tion must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.
Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
30 April 02, 2020

Analog to Digital Converter (ADC)

returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

42213 ADCIntClearEx

Clears the specified ADC interrupt sources.

Prototype:
void
ADCIntClearEx (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the ADC port.

ui32intFlags is the bit mask of the interrupt sources to disable.

Description:
Clears the interrupt for the specified interrupt source(s).

The ui32IntFlags parameter is the logical OR of the ADC_INT_x values. See the ADCIntEn-
ableEx() function for the list of possible ADC_INT:x values.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

4.2.2.14 ADCIntDisable

Disables a sample sequence interrupt.

Prototype:
void
ADCIntDisable (uint32_t ui32Base,
uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

April 02, 2020 31

Analog to Digital Converter (ADC)

Description:
This function disables the requested sample sequence interrupt.

Returns:
None.

4.2.2.15 ADCIntDisableEx

Disables ADC interrupt sources.

Prototype:
void
ADCIntDisableEx (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the ADC module.

ui32intFlags is the bit mask of the interrupt sources to disable.

Description:
This function disables the indicated ADC interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

m ADC_INT_SSO - interrupt due to ADC sample sequence 0.

m ADC_INT_SS1 - interrupt due to ADC sample sequence 1.

m ADC_INT_SS2 - interrupt due to ADC sample sequence 2.

m ADC_INT_SS3 - interrupt due to ADC sample sequence 3.

m ADC_INT_DMA_SSO - interrupt due to DMA on ADC sample sequence 0.

m ADC_INT_DMA_SS1 - interrupt due to DMA on ADC sample sequence 1.

m ADC_INT_DMA_SS2 - interrupt due to DMA on ADC sample sequence 2.

m ADC_INT_DMA_SS3 - interrupt due to DMA on ADC sample sequence 3.

m ADC_INT_DCON_SSO - interrupt due to digital comparator on ADC sample sequence 0.
m ADC_INT_DCON_SS1 - interrupt due to digital comparator on ADC sample sequence 1.
m ADC_INT_DCON_SS2 - interrupt due to digital comparator on ADC sample sequence 2.
m ADC_INT_DCON_SS3 - interrupt due to digital comparator on ADC sample sequence 3.

Returns:
None.

42216 ADCIntEnable

Enables a sample sequence interrupt.

Prototype:
void
ADCIntEnable (uint32_t ui32Base,
uint32_t ui32SequenceNum)

32 April 02, 2020

Analog to Digital Converter (ADC)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
This function enables the requested sample sequence interrupt. Any outstanding interrupts
are cleared before enabling the sample sequence interrupt.

Returns:
None.

42217 ADCIntEnableEx

Enables ADC interrupt sources.

Prototype:
void
ADCIntEnableEx (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the ADC module.

ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
This function enables the indicated ADC interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

m ADC_INT_SSO - interrupt due to ADC sample sequence 0.

m ADC_INT_SS1 - interrupt due to ADC sample sequence 1.

m ADC_INT_SS2 - interrupt due to ADC sample sequence 2.

m ADC_INT_SS3 - interrupt due to ADC sample sequence 3.

m ADC_INT_DMA_SSO - interrupt due to DMA on ADC sample sequence 0.

m ADC_INT_DMA_SS1 - interrupt due to DMA on ADC sample sequence 1.

m ADC_INT_DMA_SS2 - interrupt due to DMA on ADC sample sequence 2.

m ADC_INT_DMA_SS3 - interrupt due to DMA on ADC sample sequence 3.

m ADC_INT_DCON_SSO - interrupt due to digital comparator on ADC sample sequence 0.
m ADC_INT_DCON_SS1 - interrupt due to digital comparator on ADC sample sequence 1.
m ADC_INT_DCON_SS2 - interrupt due to digital comparator on ADC sample sequence 2.
m ADC_INT_DCON_SS3 - interrupt due to digital comparator on ADC sample sequence 3.

Returns:
None.

4.2.2.18 ADCIntRegister

Registers an interrupt handler for an ADC interrupt.

April 02, 2020 33

Analog to Digital Converter (ADC)

4.2.219

4.2.2.20

Prototype:
void
ADCIntRegister (uint32_t ui32Base,
uint32_t ui32SequenceNum,
void (*xpfnHandler) (void))

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

pfnHandler is a pointer to the function to be called when the ADC sample sequence interrupt
occurs.

Description:
This function sets the handler to be called when a sample sequence interrupt occurs. This
function enables the global interrupt in the interrupt controller; the sequence interrupt must be
enabled with ADCIntEnable(). It is the interrupt handler’s responsibility to clear the interrupt
source via ADCIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

ADCIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
ADCIntStatus (uint32_t ui32Base,
uint32_t ui32SequenceNum,
bool bMasked)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

bMasked is false if the raw interrupt status is required and true if the masked interrupt status
is required.

Description:
This function returns the interrupt status for the specified sample sequence. Either the raw
interrupt status or the status of interrupts that are allowed to reflect to the processor can be
returned.

Returns:
The current raw or masked interrupt status.

ADCIntStatusEx

Gets interrupt status for the specified ADC module.

34

April 02, 2020

Analog to Digital Converter (ADC)

4.2.2.21

4.2.2.22

Prototype:
uint32_t
ADCIntStatusEx (uint32_t ui32Base,
bool bMasked)

Parameters:
ui32Base is the base address of the ADC module.

bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
Returns the current interrupt status for the specified ADC module. The value returned is the
logical OR of the ADC_INT_x values that are currently active.

ADCIntUnregister

Unregisters the interrupt handler for an ADC interrupt.

Prototype:
void
ADCIntUnregister (uint32_t ui32Base,
uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
This function unregisters the interrupt handler. This function disables the global interrupt in the
interrupt controller; the sequence interrupt must be disabled via ADCIntDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

ADCPhaseDelayGet

Gets the phase delay between a trigger and the start of a sequence.

Prototype:
uint32_t
ADCPhaseDelayGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the ADC module.

April 02, 2020 35

Analog to Digital Converter (ADC)

Description:
This function gets the current phase delay between the detection of an ADC trigger event and
the start of the sample sequence.

Returns:
Returns the phase delay, specified as one of ADC_PHASE_0, ADC_PHASE_22 5,
ADC_PHASE 45, ADC_PHASE_67_5, ADC_PHASE_90, ADC_PHASE_112_5,
ADC_PHASE_135, ADC_PHASE_157_ 5, ADC_PHASE_180, ADC_PHASE_202_5,
ADC _PHASE 225, ADC PHASE 247 5, ADC PHASE 270, ADC PHASE_292 5,
ADC_PHASE 315, or ADC_PHASE_337 5.

4.2.2.23 ADCPhaseDelaySet

Sets the phase delay between a trigger and the start of a sequence.

Prototype:

void
ADCPhaseDelaySet (uint32_t ui32Base,
uint32_t ui32Phase)

Parameters:
ui32Base is the base address of the ADC module.
ui32Phase is the phase delay, specified as one of ADC_PHASE_0, ADC_PHASE_22_5,
ADC_PHASE 45, ADC_PHASE 67 5, ADC_PHASE 90, ADC_PHASE 112 5,
ADC_PHASE_135, ADC_PHASE_157_5, ADC_PHASE_180, ADC_PHASE_202_5,
ADC _PHASE 225, ADC PHASE 247 5, ADC_PHASE 270, ADC PHASE 292 5,
ADC_PHASE 315, or ADC_PHASE 337 5.

Description:

This function sets the phase delay between the detection of an ADC trigger event and the start
of the sample sequence. By selecting a different phase delay for a pair of ADC modules (such
as ADC_PHASE_0 and ADC_PHASE_180) and having each ADC module sample the same
analog input, it is possible to increase the sampling rate of the analog input (with samples N,
N+2, N+4, and so on, coming from the first ADC and samples N+1, N+3, N+5, and so on,
coming from the second ADC). The ADC module has a single phase delay that is applied to all
sample sequences within that module.

Note:
This capability is not available on all parts.

Returns:
None.

4.2.2.24 ADCProcessorTrigger

Causes a processor trigger for a sample sequence.

Prototype:
void
ADCProcessorTrigger (uint32_t ui32Base,
uint32_t ui32SequenceNum)

36 April 02, 2020

Analog to Digital Converter (ADC)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number, with ADC_TRIGGER_WAIT or
ADC_TRIGGER_SIGNAL optionally ORed into it.

Description:
This function triggers a processor-initiated sample sequence if the sample sequence trigger
is configured to ADC_TRIGGER_PROCESSOR. If ADC_TRIGGER_WAIT is ORed into the
sequence number, the processor-initiated trigger is delayed until a later processor-initiated
trigger to a different ADC module that specifies ADC_TRIGGER_SIGNAL, allowing multiple
ADCs to start from a processor-initiated trigger in a synchronous manner.

Returns:
None.

4.2.2.25 ADCReferenceGet

Returns the current setting of the ADC reference.

Prototype:
uint32_t
ADCReferenceGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the ADC module.

Description:
Returns the value of the ADC reference setting. The returned value is one of ADC_REF_INT,
or ADC_REF_EXT_3V.

Note:
The value returned by this function is only meaningful if used on a part that is capable of using
an external reference. Consult the data sheet for your part to determine if it has an external
reference input.

Returns:
The current setting of the ADC reference.

42226 ADCReferenceSet

Selects the ADC reference.

Prototype:
void
ADCReferenceSet (uint32_t ui32Base,
uint32_t ui32Ref)

Parameters:
ui32Base is the base address of the ADC module.

ui32Ref is the reference to use.

April 02, 2020 37

Analog to Digital Converter (ADC)

4.2.2.27

Description:
The ADC reference is set as specified by ui32Ref. It must be one of ADC_REF_INT, or
ADC_REF_EXT_3V for internal or external reference If ADC_REF_INT is chosen, then an
internal 3V reference is used and no external reference is needed. If ADC_REF_EXT_3V is
chosen, then a 3V reference must be supplied to the AVREF pin.

Note:
The ADC reference can only be selected on parts that have an external reference. Consult the
data sheet for your part to determine if there is an external reference.

Returns:
None.

ADCSequenceConfigure

Configures the trigger source and priority of a sample sequence.

Prototype:
void
ADCSequenceConfigure (uint32_t ui32Base,
uint32_t ui32SequenceNum,
uint32_t ui32Trigger,
uint32_t ui32Priority)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
ui32Trigger is the trigger source that initiates the sample sequence; must be one of the
ADC_TRIGGER_x values.
ui32Priority is the relative priority of the sample sequence with respect to the other sample
sequences.

Description:
This function configures the initiation criteria for a sample sequence. Valid sample sequencers
range from zero to three; sequencer zero captures up to eight samples, sequencers one and
two capture up to four samples, and sequencer three captures a single sample. The trigger
condition and priority (with respect to other sample sequencer execution) are set.

The ui82Trigger parameter can take on the following values:

m ADC_TRIGGER_PROCESSOR - A trigger generated by the processor, via the ADCPro-
cessorTrigger() function.

m ADC_TRIGGER_COMPO - A trigger generated by the first analog comparator; configured
with ComparatorConfigure().

m ADC_TRIGGER_COMP1 - A trigger generated by the second analog comparator; config-
ured with ComparatorConfigure().

m ADC_TRIGGER_COMP2 - A trigger generated by the third analog comparator; configured
with ComparatorConfigure().

m ADC_TRIGGER_EXTERNAL - A trigger generated by an input from the Port B4 pin. Note
that some microcontrollers can select from any GPIO using the GPIOADCTriggerEnable()
function.

38

April 02, 2020

Analog to Digital Converter (ADC)

m ADC_TRIGGER_TIMER - A trigger generated by a timer; configured with TimerCon-
trolTrigger().

m ADC_TRIGGER_PWMO - A trigger generated by the first PWM generator; configured with
PWMGenintTrigEnable().

m ADC_TRIGGER_PWM1 - A trigger generated by the second PWM generator; configured
with PWMGenIntTrigEnable().

m ADC_TRIGGER_PWM2 - A trigger generated by the third PWM generator; configured with
PWMGeniIntTrigEnable().

m ADC_TRIGGER_PWMS3 - A trigger generated by the fourth PWM generator; configured
with PWMGeniIntTrigEnable().

m ADC_TRIGGER_ALWAYS - A trigger that is always asserted, causing the sample se-
quence to capture repeatedly (so long as there is not a higher priority source active).

When ADC_TRIGGER_PWMO0, ADC_TRIGGER_PWM1, ADC_TRIGGER_PWM2 o