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ABSTRACT 

Current-mode control is the industry standard method of controlling switching power 
supplies. Right-half-plane (RHP) zero expression is exactly the same as that for voltage-
mode control (SLVA633). Since the LC-filter resonance is eliminated with the current 
feedback, there is much less phase delay in the power stage transfer function, and 
compensation is much easier. A Type II compensator is needed to design the loop for 
current-mode boost converter, and the use of the Type II compensator greatly simplifies 
the design process. This application report describes how to select the placement of 
compensation poles and zero, explaining the subharmonic oscillation phenomenon and 
ramp addition for slope compensation in the current-mode controlled boost converter. 
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1 Introduction 
Voltage-mode control, also called duty-cycle control, contains a single loop and adjusts the duty 
cycle directly in response to output voltage changes. Current-mode control, also called current-
programmed mode or current-injected control, is a multiple-loop control method that contains 
two loops (an inner current loop and an outer voltage loop). There are several types of current-
mode control methods, and the most popular method is fixed-frequency peak-current-mode 
control with fixed-slope compensation ramp. The technique is called current-mode control 
because the inductor current is directly controlled, whereas the output voltage is controlled only 
indirectly by the current loop. A control reference is used to regulate the peak current of the 
converter directly, simplifying the dynamics of the converter. 

Figure 1 shows the schematic of the boost converter with current-mode control. As with the buck 
converter, the current is usually sensed in the power switch. 
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Figure 1. Boost Converter with Current-Mode Control 

Rather than using a sawtooth ramp to control the duty cycle of the converter, the simplest form 
of current-mode control regulates the peak of the inductor current (or switch current, depending 
on where the sensing is done) with a control signal, Vc. In some cases the compensation 
sawtooth ramp is retained to stabilize the current loop feedback, and increase noise immunity. 

We typically do not sense the inductor current directly, because it is inconvenient or inefficient. 
The power switch current is usually sensed to gather the information about the inductor current. 

2 Subharmonic Oscillation 
When current-mode control was first introduced to the power electronics community in the early 
1980s, it was immediately seized upon as a superior control scheme. This simple control 
scheme, however, had an inherent oscillation phenomenon. This is, of course, well known and 
documented. If you have been in power supplies for some time, you know that retaining the 
sawtooth compensating ramp in the control system eliminates the problem. 
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Figure 2 shows the nature of the current loop oscillation. This figure shows the control waveform 
regulating the peak current at greater than a 50% duty cycle. The steady-state waveform can 
exist with the clock initiating the on-time of the switch, and the control voltage terminating the on-
time. 

Control Vc
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Figure 2. Subharmonic Oscillation Waveforms 

In the red waveform, the inductor current is perturbed at the beginning of the cycle. This 
perturbation will reach the same peak current, but at the next clock cycle, the perturbation has 
become negative, and the amplitude has increased. After another switch cycle, the perturbation 
is positive again, but has increased even further. 

Figure 3 shows the frequency response of current-mode boost converter without compensation 
ramp. Subharmonic oscillations appear as the duty cycle exceeds 50% with the following design 
parameters (Vin = 5 V, Vout = 18 V, Iout = 3 A, L = 20 µH, Fsw = 200 kHz). 
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Figure 3. AC Small Signal Response without Compensation Ramp 

The stabilizing effect of the compensation ramp is explained using the current feedback signal 
illustrated in Figure 4. The PWM waveforms are analyzed, which shows the propagation of the 
perturbed inductor current (Δi’L). In the enlarged illustration in Figure 4, Sn is the slope of the on-
time inductor current and Sf is the current slope of the off-time inductor current, while Se is the 
slope of the compensation ramp. The ΔdTs denotes the deviation in the on-time period due to 
the inductor current perturbation.  
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Figure 4. PWM Waveforms with Compensation Ramp 

From the graphical construction, the initial distance between the original inductor current (iL) and 
the perturbed inductor current (i’L) is given by: 
|𝑖′𝐿(𝑘) − 𝑖𝐿(𝑘)| = ∆𝑖𝐿(𝑘) = 𝑆𝑛∆𝑑𝑇𝑠 + 𝑆𝑒∆𝑑𝑇𝑠                                                                                (1) 

The distance between the two currents after one operational period is given by: 
|𝑖′𝐿(𝑘 + 1) − 𝑖𝐿(𝑘 + 1)| = ∆𝑖𝐿(𝑘 + 1) = 𝑆𝑓∆𝑑𝑇𝑠 − 𝑆𝑒∆𝑑𝑇𝑠                                                             (2) 

For the successive decrease in the distance between iL and i’L in the ensuing operational 
periods, the condition: 
∆𝑖𝐿(𝑘+1)
∆𝑖𝐿(𝑘)

= 𝑆𝑓−𝑆𝑒
𝑆𝑛+𝑆𝑒

< 1                                                                                                                     (3) 

is required, leading to the following condition for the compensation ramp slope: 

𝑆𝑒 > 𝑆𝑓−𝑆𝑛
2

                                                                                                                                    (4) 

for the stabilizing effect. The exact value of the compensation ramp slope should be determined 
in consideration of the closed-loop performance of the converter. 

Figure 5 shows the frequency response of current-mode boost converter with compensation 
ramp. As it is shown in Figure 5, the peaking is properly damped. 
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Figure 5. AC Small Signal Response with Compensation Ramp 

3 Boost Converter (Current-Mode) Transfer Function Plots 
The boost converter has an additional term in the control-to-output transfer function, caused by 
the RHP zero of the converter: 

𝑣𝑜�
𝑣𝑐�

= 𝐾𝑑𝑐 ×
�1+ 𝑠

𝜔𝑧
�×�1− 𝑠

𝜔𝑟�𝑝
�

1+ 𝑠
𝜔𝑝

× 𝑓ℎ(𝑠)                                                                                           (5) 

The dc gain of the converter is given by: 

 𝐾𝑑𝑐 = 𝐷′×𝑅𝐿𝑂𝐴𝐷
𝑅𝑖

                                                                                                                           (6) 

For the low-frequency part, the dominant pole is located at: 

 𝜔𝑝 = 2
𝐶×𝑅𝐿𝑂𝐴𝐷

                                                                                                                              (7) 

The capacitor ESR zero is at the same location as the boost converter in voltage-mode, given 
by: 

𝜔𝑧 = 1
𝐶×𝑅𝑐

                                                                                                                                    (8) 

and the RHP zero is at 

𝜔𝑟ℎ𝑝 = 𝑅𝐿𝑂𝐴𝐷
𝐿𝑒

                                                                                                                               (9) 

To account for the observed oscillation in the current-mode system, the high-frequency 
correction term (fh(s)) added to the basic power stage: 

𝑓ℎ(𝑠) = 1

1+ 𝑠
𝜔𝑛𝑄𝑝

+ 𝑠2

𝜔𝑛
2

                                                                                                                                 (10) 
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Figure 6 shows the schematic of the small-signal analysis using a simple voltage-controlled 
voltage source as an error amplifier. On this small-signal boost, the voltage-controlled voltage 
source amplifies by about 89.5 dB, the difference between a portion of Vout and the 2.5-V 
reference. In order to avoid running the circuit in a closed-loop configuration, we can install an 
LC filter featuring an extremely low cutoff frequency. 

The error amplifier can be a simple voltage-to-voltage amplification device, that is, the traditional 
op amp. This type of op amp requires local feedback (between its output and inputs) to make it 
stable. Under steady DC conditions, both the input terminals are virtually at the same voltage 
and this determines the output voltage setting. However, though both resistors of the voltage 
divider affect the DC level of the converter’s output, from the AC point of view, only the upper 
resistor enters the picture. So the lower (Rb) is considered just a DC biasing resistor, and 
therefore we usually ignore it in control loop (AC) analysis. 
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Figure 6. Control-to-Output Transfer Function with Current-Mode Boost Converter 



   SLVA636  

 Practical Feedback Loop Analysis for Current-Mode Boost Converter 7 

Figure 7 shows a comparison of the control-to-output for current-mode boost converter, and the 
control-to-output for voltage-mode boost converter. Note that the RHP zero is exactly the same 
as that for voltage-mode control. Using current-mode does not move this at all. The current-
mode boost converter is easier to compensate, though, since we do not need to deal with the 
additional double pole response of the LC filter that is present with voltage-mode control. 

More phase margin in 
current-mode boost

 

Figure 7. Comparisons of Current-Mode and Voltage-Mode Control-to-Output Transfer Functions 
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4 Boost Converter (Current-Mode) Feedback Compensation 
Now we are ready to design the feedback loop of current-mode boost converter understanding 
the control scheme. In order to control the boost converter, it is now necessary to design a 
feedback amplifier to compensate for the naturally-occurring characteristics of the power stage. 
Figure 8 shows a Type II compensation amplifier. This compensation scheme adds an RC 
branch to flatten the gain, and improve the phase response in the mid-frequency range. The 
increased phase is achieved by increasing the separation of the pole and zero of the 
compensation.  
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Figure 8. Type II Compensator with Gain Curve 

Note that this type of compensator still always has a net negative phase and it cannot be used to 
improve the phase of the power stage. For this reason, Type II compensators cannot be used for 
a voltage-mode boost converter where there is a large phase drop just after the resonant 
frequency, as shown in Figure 7. Type II compensators are usually reserved for current-mode 
control compensation, or for converters that always operate in the DCM region. 

Type II (an origin pole, plus a pole/zero pair) gives us one pole-at-zero (fp0) and one pole (fp1) 
and one zero (fz1). We always need a pole-at-zero in the compensation for achieving high DC 
gain, good DC regulation, and low-frequency line injection. Note that four components (R1, R2, 
C1, and C3) are involved in determining the poles and zero, and the locations of the poles and 
zero are: 

𝑓𝑝0 = 1
2𝜋×𝑅1×𝐶1

                                                                                                                           (11) 

𝑓𝑝1 = 1
2𝜋×𝑅2×𝐶3

                                                                                                                           (12) 

𝑓𝑧1 = 1
2𝜋×𝑅2×𝐶1

                                                                                                                           (13) 

and the transfer function (H(s)) for the feedback block with Type II is: 

𝐻(𝑠) = (1+𝑅2×𝐶1×𝑠)
(𝑅1×𝐶1×𝑠)×(1+𝑅2×𝐶3×𝑠)

   if C1>>C3                                                                                   (14) 

We can find the required C1, R2, and C3 once we select R1 with the desired fp0, fp1 and fz1. 

𝐶1 = 1
2𝜋×𝑅1×𝑓𝑝0

                                                                                                                           (15) 

𝑅2 = 𝑓𝑝0×𝑅1
𝑓𝑧1

                                                                                                                                (16) 
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𝐶3 = 𝑓𝑧1
2𝜋×𝑅1×𝑓𝑝0×𝑓𝑝1

                                                                                                                     (17) 

The boost converter with current-mode control can operate successfully with just a Type II 
compensator and has four main characteristics. These are: a single pole at low frequency 
determined by the output capacitor & load resistor, an ESR zero and an RHP zero which moves 
with operating conditions. Also, there is a pair of double poles at half the switching frequency. Q 
is controlled with ramp addition. 

In selecting values for the Type II compensator, these characteristics are taken into 
consideration in the placement of poles and the zero. The following list contains the design rules 
for the current-mode boost converter: 

1. The first pole (fp0) of the compensator is placed at the origin from an integrator. 

2. The compensation zero (fz1) is placed at one-fifth the selected crossover frequency. 

3. The second pole (fp1) of the compensator is placed coincident with the ESR zero or the 
RHP zero frequency, which is lower. 

4. The crossover frequency should be less than about one-tenth the switching frequency. 

5. The crossover frequency should be less than about one-fifth the RHP zero frequency. 

Based on these rules, Figure 9 shows an example for the compensator which has an 
appropriate shape, and usually a good phase margin. 
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Figure 9. Appropriate Compensator Design Example 
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As with the buck converter loop gain, it starts with a slope of –1, changes to –2 up to the 
compensation zero, then reverts to a –1 slope for the whole loop since this would compromise 
the low frequency gain. 

5 Current-Mode Compensation Summary 
Figure 10 and Figure 11 show the schematic and the loop gain of applying these rules to a boost 
converter example with the following design parameters (Vin = 5 V, Vout = 18 V, Iout = 3 A, L = 20 
µH, Fsw = 200 kHz). The converter switches at 200 kHz. The crossover frequency is limited to 
about 0.6 kHz, passing it through with –1 gain slope, and the phase margin measured to be 75 
degrees at this crossover frequency. 
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Figure 10. Schematic with the Given Parameters 

Figure 11 shows the resulting loop gain (in blue) with the compensation (in red) and the control-
to-output (in green) waveforms when these rules are applied. The selected crossover frequency 
is 0.6 kHz, or one-fifth the RHP zero frequency (3.6 kHz).  

Note that in the design rules, there was no requirement to cross the loop over in excess of the 
resonant filter frequency. This characteristic has already been eliminated by the current 
feedback loop. This is a very important observation, especially for current-mode boost converter 
which has a low-frequency RHP zero. 

With voltage-mode control it is sometimes impossible to control such a converter with a loop 
crossover above the resonant frequency, and performance is very poor. Current-mode control 
solves this problem, and low RHP zero systems are controllable with good performance. 
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Figure 11. Loop Gain and Phase Margin 

6 Conclusion 
Compensation for current-mode boost converter is much easier than voltage-mode boost 
converter, even if the RHP zero is at a low frequency. The Type II compensation has simple 
design rules, and good stability is usually achieved on the first attempt. There is no minimum 
requirement for the crossover frequency, so you can always make the system stable regardless 
of the RHP zero frequency. The current loop eliminates the ringing frequency of the filter, and 
good performance is achieved even with a relatively low crossover frequency on the voltage 
feedback loop. The proper ramp must be added to the current-mode boost converter to damp 
the subharmonic oscillations as shown in Figure 4. 
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