Small-Size TMP110 Versus TI's Temperature Sensors

Minimizing the footprint of integrated circuits is always important. However, with temperature sensors, reducing the size of the IC has additional benefits such as reducing the thermal mass of the device—thus, improving the thermal response. TMP110 is TI's first X2SON packaged temperature sensor. Featuring a significantly smaller form factor than the rest of our packaged temperature sensors portfolio, comparable in size to chip-scale devices, this pushes the boundaries for improved response time and saving space of packaged ICs while also allowing to place the temperature sensor closer to the heat source. In addition, the package protects the die inside from external factors (moisture, light, oxidation). The TMP110 is an I2C digital temperature sensor which offers an additional address orderable and different alert orderables with factory-programmed device-address. To put this into perspective, Figure 1 shows where the new X2SON TMP110 fits within TI's portfolio:

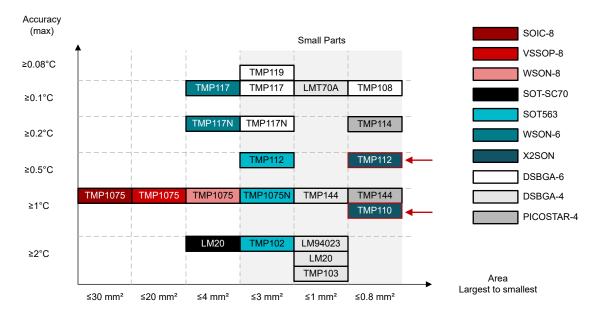


Figure 1. Where TMP110 Fits

The table below shows a comparison on key specs of this device versus others in TI's portfolio.

Table 1. Key Specifications Comparison

Device	Maximum Accuracy	Package	Area (mm)	Power Supply Range	Shutdown Iq	Q100 Available
TMP110	1°C	X2SON	0.8 x 0.8	1.14V to 5.5V	0.15µA	No
TMP119	0.08°C	DSBGA-6	1.488 x 0.95	1.7V to 5.5V	0.15µA	No
TMP112	0.5°C	SOT563 X2SON	1.6 x 1.6 0.8 x 0.8	1.4V to 3.6V	0.5μA 0.15μA	Yes
TMP108	0.75°C	DSBGA-6	1.216 x 0.816	1.4V to 3.6V	0.3μΑ	No
TMP114	0.2°C	PICOSTAR-4	0.76 x 0.76	1.08V to 1.98V	0.16µA	No
TMP103	2°C	DSBGA-4	1 x 1	1.4V to 3.6V	0.5µA	No

TMP110 Next To Commonly Used Packages

Figure 2 shows a visual representation as a PCB layout of how the X2SON package compares in size with other common packages.

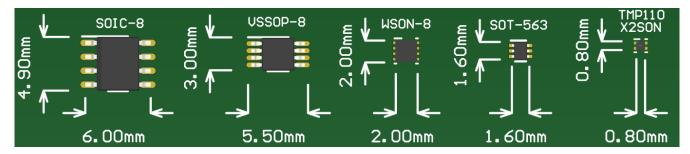


Figure 2. Package Size Comparison With Common Packages

As seen above, the TMP110 is considerably smaller than the common packaged temperature sensors. As reference, Figure 3 shows the TMP110 compared to chip-scale devices on a PCB layout along with the smallest leaded package.

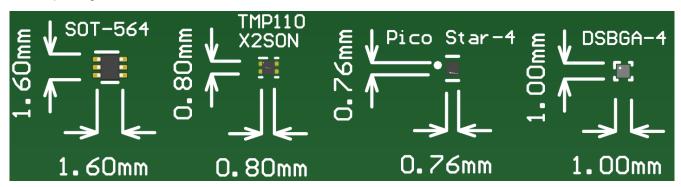


Figure 3. Package Size Comparison With Chip-Scale Devices

Comprehensive Overview

Table 2 shows a comprehensive overview of TI's portfolio of local temperature sensors in terms of package and performance over multiple interfaces. Table 3 serves as reference to pick the right device according to the end application needs.

Table 21 Totaled Beviece								
Interface	Smallest Leaded Device	Smallest Surface Mount Device	Smallest Chip Scale Device	Highest Accuracy				
Digital	TMP102 TMP112DRL TMP1075N	TMP110 TMP112DPW	TMP114	TMP119				
Analog	TMP20	LM57 LM26LV	LMT70 LM94023	LMT70				

Table 2. Featured Devices

Learn More

- · Learn about the recommended layout practices and considerations when designing with X2SON packages
- Guide to monitoring ambient and PCB temperature using surface-mount devices
- Refer to the TMP LM 75 family comparison application note for more information on compatibility

Choosing the Right Device

Table 3. TI's X2SON Temperature Sensors

Generic Part Number	Orderable Part Number	Center Pad	Address (7-bit format)
	TMP110D0IDPWR		0x48
	TMP110D1IDPWR	ALERT	0x49
TMP110	TMP110D2IDPWR	ALERI	0x4A
	TMP110D3IDPWR		0x4B
	TMP110DIDPWR	ADDRESS	0x40, 0x41, 0x42, 0x43
	TMP112D0IDPWR		0x48
	TMP112D1IDPWR	ALEDT	0x49
TMP112	TMP112D2IDPWR	ALERT	0x4A
	TMP112D3IDPWR		0x4B
	TMP112DIDPWR	ADDRESS	0x40, 0x41, 0x42, 0x43

For additional assistance, ask questions to TI engineers on the TI E2E Sensors Support Forum.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated