

Implementing Circular
Buffers With Bit-
Reversed Addressing

APPLICATION REPORT: SPRA292

Henry D. Hendrix
Senior Member Technical Staff

Digital Signal Processing Solutions
 November 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract ...7
Product Support..8

World Wide Web ...8
Linear Versus Circular Buffers...9

Linear Buffers ..9
Circular Buffers..9

Theory..11
Limitations ...12
Methodology..13
Pointer Manipulations...15

Method 1: Computing Offset Values ..15
Method 2: Saving the Original Value ...16
Method 3: Using Different Offset Values..17

Conclusion...18
References...19

Figures
Figure 1: Linear Buffer Requires Manual Data Movement..9
Figure 2: Circular Buffer Moves Pointer Through Data...10

Tables
Table 1: Buffer Access Sequence..11

Implementing Circular Buffers With Bit-Reversed Addressing 7

Implementing Circular Buffers With
Bit-Reversed Addressing

Abstract

Delay lines are used in many DSP applications. Delay lines
provide a buffer of the last N samples of data for a filter or other
algorithm. While delay lines can be implemented as linear or
circular buffers, buffers of the circular variety are often preferred
due to their relative simplicity.

Texas Instruments’ (TI) TMS320 family of DSPs can manipulate
circular buffer pointers without penalty to code size or execution
time through their bit-reversed addressing capabilities. Through
consistent pointer manipulations, these buffers can be used
anywhere traditional circular buffers are used.

This application note describes:

� How linear and circular buffers handle data movement in a
delay line.

� The properties and limitations of circular buffers.

� How to implement circular buffers with bit-reversed
addressing.

� Three methods, with step-by-step examples, for handling
pointer manipulations.

SPRA292

8 Implementing Circular Buffers With Bit-Reversed Addressing

Product Support

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA292

Implementing Circular Buffers With Bit-Reversed Addressing 9

Linear Versus Circular Buffers

Linear Buffers

Linear buffers require that the delay be implemented by manually
moving data down the delay line. The new data is written to the
recently vacated spot at the top of the buffer.

Figure 1: Linear Buffer Requires Manual Data Movement

Although TMS320 DSPs can perform this data movement in
parallel with arithmetic processing, use of this feature is limited to
the on-chip memory. Manual data movement in external memory
is discouraged since it involves external data writes, which
typically require at least 3 cycles. The parallel data moves are also
limited in movement by only one data location and in only one
direction. Some applications, such as a decimating filter, require
the sample data to be accessed by an offset greater than one.

Circular Buffers

Circular buffers implement the delay line by moving a pointer
through the data, rather than moving the data itself. New data is
written one position above the previous sample. This requires that
the pointer must be able to jump from the last location to the first,
or vice-versa. In this manner, the buffer appears to be continuous,
with the newest data overwriting the oldest data.

x(n)

x(n-1)

x(n-2)

x(n-k)

next input

each input is shifted down
by one location

. . .

SPRA292

10 Implementing Circular Buffers With Bit-Reversed Addressing

Figure 2: Circular Buffer Moves Pointer Through Data

Since a great deal of software overhead is involved in checking
the pointer values after every update, many DSPs provide circular
buffering hardware that performs this function automatically. This
hardware will wrap the pointer around once it goes past the end or
start of the buffer.

Although some of the TMS320 DSP family members (namely the
C1x, C2x, and C2xx) do not provide this hardware, they can still
provide zero-overhead circular buffering by using their bit-
reversed addressing hardware, normally used in FFT algorithms.
This same method can also be used in DSPs with circular
buffering hardware to provide additional circular buffers.

x(n)

x(n-1)

x(n-2)

x(n-k)

next input

. . .

current input (next x(n-1))

Addresses
automatically
increment or
decrement
from first to
last location

SPRA292

Implementing Circular Buffers With Bit-Reversed Addressing 11

Theory

The only requirement for implementing a circular buffer is a
method to keep a pointer’s value within the range of the buffer and
wrap around from the highest to lowest address (or vice-versa).

Using normal pointer arithmetic, carries are propagated to the left,
causing the values to grow until the highest 16-bit number is
reached.

With bit-reversed addressing, the pointer arithmetic is done such
that the carry bits propagate to the right. Carries from the
rightmost bit are ignored, thus confining the pointer to a range
determined solely by the value used to increment or decrement
the pointer. As long as the pointers are updated in bit-reversed
manner, only the specified lsb’s are ever modified.

The following example will illustrate this concept. Given a buffer
size of 8, an index register set to 4, and an initial pointer set to
0x100, the sequence of accesses to the buffer is shown in
Table 1.

Table 1: Buffer Access Sequence

Accesses Address
(hex)

Address calculation
of 3 lsb’s Comment

start 0x100

*BR0+ 0x104 000 + 100 = 100

*BR0+ 0x102 100 + 100 = 010 carry propagated to the right!

*BR0+ 0x106 010 + 100 = 110

*BR0+ 0x101 110 + 100 = 001

*BR0+ 0x105 001 + 100 = 101

*BR0+ 0x103 101 + 100 = 011

*BR0+ 0x107 011 + 100 = 111

*BR0+ 0x100 111 + 100 = 000 carry falls off the right side!

SPRA292

12 Implementing Circular Buffers With Bit-Reversed Addressing

Limitations

From this example we can see that a few restrictions are required
to use this method.

1) The size of the buffer must be a power of two (2n). The filter
length can be any size, however (see examples to follow).

2) The buffer must be aligned so that the starting address of the
buffer has n lsb's equal to zero.

3) All pointer updates must use the bit-reversed update mode
(*BR0+/-). This requires that the desired increment/decrement
value be stored in the index register (AR0) in bit-reversed
form.

NOTE:
All 2n data values in the buffer are accessed but not in
linear order. This means that all accesses to the data in
the buffer must comprehend the ordering of the data and
never modify the circular buffer pointers using normal
updates.

SPRA292

Implementing Circular Buffers With Bit-Reversed Addressing 13

Methodology

Given the properties and limitations above, the following
procedure should be used to implement a circular buffer:

1) Determine the required buffer size. This should be a number
that is the smallest power of two that will hold all the data. For
example, a buffer of 48 would require a buffer of size 64 (2n,
where n=6).

2) Align the buffer such that the n lsb’s are zero. This can be
done manually or by using the “align” directive in the linker
command file.

3) Initialize a pointer somewhere within the buffer. While typically
you would set the pointer to the start of the buffer, it will work
as long as it is anywhere within the buffer.

4) Set the index register (AR0 for the C2xx) to the desired offset
value, in bit-reversed form. Typically an offset of 1 is used,
which is half the buffer size in bit-reversed form. For example,
a size 64 buffer would set AR0 = 32, or 10 0000 binary.

5) Step through the buffer using bit-reversed mode (*BR0+/-) to
update the pointer.

The following example shows code implementing a simple filter on
a C203 in which the filter length is the same size as the circular
buffer. Note that the data pointer ends up at the starting point of
the buffer and must be manually moved back one position in order
to implement the delay function.

SPRA292

14 Implementing Circular Buffers With Bit-Reversed Addressing

Example 1: FIR Filter of Length 16

FRAME .set 50 ; number of samples
 .bss cbuf,16 ; circular buffer of size 16
 .bss temp,1 ; temporary memory location

COEF .sect “coef” ; coefficients in program memory
 .word 3129h ; (not all shown)
 .word 7422h

 .text
setup lar ar0,#8 ; ar0 = 1000b (bit-reversed 1)
 lar ar1,#cbuf ; ar1 points into “cbuf”
 lar ar2,#FRAME-1 ; ar2 is loop counter
 mar *,ar1 ; set auxiliary register pointer to ar1
 ldp #temp ; set data page pointer to “temp” page

filter in *,2 ; get input from I/O port 2
 mpy #0 ; clear P reg
 lacl #0 ; clear ACC
 rpt #15 ; do 16 taps
 mac COEF,*BR0+ ; ACC += x(n-k)*h(k)
 apac ; do last accumulate
 sach temp,1 ; save result (Q15)
 out temp,5 ; output to I/O port 5
 mar *BR0-,ar2 ; move pointer back 1 & change ARP to loop counter
 banz filter,*-,ar1 ; loop until done

SPRA292

Implementing Circular Buffers With Bit-Reversed Addressing 15

Pointer Manipulations

There are often additional pointer manipulations to be made after
the filtering or other function is complete. For instance, when using
a filter length that is less than the buffer size, resetting the pointer
to the location of the next input sample requires movement by a
different value than used in the filter. Another example is access
of an arbitrary sample in the delay line. Three different methods
for manipulating bit-reversed pointers are shown below.

Method 1: Computing Offset Values

Since the number of pointer increments through a filter is known, a
number can be calculated to return the pointer to the location for
the next input. Maintaining all accesses in bit-reversed form
requires that this offset be in bit-reversed form as well. The
procedure is as follows:

1) Compute the offset value.

For example, after processing a 40-tap FIR filter, the pointer
must be rewound by 41 to implement the delay. An offset
value of 41 (decimal) = 29 (hex) = 10 1001(binary).

2) Bit-reverse this to get 1001 01 (binary) = 25 (hex) = 37
(decimal).

3) Load the index register (AR0) with the bit-reversed offset
value.

4) Subtract this value from the pointer: “mar *BR0- “.

5) Reset the index register (AR0) to its original value of bit-
reversed one: 10 0000 (binary) = 20 (hex).

It is simplest to compute the offset as a positive number; then
either add or subtract it from the pointer. While negative offsets
can be used, they are limited to half the buffer size.

Example 2 shows the same filter implementation as example 1,
but with a tap length of 40, which uses only part of the circular
buffer. Note that after the filter, the pointer is at the 41st sample;
thus, it must be moved back by 41 words to get to the correct spot
for the next sample. This method requires 5 cycles on the C203
for the pointer update.

SPRA292

16 Implementing Circular Buffers With Bit-Reversed Addressing

Example 2: FIR Filter of Length 40, Computed Pointer Update

FRAME .set 50 ; number of samples
 .bss cbuf,64 ; circular buffer of size 64
 .bss temp,1 ; temporary memory location

COEF .sect “coef” ; coefficients in program memory
 .word 3129h ; (not all shown)
 .word 7422h

 .text
setup lar ar0,#20h ; ar0 = 10 0000b (bit-reversed 1)
 lar ar1,#cbuf ; ar1 points into “cbuf”
 lar ar2,#FRAME-1 ; ar2 is loop counter
 mar *,ar1 ; set auxiliary register pointer to ar1
 ldp #temp ; set data page pointer to “temp” page

filter in *,2 ; get input from I/O port 2
 mpy #0 ; clear P reg
 lacl #0 ; clear ACC
 rpt #39 ; do 40 taps
 mac COEF,*BR0+ ; ACC += x(n-k)*h(k)
 apac ; do last accumulate
 sach temp,1 ; save result (Q15)
 out temp,5 ; output to I/O port 5
 lar ar0,#25h ; ar0 = 10 0101b (bit-reversed 41)
 mar *BR0-,ar2 ; move pointer back 42 & change ARP to loop ctr
 lar ar0,#20h ; ar0 = 10 0000b (bit-reversed 1)
 banz filter,*-,ar1 ; loop until done

Method 2: Saving the Original Value

A slightly quicker method for restoring a pointer position is to save
the starting address in a temporary variable; then restore it at the
end. This procedure is:

1) Save the initial pointer value (i.e., the address of the current
sample).

2) Perform the filter calculations.

3) Restore the pointer to the initial value.

4) Decrement the pointer by one (bit-reversed) to point to the
next sample.

Example 3 shows an example of this method, using the same filter
implementation as examples 1 and 2. This method requires 4
cycles on the C203 for the pointer update. Sometimes the last
decrement can be combined with another function to further
reduce the cycle count.

SPRA292

Implementing Circular Buffers With Bit-Reversed Addressing 17

Example 3: FIR Filter of Length 40, Saved Pointer Update

FRAME .set 50 ; number of samples
 .bss cbuf,64 ; circular buffer of size 64
 .bss temp,1 ; temporary memory location
 .bss temp2,1 ; temporary memory location

COEF .sect “coef” ; coefficients in program memory
 .word 3129h ; (not all shown)
 .word 7422h

 .text
setup lar ar0,#20h ; ar0 = 10 0000b (bit-reversed 1)
 lar ar1,#cbuf ; ar1 points into “cbuf”
 lar ar2,#FRAME-1 ; ar2 is loop counter
 mar *,ar1 ; set auxiliary register pointer to ar1
 ldp #temp ; set data page pointer to “temp” page

filter sar ar1,temp2 ; save current data pointer value
 in *,2 ; get input from I/O port 2
 mpy #0 ; clear P reg
 lacl #0 ; clear ACC
 rpt #39 ; do 40 taps
 mac COEF,*BR0+ ; ACC += x(n-k)*h(k)
 apac ; do last accumulate
 sach temp,1 ; save result (Q15)
 out temp,5 ; output to I/O port 5
 lar ar1,temp2 ; restore data pointer
 mar *BR0-,ar2 ; move pointer back 1 & change ARP to loop ctr
 banz filter,*-,ar1 ; loop until done

Method 3: Using Different Offset Values

Another possible manipulation requires using different offset
values, such as in a decimating filter. For instance, to use every
other data point in a filter, the index register would be set to a
value of 2 in bit-reversed form, instead of 1. In examples 2 and 3,
this would require setting AR0 to 01 0000 (10h) instead of 10 0000
(20h). No other changes are required.

SPRA292

18 Implementing Circular Buffers With Bit-Reversed Addressing

Conclusion

Even when lacking dedicated circular buffering hardware, all
members of the TMS320 family of DSPs can implement circular
buffers through their bit-reversed addressing capabilities. This
capability requires about the same overhead as dedicated circular
buffers, both in code size and in execution time. It has been
shown that use of these types of circular buffers have minimal
limitations. Through consistent pointer manipulations, these
buffers can be used wherever traditional circular buffers are used.

SPRA292

Implementing Circular Buffers With Bit-Reversed Addressing 19

References
Randy Restle, “Circular Buffer in Second Generation DSPs”, TMS320

Designer’s Notebook Page #7, Texas Instruments, 1996.

TMS320C2xx User’s Guide, Digital Signal Processing Solutions, Texas
Instruments, 1995.

