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Preface

Read This First

About This Manual

This manual describes the central processing unit (CPU) of the
TMS320C55x (C55x) fixed-point digital signal processors (DSPs): the
architecture, registers, and operation.

Notational Conventions

This document uses the following conventions.

� If a signal or pin is active low, it has an overbar. For example, the RESET
signal is active low.

� In most cases, hexadecimal numbers are shown with the suffix h. For
example, the following number is a hexadecimal 40 (decimal 64):

40h

Similarly, binary numbers usually are shown with the suffix b. For example,
the following number is the decimal number 4 shown in binary form:

0100b

� Bits and signals are sometimes referenced with the following notations:

Notation Description Example

Register(n−m) Bits n through m of Register AC0(15−0) represents bits 15
through 0 of the register AC0.

Bus[n:m] Signals n through m of Bus A[21:1] represents signals 21
through 1 of bus A.
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� The following terms are used to name portions of data:

Term Description Example

LSB Least significant bit In AC0(15−0), bit 0 is the LSB.

MSB Most significant bit In AC0(15−0), bit 15 is the MSB.

LSByte Least significant byte In AC0(15−0), bits 7−0 are the LSByte.

MSByte Most significant byte In AC0(15−0), bits 15−8 are the MSByte.

LSW Least significant word In AC0(31−0), bits 15−0 are the LSW.

MSW Most significant word In AC0(31−0), bits 31−16 are the MSW.

Related Documentation From Texas Instruments

The following documents describe the C55x devices and related support tools.
Copies of these documents are available on the Internet at www.ti.com.
Tip: Enter the literature number in the search box provided at www.ti.com.

TMS320C55x Technical Overview (literature number SPRU393) introduces
the TMS320C55x DSPs, the latest generation of fixed-point DSPs in the
TMS320C5000 DSP platform. Like the previous generations, this
processor is optimized for high performance and low-power operation.
This book describes the CPU architecture, low-power enhancements,
and embedded emulation features.

TMS320C55x DSP Peripherals Overview Reference Guide (literature
number SPRU317) introduces the peripherals, interfaces, and related
hardware that are available on TMS320C55x DSPs.

TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature
number SPRU375) describes the TMS320C55x DSP algebraic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the mnemonic
instruction set.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature
number SPRU374) describes the TMS320C55x DSP mnemonic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the algebraic
instruction set.

TMS320C55x Optimizing C/C++ Compiler User’s Guide (literature number
SPRU281) describes the TMS320C55x C/C++ Compiler. This C/C++
compiler accepts ISO standard C and C++ source code and produces
assembly language source code for TMS320C55x devices.

Notational Conventions / Related Documentation From Texas Instruments

http://www-s.ti.com/sc/techlit/spru393
http://www-s.ti.com/sc/techlit/spru317
http://www-s.ti.com/sc/techlit/spru375
http://www-s.ti.com/sc/techlit/spru374
http://www-s.ti.com/sc/techlit/spru281
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TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

TMS320C55x DSP Programmer’s Guide (literature number SPRU376)
describes ways to optimize C and assembly code for the TMS320C55x
DSPs and explains how to write code that uses special features and
instructions of the DSPs.

Trademarks

TMS320C5000, TMS320C54x, C54x, TMS320C55x, and C55x are
trademarks of Texas Instruments.

Related Documentation From Texas Instruments / Trademarks

http://www-s.ti.com/sc/techlit/spru280
http://www-s.ti.com/sc/techlit/spru376
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1-1

CPU Architecture

This chapter describes the CPU architecture of the TMS320C55x (C55x)
DSPs. It gives conceptual details about the four functional units of the CPU and
about the buses that carry instructions and data. It also describes the parallel
phases of the instruction pipeline and the pipeline protection mechanism
(which prevents read and write operations from happening out of the intended
order).
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1.1 Overview of the CPU Architecture

Figure 1−1 shows a conceptual block diagram of the CPU. Sections 1.1.1
through 1.1.6 describe the buses and units represented in the figure.

Figure 1−1. CPU Diagram
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1.1.1 Internal Data and Address Buses

The buses shown in Figure 1−1 are:

� Data-Read Data Buses (BB, CB, DB). These three buses carry 16-bit
data from data space or I/O space to functional units of the CPU.

BB only carries data from internal memory to the D unit (primarily to the
dual multiply-and-accumulate (MAC) unit). BB is not connected to external
memory. Specific instructions enable you to use BB, CB, and DB to read
three operands at the same time.

Note:

BB and BAB are not connected to external memory. If an instruction fetches
an operand using BB or BAB, the operand must be in internal memory.
Inadvertent use of an external memory address generates a bus-error
interrupt.

CB and DB feed data to the P unit, the A unit, and the D unit. Instructions
that read two operands at once use both CB and DB. Instructions that
perform single read operations use DB.

� Data-Read Address Buses (BAB, CAB, DAB). These three buses carry
23-bit word data addresses to the memory interface unit, which then
fetches the data from memory and transfers the requested values to the
data-read data buses. All data-space addresses are generated in the
A unit.

BAB carries addresses for data that is carried from internal memory to the
CPU on BB.

CAB carries addresses for data that is carried to the CPU on CB.

DAB carries addresses for data that is carried to the CPU on only DB or
both CB and DB.

� Program-Read Data Bus (PB). PB carries 32 bits (4 bytes) of program
code at a time to the I unit, where instructions are decoded.

� Program-Read Address Bus (PAB). PAB carries the 24-bit byte program
address of the program code that is carried to the CPU by PB.

� Data-Write Data Buses (EB, FB). These two buses carry 16-bit data from
functional units of the CPU to data space or I/O space.

EB and FB receive data from the P unit, the A unit, and the D unit.
Instructions that write two 16-bit values to memory at once use both EB
and FB. Instructions that perform single write operations use EB.
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� Data-Write Address Buses (EAB, FAB). These two buses carry 23-bit
addresses to the memory interface unit, which then receives the values
driven on the data-write data buses. All data-space addresses are
generated in the A unit.

EAB carries addresses for data that is carried to memory on only EB or
both EB and FB.

FAB carries addresses for data that is carried to memory on FB.

1.1.2 Memory Interface Unit

The memory interface mediates all data transfers between the CPU and
program/data space or I/O space.

1.1.3 Instruction Buffer Unit (I Unit)

During each CPU cycle, the I unit receives 4 bytes of program code into its
instruction buffer queue and decodes 1 to 6 bytes of code that were previously
received in the queue. The I unit then passes data to the P unit, the A unit, and
the D unit for the execution of instructions. For example, any constants that
were encoded in instructions (for loading registers, providing shift counts,
identifying bit numbers, etc.) are isolated in the I unit and passed to the
appropriate unit.

The instruction buffer queue is emptied whenever the CPU branches to a new
location.

The instruction buffer queue is loaded (but not necessarily full) for
single-repeat and local-repeat operations.

1.1.4 Program Flow Unit (P Unit)

The P unit generates all program-space addresses and sends them out on
PAB. It also controls the sequence of instructions by directing operations such
as hardware loops, branches, and conditional execution.
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1.1.5 Address-Data Flow Unit (A Unit)

The A unit contains all the logic and registers necessary to generate the
data-space addresses and send them out on BAB, CAB, and DAB. It also
contains a 16-bit arithmetic logic unit (ALU) that can perform arithmetical,
logical, shift, and saturation operations.

1.1.6 Data Computation Unit (D Unit)

The D unit contains the primary computational units of the CPU:

� A 40-bit barrel shifter that provides a shift range of –32 to 31.

� A 40-bit arithmetic logic unit (ALU) that can perform arithmetical, logical,
rounding, and saturation operations.

� A pair of multiply-and-accumulate units (MACs) that can perform a 17-bit
multiplication and a 40-bit addition or subtraction in a single cycle.
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1.2 Instruction Buffer Unit (I Unit)

The I unit receives program code into its instruction buffer queue and decodes
instructions. The I unit then passes data to the P unit, the A unit, and the D unit
for the execution of instructions. Figure 1−2 shows a conceptual block
diagram of the I unit. Sections 1.2.1 and 1.2.2 describe the main parts of the
I unit.

Figure 1−2. Instruction Buffer Unit (I Unit) Diagram
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1.2.1 Instruction Buffer Queue

The CPU fetches 32 bits at a time from program memory. The program-read
data bus (PB) carries these 32 bits from memory to the instruction buffer
queue. The queue can hold up to 64 bytes of undecoded instructions. When
the CPU is ready to decode instructions, 6 bytes are transferred from the
queue to the instruction decoder.
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In addition to helping with the pipelining of instructions, the queue enables:

� The execution of a block of code stored in the queue (local repeat
instruction)

� Speculative fetching of instructions while a condition is being tested for
one of the following instructions:

� Conditional branch
� Conditional call
� Conditional return

1.2.2 Instruction Decoder

In the decode phase of the instruction pipeline, the instruction decoder accepts
6 bytes of program code from the instruction buffer queue and decodes those
bytes. The instruction decoder:

� Identifies instruction boundaries so that it can decode 8-, 16-, 24-, 32-, 40-,
and 48-bit instructions

� Determines whether the CPU has been instructed to execute two
instructions in parallel.

� Sends decoded execution commands and immediate values to the
program flow unit (P unit), the address-data flow unit (A unit), and the data
computation unit (D unit)

Certain instructions enable writing of immediate values directly to memory or
I/O space by way of a dedicated data path.

Although the decoder typically decodes no more than 6 bytes at a time, there
are cases in which it decodes 7 bytes for a single instruction. An instruction
listed in Table 1−1 has a 4-byte opcode and is extended by 3 bytes when the
k23 absolute addressing mode is used for Smem. For details about the
k23 absolute address mode, see section 6.2.2.
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Table 1−1. 4-Byte Instructions That are Extended to 7 Bytes When the k23 Absolute
Addressing Mode is Used for Smem

Instruction Syntax Instruction Type

CMP Smem == K16, TCx Compare memory with immediate value

BAND Smem, k16, TCx Bitwise AND memory with immediate value

AND k16, Smem Bitwise AND

OR k16, Smem Bitwise OR

XOR k16, Smem Bitwise XOR

ADD k16, Smem Addition

MPYMK[R] [T3 = ]Smem, K8, ACx Multiply

MACMK[R] [T3 = ]Smem, K8, [ACx,] ACy Multiply and accumulate

ADD [uns(]Smem[)] << #SHIFTW, [ACx,] ACy Addition

SUB [uns(]Smem[)] << #SHIFTW, [ACx,] ACy Subtraction

MOV [uns(]Smem[)] << #SHIFTW, ACx Load accumulator from memory

MOV [rnd(]HI(ACx << #SHIFTW)[)], Smem Store accumulator content to memory

MOV [uns(] [rnd(]HI[(saturate](ACx << #SHIFTW)[)))], Smem Store accumulator content to memory

MOV k16, Smem Load memory with immediate value
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1.3 Program Flow Unit (P Unit)

The P unit generates all program-space addresses. It also controls the
sequence of instructions. Figure 1−3 shows a conceptual block diagram of the
P unit. Sections 1.3.1 and 1.3.2 describe the main parts of the P unit.

Figure 1−3. Program Flow Unit (P Unit) Diagram
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1.3.1 Program-Address Generation and Program-Control Logic

The program-address generation logic is responsible for generating 24-bit
addresses for fetches from program memory. Normally, it generates
sequential addresses. However, for instructions that require reads from
nonsequential addresses, the program-address generation logic can accept
immediate data from the I unit and register values from the D unit. Once an
address is generated, it is carried to memory by the program-read address bus
(PAB).
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The program control logic accepts immediate values from the I unit and test
results from the A unit or the D unit, and performs the following actions:

� Tests whether a condition is true for a conditional instruction and
communicates the result to the program-address generation logic

� Initiates interrupt servicing when an interrupt is requested and properly
enabled

� Controls the repetition of a single instruction preceded by a single-repeat
instruction, or a block of instructions preceded by a block-repeat
instruction. You can implement three levels of loops by nesting a
block-repeat operation within another block-repeat operation and
including a single-repeat operation in either or both of the repeated blocks.
All repeat operations are interruptible.

� Manages instructions that are executed in parallel. Parallelism within the
C55x DSP enables the execution of program-control instructions at the
same time as data processing instructions.

1.3.2 P-Unit Registers

The P unit contains and uses the registers listed below. Access to the program
flow registers is limited. You cannot read from or write to PC. You can access
RETA and CFCT only with the following syntaxes:

MOV dbl(Lmem), RETA

MOV RETA, dbl(Lmem)

All the other registers can be loaded with immediate values (from the I unit) and
can communicate bidirectionally with data memory, I/O space, the A-unit
registers, and the D-unit registers.

Program Flow Registers

PC Program counter

RETA Return address register

CFCT Control flow context register

Block-Repeat Registers

BRC0, BRC1 Block-repeat counters 0 and 1

BRS1 BRC1 save register

RSA0, RSA1 Block-repeat start address registers 0 and 1

REA0, REA1 Block-repeat end address registers 0 and 1

Single-Repeat Registers

RPTC Single-repeat counter

CSR Computed single-repeat register
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Interrupt Registers

IFR0, IFR1 Interrupt flag registers 0 and 1

IER0, IER1 Interrupt enable registers 0 and 1

DBIER0, DBIER1 Debug interrupt enable registers 0 and 1

Status Registers

ST0_55–ST3_55 Status registers 0, 1, 2, and 3
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1.4 Address-Data Flow Unit (A Unit)

The A unit contains all the logic and registers necessary to generate the
data-space and I/O space addresses. It also contains an arithmetic logic unit
(ALU) that can perform arithmetical, logical, shift, and saturation operations.
Figure 1−4 shows a conceptual block diagram of the A unit. Sections 1.4.1
through 1.4.3 describe the main parts of the A unit.

Figure 1−4. Address-Data Flow Unit (A Unit) Diagram
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1.4.1 Data-Address Generation Unit (DAGEN)

DAGEN generates all addresses for reads from or writes to data space and
I/O space. In doing so, it can accept immediate values from the I unit and
register values from the A unit. The P unit indicates to DAGEN whether to use
linear or circular addressing for an instruction that uses an indirect addressing
mode.

1.4.2 A-Unit Arithmetic Logic Unit (A-Unit ALU)

The A unit contains a 16-bit ALU that accepts immediate values from the I unit
and communicates bidirectionally with memory, I/O space, the A-unit
registers, the D-unit registers, and the P-unit registers. The A-unit ALU
performs the following actions:

� Performs additions, subtractions, comparisons, Boolean logic operations,
signed shifts, logical shifts, and absolute value calculations

� Tests, sets, clears, and complements A-unit register bits and memory bits

� Modifies and moves register values

� Rotates register values

� Moves certain results from the shifter to an A-unit register

1.4.3 A-Unit Registers

The A unit contains and uses the registers listed after this paragraph. All of
these registers can accept immediate data from the I unit and can accept data
from or provide data to the P-unit registers, the D-unit registers, and data
memory. Within the A unit, the registers have bidirectional connections with
DAGEN and the A-unit ALU.

Data Page Registers

DPH, DP Data page registers

PDP Peripheral data page register

Pointers

CDPH, CDP Coefficient data pointer registers

SPH, SP, SSP Stack pointer registers

XAR0–XAR7 Auxiliary registers

Circular Buffer Registers

BK03, BK47, BKC Circular buffer size registers

BSA01, BSA23, BSA45, BSA67, BSAC Circular buffer start address registers

Temporary Registers

T0–T3 Temporary registers 0, 1, 2, and 3
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1.5 Data Computation Unit (D Unit)

The D unit contains the primary computational units of the CPU. Figure 1−5
shows a conceptual block diagram of the D unit. Sections 1.5.1 through 1.5.4
describe the main parts of the D unit.

Figure 1−5. Data Computation Unit (D Unit) Diagram
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1.5.1 Shifter

The D-unit shifter accepts immediate values from the I unit and communicates
bidirectionally with memory, I/O space, the A-unit registers, the D-unit
registers, and the P-unit registers. In addition, it supplies shifted values to the
D-unit ALU (as an input for further calculation) and to the A-unit ALU (as a
result to be stored in an A-unit register). The shifter performs the following
actions:

� Shifts 40-bit accumulator values up to 31 bits to the left or up to 32 bits to
the right. The shift count can be read from one of the temporary registers
(T0–T3) or it can be supplied as a constant in the instruction.

� Shifts 16-bit register, memory, or I/O-space values up to 31 bits to the left
or up to 32 bits to the right. The shift count can be read from one of the
temporary registers (T0–T3) or it can be supplied as a constant in the
instruction.

� Shifts 16-bit immediate values up to 15 bits to the left. You supply the shift
count as a constant in the instruction.

� Normalizes accumulator values

� Extracts and expands bit fields, and performs bit counting

� Rotates register values

� Rounds and/or saturates accumulator values before they are stored to
data memory

� Performs additions and subtractions for some instructions that include
shifting

For the C54x-compatible mode (C54CM = 1), the overflow detection is only
performed for the final operation of a calculation. For C55x-native mode
(C54CM = 0), the overflow detection is performed on each operation (shifting,
rounding, and addition/subtraction).
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1.5.2 D-Unit Arithmetic Logic Unit (D-Unit ALU)

The CPU contains a 40-bit ALU in the D unit that accepts immediate values
from the I unit and communicates bidirectionally with memory, I/O space, the
A-unit registers, the D-unit registers, and the P-unit registers. In addition, it
receives results from the shifter. The D-unit ALU performs the following
actions:

� Performs additions, subtractions, comparisons, rounding, saturation,
Boolean logic operations, and absolute value calculations

� Performs two arithmetical operations simultaneously when a dual 16-bit
arithmetic instruction is executed

� Tests, sets, clears, and complements D-unit register bits

� Moves register values

1.5.3 Two Multiply-and-Accumulate Units (MACs)

Two MACs support multiplication and addition/subtraction. In a single cycle
each MAC can perform a 17-bit  ×  17-bit multiplication (fractional or integer)
and a 40-bit addition or subtraction with optional 32-/40-bit saturation. The
accumulators (which are D-unit registers) receive all the results of the MACs.

The MACs accept immediate values from the I unit; accept data values from
memory, I/O space, and the A-unit registers; and communicate bidirectionally
with the D-unit registers and the P-unit registers. Status register bits (in the
P unit) are affected by MAC operations.

Overflow detection is only performed for the final operation of a calculation.

1.5.4 D-Unit Registers

The D unit contains and uses the registers listed after this paragraph. All of
these registers can accept immediate data from the I unit and can accept data
from and provide data to the P-unit registers, the A-unit registers, and data
memory. Within the D unit, the registers have bidirectional connections with
the shifter, the D-unit ALU, and the MACs.

Accumulators

AC0–AC3 Accumulators 0, 1, 2, and 3

Transition Registers

TRN0, TRN1 Transition registers 0 and 1
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1.6 Address Buses and Data Buses
The CPU is supported by one 32-bit program bus (PB), five 16-bit data buses
(BB, CB, DB, EB, FB), one 24-bit address bus (PAB), and five 23-bit address
buses (BAB, CAB, DAB, EAB, FAB). This parallel bus structure enables up to
a 32-bit program read, three 16-bit data reads, and two 16-bit data writes per
CPU clock cycle. Table 1−2 describes the functions of the 12 buses, and
Table 1−3 shows which bus or buses are used for a given access type.

Table 1−2. Functions of the Address and Data Buses 

Bus(es) Width Function

PAB 24 bits The program-read address bus (PAB) carries a 24-bit byte address for a read from
program space.

PB 32 bits The program-read data bus (PB) carries 4 bytes (32 bits) of program code from
program memory to the CPU.

CAB, DAB 23 bits each Each of these data-read address buses carries a 23-bit word address. DAB
carries an address for a read from data space or I/O space. CAB carries a second
address during dual data reads (see Table 1−3).

CB, DB 16 bits each Each of these data-read data buses carries a 16-bit data value to the CPU. DB
carries a value from data space or from I/O-space. CB carries a second value
during long data reads and dual data reads (see Table 1−3).

BAB 23 bits This data-read address bus carries a 23-bit word address for a coefficient read.
Many instructions that use the coefficient indirect addressing mode use BAB to
reference coefficient data values (and use BB to carry the data values).

BB 16 bits This data-read data bus carries a 16-bit coefficient data value from internal
memory to the CPU. BB is not connected to external memory. Data carried by BB
is addressed using BAB.

Specific instructions use BB, CB, and DB to provide, in one cycle, three 16-bit
operands to the CPU, using the coefficient indirect addressing mode. The
operand fetched via BB must be in a memory bank other than the bank(s)
accessed via CB and DB.

EAB, FAB 23 bits each Each of these data-write address buses carries a 23-bit word address. EAB
carries an address for a write to data space or I/O space. FAB carries a second
address during dual data writes (see Table 1−3).

EB, FB 16 bits each Each of these data-write data buses carries a 16-bit data value from the CPU. EB
carries a value to data space or to I/O-space. FB carries a second value during
long data writes and dual data writes (see Table 1−3).
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Note:

In the event of a dual data write to the same address, the result is undefined.

Table 1−3. Bus Usage by Access Type  

Access Type Address Bus(es) Data Bus(es) Description

Instruction fetch PAB PB 32-bit read from program space

Single data read DAB DB 16-bit read from data memory

Single MMR read DAB DB 16-bit read from a memory-mapped register
(MMR)

Single I/O read DAB DB 16-bit read from I/O space

Single data write EAB EB 16-bit write to data memory

Single MMR write EAB EB 16-bit write to a memory-mapped register
(MMR)

Single I/O write EAB EB 16-bit write to I/O space

Long data read DAB CB, DB 32-bit read from data memory

Long MMR read DAB CB, DB 32-bit read from one 32-bit MMR or two
adjacent 16-bit MMRs

Long data write EAB EB, FB 32-bit write to data memory

Long MMR write EAB EB, FB 32-bit write to one 32-bit MMR or two adjacent
16-bit MMRs

Dual read CAB, DAB CB, DB Two simultaneous 16-bit reads from data
space:

� The first operand read uses DAB and DB.
This read can be from data memory, from
an MMR, or from I/O space.

� The second operand read uses CAB and
CB. This read must be from data memory.

Dual write EAB, FAB EB, FB Two simultaneous 16-bit writes:

� The first operand write uses uses FAB
and FB. This write must be to data
memory.

� The second operand write uses EAB and
EB. This write can be to data memory, to
an MMR, or to I/O space.
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Table 1−3. Bus Usage by Access Type (Continued) 

Access Type DescriptionData Bus(es)Address Bus(es)

Single data read
|| Single data write

DAB, EAB DB, EB The following two operations happen in
parallel:

� Single data read: 16-bit read from data
memory (uses DAB and DB)

� Single data write: 16-bit write to data
memory (uses EAB and EB)

Long data read
|| Long data write

DAB, EAB CB, DB, EB,
FB

The following two operations happen in
parallel:

� Long data read: 32-bit read from data
memory (uses DAB, CB, and DB)

� Long data write: 32-bit write to data
memory (uses EAB, EB, and FB)

Single data read
|| Coefficient data read

DAB, BAB DB, BB The following two operations happen in
parallel:

� Single data read: 16-bit read from data
space (uses DAB and DB)

� Coefficient data read: 16-bit read from
internal memory using the coefficient
indirect addressing mode (uses BAB and
BB)

Dual data read
|| Coefficient data read

CAB, DAB, BAB CB, DB, BB The following two operations happen in
parallel:

� Dual data read: Two simultaneous 16-bit
reads from data space. The first operand
read uses DAB and DB. The second
operand read uses CAB and CB.

� Coefficient data read: 16-bit read from
internal memory using the coefficient
indirect addressing mode (uses BAB and
BB)
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1.7 Instruction Pipeline

The C55x CPU uses instruction pipelining. Section 1.7.1 introduces the
pipeline, and section 1.7.2 describes how the CPU prevents conflicts that
might otherwise occur in the pipeline. The TMS320C55x DSP Programmer’s
Guide (literature number SPRU376) contains additional information about
pipeline operation.

1.7.1 Pipeline Phases

The C55x instruction pipeline is a protected pipeline that has two decoupled
segments:

� The first segment, referred to as the fetch pipeline, fetches 32-bit
instruction packets from memory, places them in the instruction buffer
queue (IBQ), and then feeds the second pipeline segment with 48-bit
instruction packets. The fetch pipeline is illustrated in Figure 1−6.

� The second segment, referred to as the execution pipeline, decodes
instructions and performs data accesses and computations. The
execution pipeline is illustrated in Figure 1−7. Table 1−4 provides
examples to help you understand the activity in the key phases of the
execution pipeline.

Figure 1−6. First Segment of the Pipeline (Fetch Pipeline)

Time

Prefetch 1
(PF1)

Prefetch 2
(PF2)

Fetch
(F)

Predecode
(PD)

Pipeline
Phase Description

PF1 Present program address to memory.

PF2 Wait for memory to respond.

F Fetch an instruction packet from memory and place it in the IBQ.

PD Pre-decode instructions in the IBQ (identify where instructions
begin and end; identify parallel instructions).

http://www-s.ti.com/sc/techlit/spru376
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Figure 1−7. Second Segment of the Pipeline (Execution Pipeline)
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Decode
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Note: Only for memory write operations

Address
(AD)

Access 1
(AC1)

Access 2
(AC2)

Read
(R)

Access 2
(AC2)

Execute
(X)

Write
(W)

Pipeline
Phase

Description

D � Read six bytes from the instruction buffer queue.

� Decode an instruction pair or a single instruction.

� Dispatch instructions to the appropriate CPU functional units.

� Read STx_55 bits associated with data address generation:
ST1_55(CPL) ST2_55(ARnLC)
ST2_55(ARMS) ST2_55(CDPLC)

AD � Read/modify registers involved in data address generation.
For example:
− ARx and T0 in *ARx+(T0)
− BK03 if AR2LC = 1
− SP during pushes and pops
− SSP, same as for SP if in the 32-bit stack mode

� Perform operations that use the A-unit ALU. For example:
− Arithmetic using AADD instruction
− Swapping A-unit registers with a SWAP instruction
− Writing constants to A-unit registers (BKxx,
       BSAxx, BRCx, CSR, etc.)

� Decrement ARx for the conditional branch instruction that
branches on ARx not zero.

� (Exception) Evaluate the condition of the XCC instruction
(execute(AD-unit) attribute in the algebraic syntax).

AC1 For memory read operations, send addresses on the appropriate
CPU address buses.

AC2 Allow one cycle for memories to respond to read requests.

R � Read data from memory and MMR-addressed registers.

� Read A-unit registers when executing specific D-unit
instructions that “prefetch” A-unit registers in the R phase
rather than reading them in the X phase.

� Evaluate the conditions of conditional instructions. Most but
not all condition evaluation is performed in the R phase.
Exceptions are marked with “(Exception)” in this table.
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Figure 1−7. Second Segment of the Pipeline (Execution Pipeline) (Continued)

Pipeline
Phase

Description

X � Read/modify registers that are not MMR-addressed.

� Read/modify individual register bits.

� Set conditions.

� (Exception) Evaluate the condition of the XCCPART
instruction (execute(D-unit) attribute in the algebraic syntax),
unless the instruction is conditioning a write to memory (in this
case, the condition is evaluated in the R phase).

� (Exception) Evaluate the condition of the RPTCC instruction.

W � Write data to MMR-addressed registers or to I/O space
(peripheral registers).

� Write data to memory. From the perspective of the CPU, the
write operation is finished in this pipeline phase.

W+ � Write data to memory. From the perspective of the memory, the
write operation is finished in this pipeline phase.

Table 1−4. Examples to Illustrate Execution Pipeline Activity

Example Syntax Pipeline Explanation

AMOV #k23, XARx XARx is initialized with a constant in the AD phase.

MOV #k, ARx ARx is not MMR-addressed. ARx is initialized with
a constant in the X phase.

MOV #k, mmap(ARx) ARx is MMR-addressed. ARx is initialized with a
constant in the W phase.

AADD #k, ARx With this special instruction, ARx is initialized with
a constant in the AD phase.

MOV #k, *ARx+ The memory write happens in the W+ phase.

MOV *ARx+, AC0 ARx is read and updated in the AD phase. AC0 is
loaded in the X phase.

ADD #k, ARx ARx is read at the beginning of the X phase and is
modified at the end of the X phase.

ADD ACy, ACx ACx and ACy read and write activity occurs in the
X phase.
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Table 1−4. Examples to Illustrate Execution Pipeline Activity (Continued)

Example Syntax Pipeline Explanation

MOV mmap(ARx), ACx ARx is MMR-addressed and so is read in the
R phase. ACx is modified in the X phase.

MOV ARx, ACx ARx is not MMR-addressed and so is read in the
X phase. ACx is modified in the X phase.

BSET CPL The CPL bit is set in the X phase.

PUSH, POP, RET or
AADD #K8, SP

SP is read and modified in the AD phase. SSP is
also affected if the 32-bit stack mode is selected.

XCCPART overflow(ACx)
|| MOV *AR1+, AC1

The condition is evaluated in the X phase.
Note: AR1 is incremented regardless of whether
the condition is true.

XCCPART overflow(ACx)
|| MOV     AC1, *AR1+

The condition is evaluated in the R phase because
it conditions a write to memory.
Note: AR1 is incremented regardless of whether
the condition is true.

XCC overflow(ACx)
|| MOV     *AR1+, AC1

The condition is evaluated in the AD phase.
Note: AR1 is incremented only if the condition is
true.

1.7.2 Pipeline Protection

Multiple instructions are executed simultaneously in the pipeline, and different
instructions perform modifications to memory, I/O-space, and register values
during different phases of completion. In an unprotected pipeline, this could
lead to pipeline conflicts—reads and writes at the same location happening out
of the intended order. However, the C55x pipeline has a mechanism that
automatically protects against pipeline conflicts. The pipeline-protection
mechanism adds inactive cycles between instructions that would cause
conflicts.

Most pipeline-protection cycles are inserted based on two rules:

� If an instruction is supposed to write to a location but a previous instruction
has not yet read from that location, extra cycles are inserted so that the
read occurs first.

� If an instruction is supposed to read from a location but a previous
instruction has not yet written to that location, extra cycles are inserted so
that the write occurs first.
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Note:

The pipeline-protection mechanism cannot prevent pipeline conflicts
between two instructions that are executed in parallel.

The TMS320C55x DSP Programmer’s Guide (literature number SPRU376)
offers tips on how to minimize the number of cycles that get inserted for
pipeline protection.

http://www-s.ti.com/sc/techlit/spru376
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CPU Registers

This chapter describes the main registers in a C55x DSP CPU. Section 2.1 lists
the registers in alphabetical order, and section 2.2 shows the addresses for the
memory-mapped registers. The other sections contain additional details about
the CPU registers.
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2.1 Alphabetical Summary of Registers

Table 2−1 lists the registers in alphabetical order. For more details about a
particular register, see the page given in the last column of the table.

Table 2−1. Alphabetical Summary of Registers 

Register Name Description Size See ...

AC0–AC3 Accumulators 0 through 3 40 bits each Page 2-9

AR0–AR7 Auxiliary registers 0 through 7 16 bits each Page 2-12

BK03, BK47, BKC Circular buffer size registers 16 bits each Page 2-16

BRC0, BRC1 Block-repeat counters 0 and 1 16 bits each Page 2-34

BRS1 BRC1 save register 16 bits Page 2-34

BSA01, BSA23,
BSA45, BSA67, BSAC

Circular buffer start address registers 16 bits each Page 2-15

CDP Coefficient data pointer
(low part of XCDP)

16 bits Page 2-14

CDPH High part of XCDP 7 bits Page 2-14

CFCT Control-flow context register 8 bits Page 2-21

CSR Computed single-repeat register 16 bits Page 2-34

DBIER0, DBIER1 Debug interrupt enable registers 0 and 1 16 bits each Page 2-30

DP Data page register (low part of XDP) 16 bits Page 2-17

DPH High part of XDP 7 bits Page 2-17

IER0, IER1 Interrupt enable registers 0 and 1 16 bits each Page 2-27

IFR0, IFR1 Interrupt flag registers 0 and 1 16 bits each Page 2-24

IVPD, IVPH Interrupt vector pointers 16 bits each Page 2-23

PC Program counter 24 bits Page 2-21

PDP Peripheral data page register 9 bits Page 2-18

REA0, REA1 Block-repeat end address registers 0 and 1 24 bits each Page 2-34

RETA Return address register 24 bits Page 2-21

RPTC Single-repeat counter 16 bits Page 2-34

RSA0, RSA1 Block-repeat start address registers 0 and 1 24 bits each Page 2-34
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Table 2−1. Alphabetical Summary of Registers (Continued)

Register Name See ...SizeDescription

SP Data stack pointer (low part of XSP) 16 bits Page 2-18

SPH High part of XSP and XSSP 7 bits Page 2-18

SSP System stack pointer (low part of XSSP) 16 bits Page 2-18

ST0_55–ST3_55 Status registers 0 through 3 16 bits each Page 2-37

T0–T3 Temporary registers 16 bits each Page 2-11

TRN0, TRN1 Transition registers 0 and 1 16 bits each Page 2-10

XAR0–XAR7 Extended auxiliary registers 0 through 7 23 bits each Page 2-12

XCDP Extended coefficient data pointer 23 bits Page 2-14

XDP Extended data page register 23 bits Page 2-17

XSP Extended data stack pointer 23 bits Page 2-18

XSSP Extended system stack pointer 23 bits Page 2-18
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2.2 Memory-Mapped Registers

Table 2−2 shows the memory-mapped registers, which are CPU registers
mapped to addresses in the data space of the DSP.

Notes:

1) ST0_55, ST1_55, and ST3_55 are each accessible at two addresses.
At one address, all the TMS320C55x bits are available. At the other
address (the protected address), certain bits cannot be modified. The
protected address is provided to support TMS320C54x code that
writes to ST0, ST1, and PMST (the C54x counterpart of ST3_55).

2) T3, RSA0L, REA0L, and SP are each accessible at two addresses. For
accesses using the DP direct addressing mode memory-mapped
register accesses, the assembler substitutes the higher of the two
addresses: T3  =  23h (not 0Eh), RSA0L  =  3Dh (not 1Bh), REA0L = 3Fh
(not 1Ch), SP  =  4Dh (not 18h).

3) Any C55x instruction that loads BRC1 loads the same value to BRS1.

Table 2−2. Memory-Mapped Registers 

Address(es) Register Description Bit Range See ...

00 0000h IER0 Interrupt enable register 0 15–0 Page 2-27

00 0001h IFR0 Interrupt flag register 0 15–0 Page 2-24

00 0002h
(for C55x code)

ST0_55 Status register 0 15–0 Page 2-37

Note: Address 00 0002h is for native TMS320C55x code that accesses ST0_55. TMS320C54x code that was
written to access ST0 should use address 00 0006h to access ST0_55.

00 0003h
(for C55x code)

ST1_55 Status register 1 15–0 Page 2-37

Note: Address 00  0003h is for native TMS320C55x code that accesses ST1_55. TMS320C54x code that was
written to access ST1 should use address 00 0007h to access ST1_55.

00 0004h
(for C55x code)

ST3_55 Status register 3 15–0 Page 2-37

Note: Address 00  0004h is for native TMS320C55x code that accesses ST3_55. TMS320C54x code that was
written to access the processor mode status register (PMST) should use address 00 001Dh to access ST3_55.

00 0005h − Reserved (do not use this address) − −
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Table 2−2. Memory-Mapped Registers (Continued)

Address(es) See ...Bit RangeDescriptionRegister

00 0006h
(for C54x code)

ST0
(ST0_55)

Status register 0 15–0 Page 2-37

Note: Address 00 0006h is the protected address of ST0_55. This address is for TMS320C54x code that was
written to access ST0. Native TMS320C55x code should use address 00 0002h to access ST0_55.

00 0007h
(for C54x code)

ST1
(ST1_55)

Status register 1 15–0 Page 2-37

Note: Address 00 0007h is the protected address of ST1_55. This address is for TMS320C54x code that was
written to access ST1. Native TMS320C55x code should use address 00 0003h to access ST1_55.

00 0008h

00 0009h

00 000Ah

AC0L

AC0H

AC0G

Accumulator 0 15–0

31–16

39–32

Page 2-9

00 000Bh

00 000Ch

00 000Dh

AC1L

AC1H

AC1G

Accumulator 1 15–0

31–16

39–32

Page 2-9

00 000Eh T3 Temporary register 3 15–0 Page 2-11

00 000Fh TRN0 Transition register 0 15–0 Page 2-10

00 0010h AR0 Auxiliary register 0 15–0 Page 2-12

00 0011h AR1 Auxiliary register 1 15–0 Page 2-12

00 0012h AR2 Auxiliary register 2 15–0 Page 2-12

00 0013h AR3 Auxiliary register 3 15–0 Page 2-12

00 0014h AR4 Auxiliary register 4 15–0 Page 2-12

00 0015h AR5 Auxiliary register 5 15–0 Page 2-12

00 0016h AR6 Auxiliary register 6 15–0 Page 2-12

00 0017h AR7 Auxiliary register 7 15–0 Page 2-12

00 0018h SP Data stack pointer 15–0 Page 2-18

00 0019h BK03 Circular buffer size register for AR0–AR3 15–0 Page 2-16

Note: In the TMS320C54x-compatible mode (C54CM = 1), BK03 is used for all the auxiliary registers. C54CM
is a bit in status register 1 (ST1_55). The status registers are described beginning on page 2-37.

00 001Ah BRC0 Block-repeat counter 0 15–0 Page 2-34
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Table 2−2. Memory-Mapped Registers (Continued)

Address(es) See ...Bit RangeDescriptionRegister

00 001Bh RSA0L Low part of block-repeat start address
register 0

15–0 Page 2-34

00 001Ch REA0L Low part of block-repeat end address
register 0

15–0 Page 2-34

00 001Dh
(for C54x code)

PMST
(ST3_55)

Status register 3 15–0 Page 2-37

Note: Address 00 001Dh is the protected address of ST3_55. This address is for TMS320C54x code that was
written to access the processor mode status register (PMST). Native TMS320C55x code should use address
00 0004h to access ST3_55.

00 001Eh XPC This address is set aside for compatibility
with TMS320C54x code that uses the
program counter extension register
(XPC).

7–0 −

00 001Fh − Reserved (do not use this address) − −

00 0020h T0 Temporary register 0 15–0 Page 2-11

00 0021h T1 Temporary register 1 15–0 Page 2-11

00 0022h T2 Temporary register 2 15–0 Page 2-11

00 0023h T3 Temporary register 3 15–0 Page 2-11

00 0024h

00 0025h

00 0026h

AC2L

AC2H

AC2G

Accumulator 2 15–0

31–16

39–32

Page 2-9

00 0027h CDP Coefficient data pointer 15–0 Page 2-14

00 0028h

00 0029h

00 002Ah

AC3L

AC3H

AC3G

Accumulator 3 15–0

31–16

39–32

Page 2-9

00 002Bh DPH High part of the extended data page
register

6–0 Page 2-17

00 002Ch

00 002Dh

−

−

Reserved (do not use these addresses) –

−

−

00 002Eh DP Data page register 15–0 Page 2-17

00 002Fh PDP Peripheral data page register 8–0 Page 2-18
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Table 2−2. Memory-Mapped Registers (Continued)

Address(es) See ...Bit RangeDescriptionRegister

00 0030h BK47 Circular buffer size register for
AR4–AR7

15–0 Page 2-16

00 0031h BKC Circular buffer size register for CDP 15–0 Page 2-16

00 0032h BSA01 Circular buffer start address register for
AR0 and AR1

15–0 Page 2-15

00 0033h BSA23 Circular buffer start address register for
AR2 and AR3

15–0 Page 2-15

00 0034h BSA45 Circular buffer start address register for
AR4 and AR5

15–0 Page 2-15

00 0035h BSA67 Circular buffer start address register for
AR6 and AR7

15–0 Page 2-15

00 0036h BSAC Circular buffer start address register for
CDP

15–0 Page 2-15

00 0037h − Reserved for BIOS. This location
contains a 16-bit register that is used as
a start-up storage location for the data
table pointer necessary for BIOS
operation.

− −

00 0038h TRN1 Transition register 1 15–0 Page 2-10

00 0039h BRC1 Block-repeat counter 1 15–0 Page 2-34

00 003Ah BRS1 BRC1 save register 15–0 Page 2-34

00 003Bh CSR Computed single-repeat register 15–0 Page 2-34

00 003Ch

00 003Dh

RSA0H

RSA0L

Block-repeat start address register 0 23–16

15–0

Page 2-34

00 003Eh

00 003Fh

REA0H

REA0L

Block-repeat end address register 0 23–16

15–0

Page 2-34

00 0040h

00 0041h

RSA1H

RSA1L

Block-repeat start address register 1 23–16

15–0

Page 2-34

00 0042h

00 0043h

REA1H

REA1L

Block-repeat end address register 1 23–16

15–0

Page 2-34

00 0044h RPTC Single-repeat counter 15–0 Page 2-34
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Table 2−2. Memory-Mapped Registers (Continued)

Address(es) See ...Bit RangeDescriptionRegister

00 0045h IER1 Interrupt enable register 1 10–0 Page 2-27

00 0046h IFR1 Interrupt flag register 1 10–0 Page 2-24

00 0047h DBIER0 Debug interrupt enable register 0 15–0 Page 2-30

00 0048h DBIER1 Debug interrupt enable register 1 10–0 Page 2-30

00 0049h IVPD Interrupt vector pointer for vectors 0−15
and 24−31

15–0 Page 2-23

00 004Ah IVPH Interrupt vector pointer for vectors 16−23 15–0 Page 2-23

00 004Bh ST2_55 Status register 2 15–0 Page 2-37

00 004Ch SSP System stack pointer 15–0 Page 2-18

00 004Dh SP Data stack pointer 15–0 Page 2-18

00 004Eh SPH High part of the extended stack pointers 6–0 Page 2-18

00 004Fh CDPH High part of the extended coefficient data
pointer

6–0 Page 2-14

00 0050h
to
00 005Fh

− Reserved (do not use these addresses) − −
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2.3 Accumulators (AC0−AC3)

The CPU contains four 40-bit accumulators: AC0, AC1, AC2, and AC3 (see
Figure 2−1). The primary function of these registers is to assist in data
computation in the following parts of the D unit: the arithmetic logic unit (ALU),
the multiply-and-accumulate units (MACs), and the shifter. The four
accumulators are basically equivalent; however, some instructions are
restricted to certain accumulator pair groupings; for example:

SWAP AC0, AC2 ; Valid instruction

SWAP AC1, AC3 ; Valid instruction

but,

SWAP AC0, AC1 ; Invalid instruction

Each accumulator is partitioned into a low word (ACxL), a high word (ACxH),
and eight guard bits (ACxG). You can access each of these portions
individually by using addressing modes that access the memory-mapped
registers.

In the TMS320C54x-compatible mode (C54CM  = 1), accumulators AC0 and
AC1 correspond to TMS320C54x accumulators A and B, respectively.

Figure 2−1. Accumulators
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2.4 Transition Registers (TRN0, TRN1)

The two transition registers (see Figure 2−2) are used in the
compare-and-select-extremum instructions:

� The syntaxes that perform two 16-bit extremum selections update TRN0
and TRN1 based on the comparison of two accumulators’ high words and
low words. TRN0 is updated based on the comparison of the
accumulators’ high words; TRN1 is updated based on the comparison of
the low words.

� The syntaxes that perform a single 40-bit extremum selection update the
selected transition register (TRN0 or TRN1) based on the comparison of
two accumulators throughout their 40 bits.

TRN0 and TRN1 can hold transition decisions for the path to new metrics in
Viterbi algorithm implementations.

Figure 2−2. Transition Registers
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2.5 Temporary Registers (T0−T3)

The CPU includes four 16-bit general-purpose temporary registers: T0–T3
(see Figure 2−3). Here are some of the things you can do with the temporary
registers:

� Hold one of the memory multiplicands for multiply,
multiply-and-accumulate, and multiply-and-subtract instructions

� Hold the shift count used in addition, subtraction, and load instructions
performed in the D unit

� Keep track of more pointer values by swapping the contents of the
auxiliary registers (AR0–AR7) and the temporary registers (using a swap
instruction)

� Hold the transition metric of a Viterbi butterfly for dual 16-bit operations
performed in the D-unit ALU

Note:

If C54CM = 1 (the TMS320C54x-compatible mode is on), T2 is tied to the
ASM bits of status register ST1_55 and cannot be used as a
general-purpose register. For details, see section 2.10.2.1, ASM Bit Field of
ST1_55.

Figure 2−3. Temporary Registers
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2.6 Registers Used to Address Data Space and I/O Space

This section describes the following registers:

Register(s) Function See ...

XAR0−XAR7 and
AR0−AR7

Point to a value in data space for accesses
made with indirect addressing modes

Page 2-12

XCDP and CDP Point to a value in data space for accesses
made with indirect addressing modes

Page 2-14

BSA01, BSA23,
BSA45, BSA67,
BSAC

Specify a circular buffer start address to be
added to a pointer

Page 2-15

BK03, BK47, BKC Specify a circular buffer size Page 2-16

XDP and DP Specify the start address for accesses made
with the DP direct addressing mode

Page 2-17

PDP Identify the peripheral data page for an
access to I/O space

Page 2-18

XSP and SP Point to a value on the data stack Page 2-18

XSSP and SSP Point to a value on the system stack Page 2-18

2.6.1 Auxiliary Registers (XAR0–XAR7 / AR0–AR7)

The CPU includes eight extended auxiliary registers XAR0–XAR7 (see
Figure 2−4 and Table 2−3). Each high part (for example, AR0H) is used to
specify the 7-bit main data page for accesses to data space. Each low part (for
example, AR0) can be used as:

� A 16-bit offset to the 7-bit main data page (to form a 23-bit address)

� A bit address (in instructions that access individual bits or bit pairs)

� A general-purpose register or counter

� An index to select words relative to the start address of a circular buffer
(see section 6.11, Circular Addressing)
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Figure 2−4. Extended Auxiliary Registers and Their Parts
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Table 2−3. Extended Auxiliary Registers and Their Parts

Register Referred To As ... Accessibility

XARn Extended auxiliary register n Accessible via dedicated
instructions only. XARn is not
mapped to memory.

ARn Auxiliary register n Accessible via dedicated
instructions and as a
memory-mapped register

ARnH High part of extended auxiliary
register n

Not individually accessible. To
access ARnH, you must access
XARn.

XAR0−XAR7 or AR0−AR7 are used in the AR indirect addressing mode and
the dual AR indirect addressing mode. Basic arithmetical, logical, and shift
operations can be performed on AR0–AR7 in the A-unit arithmetic logic unit
(ALU). These operations can be performed in parallel with address
modifications performed on the auxiliary registers in the data-address
generation unit (DAGEN).
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2.6.2 Coefficient Data Pointer (XCDP / CDP)

The CPU includes in its memory map a coefficient data pointer, CDP, and an
associated extension register, CDPH:
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The CPU can concatenate the two to form an extended CDP that is called
XCDP (see Figure 2−5 and Table 2−4). The high part (CDPH) is used to
specify the 7-bit main data page for accesses to data space. The low part
(CDP) can be used as:

� A 16-bit offset to the 7-bit main data page (to form a 23-bit address)

� A bit address (in instructions that access individual bits or bit pairs)

� A general-purpose register or counter

� An index to select words relative to the start address of a circular buffer
(see section 6.11, Circular Addressing)

Figure 2−5. Extended Coefficient Data Pointer and Its Parts
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ22−16

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ15−0

Á
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

XCDP
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

CDPH
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

CDP
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 2−4. Extended Coefficient Data Pointer and Its Parts

Register Referred To As ... Accessibility

XCDP Extended coefficient data pointer Accessible via dedicated instructions only.
XCDP is not a register mapped to memory.

CDP Coefficient data pointer Accessible via dedicated instructions and as a
memory-mapped register

CDPH High part of extended coefficient data pointer Accessible as a memory-mapped register. You
can also access CDPH by accessing XCDP.
There are no dedicated instructions for CDPH.
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XCDP or CDP is used in the CDP indirect addressing mode and the coefficient
indirect addressing mode. CDP can be used in any instruction that accesses
a single data-space value; however, CDP is more advantageously used in dual
multiply-and-accumulate (MAC) instructions because it provides a third,
independent operand to the D-unit dual-MAC operator.

2.6.3 Circular Buffer Start Address Registers
(BSA01, BSA23, BSA45, BSA67, BSAC)

The CPU includes five 16-bit circular buffer start address registers (see
Figure 2−6) to enable you to define a circular buffer with a start address that
is not bound by any alignment constraint.

Figure 2−6. Circular Buffer Start Address Registers
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Each buffer start address register is associated with a particular pointer or
pointers (see Table 2−5). A buffer start address is only added to the pointer
value when the pointer is configured for circular addressing in status register
ST2_55.

Table 2−5. Circular Buffer Start Address Registers and the Associated Pointers

Register Pointer Supplier of Main Data Page

BSA01 AR0 or AR1 AR0H for AR0
AR1H for AR1

BSA23 AR2 or AR3 AR2H for AR2
AR3H for AR3

BSA45 AR4 or AR5 AR4H for AR4
AR5H for AR5

BSA67 AR6 or AR7 AR6H for AR6
AR7H for AR7

BSAC CDP CDPH
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As an example of using a buffer start address, consider the following
instruction:

MOV *AR6, T2 ; Load T2 with a value from the circular
; buffer of words referenced by XAR6.

In this example, with AR6 configured for circular addressing, the address
generated is of the following form. The main data page value (AR6H) is
concatenated with the sum of AR6 and its associated buffer start address
(BSA67).

AR6H:(BSA67 + AR6) = XAR6 + BSA67

When you run TMS320C54x code in the compatible mode (C54CM = 1), make
sure the buffer start address registers contain 0.

2.6.4 Circular Buffer Size Registers (BK03, BK47, BKC)

Three 16-bit circular buffer size registers (see Figure 2−7) specify the number
of words (up to 65535) in a circular buffer. Each buffer size register is
associated with a particular pointer or pointers (see Table 2−6).

Figure 2−7. Circular Buffer Size Registers
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Table 2−6. Circular Buffer Size Registers and the Associated Pointers

Register Pointer

BK03 AR0, AR1, AR2, or AR3

BK47 AR4, AR5, AR6, or AR7

BKC CDP

In the TMS320C54x-compatible mode (C54CM =  1), BK03 is used for all the
auxiliary registers and BK47 is not used.
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2.6.5 Data Page Register (XDP / DP)

The CPU includes in its memory map a data page register, DP, and an
associated extension register, DPH:
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The CPU can concatenate the two to form an extended DP that is called XDP
(see Figure 2−8 and Table 2−7). The high part (DPH) is used to specify the
7-bit main data page for accesses to data space. The low part specifies a 16-bit
offset (local data page) that is concatenated with the main data page to form
a 23-bit address.

Figure 2−8. Extended Data Page Register and Its Parts
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Table 2−7. Extended Data Page Register and Its Parts

Register Referred To As ... Accessibility

XDP Extended data page register Accessible via dedicated
instructions only. XDP is not a
register mapped to memory.

DP Data page register Accessible via dedicated
instructions and as a
memory-mapped register

DPH High part of extended data page
register

Accessible via dedicated
instructions and as a
memory-mapped register

In the DP direct addressing mode, XDP specifies a 23-bit address, and in the
k16 absolute addressing mode, DPH is concatenated with a 16-bit immediate
value to form a 23-bit address.
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2.6.6 Peripheral Data Page Register (PDP)

For the PDP direct addressing mode, the 9-bit peripheral data page register
(PDP) selects a 128-word page within the 64K-word I/O space.

As shown in Figure 2−9, PDP is a 9-bit field within a 16-bit register location.
Bits 15–9 of that location are ignored by the CPU.

This register is accessible via dedicated instructions and as a
memory-mapped register.

Figure 2−9. Peripheral Data Page Register
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2.6.7 Stack Pointers (XSP / SP, XSSP / SSP)

The CPU includes in its memory map a data stack pointer (SP), a system stack
pointer (SSP), and an associated extension register (SPH):
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See Figure 2−10 and Table 2−8. When accessing the data stack, the CPU
concatenates SPH with SP to form an extended SP that is called XSP. XSP
contains the address of the value last pushed onto the data stack. SPH holds
the 7-bit main data page of memory, and SP points to the specific word on that
page.

Similarly, when accessing the system stack, the CPU concatenates SPH with
SSP to form XSSP. XSSP contains the address of the value last pushed onto
the system stack.
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Figure 2−10. Extended Stack Pointers
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Table 2−8. Stack Pointer Registers

Register Referred To As ... Accessibility

XSP Extended data stack pointer Accessible via dedicated instructions only. XSP is not a register
mapped to memory.

SP Data stack pointer Accessible via dedicated instructions and as a
memory-mapped register

XSSP Extended system stack pointer Accessible via dedicated instructions only. XSSP is not a
register mapped to memory.

SSP System stack pointer Accessible via dedicated instructions and as a
memory-mapped register

SPH High part of XSP and XSSP Accessible as a memory-mapped register. You can also access
SPH by accessing XSP or  XSSP. There are no dedicated
instructions for SPH.

Note: SPH is affected by writes to XSP or XSSP.

XSP is used in the SP direct addressing mode. The instructions in Table 2−9
use and/or modify SP and SSP.

Table 2−9. Instructions That Use and/or Modify SP and SSP 

Instruction Type(s) Description

Software interrupt, software trap, software
reset, call unconditionally, call conditionally

These instructions push data onto the data stack and the
system stack. SP and SSP are decremented before each pair
of data values is pushed.

Push This instruction pushes data onto the data stack only. SP is
decremented before the data is pushed.

Return unconditionally, return conditionally,
return from interrupt

These instructions pop data from the data stack and the system
stack. SP and SSP are incremented after each pair of data
values is popped.

Pop This instruction pops data from the data stack only. SP is
incremented after the data is popped.
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Stack pointer increments and decrements are made to SP and SSP. You
cannot address the stacks across main data pages without changing the value
in the extension register (SPH).

Note:

Although an increment past FFFFh or a decrement past 0000h causes the
pointer value to wrap around, do not make use of this behavior; it is not
supported.
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2.7 Program Flow Registers (PC, RETA, CFCT)

Table 2−10 describes three registers used by the CPU to maintain proper
program flow.

Table 2−10. Program Flow Registers

Register Description

PC Program counter. This 24-bit register holds the address of the 1 to
6 bytes of code being decoded in the I unit. When the CPU performs
an interrupt or call, the current PC value (the return address) is
stored, and then PC is loaded with a new address. When the CPU
returns from an interrupt service routine or a called subroutine, the
return address is restored to PC.

RETA Return address register. If the selected stack configuration (see
section 4.2) uses the fast-return process, RETA is a temporary
holding place for the return address while a subroutine is being
executed. RETA, along with CFCT, enables the efficient execution
of multiple layers of subroutines. You can read from or write to RETA
and CFCT as a pair with dedicated 32-bit load and store
instructions.

CFCT Control-flow context register. The CPU keeps a record of active
repeat loops (the loop context). If the selected stack configuration
(see section 4.2) uses the fast-return process, CFCT is a temporary
holding place for the 8-bit loop context while a subroutine is being
executed. CFCT, along with RETA, enables the efficient execution
of multiple layers of subroutines. You can read from or write to RETA
and CFCT as a pair with dedicated, 32-bit load and store
instructions.

Note:

RETA and CFCT are cleared to 0 by a DSP hardware reset, and are not
affected by push/pop instructions or by a software reset.

2.7.1 Context Bits Stored in CFCT

The CPU has internal bits for storing the loop context—the status (active or
inactive) of repeat loops in a routine. When the CPU follows an interrupt or a
call, the loop context is stored in CFCT. When the CPU returns from an
interrupt or called subroutine, the loop context is restored from CFCT. In the
8-bit CFCT, the loop context bits have the form shown in Table 2−11.



Program Flow Registers (PC, RETA, CFCT)

CPU Registers2-22 SPRU371F

Table 2−11. Form of Loop Context Bits in CFCT

Bit(s) Description

7 This bit reflects whether a single-repeat loop is active.

0  Not active
1  Active

6 This bit reflects whether a conditional single-repeat loop is active.

0  Not active
1  Active

5–4 Reserved

3–0 This 4-bit code reflects the status of the two possible levels of block-repeat
loops, the outer (level 0) loop and the inner (level 1) loop. Depending on
which type of block-repeat instruction you choose, an active loop is local (all
its code is repeatedly executed from within the instruction buffer queue) or
external (its code is repeatedly fetched and transferred through the buffer
queue to the CPU).

Block-Repeat Code Level 0 Loop Is ... Level 1 Loop Is ...

0
2
3
7
8
9
Other: Reserved

Not active
Active, external
Active, local
Active, external
Active, external
Active, local
–

Not active
Not active
Not active
Active, external
Active, local
Active, local
–
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2.8 Registers for Managing Interrupts

This section describes the following registers:

Register(s) Function See Section ...

IVPD Points to interrupt vectors 0−15 and 24−31 2.8.1

IVPH Points to interrupt vectors 16−23 2.8.1

IFR0, IFR1 Indicate which maskable interrupts have
been requested

2.8.2

IER0, IER1 Enable or disable maskable interrupts 2.8.3

DBIER0,
DBIER1

Configure select maskable interrupts as
time-critical interrupts during debugging

2.8.4

2.8.1 Interrupt Vector Pointers (IVPD, IVPH)

Two 16-bit interrupt vector pointers IVPD and IVPH (see Figure 2−11) point to
up to 32 interrupt vectors in program space. IVPD points to the 256-byte
program page for interrupt vectors 0–15 and 24–31. IVPH points to the
256-byte program page for interrupt vectors 16–23.

If IVPD and IVPH have the same value, all of the interrupt vectors are in the
same 256-byte program page. A DSP hardware reset loads both IVPs with
FFFFh. The IVPs are not affected by a software reset instruction.

Figure 2−11.Interrupt Vector Pointers
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Before you modify the IVPs, make sure that:

� Maskable interrupts are globally disabled (INTM = 1). This prevents a
maskable interrupt from occurring before the IVPs are modified to point to
new vectors.

� Each hardware nonmaskable interrupt has a vector and an interrupt
service routine for the old IVPD value and for the new IVPD value. This
prevents fetching of an illegal instruction code if a hardware nonmaskable
interrupt occurs during the process of modifying the IVPD.
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Table 2−12 shows how the vector addresses are formed for the different
interrupt vectors. The CPU concatenates a 16-bit interrupt vector pointer with
a vector number coded on 5 bits (for example, 00001 for IV1 and 10000 for
IV16) and shifted left by 3 bits.

Table 2−12. Vectors and the Formation of Vector Addresses

Vector Address

Vector(s) Interrupt(s) Bits 23−8 Bits 7−3 Bits 2−0

IV0 Reset IVPD 00000 000

IV1 Nonmaskable hardware
interrupt, NMI

IVPD 00001 000

IV2–IV15 Maskable interrupts IVPD 00010
to

01111

000

IV16–IV23 Maskable interrupts IVPH 10000
to

10111

000

IV24 Bus error interrupt
(maskable), BERRINT

IVPD 11000 000

IV25 Data log interrupt
(maskable), DLOGINT

IVPD 11001 000

IV26 Real-time operating
system interrupt
(maskable), RTOSINT

IVPD 11010 000

IV27–IV31 General-purpose
software-only interrupts
INT27–INT31

IVPD 11011
to

11111

000

2.8.2 Interrupt Flag Registers (IFR0, IFR1)

The 16-bit interrupt flag registers, IFR1 and IFR0, contain flag bits for all the
maskable interrupts. When a maskable interrupt request reaches the CPU, the
corresponding flag is set to 1 in one of the IFRs. This indicates that the interrupt
is pending or waiting for acknowledgement from the CPU. Figure 2−12 is a
general representation of the C55x IFRs. To see which interrupts are mapped
to these bits, see the applicable C55x DSP data manual.
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You can read the IFRs to identify pending interrupts, and write to the IFRs to
clear pending interrupts. To clear an interrupt request (and clear its IFR bit to
0), write a 1 to the corresponding IFR bit. For example:

; Clear flags IF14 and IF2:
MOV #0100000000000100b, mmap(@IFR0) 

All pending interrupts can be cleared by writing the current contents of the IFR
back into the IFR. Acknowledgement of a hardware interrupt request also
clears the corresponding IFR bit. A device reset clears all IFR bits.

Figure 2−12. Interrupt Flag Registers

IFR1

15 11 10 9 8

Reserved RTOSINTF DLOGINTF BERRINTF

R−0 R/W1C−0 R/W1C−0 R/W1C−0

7 6 5 4 3 2 1 0

IF23 IF22 IF21 IF20 IF19 IF18 IF17 IF16

R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0

IFR0

15 14 13 12 11 10 9 8

IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8

R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0

7 6 5 4 3 2 1 0

IF7 IF6 IF5 IF4 IF3 IF2 Reserved

R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R−0

Legend: R = Read access; W1C = Writing a 1 to this bit causes the CPU to clear this bit to 0; -n = Value after DSP hardware reset;
Reserved = A write to this bit has no effect, and the bits in this field always appear as 0s during read operations.

2.8.2.1 RTOSINTF Bit in IFR1

Bit Name Description Accessibility HW Reset
10 RTOSINTF Interrupt flag bit for the

real-time operating system
interrupt, RTOSINT

Read/Write 0

When you read the RTOSINTF bit, interpret it as follows:

RTOSINTF Description
0 RTOSINT is not pending.
1 RTOSINT is pending.

To clear this flag bit to 0 (and clear its corresponding interrupt request), write
a 1 to the bit.
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2.8.2.2 DLOGINTF Bit in IFR1

Bit Name Description Accessibility HW Reset
9 DLOGINTF Interrupt flag bit for the data

log interrupt, DLOGINT
Read/Write 0

When you read the DLOGINTF bit, interpret it as follows:

DLOGINTF Description
0 DLOGINT is not pending.
1 DLOGINT is pending.

To clear this flag bit to 0 (and clear its corresponding interrupt request), write
a 1 to the bit.

2.8.2.3 BERRINTF Bit in IFR1

Bit Name Description Accessibility HW Reset
8 BERRINTF Interrupt flag bit for the bus

error interrupt, BERRINT
Read/Write 0

When you read the BERRINTF bit, interpret it as follows:

BERRINTF Description
0 BERRINT is not pending.
1 BERRINT is pending.

To clear this flag bit to 0 (and clear its corresponding interrupt request), write
a 1 to the bit.

2.8.2.4 IF16–IF23 Bits in IFR1

Bit Name Description Accessibility HW Reset
0 IF16 Interrupt flag bit 16 Read/Write 0
1 IF17 Interrupt flag bit 17 Read/Write 0
2 IF18 Interrupt flag bit 18 Read/Write 0
3 IF19 Interrupt flag bit 19 Read/Write 0
4 IF20 Interrupt flag bit 20 Read/Write 0
5 IF21 Interrupt flag bit 21 Read/Write 0
6 IF22 Interrupt flag bit 22 Read/Write 0
7 IF23 Interrupt flag bit 23 Read/Write 0

When you read these bits, interpret them as follows (x is a number from
16 to 23):

IFx Description
0 The interrupt associated with interrupt vector x is not pending.
1 The interrupt associated with interrupt vector x is pending.

To clear a flag bit to 0 (and clear its corresponding interrupt request), write a
1 to the bit.
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2.8.2.5 IF2–IF15 Bits in IFR0

Bit Name Description Accessibility HW Reset
2 IF2 Interrupt flag bit 2 Read/Write 0
3 IF3 Interrupt flag bit 3 Read/Write 0
4 IF4 Interrupt flag bit 4 Read/Write 0
5 IF5 Interrupt flag bit 5 Read/Write 0
6 IF6 Interrupt flag bit 6 Read/Write 0
7 IF7 Interrupt flag bit 7 Read/Write 0
8 IF8 Interrupt flag bit 8 Read/Write 0
9 IF9 Interrupt flag bit 9 Read/Write 0
10 IF10 Interrupt flag bit 10 Read/Write 0
11 IF11 Interrupt flag bit 11 Read/Write 0
12 IF12 Interrupt flag bit 12 Read/Write 0
13 IF13 Interrupt flag bit 13 Read/Write 0
14 IF14 Interrupt flag bit 14 Read/Write 0
15 IF15 Interrupt flag bit 15 Read/Write 0

When you read these bits, interpret them as follows (x is a number from
2 to 15):

IFx Description
0 The interrupt associated with interrupt vector x is not pending.
1 The interrupt associated with interrupt vector x is pending.

To clear a flag bit to 0 (and clear its corresponding interrupt request), write a
1 to the bit.

2.8.3 Interrupt Enable Registers (IER0, IER1)

To enable a maskable interrupt, set its corresponding bit in IER0 or IER1 to 1.
To disable a maskable interrupt, clear its corresponding enable bit to 0. At a
DSP hardware reset, all the IER bits are cleared to 0, disabling all the
maskable interrupts. Figure 2−13 is a general representation of the C55x
IERs. To see which interrupts are mapped to these bits, see the applicable
C55x DSP data manual.

Note:

IER1 and IER0 are not affected by a software reset instruction. Initialize
these registers before globally enabling (INTM = 0) the maskable interrupts.
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Figure 2−13. Interrupt Enable Registers

IER1

15 11 10 9 8

Reserved RTOSINTE DLOGINTE BERRINTE

R−0 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

IE23 IE22 IE21 IE20 IE19 IE18 IE17 IE16

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

IER0

15 14 13 12 11 10 9 8

IE15 IE14 IE13 IE12 IE11 IE10 IE9 IE8

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 Reserved

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R−0

Legend: R = Read; W = Write; -n = Value after DSP hardware reset

2.8.3.1 RTOSINTE Bit in IER1

Bit Name Description Accessibility HW Reset
10 RTOSINTE Enable bit for the real-time

operating system interrupt,
RTOSINT

Read/Write 0

The RTOSINTE bit enables or disables RTOSINT:

RTOSINTE Description
0 RTOSINT is disabled.
1 RTOSINT is enabled.

2.8.3.2 DLOGINTE Bit in IER1

Bit Name Description Accessibility HW Reset
9 DLOGINTE Enable bit for the data log

interrupt, DLOGINT
Read/Write 0

The DLOGINTE bit enables or disables DLOGINT:

DLOGINTE Description
0 DLOGINT is disabled.
1 DLOGINT is enabled.
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2.8.3.3 BERRINTE Bit in IER1

Bit Name Description Accessibility HW Reset
8 BERRINTE Enable bit for the bus error

interrupt, BERRINT
Read/Write 0

The BERRINTE bit enables or disables BERRINT:

BERRINTE Description
0 BERRINT is disabled.
1 BERRINT is enabled.

2.8.3.4 IE16–IE23 Bits in IER1

Bit Name Description Accessibility HW Reset
0 IE16 Interrupt enable bit 16 Read/Write 0
1 IE17 Interrupt enable bit 17 Read/Write 0
2 IE18 Interrupt enable bit 18 Read/Write 0
3 IE19 Interrupt enable bit 19 Read/Write 0
4 IE20 Interrupt enable bit 20 Read/Write 0
5 IE21 Interrupt enable bit 21 Read/Write 0
6 IE22 Interrupt enable bit 22 Read/Write 0
7 IE23 Interrupt enable bit 23 Read/Write 0

The functions of these bits can be summarized as follows, where x is a number
from 16 to 23:

IEx Description
0 The interrupt associated with interrupt vector x is disabled.
1 The interrupt associated with interrupt vector x is enabled.
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2.8.3.5 IE2–IE15 Bits in IER0

Bit Name Description Accessibility HW Reset
2 IE2 Interrupt enable bit 2 Read/Write 0
3 IE3 Interrupt enable bit 3 Read/Write 0
4 IE4 Interrupt enable bit 4 Read/Write 0
5 IE5 Interrupt enable bit 5 Read/Write 0
6 IE6 Interrupt enable bit 6 Read/Write 0
7 IE7 Interrupt enable bit 7 Read/Write 0
8 IE8 Interrupt enable bit 8 Read/Write 0
9 IE9 Interrupt enable bit 9 Read/Write 0
10 IE10 Interrupt enable bit 10 Read/Write 0
11 IE11 Interrupt enable bit 11 Read/Write 0
12 IE12 Interrupt enable bit 12 Read/Write 0
13 IE13 Interrupt enable bit 13 Read/Write 0
14 IE14 Interrupt enable bit 14 Read/Write 0
15 IE15 Interrupt enable bit 15 Read/Write 0

The functions of these bits can be summarized as follows, where x is a number
from 2 to 15:

IEx Description
0 The interrupt associated with interrupt vector x is disabled.
1 The interrupt associated with interrupt vector x is enabled.

2.8.4 Debug Interrupt Enable Registers (DBIER0, DBIER1)

The 16-bit debug interrupt enable registers, DBIER1 and DBIER0, are used
only when the CPU is halted in the real-time emulation mode of the debugger.
If the CPU is running in real-time mode, the standard interrupt-handling
process is used and the DBIERs are ignored.

A maskable interrupt enabled in a DBIER is defined as a time-critical interrupt.
When the CPU is halted in the real-time mode, the only interrupts that are
serviced are time-critical interrupts that are also enabled in an interrupt enable
register (IER1 or IER0).

Read the DBIERs to identify time-critical interrupts. Write the DBIERs to
enable or disable time-critical interrupts. To enable an interrupt, set its
corresponding bit. To disable an interrupt, clear its corresponding bit.
Figure 2−14 is a general representation of the C55x DBIERs. To see which
interrupts are mapped to these bits, see the applicable C55x DSP data
manual.
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Notes:

1) DBIER1 and DBIER0 are not affected by a software reset instruction.
Initialize these registers before you use the real-time emulation mode.

2) All DBIER bits are cleared to 0 by a DSP hardware reset, disabling all
time-critical interrupts.

Figure 2−14. Debug Interrupt Enable Registers

DBIER1

15 11 10 9 8

Reserved RTOSINTD DLOGINTD BERRINTD

R−0 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

DBIE23 DBIE22 DBIE21 DBIE20 DBIE19 DBIE18 DBIE17 DBIE16

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

DBIER0

15 14 13 12 11 10 9 8

DBIE15 DBIE14 DBIE13 DBIE12 DBIE11 DBIE10 DBIE9 DBIE8

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

DBIE7 DBIE6 DBIE5 DBIE4 DBIE3 DBIE2 Reserved

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R−0

Legend: R = Read; W = Write; -n = Value after DSP hardware reset

2.8.4.1 RTOSINTD Bit in DBIER1

Bit Name Description Accessibility HW Reset
10 RTOSINTD Debug enable bit for the

real-time operating system
interrupt, RTOSINT

Read/Write 0

The RTOSINTD bit enables or disables RTOSINT as a time-critical interrupt:

RTOSINTD Description
0 RTOSINT is disabled.
1 RTOSINT is enabled. It is configured as a time-critical interrupt.
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2.8.4.2 DLOGINTD Bit in DBIER1

Bit Name Description Accessibility HW Reset
9 DLOGINTD Debug enable bit for the

data log interrupt,
DLOGINT

Read/Write 0

The DLOGINTD bit enables or disables DLOGINT as a time-critical interrupt:

DLOGINTD Description
0 DLOGINT is disabled.
1 DLOGINT is enabled. It is configured as a time-critical interrupt.

2.8.4.3 BERRINTD Bit in DBIER1

Bit Name Description Accessibility HW Reset
8 BERRINTD Debug enable bit for the

bus error interrupt,
BERRINT

Read/Write 0

The BERRINTD bit enables or disables BERRINT as a time-critical interrupt:

BERRINTD Description
0 BERRINT is disabled.
1 BERRINT is enabled. It is configured as a time-critical interrupt.

2.8.4.4 DBIE16–DBIE23 Bits in DBIER1

Bit Name Description Accessibility HW Reset
0 DBIE16 Debug interrupt enable bit 16 Read/Write 0
1 DBIE17 Debug interrupt enable bit 17 Read/Write 0
2 DBIE18 Debug interrupt enable bit 18 Read/Write 0
3 DBIE19 Debug interrupt enable bit 19 Read/Write 0
4 DBIE20 Debug interrupt enable bit 20 Read/Write 0
5 DBIE21 Debug interrupt enable bit 21 Read/Write 0
6 DBIE22 Debug interrupt enable bit 22 Read/Write 0
7 DBIE23 Debug interrupt enable bit 23 Read/Write 0

The functions of these bits can be summarized as follows, where x is a number
from 16 to 23:

DBIEx Description
0 The interrupt associated with interrupt vector x is disabled.
1 The interrupt associated with interrupt vector x is enabled. The

interrupt is configured as a time-critical interrupt.
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2.8.4.5 DBIE2–DBIE15 Bits in DBIER0

Bit Name Description Accessibility HW Reset
2 DBIE2 Debug interrupt enable bit 2 Read/Write 0
3 DBIE3 Debug interrupt enable bit 3 Read/Write 0
4 DBIE4 Debug interrupt enable bit 4 Read/Write 0
5 DBIE5 Debug interrupt enable bit 5 Read/Write 0
6 DBIE6 Debug interrupt enable bit 6 Read/Write 0
7 DBIE7 Debug interrupt enable bit 7 Read/Write 0
8 DBIE8 Debug interrupt enable bit 8 Read/Write 0
9 DBIE9 Debug interrupt enable bit 9 Read/Write 0
10 DBIE10 Debug interrupt enable bit 10 Read/Write 0
11 DBIE11 Debug interrupt enable bit 11 Read/Write 0
12 DBIE12 Debug interrupt enable bit 12 Read/Write 0
13 DBIE13 Debug interrupt enable bit 13 Read/Write 0
14 DBIE14 Debug interrupt enable bit 14 Read/Write 0
15 DBIE15 Debug interrupt enable bit 15 Read/Write 0

The functions of these bits can be summarized as follows, where x is a number
from 2 to 15:

DBIEx Description
0 The interrupt associated with interrupt vector x is disabled.
1 The interrupt associated with interrupt vector x is enabled. The

interrupt is configured as a time-critical interrupt.
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2.9 Registers for Controlling Repeat Loops

This section describes registers that control the execution of repeat loops.
Single-repeat registers are used for the repetition of a single instruction.
Block-repeat registers are used for the repetition of one or more blocks of
instructions.

2.9.1 Single-Repeat Registers (RPTC, CSR)

The 16-bit single-repeat instruction registers RPTC and CSR enable repetition
of a single-cycle instruction (or two single-cycle instructions that are executed
in parallel). The number of repetitions, N, is loaded into the single-repeat
counter (RPTC) before the first execution. After the first execution, the
instruction is executed N more times; therefore, total execution is N+1 times.

In some syntaxes of the unconditional single-repeat instruction, you can use
the computed single-repeat register (CSR) to specify the number N. The value
from CSR is copied into RPTC before the first execution of the instruction or
instruction pair to be repeated.

As shown in Figure 2−15, RPTC and CSR have 16 bits, enabling up to 65536
consecutive executions of an instruction (the first execution plus 65535
repetitions).

Figure 2−15. Single-Repeat Registers
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2.9.2 Block-Repeat Registers (BRC0, BRC1, BRS1, RSA0, RSA1, REA0, REA1)

The block-repeat instructions enable you to form loops that repeat blocks of
instructions. You can have one block-repeat loop nested inside another,
creating an inner (level 1) loop and an outer (level 0) loop. Table 2−13
describes the C55x registers associated with level 0 and level 1 loops. As
described in the following paragraphs, the use of these registers is affected by
the C54x-compatible mode bit (C54CM), which is introduced in
section 2.10.2.4.
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If C54CM = 0: C55x native mode ...
The CPU keeps a record of active repeat loops when an interrupt or call is
performed while the loop is active (see the description for CFCT in section 2.7,
Program Flow Registers (PC, RETA, CFCT)). This enables the use of level 0
resources in subroutines. When the CPU decodes a block-repeat instruction,
it first determines whether a loop is already being executed. If the CPU detects
an active level 0 loop, it uses the level 1 loop registers; otherwise, it uses the
level 0 loop registers.

If C54CM = 1: C54x-compatible mode ...
Block-repeat instructions activate the level 0 loop registers only. Level 1 loop
registers are not used. Nested block-repeat operations can be implemented
as on the C54x DSPs, using context saving/restoring and the block-repeat
active flag (BRAF). A block-repeat instruction sets BRAF, and BRAF is cleared
at the end of the block-repeat operation when BRC0 contains 0. For more
details about BRAF, see section 2.10.2.2, BRAF Bit of ST1_55.

When a block-repeat loop begins in the C54x-compatible mode (C54CM = 1),
the BRAF bit is automatically set to indicate that a loop is in progress. If your
program must switch modes from C54CM = 1 to C54CM = 0, the BRAF bit must
be cleared before or during the switch. There are three options:

� Wait until the loop is finished (when BRAF is cleared automatically) and
then clear C54CM

� Clear BRAF (this also stops the loop) and then clear C54CM

� Clear BRAF and C54CM at the same time with an instruction that modifies
status register ST1_55

Note:

Make sure the last three instructions of a level 0 loop do not write to BRC0.
Likewise, make sure the last three instructions of a level 1 loop do not write
to BRC1.
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Table 2−13. Block-Repeat Register Descriptions 

       Level 0 Loop Registers Level 1 Loop Registers (Not Used If C54CM = 1)

Register Description Register Description

BRC0 Block-repeat counter 0. This 16-bit
register contains the number of times to
repeat the instruction block after its
initial execution.

BRC1 Block-repeat counter 1. This 16-bit
register contains the number of times to
repeat the instruction block after its
initial execution.

RSA0 Block-repeat start address register 0.
This 24-bit register contains the
address of the first instruction in the
instruction block.

RSA1 Block-repeat start address register 1.
This 24-bit register contains the
address of the first instruction in the
instruction block.

REA0 Block-repeat end address register 0.
This 24-bit register contains the
address of the last instruction in the
instruction block.

REA1 Block-repeat end address register 1.
This 24-bit register contains the
address of the last instruction in the
instruction block.

BRS1 BRC1 save register. Whenever BRC1
is loaded, BRS1 is loaded with the
same value. The content of BRS1 is not
modified during the execution of the
level 1 loop. Each time the level 1 loop
is triggered, BRC1 is reinitialized from
BRS1. This feature enables
initialization of BRC1 outside of the
level 0 loop, reducing the time needed
for each repetition.

Note: The 24-bit register values are stored in two consecutive 16-bit locations. Bits 23–16 are stored at the lower address (the
eight most significant bits in this location are ignored by the CPU). Bits 15–0 are stored at the higher address. For
example, RSA0(23–16) is accessible at address 00  003Ch, and RSA0(15–0) is accessible at address 00 003Dh.
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2.10 Status Registers (ST0_55−ST3_55)

These four 16-bit registers (see Figure 2−16) contain control bits and flag bits.
The control bits affect the operation of the C55x DSP and the flag bits reflect
the current status of the DSP or indicate the results of operations.

ST0_55, ST1_55, and ST3_55 are each accessible at two addresses (see
section 2.2, Memory-Mapped Registers). At one address, all the
TMS320C55x bits are available. At the other address (the protected address),
the bits highlighted in Figure 2−16 cannot be modified. The protected address
is provided to support TMS320C54x code that was written to access ST0, ST1,
and PMST (the C54x counterpart of ST3_55). Reserved bits are not available
for use.

Notes:

1) Always write 1100b (Ch) to bits 11−8 of ST3_55.

2) Some C55x devices do not have an instruction cache; these devices do
not use the CAFRZ, CAEN, and CACLR bits.
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Figure 2−16. Status Registers
ST0_55

15 14 13 12 11 10 9

ACOV2† ACOV3† TC1† TC2 CARRY ACOV0 ACOV1

R/W−0 R/W−0 R/W−1 R/W−1 R/W−1 R/W−0 R/W−0

8 7 6 5 4 3 2 1 0

DP[15:7]

R/W−0

ST1_55

15 14 13 12 11 10 9 8

BRAF CPL XF HM INTM M40† SATD SXMD

R/W−0 R/W−0 R/W−1 R/W−0 R/W−1 R/W−0 R/W−0 R/W−1

7 6 5 4 3 2 1 0

C16 FRCT C54CM† ASM

R/W−0 R/W−0 R/W−1 R/W−0

ST2_55

15 14 13 12 11 10 9 8

ARMS Reserved DBGM EALLOW RDM Reserved CDPLC

R/W−0 R−11b R/W−1 R/W−0 R/W−0 R−0 R/W−0

7 6 5 4 3 2 1 0

AR7LC AR6LC AR5LC AR4LC AR3LC AR2LC AR1LC AR0LC

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

ST3_55

15 14 13 12 11 10 9 8

CAFRZ†# CAEN†# CACLR†# HINT†‡ Reserved (always write as 1100b)

R/W−0 R/W−0 R/W−0 R/W−1 R/W−1100b

7 6 5 4 3 2 1 0

CBERR† MPNMC§ SATA† Reserved Reserved CLKOFF SMUL SST

R/W−0 R/W−pins R/W−0 R/W−0¶ R−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after DSP hardware reset
† Highlighted bit: If you write to the protected address of the status register, a write to this bit has no effect, and the bit always

appears as a 0 during read operations.
‡ The HINT bit is not used for all C55x host port interfaces (HPIs). Consult the documentation for the specific C55x DSP.
§ The reset value of MPNMC may be dependent on the state of predefined pins at reset. To check this for a particular C55x DSP,

see its data manual.
¶ Always write 0 to this bit
# Some C55x devices do not have an instruction cache; these devices do not use bits CAFRZ, CAEN, and CACLR.



Status Registers (ST0_55−ST3_55)

2-39CPU RegistersSPRU371F

2.10.1 ST0_55 Bits

This section describes the bits of ST0_55 in alphabetical order.

2.10.1.1 ACOV0, ACOV1, ACOV2, and ACOV3 Bits of ST0_55

Each of the four accumulators has its own overflow flag in ST0_55:

Bit Name Description Accessibility HW Reset
9 ACOV1 AC1 overflow flag Read/Write 0
10 ACOV0 AC0 overflow flag Read/Write 0
14 ACOV3 AC3 overflow flag Read/Write 0
15 ACOV2 AC2 overflow flag Read/Write 0

For each of these flags:

� Overflow detection depends on the M40 bit in ST1_55:

� M40  =  0: Overflow is detected at bit position 31.

� M40  =  1: Overflow is detected at bit position 39.

If you need compatibility with TMS320C54x code, make sure M40  =  0.

� ACOVx is set when an overflow occurs in ACx, where x is 0, 1, 2, or 3.

� Once an overflow occurs, ACOVx remains set until one of the following
events occurs:

� A DSP hardware or software reset is performed.

� The CPU executes a conditional branch, call, return, or execute
instruction that tests the state of ACOVx.

� ACOVx is explicitly cleared by a status bit clear instruction. For
example, you can clear ACOV1 by using the following instruction:

BCLR ACOV1

(To set ACOV1, use BSET ACOV1.)

2.10.1.2 CARRY Bit of ST0_55

Bit Name Description Accessibility HW Reset
11 CARRY Carry bit Read/Write 1

The following are main points about the carry bit:

� Carry/borrow detection depends on the M40 bit in ST1_55:

� M40  =  0: Carry/borrow is detected with respect to bit position 31.

� M40  =  1: Carry/borrow is detected with respect to bit position 39.

If you need compatibility with TMS320C54x code, make sure M40 = 0.
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� When an addition is performed in the D-unit arithmetic logic unit (D-unit
ALU), if the addition generates a carry, CARRY is set; if no carry is
generated, CARRY is cleared. There is one exception to this behavior:
When the following syntax is used (shifting Smem by 16 bits), CARRY is
set for a carry but is not affected if no carry is generated.

ADD Smem <<#16, [ACx,] ACy

� When a subtraction is performed in the D-unit ALU, if the subtraction
generates a borrow, CARRY is cleared; if no borrow is generated, CARRY
is set. There is one exception to this behavior: When the following syntax
is used (shifting Smem by 16 bits), CARRY is cleared for a borrow but is
not affected if no borrow is generated.

SUB Smem <<#16, [ACx,] ACy

� CARRY is modified by the logical shift instructions.

� For signed shift instructions and rotate instructions, you can choose
whether CARRY is modified.

� The following instruction syntaxes modify CARRY to indicate particular
computation results when the destination register (dst) is an accumulator:

MIN [src,] dst Minimum comparison
MAX [src,] dst Maximum comparison
ABS [src,] dst Absolute value
NEG [src,] dst Negate

� You can clear and set CARRY with the following instructions:

BCLR CARRY ; Clear CARRY
BSET CARRY ; Set CARRY

2.10.1.3 DP Bit Field of ST0_55

Bits Name Description Accessibility HW Reset
8–0 DP Copy of the 9 most

significant bits of the
data page register
(DP)

Read/Write 0

This 9-bit field is provided for compatibility with code transferred from the
TMS320C54x DSPs. TMS320C55x DSPs have a data page register
independent of ST0_55. Any change to bits 15–7 of this data page
register—DP(15–7)—is reflected in the DP status bits. Any change to the
DP status bits is reflected in DP(15–7). When generating addresses for the
DP direct addressing mode, the CPU uses the full data page register,
DP(15−0). You are not required to use the DP status bits; you can modify DP
directly.
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Note:

If you want to load ST0_55 but do not want the access to change the content
of the data page register, use an OR or an AND operation with a mask value
that does not modify the 9 least significant bits (LSBs) of ST0_55. For an OR
operation, put 0s in the 9 LSBs of the mask value. For an AND operation, put
1s in the 9 LSBs of the mask value.

2.10.1.4 TC1 and TC2 Bits of ST0_55

Bit Name Description Accessibility HW Reset
12 TC2 Test/control flag 2 Read/Write 1
13 TC1 Test/control flag 1 Read/Write 1

The main function of the test/control bit is to hold the result of a test performed
by specific instructions. The following are main points about the test/control
bits:

� All the instructions that affect a test/control flag allow you to choose whether
TC1 or TC2 is affected.

� TCx (where x  =  1  or  2) or a Boolean expression of TCx can be used as
a trigger in any conditional instruction.

� You can clear and set TC1 and TC2 with the following instructions:

BCLR TC1 ; Clear TC1

BSET TC1 ; Set TC1

BCLR TC2 ; Clear TC2

BSET TC2 ; Set TC2
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2.10.2 ST1_55 Bits

This section describes the bits of ST1_55 in alphabetical order.

2.10.2.1 ASM Bit Field of ST1_55

Bits Name Description Accessibility HW Reset
4–0 ASM Accumulator shift

mode bits
Read/Write 00000b

ASM is not used by native TMS320C55x instructions but is available to support
TMS320C54x code running on the TMS320C55x DSP. In a C54x DSP, the
ASM field supplies a signed shift count for special instructions that shift an
accumulator value. The C55x ASM field is used in the C54x-compatible mode
(C54CM = 1).

Before reading further, it is important to know that the C55x register that
contains ASM (status register ST1_55) is accessible at two addresses. One
address, 00 0003h, is to be used by native C55x instructions. The other
address, 00 0007h, is provided to support C54x code that accesses ST1 at
0007h.

If C54CM = 1 (C54x-compatible mode):

� Whenever ASM is loaded by a write to address 00 0007h, the 5-bit
ASM value is sign-extended to 16 bits and written to temporary register 2
(T2). Clear/set status register bit instructions do not affect this bit field.
When a C54x instruction requests the CPU to shift an accumulator
according to ASM, the CPU uses the shift count in T2.

� Whenever T2 is loaded, the five least significant bits are copied to ASM.

� Because T2 is tied to ASM, T2 is not available as a general-purpose data
register.

If C54CM = 0:

� ASM is ignored. During an accumulator shift operation, the CPU reads the
shift count from the temporary register (T0, T1, T2, or T3) that was
specified in the C55x instruction, or from a constant embedded in the C55x
instruction.

� T2 can be used as a general-purpose data register. Writing to address
00 0007h does not affect T2, and writing to T2 does not affect ASM.
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2.10.2.2 BRAF Bit of ST1_55

Bit Name Description Accessibility Reset Value
15 BRAF Block-repeat active

flag
Read/Write 0

If C54CM = 0: BRAF is not used. The status of repeat operations is maintained
automatically by the CPU (see the description for CFCT in section 2.7,
Program Flow Registers (PC, RETA, CFCT)).

If C54CM = 1: Reading BRAF indicates the status of a block-repeat operation:

BRAF Block-Repeat Activity
0 No block-repeat operation is active.
1 A block-repeat operation is active.

To stop an active block-repeat operation in the C54x-compatible mode, you
can clear BRAF with the following instruction:

BCLR BRAF ; Clear BRAF

You can set BRAF with the following instruction:

BSET BRAF ; Set BRAF

BRAF also can be set or cleared with an instruction that modifies ST1_55.

Functionality of BRAF. A block-repeat loop begins with a block-repeat
instruction such as RPTB. BRAF is set at the address phase of this
block-repeat instruction to indicate that a loop is active.

Each time the last instruction of the loop enters the decode phase of the
pipeline, the CPU checks the values of BRAF and the counter register (BRC0).
If BRAF = 1 and BRC0 > 0, the CPU decrements BRC0 by 1 and begins the
next iteration of the loop. Otherwise, the CPU stops the loop. (In either case,
the last instruction completes its passage through the pipeline.)

BRAF is cleared in the following cases:

� The last instruction of the loop enters the decode phase, and BRC0 is
decremented to 0. BRAF is automatically cleared one cycle later.

� An instruction writes 0 to the block-repeat counter, BRC0. BRAF is
automatically cleared one cycle later.

� A far branch (FB) or far call (FCALL) instruction is executed. (BRAF is not
cleared by the execution of other call or branch instructions, or by the
execution of an INTR or TRAP instruction.)

� BRAF is manually cleared by a BCLR BRAF instruction or an instruction
that modifies status register ST1_55.
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BRAF is saved and restored with ST1_55 during the context switches caused
by an interrupt and a return-from-interrupt instruction. BRAF is not saved when
the CPU responds to a call instruction.

If a block-repeat loop is in progress and your program must switch modes from
C54CM = 1 to C54CM = 0, the BRAF bit must be cleared before or during the
switch. There are three options:

� Wait until the loop is finished (when BRAF is cleared automatically) and
then clear C54CM.

� Clear BRAF (this also stops the loop) and then clear C54CM.

� Clear BRAF and C54CM at the same time with an instruction that modifies
ST1_55.

Pipeline considerations. As already mentioned, the CPU clears BRAF one
cycle after executing an instruction that clears BRC0. This modification of
BRAF is not pipeline-protected. To ensure that BRAF is modified before
another instruction reads BRAF, you may need to insert instructions between
the instruction that clears BRC0 and the instruction that reads BRAF. For
example:

MOV #0, mmap(BRC0) ; Clear BRC0.
NOP ; Wait for BRAF to be cleared.
NOP
NOP
MOV mmap(ST1_55), AR0 ; Read ST1_55 (including BRAF).

The number of instructions to insert depends on when the first instruction
clears BRC0:

Pipeline Phase When BRC0 Is Cleared† Instructions to Insert

Address (AD) phase 0

Execute (X) phase 2

Write (W) phase 3
† Consult the instruction set documentation for the active pipeline phase of a given syntax.

This pipeline issue can also affect when the loop ends. To ensure that BRAF
is modified before the last instruction of the loop reaches the decode phase,
you must insert 5 or 6 cycles between the instruction that clears BRAF and the
last instruction:

Pipeline Phase When BRAF Is Modified† Instructions to Insert

Execute (X) phase 5

Write (W) phase 6
† Consult the instruction set documentation for the active pipeline phase of a given syntax.

Updating BRAF prior to a return instruction (RET or RETI) is protected in the
pipeline. After the return, if the next instruction reads BRAF, it reads the
updated value.
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2.10.2.3 C16 Bit of ST1_55

Bit Name Description Accessibility HW Reset
7 C16 Dual 16-bit arithmetic

mode bit
Read/Write 0

In the TMS320C54x-compatible mode (C54CM = 1), BRAF indicates/controls
the status of a block-repeat operation. In this mode, the execution of some
instructions is affected by C16. C16 determines whether such an instruction
is executed in a single 32-bit operation (double-precision arithmetic) or in two
parallel 16-bit operations (dual 16-bit arithmetic).

If C54CM = 1: The arithmetic performed in the D-unit ALU depends on C16:

C16 Dual 16-Bit Mode Is ...
0 Off. For an instruction that is affected by C16, the D-unit ALU performs

one 32-bit operation.

1 On. For an instruction that is affected by C16, the D-unit ALU performs
two 16-bit operations in parallel.

If C54CM = 0: The CPU ignores C16. The instruction syntax alone determines
whether dual 16-bit arithmetic or 32-bit arithmetic is used.

You can clear and set C16 with the following instructions:

BCLR C16 ; Clear C16
BSET C16 ; Set C16

2.10.2.4 C54CM Bit of ST1_55

Bit Name Description Accessibility HW Reset
5 C54CM TMS320C54x-compatible

mode bit
Read/Write 1

The C54CM bit determines whether the CPU will support code that was
developed for a TMS320C54x DSP:

C54CM C54x-Compatible Mode Is ...
0 Disabled. The CPU supports code written for a TMS320C55x (C55x)

DSP.

1 Enabled. This mode must be set when you are using code that was
originally developed for a TMS320C54x (C54x) DSP. All the C55x CPU
resources remain available; therefore, as you translate code, you can
take advantage of the additional features on the C55x to optimize your
code.
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Change modes with the following instructions and assembler directives:

BCLR C54CM  ; Clear C54CM (happens at run time)
.C54CM_off ; Tell assembler C54CM = 0

BSET C54CM ; Set C54CM (happens at run time)
.C54CM_on ; Tell the assembler C54CM = 1

Do not modify C54CM within a block-repeat loop as shown in this example:

RPBTLOCAL end1 ; Start of loop 1

:

BSET C54CM

:

end1 MOV AC0, dbl(*AR3+) ; End of loop 1

Also, do not modify C54CM in parallel with a block-repeat instruction such as:

BCLR C54CM || RPTB end2 ; Start of loop 2

:

end2 MOV AC1, dbl(*AR4+) ; End of loop 2

2.10.2.5 CPL Bit of ST1_55

Bit Name Description Accessibility HW Reset
14 CPL Compiler mode bit Read/Write 0

The CPL bit determines which of two direct addressing modes is active:

CPL Direct Addressing Mode Selected
0 DP direct addressing mode. Direct accesses to data space are made

relative to the data page register (DP).

1 SP direct addressing mode. Direct accesses to data space are made
relative to the data stack pointer (SP). The DSP is said to be in compiler
mode.

Note: Direct addresses to I/O space are always made relative to the peripheral data page
register (PDP).

Change modes with the following instructions and assembler directives:

BCLR CPL ; Clear CPL (happens at run time)
.CPL_off ; Tell assembler CPL = 0

BSET CPL ; Set CPL (happens at run time)
.CPL_on ; Tell the assembler CPL = 1
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2.10.2.6 FRCT Bit of ST1_55

Bit Name Description Accessibility HW Reset
6 FRCT Fractional mode bit Read/Write 0

The FRCT bit turns the fractional mode on or off:

FRCT Fractional Mode Is ...
0 Off. Results of multiply operations are not shifted.
1 On. Results of multiply operations are shifted left by 1 bit for decimal

point adjustment. This is required when you multiply two signed
Q15 values and you need a Q31 result.

You can clear and set FRCT with the following instructions:

BCLR FRCT ; Clear FRCT
BSET FRCT ; Set FRCT

2.10.2.7 HM Bit of ST1_55

Bit Name Description Accessibility HW Reset
12 HM Hold mode bit Read/Write 0

When the external memory interface (EMIF) of the DSP receives a HOLD
request, the DSP places the EMIF output pins in the high-impedance state.
Depending on HM, the DSP may also stop internal program execution:

HM Hold Mode
0 The DSP continues executing instructions from internal program

memory.

1 The DSP stops executing instructions from internal program memory.

You can use the following instructions to clear and set HM:

BCLR HM ; Clear HM
BSET HM ; Set HM

2.10.2.8 INTM Bit of ST1_55

Bit Name Description Accessibility HW Reset
11 INTM Interrupt mode bit Read/Write 1

The INTM bit globally enables or disables the maskable interrupts as shown
in the following table. This bit has no effect on nonmaskable interrupts (those
that cannot be blocked by software).

INTM Description
0 All unmasked interrupts are enabled.
1 All maskable interrupts are disabled.
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The following are main points about the INTM bit:

� Modify the INTM bit with status bit clear and set instructions:

BCLR INTM ; Clear INTM
BSET INTM ; Set INTM

The only other instructions that affect INTM are the software interrupt
instruction and the software reset instruction, which set INTM before
branching to the interrupt service routine.

In CPU cores with revisions older than 2.2, there is no pipeline protection
by the hardware between the INTM bit update and an interrupt jamming.
Because the INTM bit is updated in the execute phase of the pipeline, an
interrupt can be taken in between any of the 5 instructions following the
INTM set instruction which globally disables interrupts. In CPU cores with
revisions 2.2 or newer, no interrupt is taken after the INTM set instruction.

� The state of the INTM bit is automatically saved when the CPU approves
an interrupt request. Specifically, the INTM bit is saved when the CPU
saves ST1_55 to the data stack.

� Before executing an interrupt service routine (ISR) triggered by an
INTR #5 instruction, by the RESET instruction, or by a hardware interrupt
source, the CPU automatically sets the INTM bit to globally disable the
maskable interrupts. The TRAP #k5 instruction does not affect the
INTM bit. The ISR can re-enable the maskable interrupts by clearing the
INTM bit.

� A return-from-interrupt instruction restores the INTM bit from the data
stack.

� When the CPU is halted in the real-time emulation mode of the debugger,
INTM is ignored and only time-critical interrupts can be serviced (see the
description for the debug interrupt enable registers in section 2.8.4).
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2.10.2.9 M40 Bit of ST1_55

Bit Name Description Accessibility HW Reset
10 M40 Computation mode bit

for the D unit
Read/Write 0

The M40 bit selects one of two computation modes for the D unit:

M40 D-Unit Computation Mode Is ...

0 32-bit mode. In this mode:

� The sign bit is extracted from bit position 31.

� During arithmetic, the carry is determined with respect to bit position 31.

� Overflows are detected at bit position 31.

� During saturation, the saturation value is 00 7FFF FFFFh (positive overflow) or FF 8000 0000h
(negative overflow).

� Accumulator comparisons versus 0 are done using bits 31–0.

� Shift or rotate operations are performed on 32-bit values.

� During left shifts or rotations of accumulators, bits shifted out are extracted from bit position 31.

� During right shifts or rotations of accumulators, bits shifted in are inserted at bit position 31.

� During signed shifts of accumulators, if SXMD  =  0, 0 is copied into the accumulator’s guard bits; if
SXMD  =  1, bit 31 is copied into the accumulator’s guard bits. During any rotations or logical shifts
of accumulators, the guard bits of the destination accumulator are cleared.

Note: In the TMS320C54x-compatible mode (C54CM  =  1), there are some exceptions: An accumulator’s
sign bit is extracted from bit position 39. Accumulator comparisons versus 0 are done using bits 39–0.
Signed shifts are performed as if M40  =  1.

1 40-bit mode. In this mode:

� The sign bit is extracted from bit position 39.

� During arithmetic, the carry is determined with respect to bit position 39.

� Overflows are detected at bit position 39.

� During saturation, the saturation value is 7F FFFF FFFFh (positive overflow) or 80 0000 0000h
(negative overflow).

� Accumulator comparisons versus 0 are done using bits 39–0.

� Shift or rotate operations are performed on 40-bit values.

� During left shifts or rotations of accumulators, bits shifted out are extracted from bit position 39.

� During right shifts or rotations of accumulators, bits shifted in are inserted at bit position 39.
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You can clear and set M40 with the following instructions:

BCLR M40 ; Clear M40
BSET M40 ; Set M40

2.10.2.10 SATD Bit of ST1_55

Bit Name Description Accessibility HW Reset
9 SATD Saturation mode bit

for the D unit
Read/Write 0

The SATD bit determines whether the CPU saturates overflow results in the
D unit:

SATD Saturation Mode in the D Unit Is ...
0 Off. No saturation is performed.

1 On. If an operation performed by the D unit results in an overflow, the
result is saturated. The saturation depends on the value of the M40 bit:

M40 = 0 The CPU saturates the result to 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow).

M40 = 1 The CPU saturates the result to 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow).

If you want compatibility with TMS320C54x code, make sure M40 = 0.

You can clear and set SATD with the following instructions:

BCLR SATD ; Clear SATD
BSET SATD ; Set SATD

2.10.2.11 SXMD Bit of ST1_55

Bit Name Description Accessibility HW Reset
8 SXMD Sign-extension mode

bit for the D unit
Read/Write 1

The SXMD bit turns on or off the sign-extension mode, which affects
accumulator loads, and also affects additions, subtractions, and signed shift
operations that are performed in the D  unit. A summary of the effects of SXMD
follows.
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SXMD Sign-Extension Mode Is ...

0 Off. When sign-extension mode is off:

� For 40-bit operations, 16-bit or smaller operands are zero extended to 40 bits.

� For the conditional subtract instruction, any 16-bit divisor produces the expected result.

� When the D-unit arithmetic logic unit (ALU) is locally configured in its dual 16-bit mode (by a dual
16-bit arithmetic instruction):

� 16-bit values used in the higher part of the D-unit ALU are zero extended to 24 bits.

� 16-bit accumulator halves are zero extended if they are shifted right.

� During a signed shift of an accumulator, if it is a 32-bit operation (M40  =  0), 0 is copied into the
accumulator’s guard bits (39–32).

� During a signed right shift of an accumulator, the shifted value is zero extended.

1 On. In this mode:

� For 40-bit operations, 16-bit or smaller operands are sign extended to 40 bits.

� For the conditional subtract instruction, the 16-bit divisor must be a positive value (its most
significant bit (MSB) must be 0).

� When the D-unit ALU is locally configured in its dual 16-bit mode (by a dual 16-bit arithmetic
instruction):

� 16-bit values used in the higher part of the D-unit ALU are sign extended to 24 bits.

� 16-bit accumulator halves are sign extended if they are shifted right.

� During a signed shift of an accumulator, if it is a 32-bit operation (M40  =  0), bit 31 is copied into
the accumulator’s guard bits (39–32).

� During a signed right shift of an accumulator, the shifted value is sign extended, unless the uns()
expression qualifier is used to designate the accumulator value as unsigned.

SXMD is ignored during some operations:

� For unsigned operations (boolean logic operations, rotate operations, and
logical shift operations), input operands are always zero extended to
40 bits, regardless of the value of SXMD.

� For operations performed in a multiply-and-accumulate unit (MAC), 16-bit
input operands are sign extended to 17 bits, regardless of the value of
SXMD.

� If an operand in an instruction is enclosed in the operand qualifier uns(),
the operand is treated as unsigned, regardless of the value of SXMD.

You can clear and set SXMD with the following instructions:

BCLR SXMD ; Clear SXMD
BSET SXMD ; Set SXMD
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2.10.2.12 XF Bit of ST1_55

Bit Name Description Accessibility HW Reset
13 XF External flag Read/Write 1

The XF bit is a general-purpose output bit. This bit is directly connected to the
XF pin on those C55x devices that have an XF pin. Setting the XF bit drives
the XF pin high. Clearing the XF bit drives the XF pin low. The following
instructions clear and set XF:

BCLR XF ; Clear XF
BSET XF ; Set XF

2.10.3 ST2_55 Bits

This section describes the bits of ST2_55 in alphabetical order.

2.10.3.1 AR0LC–AR7LC Bits of ST2_55

The CPU has eight auxiliary registers, AR0–AR7. Each auxiliary register ARn
(n  =  0,  1,  2,  3,  4,  5,  6,  or  7) has its own linear/circular configuration bit
in ST2_55:

Bit Name Description Accessibility HW Reset
n ARnLC ARn linear/circular

configuration bit
Read/Write 0

Each ARnLC bit determines whether ARn is used for linear addressing or
circular addressing:

ARnLC ARn Is Used For ...
0 Linear addressing
1 Circular addressing

For example, if AR3LC  =  0, AR3 is used for linear addressing; if AR3LC = 1,
AR3 is used for circular addressing.

You can clear and set the ARnLC bits with the status bit set/clear instruction.
For example, the following instructions respectively clear and set AR3LC. To
modify other ARnLC bits, replace the 3 with the appropriate number.

BCLR AR3LC ; Clear AR3LC
BSET AR3LC ; Set AR3LC
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2.10.3.2 ARMS Bit of ST2_55

Bit Name Description Accessibility HW Reset
15 ARMS AR mode switch Read/Write 0

The ARMS bit determines the CPU mode used for the AR indirect addressing
mode:

ARMS AR Indirect Operands Available
0 DSP mode operands, which provide efficient execution of DSP

intensive applications. Among these operands are those that use
reverse carry propagation when adding to or subtracting from a pointer.
Short-offset operands are not available.

1 Control mode operands, which enable optimized code size for control
system applications. The short-offset operand *ARn(short(#k3)) is
available. (Other offsets require a 2-byte extension on an instruction,
and instructions with these extensions cannot be executed in parallel
with other instructions.)

Change modes with the following instructions and assembler directives:

BCLR ARMS ; Clear ARMS(happens at run time)
.ARMS_off ; Tell assembler ARMS = 0

BSET ARMS ; Set ARMS (happens at run time)
.ARMS_on ; Tell assembler ARMS = 1

2.10.3.3 CDPLC Bit of ST2_55

Bit Name Description Accessibility HW Reset
8 CDPLC CDP linear/circular

configuration bit
Read/Write 0

The CDPLC bit determines whether the coefficient data pointer (CDP) is used
for linear addressing or circular addressing:

CDPLC CDP Is Used For ...
0 Linear addressing
1 Circular addressing

You can clear and set CDPLC with the following instructions:

BCLR CDPLC ; Clear CDPLC
BSET CDPLC ; Set CDPLC
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2.10.3.4 DBGM Bit of ST2_55

Bit Name Description Accessibility HW Reset
12 DBGM Debug mode bit Read/Write 1

The DBGM bit provides the capability to block debug events during
time-critical portions of a program:

DBGM Debug Events Are ...
0 Enabled.
1 Disabled. The emulator cannot access memory or registers. Software

breakpoints still cause the CPU to halt, but hardware breakpoints or halt
requests are ignored.

The following are main points about the DBGM bit:

� For pipeline protection, the DBGM bit can only be modified by status bit
clear and set instructions:

BCLR DBGM ; Clear DBGM
BSET DBGM ; Set DBGM

Writes to ST2_55 do not affect DBGM.

� The state of the DBGM bit is automatically saved when the CPU approves
an interrupt request or fetches the INTR #k5, TRAP #k5, or RESET
instruction. Specifically, the DBGM bit is saved when the CPU saves
ST2_55 to the data stack.

� Before executing an interrupt service routine (ISR) triggered by the
INTR #k5, TRAP #k5, or RESET instruction, or by a hardware interrupt
source, the CPU automatically sets the DBGM bit to disable debug events.
The ISR can reenable debug events by clearing the DBGM bit.

� A return-from-interrupt instruction restores the DBGM bit from the data
stack.

2.10.3.5 EALLOW Bit of ST2_55

Bit Name Description Accessibility HW Reset
11 EALLOW Emulation access

enable bit
Read/Write 0

The EALLOW bit enables or disables write access to non-CPU emulation
registers:

EALLOW Write Access To Non-CPU Emulation Registers Is ...
0 Disabled
1 Enabled
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The following are main points about the EALLOW bit:

� The state of the EALLOW bit is automatically saved when the CPU
approves an interrupt request or fetches the INTR #k5, TRAP #k5, or
RESET instruction. Specifically, the EALLOW bit is saved when the CPU
saves ST2_55 to the data stack.

� Before executing an interrupt service routine (ISR) triggered by the
INTR #k5, TRAP #k5, or RESET instruction, or by a hardware interrupt
source, the CPU automatically clears the EALLOW bit to prevent
accesses to the emulation registers. The ISR can re-enable access by
setting the EALLOW bit:

BSET EALLOW

(To clear EALLOW, you can use BCLR EALLOW.)

� A return-from-interrupt instruction restores the EALLOW bit from the data
stack.

2.10.3.6 RDM Bit of ST2_55

Bit Name Description Accessibility HW Reset
10 RDM Rounding mode bit Read/Write 0

Certain instructions executed in the D unit allow you to indicate whether an
operand is to be rounded. The type of rounding performed depends on the
value of the RDM bit:

RDM Rounding Mode Selected
0 Round to the infinite. The CPU adds 8000h (2 raised to the 15th power)

to the 40-bit operand. Then the CPU clears bits 15 through 0 to generate
a rounded result in a 24- or 16-bit representation. For a 24-bit
representation, only bits 39 through 16 of the result are meaningful. For
a 16-bit representation, only bits 31 through 16 of the result are
meaningful.

1 Round to the nearest. The rounding depends on bits 15 through 0 of the
40-bit operand, as shown by the following if statements. The rounded
result is in a 24-bit representation (in bits 39 through 16) or a 16-bit
representation (in bits 31 through 16).

If ( 0 =< bits 15–0 < 8000h )
CPU clears bits 15–0

If ( 8000h < bits 15–0 < 10000h )
CPU adds 8000h to the operand and then clears bits 15–0

If ( bits 15–0 == 8000h )
If bits 31–16 contain an odd value

CPU adds 8000h to the operand and then clears bits 15–0
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If you need compatibility with TMS320C54x code, make sure RDM = 0 and
C54CM = 1. When C54CM = 1 (C54x-compatible mode enabled), the
following instructions do not clear bits 15–0 of the result after the rounding:

SATR [ACx,] ACy Saturate with rounding
RND [ACx,] ACy Round
LMS Xmem,Ymem,ACx,ACy Least mean square

You can clear and set RDM with the following instructions:

BCLR RDM ; Clear RDM
BSET RDM ; Set RDM

2.10.4 ST3_55 Bits

This section describes the bits of ST3_55 in alphabetical order.

2.10.4.1 CACLR Bit of ST3_55

Bit Name Description Accessibility HW Reset
13 CACLR Cache clear bit Read/Write 0

To clear (or flush) the instruction cache (invalidate all the lines of its data
arrays), set the CACLR bit. You can set CACLR using the following instruction:

BSET CACLR ; Set CACLR

Once set, CACLR remains 1 until the flush process is complete, at which time
CACLR is automatically reset to 0. Therefore, you can poll CACLR to get the
status:

CACLR The Flush Process Is...
0 Complete
1 Not complete. All cache blocks are invalid. The number of cycles

required to flush the cache depends on the memory architecture.
When the cache is flushed, the content of the prefetch queue in the
instruction buffer unit is automatically flushed.
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2.10.4.2 CAEN Bit of ST3_55

Bit Name Description Accessibility HW Reset
14 CAEN Cache enable bit Read/Write 0

The CAEN bit enables or disables the program cache:

CAEN Cache Is ...
0 Disabled. The cache controller never receives a program request. All

program requests are handled either by the internal memory or the
external memory, depending on the address decoded.

1 Enabled. Program code is fetched from the cache, from the internal
memory, or from the external memory, depending on the address
decoded.

Some important notes:

� When the cache is disabled by clearing the CAEN bit, the content of the
instruction buffer queue in the I unit is automatically flushed.

� You can clear and set CAEN using the following instructions

BCLR CAEN ; Clear CAEN
BSET CAEN ; Set CAEN

2.10.4.3 CAFRZ Bit of ST3_55

Bit Name Description Accessibility HW Reset
15 CAFRZ Cache freeze bit Read/Write 0

CAFRZ enables you to lock the instruction cache, so that its contents are not
updated on a cache miss but are still available for cache hits. The contents of
the cache remain undisturbed until CAFRZ is cleared. The role of CAFRZ is
summarized as follows:

CAFRZ Description
0 The cache is in its default operating mode.
1 The cache is frozen (the cache content is locked).

You can clear and set CAFRZ using the following instructions:

BCLR CAFRZ ; Clear CAFRZ
BSET CAFRZ ; Set CAFRZ
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2.10.4.4 CBERR Bit of ST3_55

Bit Name Description Accessibility HW Reset
7 CBERR CPU bus error flag Read/Write

(Can only
write 0)

0

The CBERR bit is set when an internal bus error is detected. This error causes
the CPU to set the bus error interrupt flag (BERRINTF) in interrupt flag register
1 (IFR1). Some important points follow:

� Writing a 1 to the CBERR bit has no effect. This bit is 1 only if an internal
bus error has occurred.

� The interrupt service routine for the bus error interrupt (BERRINT) must
clear the CBERR bit before it returns control to the interrupted program
code:

BCLR CBERR ; Clear CBERR

The CBERR bit can be summarized as follows:

CBERR Description
0 The flag has been cleared by your program or by a reset.
1 An internal bus error has been detected.

Note:

When a bus error occurs, the functionality of the instruction that caused the
error, and of any instruction executed in parallel, can not be assured.

2.10.4.5 CLKOFF Bit of ST3_55

Bit Name Description Accessibility HW Reset
2 CLKOFF CLKOUT disable bit Read/Write 0

When CLKOFF  =  0, the CLKOUT pin is enabled; the associated clock signal
appears on the pin. When CLKOFF = 1, the CLKOUT pin is disabled.

You can clear and set CLKOFF with the following instructions:

BCLR CLKOFF ; Clear CLKOFF
BSET CLKOFF ; Set CLKOFF

2.10.4.6 HINT Bit of ST3_55

Bit Name Description Accessibility HW Reset
12 HINT Host interrupt bit Read/Write 1

Use the HINT bit to send an interrupt request to a host processor by way of the
host port interface. You produce an active-low interrupt pulse by clearing and
then setting the HINT bit:

BCLR HINT ; Clear HINT
BSET HINT ; Set HINT
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Note:

The HINT bit is not used for all C55x host port interfaces (HPIs). Consult the
documentation for the specific C55x DSP.

2.10.4.7 MPNMC Bit of ST3_55

Bit Name Description Accessibility HW Reset
6 MPNMC Microprocessor/

microcomputer
mode bit

Read/Write May be dependent
on the state of
predefined pins at
reset. To check this
for a particular
C55x DSP, see its
data manual.

The MPNMC bit enables or disables the on-chip ROM:

MPNMC Mode
0 Microcomputer mode. The on-chip ROM is enabled; it is addressable

in program space.

1 Microprocessor mode. The on-chip ROM is disabled; it is not in the
program-space map.

Some important notes:

� The reset value of the MPNMC bit may be dependent on the state of
predefined pins at reset. To check this for a particular C55x DSP, see its
data manual.

� The software reset instruction does not affect the MPNMC bit.

� You can clear and set MPNMC using the following instructions:

BCLR MPNMC ; Clear MPNMC
BSET MPNMC ; Set MPNMC

� An instruction that changes the MPNMC bit must not be followed too
closely by a branch instruction. Otherwise, the CPU may use the old
MPNMC value and, as a result, fetch the next instruction from the incorrect
memory location. The minimum number of instruction cycles needed to
separate an MPNMC-update instruction and a branch instruction depends
on the type of branch instruction used. Table 2−14 divides branch
instructions into three categories, and Table 2−15 shows the minimum
number of separation cycles needed for each category.
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Table 2−14. Categories of Branch Instructions 

Category I Category II Category III

B L7 RET (when slow return selected) B ACx

B L16 RETCC (when slow return selected) CALL ACx

B P24 RETI (when slow return selected)

BCC I4, cond

BCC L8, cond

BCC L16, cond

BCC P24, cond

CALL L16

CALL P24

CALLCC L16, cond

CALLCC P24, cond

RET (when fast return selected)

RETCC (when fast return selected)

RETI (when fast return selected)

Table 2−15. Minimum Number of Instruction Cycles Required Between an
MPNMC-Update Instruction and a Branch Instruction

Cycles Required Before Subsequent Branch Instruction

MPNMC-Update Instruction Category I Category II Category III

One of the following instructions:
BSET MPNMC
BSET k4, ST3_55
BCLR MPNMC
BCLR k4, ST3_55

4 0 0

An instruction that changes MPNMC
when writing to the memory-mapped
address for ST3_55

5 1 0
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Consider the following example in which the BSET instruction changes
MPNMC. Table 2−14 specifies CALL as a category I branch instruction.
Table 2−15 indicates that 4 cycles are needed between the BSET MPNMC
instruction and a category I branch instruction. In this example, the 4 cycles
are provided by inserting four NOP (no operation) instructions. Other
instructions could be placed here instead.

BSET MPNMC
NOP
NOP
NOP
NOP
CALL #SubroutineA

2.10.4.8 SATA Bit of ST3_55

Bit Name Description Accessibility HW Reset
5 SATA Saturation mode bit

for the A unit
Read/Write 0

The SATA bit determines whether the CPU saturates overflow results of the
A-unit arithmetic logic unit (A-unit ALU):

SATA Saturation Mode in the A Unit Is ...
0 Off. No saturation is performed.
1 On. If a calculation in the A-unit ALU results in an overflow, the result

is saturated to 7FFFh (for overflow in the positive direction) or 8000h
(for overflow in the negative direction).

You can clear and set SATA with the following instructions:

BCLR SATA ; Clear SATA
BSET SATA ; Set SATA

2.10.4.9 SMUL Bit of ST3_55

Bit Name Description Accessibility HW Reset
1 SMUL Saturation-on-multiplica

tion mode bit
Read/Write 0

The SMUL bit turns the saturation-on-multiplication mode on or off:

SMUL Saturation-On-Multiplication Mode Is ...
0 Off
1 On. When SMUL  =  1, FRCT  =  1, and SATD  =  1, the result of

18000h × 18000h is saturated to 7FFF FFFFh (regardless of the value
of the M40 bit). This forces the product of the two negative numbers to
be a positive number.
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For multiply-and-accumulate/subtract instructions, the saturation is
performed after the multiplication and before the addition/subtraction.

You can clear and set SMUL with the following instructions:

BCLR SMUL ; Clear SMUL
BSET SMUL ; Set SMUL

2.10.4.10 SST Bit of ST3_55

Bit Name Description Accessibility Reset Value
0 SST Saturate-on-store

mode bit
Read/Write 0

In the TMS320C54x-compatible mode (C54CM = 1), the execution of some
accumulator-store instructions is affected by SST. When SST is 1, the 40-bit
accumulator value is saturated to a 32-bit value before the store operation. If
the accumulator value is shifted, the CPU performs the saturation after the
shift.

If C54CM = 1: SST turns the saturation-on-store mode on or off.

SST Saturation-On-Store Mode Is ...
0 Off

1 On. For an instruction that is affected by SST, the CPU saturates a shifted
or unshifted accumulator value before storing it. The saturation depends
on the value of the sign-extension mode bit (SXMD):
SXMD  =  0 The 40-bit value is treated as unsigned. If the 40-bit value

is greater than 00 7FFF FFFFh, the CPU produces the
32-bit result 7FFF FFFFh.

SXMD  =  1 The 40-bit value is treated as signed. If the 40-bit value is
less than 00 8000 0000h, the CPU produces the 32-bit
result 8000  0000h. If the 40-bit value is greater than
00 7FFF FFFFh, the CPU produces 7FFF FFFFh.

If C54CM = 0: The CPU ignores SST. The instruction syntax alone determines
whether saturation occurs.

You can clear and set SST with the following instructions:

BCLR SST ; Clear SST
BSET SST ; Set SST
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Memory and I/O Space

The C55x DSP provides access to a unified data/program space and an I/O
space. Data-space addresses are used to access general-purpose memory
and to access the memory-mapped CPU registers. Program-space addresses
are used by the CPU to read instructions from memory. I/O space is available
for two-way communication with peripherals. An on-chip boot loader provides
ways to help load code and data into internal memory.
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3.1 Memory Map

All 16M bytes of memory are addressable as program space or data space
(see Figure 3−1). When the CPU uses program space to read program code
from memory, it uses 24-bit addresses to reference bytes. When your program
accesses data space, it uses 23-bit addresses to reference 16-bit words. In
both cases, the address buses carry 24-bit values, but during a data-space
access, the least significant bit on the address bus is forced to 0.

Data space is divided into 128 main data pages (0 through 127). Each main
data page has 64K addresses. An instruction that references a main data page
concatenates a 7-bit main data page value with a 16-bit offset.

On data page 0, the first 96 addresses (00  0000h–00  005Fh) are reserved
for the memory-mapped registers (MMRs). There is a corresponding block of
192 addresses (00  0000h–00  00BFh) in program space. It is recommended
that you do not store program code to these addresses.

To determine how the addresses are divided between internal memory and
external memory, and for the details regarding internal memory, see the data
manual for your C55x DSP.

Figure 3−1. Memory Map

00 0000−00 00BF

Data/program memory

Main data page 0

Main data page 1

Main data page 2

Main data page 127

.

.

.

.

.

.

.

.

.

.

.

.

Data-space addresses

.

.

.

.

.

.

02 0000−03 FFFF

04 0000−05 FFFF

FE 0000−FF FFFF

(Hexadecimal ranges)

MMRs

00 00C0−01 FFFF00 0060−00 FFFF

01 0000−01 FFFF

02 0000−02 FFFF

7F 0000−7F FFFF

00 0000−00 005F

Program-space addresses
(Hexadecimal ranges)
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3.2 Program Space

The CPU accesses program space only when reading instructions from
program memory. The CPU uses byte addresses (see section 3.2.1) to fetch
instructions of varying sizes (see section 3.2.2). Instruction fetches are aligned
to even-address 32-bit boundaries (see section 3.2.3).

3.2.1 Byte Addresses (24 Bits)

When the CPU fetches instructions from program memory, it uses byte
addresses, which are addresses assigned to individual bytes. These
addresses are 24 bits wide. Figure 3−2 shows a row of 32-bit-wide memory.
Each byte is assigned an address. For example, byte 0 is at address 00  0100h
and byte 2 is at address 00  0102h.

Figure 3−2. Example of Byte Addresses for 32-Bit-Wide Program Memory

Byte addresses Byte 0 Byte 1 Byte 2 Byte 3

00 0100h−00 0103h

3.2.2 Instruction Organization in Program Space

The DSP supports 8-, 16-, 24-, 32-, 40-, and 48-bit instructions. Figure 3−3
provides an example of how instructions are organized in program space. Five
instructions of varying sizes have been stored in 32-bit-wide memory. The
address for each instruction is the address of its most significant byte
(the opcode). No code is stored in the shaded bytes.
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Figure 3−3. Example of Instruction Organization in Program Space

Instruction Size Address

A 24 bits 00 0101h

B 16 bits 00 0104h

C 32 bits 00 0106h

D 8 bits 00 010Ah

E 24 bits 00 010Bh

Byte addresses Byte 0 Byte 1 Byte 2 Byte 3

00 0100h−00 0103h A(23−16) A(15−8) A(7−0)

00 0104h−00 0107h B(15−8) B(7−0) C(31−24) C(23−16)

00 0108h−00 010Bh C(15−8) C(7−0) D(7−0) E(23−16)

00 010Ch−00 010Fh E(15−8) E(7−0)

3.2.3 Alignment of Fetches From Program Space

You do not have to align instructions as you store them in program memory,
but the instruction fetches are aligned to even-address 32-bit boundaries.
During an instruction fetch, the CPU reads 32 bits from an address whose two
least significant bits (LSBs) are 0s. In other words, the least significant digit of
a hexadecimal fetch address is always 0h, 4h, 8h, or Ch.

When the CPU executes a discontinuity, the address written to the program
counter (PC) might not be the same as the fetch address. The PC address and
the fetch address are the same only if the two LSBs of the PC address are 0s.
Consider the following assembly code segment, which calls a subroutine:

CALL #SubroutineB

Suppose the first instruction of the subroutine is instruction C at byte address
00 0106h, as shown in Figure 3−3. The PC contains 00 0106h, but the
program-read address bus (PAB) carries the byte address at the previous
32-bit boundary, 00 0104h. The CPU reads 4-byte packets of code beginning
at address 00 0104h. Instruction C is the first instruction executed.
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3.3 Data Space

When programs read from or write to memory or registers, the accesses are
made to data space. The CPU uses word addresses (see section 3.3.1) to read
or write 8-bit, 16-bit, or 32-bit values (see section 3.3.2). The address that
needs to be generated for a particular value depends on how it its stored within
the word boundaries in data space (see section 3.3.3).

3.3.1 Word Addresses (23 Bits)

When the CPU accesses data space, it uses word addresses, which are
addresses assigned to individual 16-bit words. These addresses are 23 bits
wide. Figure 3−4 shows a row of 32-bit-wide memory. Each word is assigned
an address. Word 0 is at address 00 0100h and word 1 is at address 00 0101h.

Figure 3−4. Example of Word Addresses for 32-Bit-Wide Data Memory

Word addresses Word 0 Word 1

00 0100h−00 0101h

The address buses are 24-bit buses. When the CPU reads from or writes to
data space, the 23-bit address is concatenated with a trailing 0. For example,
suppose an instruction reads a word at the 23-bit address 00  0102h. The
appropriate data-read address bus carries the 24-bit value 00  0204h:

Word address: 000 0000 0000 0001 0000 0010

Data-read address bus: 0000 0000 0000 0010 0000 0100

3.3.2 Data Types

The instruction set handles the following data types:

byte 8 bits

word 16 bits

long word 32 bits

Dedicated instruction syntaxes (see Table 3−1) allow you to select high or low
bytes of particular words. The byte-load instructions read bytes and load them
into registers. The bytes that are read are zero extended (if the uns() operand
qualifier is used) or sign extended before being stored. The byte-store
instructions store the 8 least significant bits of a register to a specified byte in
memory.
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Note:

In data space, the CPU uses 23-bit addresses to access words. To access
a byte, the CPU must manipulate the word that contains the byte.

Table 3−1. Byte Load and Byte Store Instructions  

Operation Instruction Syntax Byte Accessed

Byte load
(Accumulator  Auxiliary  or Temporary

MOV [uns(]high_byte(Smem)[)], dst Smem(15–8)
(Accumulator, Auxiliary, or Temporary
Register Load instructions) MOV [uns(]low_byte(Smem)[)], dst Smem(7–0)g )

MOV high_byte(Smem) << #SHIFTW, ACx Smem(15–8)

MOV low_byte(Smem) << #SHIFTW, ACx Smem(7–0)

Byte store
(Accumulator  Auxiliary  or Temporary

MOV src, high_byte(Smem) Smem(15–8)
(Accumulator, Auxiliary, or Temporary
Register Store instructions) MOV src, low_byte(Smem) Smem(7–0)

When the CPU accesses long words, the address used for the access is the
address of the most significant word (MSW) of the 32-bit value. The address
of the least significant word (LSW) depends on the address of the MSW:

� If the address of the MSW is even, the LSW is accessed at the next
address. For example:

Word addresses

00 0100h−00 0101h MSW LSW

� If the address of the MSW is odd, the LSW is accessed at the previous
address. For example:

Word addresses

00 0100h−00 0101h LSW MSW

Given the address of the MSW (LSW), complement its least significant bit to
find the address of the LSW (MSW).
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3.3.3 Data Organization in Data Space

Figure 3−5 provides an example of how data are organized in data space.
Seven data values of varying sizes have been stored in 32-bit-wide memory.
No data value is stored in the shaded byte at address 00 0100h. Important
points about the example are:

� To access a long word, you must reference its most significant word
(MSW). C is accessed at address 00 0102h. D is accessed at address
00 0105h.

� Word addresses are also used to access bytes in data space. For
example, the address 00 0107h is used for both F (high byte) and G (low
byte). Special byte instructions indicate whether the high byte or low byte
is accessed.

Figure 3−5. Example of Data Organization in Data Space

Data Value Data Type Address

A Byte 00  0100h (low byte)

B Word 00  0101h

C Long Word 00  0102h

D Long Word 00  0105h

E Word 00  0106h

F Byte 00  0107h (high byte)

G Byte 00  0107h (low byte)

Word addresses Word 0 Word 1

00 0100h−00 0101h A B

00 0102h−00 0103h MSW of C (bits 31−16) LSW of C (bits 15−0)

00 0104h−00 0105h LSW of D (bits 15−0) MSW of D (bits 31−16)

00 0106h−00 0107h E F G
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3.4 I/O Space

I/O space is separate from data/program space and is available only for
accessing registers of the peripherals on the DSP. The word addresses in
I/O space are 16 bits wide, enabling access to 64K locations (see Figure 3−6).

Figure 3−6. I/O Space

I/O spaceAddresses

0000h−FFFFh 64K words

The CPU uses the data-read address bus DAB for reads and data-write
address bus EAB for writes. When the CPU reads from or writes to I/O space,
the 16-bit address is concatenated with leading 0s. For example, suppose an
instruction reads a word at the 16-bit address 0102h. DAB carries the 24-bit
value 00  0102h.

Note:

Although an increment past FFFFh or a decrement past 0000h causes the
I/O address to wrap around, do not make use of this behavior; it is not
supported.

3.5 Boot Loader

An on-chip boot loader provides options for transferring code and data from
an external source to the RAM inside the C55x DSP at power up/reset. For a
list of boot options for a particular C55x DSP and for a description on how to
select the desired option, see the data manual for that DSP. To learn how the
C55x hex conversion utility can help you with boot loading, see
the TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280).

I/O Space / Boot Loader

http://www-s.ti.com/sc/techlit/spru280
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Stack Operation

This chapter introduces the two stacks located on each C55x DSP. It also
explains how they relate to each other and how they are used by the CPU
during automatic context switching (saving important register values before
executing a subroutine and restoring those values when the subroutine is
done).
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4.1 Data Stack and System Stack

The CPU supports two 16-bit software stacks known as the data stack and the
system stack. Figure 4−1 and Table 4−1 describe the registers used for the
stack pointers. For an access to the data stack, the CPU concatenates SPH
with SP to form XSP. XSP contains the 23-bit address of the value last pushed
onto the data stack. SPH holds the 7-bit main data page of memory, and SP
points to the specific word on that page. The CPU decrements SP before
pushing a value onto the stack and increments SP after popping a value off the
stack. SPH is not modified during stack operations.

Similarly, when accessing the system stack, the CPU concatenates SPH with
SSP to form XSSP. XSSP contains the address of the value last pushed onto
the system stack. The CPU decrements SSP before pushing a value onto the
system stack and increments SSP after popping a value off the system stack.
Again, SPH is not modified during stack operations.

As described in section 4.2, Stack Configurations, SSP can either be linked
with or independent of SP. If you select the 32-bit stack configuration,
operations that modify SP will modify SSP in the same way. If you select one
of the dual 16-bit stack configurations, SSP is independent of SP; SSP will be
modified only during automatic context switching (see section 4.4).

Figure 4−1. Extended Stack Pointers
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Table 4−1. Stack Pointer Registers

Register Referred To As ... Accessibility

XSP Extended data stack pointer Accessible via dedicated instructions only. XSP is not a
register mapped to memory.

SP Data stack pointer Accessible via dedicated instructions and as a
memory-mapped register

XSSP Extended system stack pointer Accessible via dedicated instructions only. XSSP is not a
register mapped to memory.

SSP System stack pointer Accessible via dedicated instructions and as a
memory-mapped register

SPH High part of XSP and XSSP Accessible as a memory-mapped register. You can also
access SPH by accessing XSP or XSSP. There are no
dedicated instructions for SPH.

Note: SPH is not affected by writes to XSP or XSSP.
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4.2 Stack Configurations

The TMS320C55x DSP provides three possible stack configurations, which
are described in Table 4−2. Notice that one configuration features a fast-return
process, and the others use a slow-return process. Section 4.3 explains the
difference between the two processes.

Select one of the three stack configurations by placing the appropriate value in
bits 29 and 28 of the 32-bit reset vector location (see Table 4−2). This can be
done in C55x assembly code as part of the .ivec assembler directive. This
directive is described in the TMS320C55x Assembly Language User’s Guide
(literature number SPRU280). The 24 least-significant bits in the reset vector
location must be the start address for the reset interrupt service routine (ISR).

Table 4−2. Stack Configurations 

Stack
Configuration Description Reset Vector Value† (Binary)

Dual 16-bit stack
with fast return

The data stack and the system stack are
independent: When you access the data
stack, the data stack pointer (SP) is
modified, but the system stack pointer
(SSP) is not. The registers RETA and
CFCT are used to implement a fast return
(see Figure 4−3 on page 4-7).

XX00 XXXX:(24-bit ISR address)

Dual 16-bit stack
with slow return

The data stack and the system stack are
independent: When you access the data
stack, SP is modified, but SSP is not. RETA
and CFCT are not used (see Figure 4−2 on
page 4-6).

XX01 XXXX:(24-bit ISR address)

32-bit stack
with slow return

The data stack and the system stack act as
a single 32-bit stack: When you access the
data stack, SP and SSP are modified by
the same increment. RETA and CFCT are
not used (see Figure 4−2 on page 4-6).

Note: If you modify SP via its
memory-mapped location, SSP is not
automatically updated. In this case, you
must also modify SSP to keep the two
pointers aligned.

XX10 XXXX:(24-bit ISR address)

− Reserved. Do not set bits 29 and 28 both
to 1.

XX11 XXXX:(24-bit ISR address)
(This is an illegal value.)

† A bit shown as an X may be 0 or 1.

http://www-s.ti.com/sc/techlit/spru280
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4.3 Fast Return Versus Slow Return

The difference between the fast-return process and the slow-return process
is how the CPU saves and restores the value of two internal registers: the
program counter (PC) and a loop context register.

PC holds the 24-bit address of the 1 to 6 bytes of code being decoded in the
I unit. When the CPU performs an interrupt or call, the current PC value
(the return address) is stored, and then PC is loaded with the start address of
the interrupt service routine or called routine. When the CPU returns from the
routine, the return address is transferred back to PC, so that the interrupted
program sequence can continue as before.

An 8-bit loop context register keeps a record of active repeat loops (the loop
context). When the CPU performs an interrupt or call, the current loop context
is stored, and then the 8-bit register is cleared to create a new context for the
subroutine. When the CPU returns from the subroutine, the loop context is
transferred back to the 8-bit register.

In the slow-return process, the return address and the loop context are stored
to the stacks (in memory). When the CPU returns from a subroutine, the speed
at which these values are restored is dependent on the speed of the memory
accesses.

In the fast-return process, the return address and the loop context are saved
to registers, so that these values can always be restored quickly. These special
registers are the return address register (RETA) and the control-flow context
register (CFCT). You can read from or write to RETA and CFCT as a pair with
dedicated, 32-bit load and store instructions.

Figure 4−2 (slow return) and Figure 4−3 (fast return) show examples of how
the return address and the loop context are handled within several layers of
routines. In these figures, Routine 0 is the highest level routine, Routine  1 is
nested inside Routine 0, and Routine 2 is nested inside Routine 1.
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Figure 4−2. Return Address and Loop Context Passing During Slow-Return Process

Execute routine 1

Return address of Routine 0
Loop context of Routine 0

Call routine 1

Save Routine 0 return address
and loop context on stacks.

Execute routine 2

Return address of Routine 1
Loop context of Routine 1

Call routine 2

Save Routine 1 return address
and loop context on stacks.

Continue routine 1

Return to routine 1

Load PC and loop context bits from
top of stack.

Continue routine 0

Return to routine 0

Execute routine 0

On top of stacks:

On top of stacks:

Return address of Routine 0
Loop context of Routine 0

On top of stacks:

Load PC and loop context bits from
top of stack.
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Figure 4−3. Use of RETA and CFCT in Fast-Return Process

Execute routine 1

RETA: Return address of Routine 0
CFCT: Loop context of Routine 0

Call routine 1

Save RETA to stacks. Save CFCT
to system stack.

1

Save Routine 0 return address in
RETA. Save Routine 0 loop
context to CFCT.

2

Execute routine 2

RETA: Return address of Routine 1
CFCT: Loop context of Routine 1

Call routine 2

Save RETA to stacks. Save CFCT
to system stack.

1

Save Routine 1 return address in
RETA. Save Routine 1 loop
context to CFCT.

2

Continue routine 1

RETA: Return address of Routine 0
CFCT: Loop context of Routine 0

Return to routine 1

Load PC from RETA. Load loop
context bits from CFCT.

1

Restore RETA from stacks.
Restore CFCT from system stack.

2

Continue routine 0

RETA: X
CFCT: Y

Return to routine 0

Load PC from RETA. Load loop
context bits from CFCT.

1

Restore RETA from stacks.
Restore CFCT from stacks.

2

Execute routine 0

RETA: X
CFCT: Y
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4.4 Automatic Context Switching

Before beginning an interrupt service routine (ISR) or a called routine, the CPU
automatically saves certain values. The CPU can use these values to
re-establish the context of the interrupted program sequence when the
subroutine is done.

Whether responding to an interrupt or a call, the CPU saves the return address
and the loop context bits. The return address, taken from the program counter
(PC), is the address of the instruction to be executed when the CPU returns
from the subroutine. The loop context bits are a record of the type and status
of repeat loops that were active when the interrupt or call occurred. When
responding to an interrupt, the CPU additionally saves status registers 0, 1,
and 2 and the debug status register (DBSTAT). DBSTAT is a DSP register that
holds debug context information used during emulation.

If the selected stack configuration (see section 4.2) uses the fast-return
process, RETA is used as a temporary storage place for the return address,
and CFCT is used as a temporary storage place for the loop context bits. If the
selected stack configuration uses the slow-return process, the return address
and the loop context bits are saved to and restored from the stack.

4.4.1 Fast-Return Context Switching for Calls

Before beginning a called routine, the CPU automatically:

1) Saves CFCT and RETA to the system stack and the data stack in parallel.
For each stack, the CPU decrements the stack pointer (SSP or SP) by 1
before the write to the stack:

System stack Data stack

After
SSP    1 CFCT RETA(23 16)

After
SP    1 RETA(15 0)

After
save → SSP = x − 1 CFCT:RETA(23−16)

After
save → SP = y − 1 RETA(15−0)

Before → SSP  x     Previously saved data
Before → SP  y     Previously saved data

Before
save → SSP = x     Previously saved data

Before
save → SP = y     Previously saved data

2) Saves the return address to RETA and saves loop context flags in CFCT:

RETA PC (return address) CFCT Loop context
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A return instruction at the end of a subroutine forces the CPU to restore values
in the opposite order. First, the CPU transfers the return address from RETA
to PC and restores its loop context flags from CFCT. Second, the CPU reads
the CFCT and RETA values from the stacks in parallel. For each stack, the
CPU increments the stack pointer (SSP or SP) by 1 after the read from
the stack.

4.4.2 Fast-Return Context Switching for Interrupts

Before beginning an interrupt service routine (ISR), the CPU automatically:

1) Saves registers to the system stack and the data stack in parallel. For each
stack, the CPU decrements the stack pointer (SSP or SP) by 1 before
each write to the stack:

System stack Data stack

After → SSP = x − 3 CFCT:RETA(23−16) After → SP = y − 3 RETA(15−0)
save SSP = x − 2 DBSTAT save SP = y − 2 ST1_55

SSP = x − 1 ST0_55 SP = y − 1 ST2_55

Before → SSP = x     Previously saved data Before → SP = y     Previously saved data
save save

Note:

DBSTAT (the debug status register) holds debug context information used
during emulation. Make sure the ISR does not modify the value that will be
returned to DBSTAT.

2) Saves the return address (from PC) to RETA and saves loop context flags
in CFCT:

RETA PC (return address) CFCT Loop context

A return-from-interrupt instruction at the end of an ISR forces the CPU to
restore values in the opposite order. First, the CPU transfers the return
address from RETA to PC and restores its loop context flags from CFCT.
Second, the CPU reads the values from the stacks in parallel. For each stack,
the CPU increments the stack pointer (SSP or SP) by 1 after each read from
the stack.
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4.4.3 Slow-Return Context Switching for Calls

Before beginning a called routine, the CPU automatically saves the return
address (from PC) and the loop context bits to the system stack and the data
stack in parallel. For each stack, the CPU decrements the stack pointer (SSP
or SP) by 1 before the write to the stack:

System stack Data stack

After
SSP    1 (Loop bits) PC(23 16)

After
SP    1 PC(15 0)

After
save → SSP = x − 1 (Loop bits):PC(23−16)

After
save → SP = y − 1 PC(15−0)

Before → SSP  x     Previously saved data
Before → SP  y     Previously saved data

Before
save → SSP = x     Previously saved data

Before
save → SP = y     Previously saved data

A return instruction at the end of a subroutine forces the CPU to restore the
return address and the loop context from the stack. For each stack, the CPU
increments the stack pointer (SSP or SP) by 1 after the read from the stack.

4.4.4 Slow-Return Context Switching for Interrupts

Before beginning an interrupt service routine (ISR), the CPU automatically
saves registers to the system stack and the data stack in parallel. For each
stack, the CPU decrements the stack pointer (SSP or SP) by 1 before
each write to the stack:

System stack Data stack

After → SSP = x − 3 (Loop bits):PC(23−16) After → SP = y − 3 PC(15−0)
save SSP = x − 2 DBSTAT save SP = y − 2 ST1_55

SSP = x − 1 ST0_55 SP = y − 1 ST2_55

Before → SSP = x     Previously saved data Before → SP = y     Previously saved data
save save

Note:

DBSTAT (the debug status register) holds debug context information used
during emulation. Make sure the ISR does not modify the value that will be
returned to DBSTAT.

A return-from-interrupt instruction at the end of an ISR forces the CPU to
restore values in the opposite order. First, the CPU restores the return address
and the loop context bits from the stack. Second, the CPU reads the other
values from the stacks in parallel. For each stack, the CPU increments the
stack pointer (SSP or SP) by 1 after each read from the stack.
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Interrupts and Reset Operations

This chapter describes the available interrupts of the C55x DSP, how some of
them can be blocked through software, and how all of them are handled by the
CPU. This chapter also explains the automatic effects of two types of reset
operations, one initiated by hardware and one initiated by software.
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5.1 Introduction to the Interrupts

Interrupts are hardware- or software-driven signals that cause the DSP to
suspend its current program sequence and execute another task called an
interrupt service routine (ISR). The TMS320C55x (C55x) DSP supports
32 ISRs. Some of the ISRs can be triggered by software or hardware; others
can be triggered only by software. When the CPU receives multiple hardware
interrupt requests at the same time, the CPU services them according to a
predefined priority ranking (see section 5.2, Interrupt Vectors and Priorities).

All C55x interrupts, whether hardware or software, can be placed in one of two
categories. Maskable interrupts can be blocked (masked) through software.
Nonmaskable interrupts cannot be blocked. All software interrupts are
nonmaskable.

The DSP handles interrupts in four main phases:

1) Receive the interrupt request. Software or hardware requests a
suspension of the current program sequence.

2) Acknowledge the interrupt request. The CPU must acknowledge the
request. If the interrupt is maskable, certain conditions must be met for
acknowledgment. For nonmaskable interrupts, acknowledgment is
immediate.

3) Prepare for the interrupt service routine. The main tasks performed by the
CPU are:

� Complete execution of the current instruction and flush from the
pipeline any instructions that have not reached the decode phase.

� Automatically store certain register values to the data stack and the
system stack (see the description of automatic context switching in
section 4.4).

� Fetch the interrupt vector that you store at a preset vector address.
The interrupt vector points to the interrupt service routine.

4) Execute the interrupt service routine. The CPU executes the ISR that you
have written. The ISR is concluded with a return-from-interrupt instruction,
which automatically restores the register values that were automatically
saved (see the description of automatic context switching in section 4.4).
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Notes:

1) External interrupts must occur at least 3 cycles after the CPU exits reset
or they will not be recognized.

2) All interrupts (maskable and nonmaskable) are disabled following a
hardware reset, regardless of the setting of the INTM bit and the IER0
and IER1 registers. Interrupts remain disabled until the stack pointers
are initialized by a software write to each pointer (the SP and SSP
registers). After stack initialization, the INTM bit and the IER0 and IER1
registers determine interrupt enabling.
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5.2 Interrupt Vectors and Priorities

The TMS320C55x DSP supports 32 interrupt service routines (ISRs). After
receiving and acknowledging an interrupt request, the CPU generates an
interrupt vector address. At the vector address, the CPU fetches the vector that
points to the corresponding ISR. When multiple hardware interrupts occur
simultaneously, the CPU services them one at a time, according to their
predefined hardware interrupt priorities. Table 5−1 shows the vectors sorted
by ISR number. Table 5−2 shows the vectors sorted by priority. Both tables
show only a general representation of the C55x vectors. To determine which
interrupt corresponds to each of the vectors, see the data manual for your
C55x DSP.

You must write the desired interrupt vectors (ISR start address) at the vector
addresses. Each interrupt vector must contain 8 bytes. Byte 0 of the reset
vector contains the setting for the stack mode. Byte 0 of the remaining vectors
is ignored. Bytes 1−3 encode the 24-bit byte address of the interrupt service
routine (ISR). Bytes 4−7 must be filled with NOP instructions.

Vector pointers IVPD and IVPH point to up to 32 interrupt vectors in program
space. IVPD points to the 256-byte program page for interrupt vectors 0–15
and 24–31. IVPH points to the 256-byte program page for interrupt
vectors 16–23. The details about these pointers are in section 2.8.1.

Table 5−1. Interrupt Vectors Sorted by ISR Number 

ISR Number

Hardware
Interrupt
Priority Vector Name

Vector Address
(Byte Address) This ISR Is For ...

0 1
(highest)

RESETIV(IV0) IVPD:0h Reset (hardware and software)

1 2 NMIV (IV1) IVPD:8h Hardware nonmaskable interrupt
(NMI) or software interrupt 1

2 4 IV2 IVPD:10h Hardware or software interrupt

3 6 IV3 IVPD:18h Hardware or software interrupt

4 7 IV4 IVPD:20h Hardware or software interrupt

5 8 IV5 IVPD:28h Hardware or software interrupt

6 10 IV6 IVPD:30h Hardware or software interrupt

7 11 IV7 IVPD:38h Hardware or software interrupt

8 12 IV8 IVPD:40h Hardware or software interrupt

9 14 IV9 IVPD:48h Hardware or software interrupt
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Table 5−1. Interrupt Vectors Sorted by ISR Number (Continued)

ISR Number This ISR Is For ...
Vector Address
(Byte Address)Vector Name

Hardware
Interrupt
Priority

10 15 IV10 IVPD:50h Hardware or software interrupt

11 16 IV11 IVPD:58h Hardware or software interrupt

12 18 IV12 IVPD:60h Hardware or software interrupt

13 19 IV13 IVPD:68h Hardware or software interrupt

14 22 IV14 IVPD:70h Hardware or software interrupt

15 23 IV15 IVPD:78h Hardware or software interrupt

16 5 IV16 IVPH:80h Hardware or software interrupt

17 9 IV17 IVPH:88h Hardware or software interrupt

18 13 IV18 IVPH:90h Hardware or software interrupt

19 17 IV19 IVPH:98h Hardware or software interrupt

20 20 IV20 IVPH:A0h Hardware or software interrupt

21 21 IV21 IVPH:A8h Hardware or software interrupt

22 24 IV22 IVPH:B0h Hardware or software interrupt

23 25 IV23 IVPH:B8h Hardware or software interrupt

24 3 BERRIV (IV24) IVPD:C0h Bus error interrupt or software
interrupt

25 26 DLOGIV (IV25) IVPD:C8h Data log interrupt or software
interrupt

26 27
(lowest)

RTOSIV (IV26) IVPD:D0h Real-time operating system
interrupt or software interrupt

27 – IV27 IVPD:D8h Reserved

28 – IV28 IVPD:E0h Reserved

29 – IV29 IVPD:E8h Reserved

30 – SIV30 IVPD:F0h Software (only) interrupt

31 – SIV31 IVPD:F8h Software (only) interrupt 31
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Table 5−2. Interrupt Vectors Sorted by Priority 

ISR Number

Hardware
Interrupt
Priority Vector Name

Vector Address
(Byte Address) This ISR Is For(..

0 1
(highest)

RESETIV(IV0) IVPD:0h Reset (hardware and software)

1 2 NMIV (IV1) IVPD:8h Hardware nonmaskable interrupt
(NMI) or software interrupt 1

24 3 BERRIV (IV24) IVPD:C0h Bus error interrupt or software
interrupt

2 4 IV2 IVPD:10h Hardware or software interrupt

16 5 IV16 IVPH:80h Hardware or software interrupt

3 6 IV3 IVPD:18h Hardware or software interrupt

4 7 IV4 IVPD:20h Hardware or software interrupt

5 8 IV5 IVPD:28h Hardware or software interrupt

17 9 IV17 IVPH:88h Hardware or software interrupt

6 10 IV6 IVPD:30h Hardware or software interrupt

7 11 IV7 IVPD:38h Hardware or software interrupt

8 12 IV8 IVPD:40h Hardware or software interrupt

18 13 IV18 IVPH:90h Hardware or software interrupt

9 14 IV9 IVPD:48h Hardware or software interrupt

10 15 IV10 IVPD:50h Hardware or software interrupt

11 16 IV11 IVPD:58h Hardware or software interrupt

19 17 IV19 IVPH:98h Hardware or software interrupt

12 18 IV12 IVPD:60h Hardware or software interrupt

13 19 IV13 IVPD:68h Hardware or software interrupt

20 20 IV20 IVPH:A0h Hardware or software interrupt

21 21 IV21 IVPH:A8h Hardware or software interrupt

14 22 IV14 IVPD:70h Hardware or software interrupt

15 23 IV15 IVPD:78h Hardware or software interrupt

22 24 IV22 IVPH:B0h Hardware or software interrupt
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Table 5−2. Interrupt Vectors Sorted by Priority (Continued)

ISR Number This ISR Is For(..
Vector Address
(Byte Address)Vector Name

Hardware
Interrupt
Priority

23 25 IV23 IVPH:B8h Hardware or software interrupt

25 26 DLOGIV (IV25) IVPD:C8h Data log interrupt or software
interrupt

26 27
(lowest)

RTOSIV (IV26) IVPD:D0h Real-time operating system
interrupt or software interrupt

27 – IV27 IVPD:D8h Reserved

28 – IV28 IVPD:E0h Reserved

29 – IV29 IVPD:E8h Reserved

30 – SIV30 IVPD:F0h Software (only) interrupt

31 – SIV31 IVPD:F8h Software (only) interrupt 31
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5.3 Maskable Interrupts

Maskable interrupts can be blocked (masked) or enabled (unmasked) through
software. All of the TMS320C55x maskable interrupts are hardware interrupts:

Interrupt Description

Interrupts associated with
interrupt vectors 2−23

Each of these 22 interrupts is triggered at a pin or by
a peripheral of the DSP.

BERRINT Bus error interrupt. This interrupt is triggered when a
system bus error is transmitted to the CPU or when
a bus error occurs in the CPU.

DLOGINT Data log interrupt. DLOGINT is triggered by the DSP
at the end of a data log transfer. You can use the
DLOGINT interrupt service routine (ISR) to start
the next data log transfer.

RTOSINT Real-time operating system interrupt. RTOSINT can
be triggered by a hardware breakpoint or watchpoint.
You can use the RTOSINT ISR to begin a data log
transfer in response to an emulation condition.

Whenever a maskable interrupt is requested by hardware, the corresponding
interrupt flag is set in one of the interrupt flag registers (see the description of
IFR0 and IFR1 in section 2.8.2). Once the flag is set, the interrupt is not
serviced unless it is properly enabled (see section 5.3.1, Bit and Registers
Used to Enable Maskable Interrupts).

The ISRs for the maskable interrupts can also be executed by software (see
the discussion on nonmaskable interrupts in section 5.4).

Note:

When a bus error occurs, the functionality of the instruction that caused the
error, and of any instruction executed in parallel, cannot be assured.
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5.3.1 Bit and Registers Used to Enable Maskable Interrupts

The following bit and registers are used to enable the maskable interrupts:

Bit/Registers Description

INTM Interrupt mode bit. This bit globally enables/disables the
maskable interrupts. (See the description of INTM in
section 2.10.2.8.)

IER0 and IER1 Interrupt enable registers. Each maskable interrupt has an
enable bit in one of these two registers. (See the description
of IER0 and IER1 in section 2.8.3.)

DBIER0 and DBIER1 Debug interrupt enable registers. Each maskable interrupt
can be defined as time-critical by a bit in one of these two
registers. (See the description of DBIER0 and DBIER1 in
section 2.8.4.)

As shown in the next two sections, the roles of INTM, the IER bit, and the
DBIER bit depend on the operating condition of the DSP.

5.3.2 Standard Process Flow for Maskable Interrupts

The flow chart in Figure 5−1 provides a conceptual model of the standard
process for handling maskable interrupts. Table 5−3 describes each of the
steps in the flow chart. When the CPU is halted in the real-time emulation
mode, only time-critical interrupts can be serviced, and the process is different
(see section 5.3.3).
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Figure 5−1. Standard Process Flow for Maskable Interrupts
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Table 5−3. Steps in the Standard Process Flow for Maskable Interrupts 

Step Description

Interrupt request sent to CPU The CPU receives a maskable interrupt request.

Set corresponding IFR flag When the CPU detects a valid maskable interrupt request, it sets and
latches the corresponding flag in one of the interrupt flag registers (IFR0
or IFR1). This flag stays latched until the interrupt is acknowledged or until
the flag is cleared by software or by a DSP hardware reset. (See the
description of IFR0 and IFR1 in section 2.8.2.)

Interrupt enabled in IER? The CPU cannot acknowledge the interrupt unless the corresponding
enable bit is 1 in one of the interrupt enable registers (IER0 or IER1). (See
the description of IER0 and IER1 in section 2.8.3.)

INTM = 0? The CPU cannot acknowledge the interrupt unless the interrupt mode bit
(INTM) is 0. That is, interrupts must be globally enabled. (See the
description of INTM in section 2.10.2.8.)

Branch to interrupt service routine The CPU follows the interrupt vector to the interrupt service routine. While
branching, the CPU performs the following actions:

� It completes instructions that have already made it to the decode
phase of the pipeline. Other instructions are flushed from the pipeline.

� It clears the corresponding flag in IFR0 or IFR1, to indicate that the
interrupt has been acknowledged.

� It saves certain registers values automatically, to record important
mode and status information about the interrupted program sequence
(see the description of automatic context switching in section 4.4).

� It creates a fresh context for the ISR by forcing INTM = 1 (globally
disables interrupts), DBGM = 1 (disables debug events), and
EALLOW = 0 (disables access to non-CPU emulation registers).

Execute interrupt service routine The CPU executes the interrupt service routine (ISR) that you have written
for the acknowledged interrupt. Some registers values were saved
automatically during the branch to the ISR. A return-from-interrupt
instruction at the end of your ISR forces an automatic context restore
operation (see the description of automatic context switching in
section 4.4) to restore these register values. If the ISR shares other
registers with the interrupted program sequence, the ISR must save
other register values at the beginning of the ISR and restore these values
before returning to the interrupted program sequence.

Program continues If the interrupt request is not properly enabled, the CPU ignores the
request, and the program continues uninterrupted. If the interrupt is
properly enabled, its interrupt service routine is executed, and then the
program continues from the point where it was interrupted.
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5.3.3 Process Flow for Time-Critical Interrupts

The flow chart in Figure 5−2 and the descriptions in Table 5−4 provide a
conceptual model of how time-critical interrupts are handled. When the CPU
is halted in the real-time emulation mode, the only maskable interrupts that can
be serviced are the time-critical interrupts. In all other cases, the CPU uses the
standard process flow that is described in section 5.3.2.

Figure 5−2. Process Flow for Time-Critical Interrupts
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Table 5−4. Steps in the Process Flow for Time-Critical Interrupts 

Step Description

Interrupt request sent to CPU The CPU receives a maskable interrupt request.

Set corresponding IFR flag When the CPU detects a valid maskable interrupt request, it sets and
latches the corresponding flag in one of the interrupt flag registers (IFR0
or IFR1). This flag stays latched until the interrupt is acknowledged or until
the flag is cleared by software or by a DSP hardware reset. (See the
description of IFR0 and IFR1 in section 2.8.2.)

Interrupt enabled in IER? The CPU cannot acknowledge the interrupt unless the corresponding
enable bit is 1 in one of the interrupt enable registers (IER0 or IER1). (See
the description of IER0 and IER1 in section 2.8.3.)

Interrupt enabled in DBIER? The CPU cannot acknowledge the interrupt unless the corresponding
enable bit is 1 in one of the debug interrupt enable registers (DBIER0 or
DBIER1). (See the description of DBIER0 and DBIER1 in section 2.8.4.)

Branch to interrupt service routine The CPU follows the interrupt vector to the interrupt service routine. While
branching, the CPU performs the following actions:

� It completes instructions that have already made it to the decode
phase of the pipeline. Other instructions are flushed from the pipeline.

� It clears the corresponding flag in IFR0 or IFR1, to indicate that the
interrupt has been acknowledged.

� It saves certain registers values automatically, to record important
mode and status information about the interrupted program sequence
(see the description of automatic context switching in section 4.4).

� It creates a fresh context for the ISR by forcing INTM = 1 (globally
disables interrupts), DBGM = 1 (disables debug events), and
EALLOW = 0 (disables access to non-CPU emulation registers).

Execute interrupt service routine The CPU executes the interrupt service routine (ISR) that you have written
for the acknowledged interrupt. Some registers values were saved
automatically during the branch to the ISR. A return-from-interrupt
instruction at the end of your ISR forces an automatic context restore
operation (see the description of automatic context switching in
section 4.4) to restore these register values. If the ISR shares other
registers with the interrupted program sequence, the ISR must save
other register values at the beginning of the ISR and restore these values
before returning to the interrupted program sequence.

Program continues If the interrupt request is not properly enabled, the CPU ignores the
request, and the program continues uninterrupted. If the interrupt is
properly enabled, its interrupt service routine is executed, and then the
program continues from the point where it was interrupted.
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5.4 Nonmaskable Interrupts

When the CPU receives a nonmaskable interrupt request, the CPU
acknowledges it unconditionally and immediately branches to the
corresponding interrupt service routine (ISR). The nonmaskable interrupts
are:

� The hardware interrupt RESET. If you drive the  RESET pin low, you initiate
a DSP hardware reset plus an interrupt that forces execution of the reset
ISR. (Specific effects of a DSP hardware reset are described in
section 5.5.1.)

� The hardware interrupt NMI. If you drive the NMI pin low, you force the
CPU to execute the corresponding ISR. NMI provides a general-purpose,
hardware method to interrupt the DSP unconditionally.

� All software interrupts, which are initiated by one of the following
instructions.

Instruction Description

INTR #k5 You can initiate any of the 32 ISRs with this instruction. The
variable k5 is a 5-bit number from 0 to 31. Before executing the
ISR, the CPU performs an automatic context save (to save
important register values) and sets the INTM bit (to globally
disable maskable interrupts).

TRAP #k5 This instruction performs the same function as INTR #k5, except
that it does not affect the INTM bit.

RESET This instruction performs a software reset operation, which is a
subset of the hardware reset operation, and then forces the CPU
to execute the reset ISR. (Specific effects of a software reset are
described in section 5.5.2.)
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5.4.1 Standard Process Flow for Nonmaskable Interrupts

The following flow chart provides a conceptual model of the standard process
for handling nonmaskable interrupts.

Note:

If the interrupt was initiated by a TRAP instruction, the INTM bit is not affected
during the branch to the interrupt service routine.

Figure 5−3. Standard Process Flow for Nonmaskable Interrupts
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Table 5−5. Steps in the Standard Process Flow for Nonmaskable Interrupts 

Step Description

Interrupt request sent to CPU The CPU receives a nonmaskable interrupt request.

Branch to interrupt service routine The CPU follows the interrupt vector to the interrupt service routine. While
branching, the CPU performs the following actions:

� It completes instructions that have already made it to the decode
phase of the pipeline. Other instructions are flushed from the pipeline.

� It saves certain registers values automatically, to record important
mode and status information about the interrupted program sequence
(see the description of automatic context switching in section 4.4).

� It creates a fresh context for the ISR by forcing INTM = 1 (globally
disables interrupts), DBGM = 1 (disables debug events), and
EALLOW = 0 (disables access to non-CPU emulation registers).

Execute interrupt service routine The CPU executes the interrupt service routine (ISR) that you have written
for the acknowledged interrupt. Some registers values were saved
automatically during the branch to the ISR. A return-from-interrupt
instruction at the end of your ISR forces an automatic context restore
operation (see the description of automatic context switching in
section 4.4) to restore these register values. If the ISR shares other
registers with the interrupted program sequence, the ISR must save
other register values at the beginning of the ISR and restore these values
before returning to the interrupted program sequence.

Program continues After the interrupt service routine is executed, the program continues from
the point where it was interrupted.



DSP Reset

5-17Interrupts and Reset OperationsSPRU371F

5.5 DSP Reset

This section covers DSP hardware and software reset operations. Table 5−6
summarizes the effects of the hardware and software reset on the DSP
registers.

Section 5.5.1 describes the DSP hardware reset, and section 5.5.2 describes
the DSP software reset. Table 5−6 summarizes the effects of both types of
reset on the CPU registers.

Note:

A hardware reset loads the interrupt vector pointer called IVPD with FFFFh
and, thus, forces the CPU to fetch the reset vector from program address
FF FF00h. During a software reset, IVPD remains unchanged; the CPU
fetches the reset vector using the current IVPD value.

Table 5−6. Effects of a Reset on CPU Registers

Reset Value

Register Bit(s) H/W S/W Comments

AC0−AC3 all 0 0

BK03, BK47,
BKC

all 0 0

BRC0,
BRC1

all 0 0

BRS1 all 0 0

BSA01 all 0 †

BSA23 all 0 †

BSA45 all 0 †

BSA67 all 0 †

BSAC all 0 †

CFCT all 0 † The content of any active loops is cleared.

CSR all 0 0

DBIER0,
DBIER1

all 0 † All time-critical interrupts are disabled.

† Not affected by a software reset
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Table 5−6. Effects of a Reset on CPU Registers (Continued)

Reset Value

Register Bit(s) H/W S/W Comments

IER0
IER1

all 0 0 All maskable interrupts are disabled.

IFR0
IFR1

all 0 0 All pending interrupts are cleared.

IVPD all FFFFh † The vectors reference by IVPD are in the 256-byte
program page that begins with address FFF FF00h.

IVPH all FFFFh † The vectors referenced by IVPH are in the same
256-byte program page as the vectors referenced by
IVPD.

PC all 0 0

PDP all 0 0

REA0,
REA1

all 0 0

RETA all 0 † Any return address stored in RETA is cleared.

RPTC all 0 0

RSA0,
RSA1

all 0 0

ST0_55 0–8: DP 0 0 Data page 0 is selected. Flags in ST0_55 are cleared.

9: ACOV1 0 0

p g g _

10: ACOV0 0 0

11: C 1 1

12: TC2 1 1

13: TC1 1 1

14: ACOV3 0 0

15: ACOV2 0 0

† Not affected by a software reset
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Table 5−6. Effects of a Reset on CPU Registers (Continued)

Reset Value

Register Bit(s) H/W S/W Comments

ST1_55 0–4: ASM 0 0 Instructions affected by ASM use a shift count of 0 (no
shift). When ASM is cleared, register T2 is also
cleared. This is due to the relationship between ASM
and T2 when C54CM = 1 (see the description for
ASM in section 2.10.2.1).

5: C54CM 1 1 The TMS320C54x-compatible mode is on.

6: FRCT 0 0 Results of multiply operations are not shifted.

7: C16 0 0 The dual 16-bit mode is off. For an instruction that is
affected by C16, the D-unit ALU performs one 32-bit
operation rather than two parallel 16-bit operations.

8: SXMD 1 1 The sign-extension mode is on.

9: SATD 0 0 The CPU does not saturate overflow results in the
D unit.

10: M40 0 0 The 32-bit (rather than 40-bit) computation mode is
selected for the D unit.

11: INTM 1 1 Maskable interrupts are globally disabled.

12: HM 0 0 When an active HOLD signal forces the DSP to place
its external interface in the high-impedance state, the
DSP continues executing code from internal memory.

13: XF 1 1 Pin XF is driven high.

14: CPL 0 0 The DP (rather than SP) direct addressing mode is
selected. Direct accesses to data space are made
relative to the data page register (DP).

15: BRAF 0 0 This flag is cleared. (BRAF indicates/controls the
status of a block-repeat operation.)

ST2_55 0: AR0LC 0 0 AR0 is used for linear addressing (rather than circular
addressing).

1: AR1LC 0 0 AR1 is used for linear addressing.

2: AR2LC 0 0 AR2 is used for linear addressing.

3: AR3LC 0 0 AR3 is used for linear addressing.

4: AR4LC 0 0 AR4 is used for linear addressing.

5: AR5LC 0 0 AR5 is used for linear addressing.

6: AR6LC 0 0 AR6 is used for linear addressing.

† Not affected by a software reset
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Table 5−6. Effects of a Reset on CPU Registers (Continued)

Reset Value

Register Bit(s) H/W S/W Comments

ST2_55
(continued)

7: AR7LC 0 0 AR7 is used for linear addressing.

8: CDPLC 0 0 CDP is used for linear addressing.

9: Reserved 0 0

10: RDM 0 0 When an instruction specifies that an operand should
be rounded, the CPU uses rounding to the infinite
(rather than rounding to the nearest).

11: EALLOW 0 0 A program cannot write to the non-CPU emulation
registers.

12: DBGM 1 1 Debug events are disabled.

13–14: Reserved 11b 11b

15: ARMS 0 0 When you use the AR indirect addressing mode, the
DSP mode (rather than control mode) operands are
available.

ST3_55 0: SST 0 † In the TMS320C54x-compatible mode (C54CM  =  1),
the execution of some accumulator-store instructions
is affected by SST. When SST is 0, the 40-bit
accumulator value is not saturated to a 32-bit value
before the store operation.

1: SMUL 0 † The results of multiplications will not be saturated.

2: CLKOFF 0 † The output of the CLKOUT pin is enabled; it reflects
the CLKOUT clock signal.

3−4: Reserved 0 †

5: SATA 0 0 The CPU does not saturate overflow results in the
A unit.

6: MPNMC pins † The reset value of MPNMC may be dependent on the
state of predefined pins at reset. To check this for a
particular C55x DSP, see its data manual.

7: CBERR 0 † This flag is cleared. (CBERR indicates when an
internal bus error is detected.)

11−8: Reserved 1100b †

† Not affected by a software reset
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Table 5−6. Effects of a Reset on CPU Registers (Continued)

Reset Value

Register Bit(s) H/W S/W Comments

ST3_55
(continued)

12: HINT 1 † The signal used to interrupt the host processor is at
the high level.

13: CACLR 0 † This bit is cleared. (CACLR is used to start and then
check the status of an instruction cache flush.)

14: CAEN 0 † The program cache is disabled.

15: CAFRZ 0 † The cache is not frozen.

T0 all 0 0

T1 all 0 0

T2 all 0 0 T2 is cleared because the ASM field of ST1_55 is
cleared. This is due to the relationship between ASM
and T2 when C54CM = 1 (see the description for
ASM in section 2.10.2.1).

T3 all 0 0

TRN0,
TRN1

all 0 0

XAR0 all (AR0H:AR0) 0 †

XAR1 all (AR1H:AR1) 0 †

XAR2 all (AR2H:AR2) 0 †

XAR3 all (AR3H:AR3) 0 †

XAR4 all (AR4H:AR4) 0 †

XAR5 all (AR5H:AR5) 0 †

XAR6 all (AR6H:AR6) 0 †

XAR7 all (AR7H:AR7) 0 †

XCDP all (DPH:DP) 0 0

XDP all (DPH:DP) 0 †

XSP all (SPH:SP) 0 †

XSSP all (SPH:SSP) 0 0

† Not affected by a software reset
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5.5.1 DSP Hardware Reset

When asserted, the DSP reset signal places the DSP into a known state. As
part of a hardware reset, all current operations are aborted, the instruction
pipeline is emptied, and CPU registers are reset. Then the CPU executes the
reset interrupt service routine (see the standard process flow for nonmaskable
interrupts in section 5.4.1). When reading the reset interrupt vector, the CPU
uses bits 29 and 28 of the 32-bit reset vector location to determine which stack
configuration to use (see section 4.2).

Table 5−6 summarizes the effects of a DSP hardware reset on DSP registers.
A software reset (see section 5.5.2) performs a subset of these register
modifications.

The RESET pin must be asserted for certain number of clock cycles (refer to
applicable data manual). If the RESET pin is asserted and deasserted while
the DSP is stopped for emulation purposes, the reset is ignored.

Notes:

1) External interrupts must occur at least 3 cycles after the CPU exits reset
or they will not be recognized.

2) All interrupts (maskable and nonmaskable) are disabled following a
hardware reset. Interrupts remain disabled until the stack pointers are
initialized by a software write to each pointer (the SP and SSP registers).
After stack initialization, the INTM bit and the IER0 and IER1 registers
determine interrupt enabling.

5.5.2 Software Reset

A software reset is the reset operation initiated by the software reset
instruction. A software reset only affects IFR0, IFR1, ST0_55, ST1_55, and
ST2_55; all other registers are unaffected. The software reset values shown
in Table 5−6 are the same as those forced by a DSP hardware reset.

When reading the reset interrupt vector, the CPU uses bits 29 and 28 of the
32-bit reset vector location to determine which stack configuration to use (see
section 4.2).
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Addressing Modes

This chapter describes the modes available for addressing the data space
(including CPU registers) and the I/O space of the C55x DSPs.
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6.1 Introduction to the Addressing Modes

The TMS320C55x DSP supports three types of addressing modes that enable
flexible access to data memory, to memory-mapped registers, to register bits,
and to I/O space:

� Absolute addressing modes (see section 6.2) enable you to reference a
location by supplying all or part of an address as a constant in an
instruction.

� Direct addressing modes (see section 6.3) enable you to reference a
location using an address offset.

� Indirect addressing modes (see section 6.4) enable you to reference
a location using a pointer.

Note:

Be aware that certain instructions cannot perform two operations in the same
cycle, unless DARAM or two separate blocks of SARAM are used.
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Each addressing mode provides one or more types of operands. An instruction
that supports an addressing-mode operand has one of the syntax elements
described in Table 6−1.

Table 6−1. Syntax Elements That Support the Addressing Modes

Syntax
Element(s) Description

Smem When an instruction syntax contains Smem, that instruction can
access a single word (16 bits) of data from data memory, from
I/O space, or from a memory-mapped register. As you write the
instruction, replace Smem with a compatible addressing-mode
operand.

Lmem When an instruction syntax contains Lmem, that instruction can
access a long word (32 bits) of data from data memory or from
memory-mapped registers. As you write the instruction, replace
Lmem with a compatible addressing-mode operand.

Xmem and
Ymem

When an instruction contains Xmem and Ymem, that instruction
can perform two simultaneous 16-bit accesses to data memory. As
you write the instruction, replace Xmem and Ymem with compatible
operands.

Cmem When an instruction contains Cmem, that instruction can access a
single word (16 bits) of data from data memory. As you write the
instruction, replace Cmem with a compatible operand.

Baddr When an instruction contains Baddr, that instruction can access
one or two bits in an accumulator (AC0–AC3), an auxiliary register
(AR0–AR7), or a temporary register (T0–T3). Only the register bit
test/set/clear/complement instructions support Baddr. As you write
one of these instructions, replace Baddr with a compatible operand.
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6.2 Absolute Addressing Modes

Three absolute addressing modes are available:

Addressing Mode Description See ...

k16 absolute This mode uses the 7-bit register called
DPH (high part of the extended data page
register) and a 16-bit unsigned constant
to form a 23-bit data-space address. This
mode can be used to access a memory
location or a memory-mapped register.

Page 6-4

k23 absolute This mode enables you to specify a full
address as a 23-bit unsigned constant.
This mode can be used to access a
memory location or a memory-mapped
register.

Page 6-5

I/O absolute This mode enables you to specify an
I/O address as a 16-bit unsigned
constant. This mode is for accessing a
location in I/O space.

Page 6-6

6.2.1 k16 Absolute Addressing Mode

The k16 absolute addressing mode uses the operand *abs16(#k16), where
k16 is a 16-bit unsigned constant. Figure 6−1 shows how DPH (the high part
of the extended data page register) and k16 are concatenated to form a 23-bit
data-space address. When an instruction uses this addressing mode, the
constant is encoded in a 2-byte extension to the instruction. Because of the
extension, an instruction using this mode cannot be executed in parallel with
another instruction.
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Figure 6−1. k16 Absolute Addressing Mode
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6.2.2 k23 Absolute Addressing Mode

The k23 absolute addressing mode uses the operand *(#k23), where k23 is
a 23-bit unsigned constant. Figure 6−2 shows how data space is addressed
using k23. An instruction using this addressing mode encodes the constant as
a 3-byte extension to the instruction (the most significant bit of this 3-byte
extension is discarded). Because of the extension, an instruction using this
mode cannot be executed in parallel with another instruction.
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Figure 6−2. k23 Absolute Addressing Mode
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6.2.3 I/O Absolute Addressing Mode

If you use the algebraic instruction set, the I/O absolute addressing mode uses
the operand *port(#k16), where k16 is a 16-bit unsigned constant. If you use
the mnemonic instruction set, the I/O absolute addressing capability is
provided by the port() operand qualifier. Enclose a 16-bit unsigned constant
in the parentheses of the port() qualifier: port(#k16) (there is no preceding
asterisk, *, in this case).

Figure 6−3 shows how k16 is used to address I/O space. When an instruction
uses this addressing mode, the constant is encoded in a 2-byte extension to
the instruction. Because of the extension, an instruction using this mode
cannot be executed in parallel with another instruction.

Figure 6−3. I/O Absolute Addressing Mode
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6.3 Direct Addressing Modes

The following direct addressing modes are available:

Addressing Mode Description See ...

DP direct This mode uses the main data page
specified by DPH (the high part of the
extended data page register) in
conjunction with the data page register
(DP). This mode is used to access a
memory location or a memory-mapped
register.

Page 6-8

SP direct This mode uses the main data page
specified by SPH (the high part of the
extended stack pointers) in conjunction
with the data stack pointer (SP). Use this
mode to access stack values in data
memory.

Page 6-10

Register-bit direct This mode uses an offset to specify a
bit address. This mode is used to access
one register bit or two adjacent register
bits.

Page 6-11

PDP direct This mode uses the peripheral data page
register (PDP) and an offset to specify an
I/O address. This mode is used to access
a location in I/O space.

Page 6-12

The DP direct and SP direct addressing modes are mutually exclusive. The
mode selected depends on the CPL bit in status register ST1_55:

CPL Addressing Mode Selected

0 DP direct addressing mode

1 SP direct addressing mode

The register-bit and PDP direct addressing modes are independent of the
CPL bit.
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6.3.1 DP Direct Addressing Mode

Figure 6−4 shows the components of a 23-bit address in the DP direct
addressing mode. The 7 most significant bits are taken from the register called
DPH, and they select one of the 128 main data pages (0 through 127). The
16 least significant bits are the sum of two values:

� The value in the data page register (DP). DP identifies the start address
of a 128-word local data page within the main data page. This start
address can be any address within the selected main data page.

� A 7-bit offset (Doffset) calculated by the assembler. The calculation
depends on whether you are accessing data memory or a
memory-mapped register (using the mmap() qualifier). For details on the
calculation, see section 6.3.1.1.

The concatenation of DPH and DP is called the extended data page register
(XDP). You can load DPH and DP individually, or you can use an instruction
that loads XDP.

Figure 6−4. DP Direct Addressing Mode

1111 1111 1111 1111

Data space

Main page 0:

Main page 1:

Main page 2:

Main page 127:

000 0000

(DP + Doffset)DPH

0000 0000 0000 0000

000 0000

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

. ..
.

..

.

..

.

..

. ..
.

01�0000h−01 FFFFh

02�0000h−02 FFFFh

7F�0000h−7F�FFFFh

.

.

.

.

.

.

00�0000h−00 FFFFh

000 0001 0000 0000 0000 0000

000 0001 1111 1111 1111 1111
000 0010

000 0010

0000 0000 0000 0000

1111 1111 1111 1111

111 1111

111 1111

0000 0000 0000 0000

1111 1111 1111 1111

XDP



Direct Addressing Modes

6-9Addressing ModesSPRU371F

6.3.1.1 How the Assembler Calculates Doffset for the DP Direct Addressing Mode

Table 6−2 explains how the assembler calculates the value Doffset for the two
types of DP direct accesses. Examples follow the table.

Table 6−2. Calculation of Doffset for the DP Direct Addressing Mode

Access Made To... Doffset Calculation Description

Data memory Doffset = (Daddr – .dp) & 7Fh Daddr is the 16-bit local address for the read or
write operation; .dp is a value you assign with
the .dp assembler directive (.dp generally
matches DP); the symbol & indicates a bitwise
AND operation.

A memory-mapped
register, using the
mmap() qualifier

Doffset = Daddr & 7Fh Daddr is the 16-bit local address for the read or
write operation; the symbol & indicates a bitwise
AND operation. The .dp value is not used. The
mmap() qualifier forces the CPU to behave as
if the data page is 0.

Note:

A local address is an address within a main data page. It is represented by
the 16 LSBs of a 23-bit data space address. For example, local address
0005h exists on every main data page.

The following code example uses DP direct addressing to access data
memory:

AMOV #03FFF0h, XDP
.dp #0FFF0h
MOV @0FFF4h, T2

; Main data page is 03. For run-time, DP is FFF0h.
; For assembly time, .dp is FFF0h.
; Load T2 with the value at local address FFF4h.

The assembler calculates Doffset:

Doffset = (Daddr – .dp) & 7Fh = (FFF4h – FFF0h) & 7Fh = 04h

Doffset is encoded in the instruction MOV @0FFF4h, T2. At run time, the 23-bit
data-space address is generated:

23-bit address = DPH:(DP + Doffset) = 03:(FFF0h + 0004h) = 03 FFF4h

The following code example uses DP direct addressing to access a
memory-mapped register (MMR):

MOV mmap(@AR0), T2 ; Load T2 with the value in AR0.
; mmap() qualifier indicates access to MMR.
; AR0 is mapped to address 000010h in data space

The assembler calculates Doffset:

Doffset = Daddr & 7Fh = 0010h & 7Fh = 10h



Direct Addressing Modes

Addressing Modes6-10 SPRU371F

Doffset is encoded in the instruction MOV mmap(@AR0), T2. At run time, the
23-bit data-space address is generated (recall that for register keywords
the CPU behaves as if DPH  =  DP  = 0):

23-bit address = DPH:(DP + Doffset) = 00:(0000h + 0010h) = 00 0010h

Note:

If you use mnemonic instructions, mmap() encloses the qualified operand.
If you use algebraic instructions, mmap() is an instruction qualifier that is
placed in parallel with the instruction that performs a memory-mapped
register access.

6.3.2 SP Direct Addressing Mode

When an instruction uses the SP direct addressing mode, 23-bit addresses
are formed as shown in Figure 6−5. The 7 most significant bits are supplied
by the register called SPH. The 16 least significant bits are the sum of the
SP value and a 7-bit offset that you specify in the instruction. The offset can
be a value from 0 to 127. The concatenation of SPH and SP is called the
extended data stack pointer (XSP). You can load SPH and SP individually, or
you can use an instruction that loads XSP.

On the first main data page, addresses 00 0000h–00 005Fh are reserved for
the memory-mapped registers. If any of your data stack is in main data page 0,
make sure it uses only addresses 00 0060h–00 FFFFh on that page.
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Figure 6−5. SP Direct Addressing Mode
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6.3.3 Register-Bit Direct Addressing Mode

In the register-bit direct addressing mode, the offset you supply in the operand,
@bitoffset, is an offset from the least significant bit (LSB) of the register (see
Figure 6−6). For example, if bitoffset is 0, you are addressing the least
significant bit (LSB) of a register. If bitoffset is 3, you are addressing bit 3 of the
register.

Only the register bit test/set/clear/complement instructions support this mode.
These instructions enable you to access bits in the following registers only:
the accumulators (AC0–AC3), the auxiliary registers (AR0–AR7), and the
temporary registers (T0–T3).

Figure 6−6. Register-Bit Direct Addressing Mode
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Note: Bit address M is 39 or 15, depending on the size of the register.
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6.3.4 PDP Direct Addressing Mode

When an instruction uses the PDP direct addressing mode, 16-bit
I/O addresses are formed as shown in Figure 6−7. The 9-bit peripheral data
page register (PDP) selects one of the 512 peripheral data pages (0 through
511). Each page has 128 words (0 to 127). You select a particular word by
specifying a 7-bit offset (Poffset) in the instruction. For example, to access the
first word on a page, use an offset of 0.

Figure 6−7. PDP Direct Addressing Mode
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6.4 Indirect Addressing Modes

The CPU supports the following indirect addressing modes. You may use
these modes for linear addressing or circular addressing.

Addressing Mode Description See Section ...

AR indirect This mode uses one of eight auxiliary
registers (AR0–AR7) to point to data.
The way the CPU uses the auxiliary
register to generate an address
depends on whether you are accessing
data space (memory or memory-
mapped registers), individual register
bits, or I/O space.

6.4.1

Dual AR indirect This mode uses the same address
generation process as the AR indirect
addressing mode. This mode is used
with an instruction that accesses two or
more data-memory locations at the
same time.

6.4.2

CDP indirect This mode uses the coefficient data
pointer (CDP) to point to data. The way
the CPU uses CDP to generate an
address depends on whether you are
accessing data space (memory or
memory-mapped registers), individual
register bits, or I/O space.

6.4.3

Coefficient indirect This mode uses the same address-
generation process as the CDP indirect
addressing mode. This mode is
available to support instructions that
can access a coefficient in data memory
at the same time they access two other
data-memory values using the dual AR
indirect addressing mode.

6.4.4
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6.4.1 AR Indirect Addressing Mode

This mode uses an auxiliary register ARn (n = 0, 1, 2, 3, 4, 5, 6, or 7) to point
to data. As shown in Table 6−3, the way the CPU uses ARn to generate an
address depends on the access type.

Table 6−3. Use of an Auxiliary Register (ARn) in the AR Indirect Addressing Mode

For An Access To ... ARn Contains ...

Data space
(memory or registers)

The 16 least significant bits (LSBs) of a 23-bit address.
The 7 most significant bits (MSBs) are supplied by
ARnH, which is the high part of extended auxiliary
register XARn. See section 6.4.1.1.

A register bit (or bit pair) A bit number. See section 6.4.1.2.

I/O space A 16-bit I/O address. See section 6.4.1.3.

6.4.1.1 AR Indirect Accesses of Data Space

Figure 6−8 shows how the CPU generates data-space addresses for the AR
indirect addressing mode. (Note that both data memory and memory-mapped
registers are mapped to data space.) For a given access, auxiliary register n
(n  =  0, 1, 2, 3, 4, 5, 6, or 7) provides the 16 least significant bits, and an
associated register, ARnH, provides the 7 most significant bits. The
concatenation of ARnH and ARn is called extended auxiliary register n
(XARn). For accesses to data space, use an instruction that loads XARn; ARn
can be individually loaded, but ARnH cannot.
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Figure 6−8. Accessing Data Space With the AR Indirect Addressing Mode
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6.4.1.2 AR Indirect Accesses of Register Bits

When the AR indirect addressing mode is used to access a register bit, the
selected 16-bit auxiliary register, ARn, contains a bit number (see Figure 6−9).
For example, if AR2 contains 0, AR2 points to bit 0, the least significant bit
(LSB) of the register.

Only the register bit test/set/clear/complement instructions support AR indirect
accesses to register bits. These instructions enable you to access bits in the
following registers only: the accumulators (AC0–AC3), the auxiliary registers
(AR0–AR7), and the temporary registers (T0–T3).

Figure 6−9. Accessing Register Bit(s) With the AR Indirect Addressing Mode

ARn: M ... 11 10 9 8 7 6 5 4 3 2 1 0

...
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Note: Bit address M is 39 or 15, depending on the size of the register.
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6.4.1.3 AR Indirect Accesses of I/O Space

Words in I/O space are accessed at 16-bit addresses. When the AR indirect
addressing mode is used to access I/O space, the selected 16-bit auxiliary
register, ARn, contains the complete I/O address.

Figure 6−10. Accessing I/O Space With the AR Indirect Addressing Mode
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6.4.1.4 AR Indirect Operands

The types of addressing-mode operands available for this mode depend on
the ARMS bit of status register ST2_55:

ARMS DSP Mode or Control Mode?

0 DSP mode. The CPU can use the list of DSP mode operands
(Table 6−4), which provide efficient execution of DSP-intensive
applications.

1 Control mode. The CPU can use the list of control mode operands
(Table 6−5), which enable optimized code size for control system
applications.

Table 6−4 introduces the DSP mode operands available for the AR indirect
addressing mode. Table 6−5 introduces the control mode operands.
Table 6−6 summarizes all of the AR indirect operands based on whether they
modify the auxiliary register and whether the modification occurs before or
after the address for the instruction is generated. When using the tables, keep
in mind that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the appropriate 16-bit buffer start address register (BSA01,
BSA23, BSA45, or BSA67) is added only if circular addressing is activated
for the chosen pointer.



Indirect Addressing Modes

6-17Addressing ModesSPRU371F

� Increments and decrements are made to the 16-bit pointer only. You
cannot address data across main data pages without changing the value
in the extension register (ARnH). To change ARnH, you must write to the
full 23−bit register, XARn.

Note:

Although an increment past FFFFh or a decrement past 0000h causes the
pointer value to wrap around, do not make use of this behavior; it is
not supported. Also, during circular addressing, the BSAxx addition must not
increment the address beyond FFFFh.

Table 6−4. DSP Mode (ARMS = 0) Operands for the AR Indirect Addressing 
Mode  

Operand Pointer Modification Supported Access Types

*ARn ARn is not modified. Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn+ ARn is incremented after the address is
generated.†‡

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn– ARn is decremented after the address is
generated.§¶

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

†  If 16-bit/1-bit operation: ARn = ARn + 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
‡  If 32-bit/2-bit operation: ARn = ARn + 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
§  If 16-bit/1-bit operation: ARn = ARn − 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
¶  If 32-bit/2-bit operation: ARn = ARn − 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
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Table 6−4. DSP Mode (ARMS = 0) Operands for the AR Indirect Addressing 
Mode (Continued) 

Operand Supported Access TypesPointer Modification

*+ARn ARn is incremented before the address is
generated. †‡

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*–ARn ARn is decremented before the address is
generated.§¶

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + T0/AR0) The 16-bit signed constant in T0 or AR0 is
added to ARn after the address is
generated:
If C54CM = 0: ARn = ARn + T0
If C54CM = 1: ARn = ARn + AR0

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – T0/AR0) The 16-bit signed constant in T0 or AR0 is
subtracted from ARn after the address is
generated:
If C54CM = 0: ARn = ARn – T0
If C54CM = 1: ARn = ARn – AR0

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

†  If 16-bit/1-bit operation: ARn = ARn + 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
‡  If 32-bit/2-bit operation: ARn = ARn + 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
§  If 16-bit/1-bit operation: ARn = ARn − 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
¶  If 32-bit/2-bit operation: ARn = ARn − 2; 2-bit operation: register bit access that reads or modifies a register bit-pair



Indirect Addressing Modes

6-19Addressing ModesSPRU371F

Table 6−4. DSP Mode (ARMS = 0) Operands for the AR Indirect Addressing 
Mode (Continued) 

Operand Supported Access TypesPointer Modification

*ARn(T0/AR0) ARn is not modified. ARn is used as a base
pointer. The 16-bit signed constant in T0 or
AR0 is used as an offset from that base
pointer:
If C54CM = 0, T0 is used
If C54CM = 1, AR0 is used

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + T0B/AR0B) The 16-bit signed constant in T0 or AR0 is
added to ARn after the address is
generated:
If C54CM = 0: ARn = ARn + T0
If C54CM = 1: ARn = ARn + AR0
(Either addition is done with reverse carry
propagation to create bit-reverse
addressing)

Note: When this bit-reverse operand is
used, ARn cannot be used as a circular
pointer. If ARn is configured in ST2_55 for
circular addressing, the corresponding
buffer start address register value (BSAxx)
is added to ARn, but ARn is not modified so
as to remain inside a circular buffer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – T0B/AR0B) The 16-bit signed constant in T0 or AR0 is
subtracted from ARn after the address is
generated:
If C54CM = 0: ARn = ARn – T0
If C54CM = 1: ARn = ARn – AR0
(Either subtraction is done with reverse
carry propagation.)

Note: When this bit-reverse operand is
used, ARn cannot be used as a circular
pointer. If ARn is configured in ST2_55 for
circular addressing, the corresponding
buffer start address register value (BSAxx)
is added to ARn, but ARn is not modified so
as to remain inside a circular buffer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

†  If 16-bit/1-bit operation: ARn = ARn + 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
‡  If 32-bit/2-bit operation: ARn = ARn + 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
§  If 16-bit/1-bit operation: ARn = ARn − 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
¶  If 32-bit/2-bit operation: ARn = ARn − 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
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Table 6−4. DSP Mode (ARMS = 0) Operands for the AR Indirect Addressing 
Mode (Continued) 

Operand Supported Access TypesPointer Modification

*(ARn + T1) The 16-bit signed constant in T1 is added to
ARn after the address is generated:
ARn = ARn + T1

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – T1) The 16-bit signed constant in T1 is
subtracted from ARn after the address
is generated:

ARn = ARn – T1

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(T1) ARn is not modified. ARn is used as a base
pointer. The 16-bit signed constant in T1 is
used as an offset from that base pointer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

†  If 16-bit/1-bit operation: ARn = ARn + 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
‡  If 32-bit/2-bit operation: ARn = ARn + 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
§  If 16-bit/1-bit operation: ARn = ARn − 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
¶  If 32-bit/2-bit operation: ARn = ARn − 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
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Table 6−4. DSP Mode (ARMS = 0) Operands for the AR Indirect Addressing 
Mode (Continued) 

Operand Supported Access TypesPointer Modification

*ARn(#K16) ARn is not modified. ARn is used as a base
pointer. The 16-bit signed constant (K16) is
used as an offset from that base pointer.

Note: When an instruction uses this
operand, the constant is encoded in a 2-byte
extension to the instruction. Because of the
extension, an instruction using this operand
cannot be executed in parallel with another
instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

*+ARn(#K16) The 16-bit signed constant (K16) is added to
ARn before the address is generated.

Note: When an instruction uses this
operand, the constant is encoded in a 2-byte
extension to the instruction. Because of the
extension, an instruction using this operand
cannot be executed in parallel with another
instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

†  If 16-bit/1-bit operation: ARn = ARn + 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
‡  If 32-bit/2-bit operation: ARn = ARn + 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
§  If 16-bit/1-bit operation: ARn = ARn − 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
¶  If 32-bit/2-bit operation: ARn = ARn − 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
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Table 6−5. Control Mode (ARMS = 1) Operands for the AR Indirect Addressing 
Mode  

Operand Pointer Modification Supported Access Types

*ARn ARn is not modified. Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn+ ARn is incremented after the address is
generated.†‡

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn– ARn is decremented after the address is
generated.§¶

If 16-bit/1-bit operation: ARn = ARn – 1
If 32-bit/2-bit operation: ARn = ARn – 2

Data-memory (Smem, Lmem)

Memory-mapped register 
Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + T0/AR0) The 16-bit signed constant in T0 or AR0 is
added to ARn after the address
is generated:

If C54CM = 0: ARn = ARn + T0
If C54CM = 1: ARn = ARn + AR0

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

† If 16-bit/1-bit operation: ARn = ARn +1; If 32-bit/2-bit operation: ARn = ARn +2
‡  1-bit operation: register bit access that reads or modifies a single bit in a register; 2-bit operation: register bit access that
     reads or modifies a register bit-pair
§  If 16-bit/1-bit operation: ARn = ARn − 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
¶  If 32-bit/2-bit operation: ARn = ARn − 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
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Table 6−5. Control Mode (ARMS = 1) Operands for the AR Indirect Addressing 
Mode (Continued) 

Operand Supported Access TypesPointer Modification

*(ARn – T0/AR0) The 16-bit signed constant in T0 or AR0 is
subtracted from ARn after the address is
generated:
If C54CM = 0: ARn = ARn – T0
If C54CM = 1: ARn = ARn – AR0

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(T0/AR0) ARn is not modified. ARn is used as a base
pointer. The 16-bit signed constant in T0 or
AR0 is used as an offset from that base
pointer:
If C54CM = 0, T0 is used
If C54CM = 1, AR0 is used

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(#K16) ARn is not modified. ARn is used as a base
pointer. The 16-bit signed constant (K16) is
used as an offset from that base pointer.

Note: When an instruction uses this
operand, the constant is encoded in a 2-byte
extension to the instruction. Because of the
extension, an instruction using this operand
cannot be executed in parallel with another
instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

† If 16-bit/1-bit operation: ARn = ARn +1; If 32-bit/2-bit operation: ARn = ARn +2
‡  1-bit operation: register bit access that reads or modifies a single bit in a register; 2-bit operation: register bit access that
     reads or modifies a register bit-pair
§  If 16-bit/1-bit operation: ARn = ARn − 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
¶  If 32-bit/2-bit operation: ARn = ARn − 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
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Table 6−5. Control Mode (ARMS = 1) Operands for the AR Indirect Addressing 
Mode (Continued) 

Operand Supported Access TypesPointer Modification

*+ARn(#K16) The 16-bit signed constant (K16) is added to
ARn before the address is generated:
ARn = ARn + K16

Note: When an instruction uses this
operand, the constant is encoded in a 2-byte
extension to the instruction. Because of the
extension, an instruction using this operand
cannot be executed in parallel with another
instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

*ARn(short(#k3)) ARn is not modified. ARn is used as a base
pointer. The 3-bit unsigned constant (k3) is
used as an offset from that base pointer. k3
is in the range 1  to  7.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

† If 16-bit/1-bit operation: ARn = ARn +1; If 32-bit/2-bit operation: ARn = ARn +2
‡  1-bit operation: register bit access that reads or modifies a single bit in a register; 2-bit operation: register bit access that
     reads or modifies a register bit-pair
§  If 16-bit/1-bit operation: ARn = ARn − 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
¶  If 32-bit/2-bit operation: ARn = ARn − 2; 2-bit operation: register bit access that reads or modifies a register bit-pair
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Table 6−6. Summary of Indirect Operands
Not Modified Post Modified Premodified

AR Indirect, DSP Mode (ARMS = 0)

*ARn

*ARn(T0/AR0)

*ARn(T1)

*ARn(#K16)

*ARn+

*ARn−

*(ARn + T0/AR0)

*(ARn − T0/AR0)

*(ARn + T0B/AR0B)

*(ARn − T0B/AR0B)

*(ARn + T1)

*(ARn − T1)

*+ARn

*−ARn

*+ARn(#K16)

AR Indirect, Control Mode (ARMS = 1)

*ARn

*ARn(T0/AR0)

*ARn(#K16)

*ARn(short(#k3))

*ARn+

*ARn−

*(ARn + T0/AR0)

*(ARn − T0/AR0)

*(ARn + T0B/AR0B)

*(ARn − T0B/AR0B)

*(ARn + T1)

*(ARn − T1)

*+ARn(#K16)

6.4.2 Dual AR Indirect Addressing Mode

The dual AR indirect addressing mode enables you to make two data-memory
accesses through the eight auxiliary registers, AR0–AR7. As with single AR
indirect accesses to data space (see section 6.4.1.1), the CPU uses an
extended auxiliary register to create each 23-bit address. You can use linear
addressing or circular addressing for each of the two accesses.

You may use the dual AR indirect addressing mode for:

� Executing an instruction that makes two 16-bit data-memory accesses. In
this case, the two data-memory operands are designated in the instruction
syntax as Xmem and Ymem. For example:

ADD Xmem, Ymem, ACx
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� Executing two instructions in parallel. In this case, both instructions must
each access a single memory value, designated in the instruction
syntaxes as Smem or Lmem. For example:

MOV Smem, dst
|| AND Smem, src, dst

The operand of the first instruction is treated as an Xmem operand, and
the operand of the second instruction is treated as a Ymem operand.

The available dual AR indirect operands are a subset of the AR indirect
operands. The ARMS status bit does not affect the set of dual AR
indirect operands available.

Note:

The assembler rejects code in which dual operands use the same auxiliary
register with two different auxiliary register modifications. You can use the same
ARn for both operands only if one of the operands does not modify ARn.

6.4.2.1 Dual AR Indirect Operands

Table 6−7 introduces the operands available for the dual AR indirect
addressing mode. Note that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the appropriate 16-bit buffer start address register (BSA01,
BSA23, BSA45, or BSA67) is added only if circular addressing is activated
for the chosen pointer.

� Increments and decrements are made to the 16-bit pointer only. You
cannot address data across main data pages without changing the value
in the extension register (ARnH). To change ARnH, you must write to the
full 23−bit register, XARn.

Note:

Although an increment past FFFFh or a decrement past 0000h causes the
pointer value to wrap around, do not make use of this behavior; it is
not supported. Also, during circular addressing, the BSAxx addition must not
increment the address beyond FFFFh.
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Table 6−7. Dual AR Indirect Operands 
Operand Pointer Modification Supported Access Type

*ARn ARn is not modified. Data-memory (Smem, Lmem, Xmem, Ymem)

*ARn+ ARn is incremented after the
address is generated.†‡

Data-memory (Smem, Lmem, Xmem, Ymem)

*ARn– ARn is decremented after the
address is generated.§¶

Data-memory (Smem, Lmem, Xmem, Ymem)

*(ARn + T0/AR0) The 16-bit signed constant in T0 or
AR0 is added to ARn after the
address is generated:
If C54CM = 0: ARn = ARn + T0
If C54CM = 1: ARn = ARn + AR0

Data-memory (Smem, Lmem, Xmem, Ymem)

*(ARn – T0/AR0) The 16-bit signed constant in T0 or
AR0 is subtracted from ARn after the
address is generated:
If C54CM = 0: ARn = ARn – T0
If C54CM = 1: ARn = ARn – AR0

Data-memory (Smem, Lmem, Xmem, Ymem)

*ARn(T0/AR0) ARn is not modified. ARn is used as
a base pointer. The 16-bit signed
constant in T0 or AR0 is used as an
offset from that base pointer:
If C54CM = 0, T0 is used
If C54CM = 1, AR0 is used

Data-memory (Smem, Lmem, Xmem, Ymem)

*(ARn + T1) The 16-bit signed constant in T1 is
added to ARn after the address
is generated:
ARn = ARn + T1

Data-memory (Smem, Lmem, Xmem, Ymem)

*(ARn – T1) The 16-bit signed constant in T1 is
subtracted from ARn after the
address is generated:
ARn = ARn – T1

Data-memory (Smem, Lmem, Xmem, Ymem)

† If 16-bit operation: ARn = ARn + 1
‡ If 32-bit operation: ARn = ARn + 2
§ If 16-bit operation: ARn = ARn − 1
¶ If 32-bit operation: ARn = ARn − 2
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6.4.3 CDP Indirect Addressing Mode

This mode uses the coefficient data pointer (CDP) to point to data. As shown
in Table 6−8, the way the CPU uses CDP to generate an address depends on
the access type.

Table 6−8. Use of the Coefficient Data Pointer (CDP) in the CDP Indirect Addressing
 Mode

For An Access To ... CDP Contains ...

Data space
(memory or registers)

The 16 least significant bits (LSBs) of a 23-bit address.
The 7 most significant bits (MSBs) are supplied by
CDPH, the high part of the extended coefficient data
pointer (XCDP). See section 6.4.3.1.

A register bit (or bit pair) A bit number. See section 6.4.3.2.

I/O space A 16-bit I/O address. See section 6.4.3.3.

6.4.3.1 CDP Indirect Accesses of Data Space

Figure 6−11 shows how the CPU generates data-space addresses for the
CDP indirect addressing mode. (Note that both data memory and
memory-mapped registers are mapped to data space.) CDPH provides the
7 most significant bits, and the coefficient data pointer (CDP) provides
the 16 least significant bits. The concatenation of CDPH and CDP is called the
extended coefficient data pointer (XCDP).



Indirect Addressing Modes

6-29Addressing ModesSPRU371F

Figure 6−11.Accessing Data Space With the CDP Indirect Addressing Mode
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6.4.3.2 CDP Indirect Accesses of Register Bits

When the CDP indirect addressing mode is used to access a register bit, CDP
contains the bit number. For example, if CDP contains 0, it points to bit 0, the
least significant bit (LSB) of the register.

Only the register bit test/set/clear/complement instructions support
CDP indirect accesses to register bits. These instructions enable you to
access bits in the following registers only: the accumulators (AC0–AC3), the
auxiliary registers (AR0–AR7), and the temporary registers (T0–T3).

Figure 6−12. Accessing Register Bits With the CDP Indirect Addressing Mode

CDP: M ... 11 10 9 8 7 6 5 4 3 2 1 0

...

MSB Register LSB

Note: Bit address M is 39 or 15, depending on the size of the register.
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6.4.3.3 CDP Indirect Accesses of I/O Space

Words in I/O space are accessed at 16-bit addresses. When the CDP indirect
addressing mode is used to access I/O space, the 16-bit CDP contains the
complete I/O address.

Figure 6−13. Accessing I/O Space With the CDP Indirect Addressing Mode

1111 1111 1111 1111

I/O spaceCDP

0000 0000 0000 0000
..
.

0000h−FFFFh

6.4.3.4 CDP Indirect Operands

Table 6−9 introduces the operands available for the CDP indirect addressing
mode. Note that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the 16-bit buffer start address register BSAC is added only if
circular addressing is activated for CDP.

� Increments and decrements are made to the 16-bit pointer only. You
cannot address data across main data pages without changing the value
in the extension register (CDPH).

Note:

Although an increment past FFFFh or a decrement past 0000h causes the
pointer value to wrap around, do not make use of this behavior; it is
not supported. Also, during circular addressing, the BSAC addition must not
increment the address beyond FFFFh.
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Table 6−9. CDP Indirect Operands 
Operand Pointer Modification Supported Access Types

*CDP CDP is not modified. Data-memory
(Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

I/O-space (Smem)

*CDP+ CDP is incremented after the address is generated.†‡ Data-memory
(Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

I/O-space (Smem)

*CDP– CDP is decremented after the address is generated.§¶ Data-memory
(Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

I/O-space (Smem)

*CDP(#K16) CDP is not modified. CDP is used as a base pointer. The
16-bit signed constant (K16) is used as an offset from that
base pointer.

Note: When an instruction uses this operand, the constant
is encoded in a 2-byte extension to the instruction. Because
of the extension, an instruction using this operand cannot be
executed in parallel with another instruction.

Data-memory
(Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

† If 16-bit/1-bit operation: CDP = CDP + 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
‡ If 32-bit/2-bit operation: CDP = CDP + 2; 2-bit operation: register bit access that reads or modifies a register bit pair
§ If 16-bit/1-bit operation: CDP = CDP − 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
¶ If 32-bit/2-bit operation: CDP = CDP − 2; 2-bit operation: register bit access that reads or modifies a register bit pair
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Table 6−9. CDP Indirect Operands (Continued)
Operand Supported Access TypesPointer Modification

*+CDP(#K16) The 16-bit signed constant (K16) is added to CDP before the
address is generated: CDP = CDP + K16

Note: When an instruction uses this operand, the constant
is encoded in a 2-byte extension to the instruction. Because
of the extension, an instruction using this operand cannot be
executed in parallel with another instruction.

Data-memory
(Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

† If 16-bit/1-bit operation: CDP = CDP + 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
‡ If 32-bit/2-bit operation: CDP = CDP + 2; 2-bit operation: register bit access that reads or modifies a register bit pair
§ If 16-bit/1-bit operation: CDP = CDP − 1; 1-bit operation: register bit access that reads or modifies a single bit in a register
¶ If 32-bit/2-bit operation: CDP = CDP − 2; 2-bit operation: register bit access that reads or modifies a register bit pair

6.4.4 Coefficient Indirect Addressing Mode

This mode uses the same address-generation process as the CDP indirect
addressing mode for data-space accesses. The coefficient indirect
addressing mode is supported by select memory move/initialization syntaxes
and by the following arithmetical instructions:

� Finite impulse response filter
� Multiply
� Multiply and accumulate
� Multiply and subtract
� Dual multiply [and accumulate/subtract]

Instructions using the coefficient indirect addressing mode to access data are
mainly instructions performing operations with three memory operands per
cycle. Two of these operands (Xmem and Ymem) are accessed with the dual
AR indirect addressing mode. The third operand (Cmem) is accessed with the
coefficient indirect addressing mode. The Cmem operand is carried on
the BB bus of the CPU (see section 1.6, Address Buses and Data Buses).

Consider the following instruction syntax. In one cycle, two multiplications can
be performed in parallel. One memory operand (Cmem) is common to both
multiplications, while dual AR indirect operands (Xmem and Ymem) are used
for the other values in the multiplication.

MPY Xmem, Cmem, ACx
:: MPY Ymem, Cmem, ACy

To access three memory values (as in the above example) in a single cycle,
the value referenced by Cmem must be located in a memory bank different
from the one containing the Xmem and Ymem values.
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6.4.4.1 Important Facts About the BB Bus

Keep the following facts about the BB bus in mind as you use the coefficient
indirect addressing mode:

� Although the following instructions access Cmem operands, they do not
use the BB bus to fetch the 16-bit or 32-bit Cmem operand.

Instruction
Syntax

Description of
Cmem Access

Bus Used to
Access Cmem

MOV Cmem, Smem 16-bit read from Cmem DB

MOV Smem, Cmem 16-bit write to Cmem EB

MOV Cmem, dbl(Lmem) 32-bit read from Cmem CB for most significant
word (MSW)
DB for least significant
word (LSW)

MOV dbl(Lmem), Cmem 32-bit write to Cmem FB for MSW
EB for LSW

� The BB bus is not connected to external memory. If a Cmem operand is
accessed via BB, the operand must be in internal memory.

6.4.4.2 Coefficient Indirect Operands

Table 6−10 introduces the operands available for the coefficient indirect
addressing mode. Note that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the 16-bit buffer start address register BSAC is added only if
circular addressing is activated for CDP.



Indirect Addressing Modes

Addressing Modes6-34 SPRU371F

� Increments and decrements are made to the 16-bit pointer only. You
cannot address data across main data pages without changing the value
in the extension register (CDPH).

Notes:

1) Although an increment past FFFFh or a decrement past 0000h causes
the pointer value to wrap around, do not make use of this behavior; it is
not supported. Also, during circular addressing, the BSAC addition must
not increment the address beyond FFFFh.

2) If you use algebraic instructions, you must enclose each coefficient
indirect operand in the syntax element coef() (see section 6.4.4.3). If you
use mnemonic instructions, you can use the operands as shown in
Table 6−10.

Table 6−10. Coefficient Indirect Operands
Operand Pointer Modification Supported Access Type

*CDP CDP is not modified. Data-memory

*CDP+ CDP is incremented after the address is
generated:
If 16-bit operation: CDP = CDP + 1
If 32-bit operation: CDP = CDP + 2

Data-memory

*CDP– CDP is decremented after the address is
generated:
If 16-bit operation: CDP = CDP – 1
If 32-bit operation: CDP = CDP – 2

Data-memory

*(CDP + T0/AR0) The 16-bit signed constant in T0 or AR0 is
added to CDP after the address is
generated:
If C54CM = 0: CDP = CDP + T0
If C54CM = 1: CDP = CDP + AR0

Data-memory
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6.4.4.3 coef() Required for Coefficient Indirect Operands in Algebraic Instructions

If you use algebraic instructions, you must enclose each coefficient indirect
(Cmem) operand in the coef() syntax element. For example, suppose you are
given this algebraic instruction syntax:

ACx = ACx + (Smem * Cmem)

Assume ACx = AC0 and Smem = *AR0, and assume that for Cmem you want
to use *CDP. The instruction is written as follows:

AC0 = AC0 + (*AR0 * coef(*CDP))
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6.5 Addressing Data Memory

Absolute, direct, and indirect addressing can be used to address values in data
memory:

Addressing Type See ...

Absolute This page

Direct Page 6-37

Indirect Page 6-38

6.5.1 Addressing Data Memory With Absolute Addressing Modes

The k16 absolute operand *abs16(#k16) or the k23 absolute operand *(#k23)
can be used to access data memory in any instruction with one of these syntax
elements:

Smem Indicates one word (16 bits) of data

Lmem Indicates two adjacent words (32 bits) of data

Table 6−11 and Table 6−12 provide examples of how to use these operands.

Note:

Because of a multi-byte extension, an instruction using *abs16(#k16) or
*(#k23) cannot be executed in parallel with another instruction.

� When an instruction uses *abs16(#k16), the constant, k16, is encoded
in a 2-byte extension to the instruction.

� When an instruction uses *(#k23), the constant, k23, is encoded in a
3-byte extension to the instruction.

Table 6−11. *abs16(#k16) Used for Data-Memory Access

Example Syntax Example Instruction
Address(es) Generated
For DPH = 3 Description

MOV Smem, dst MOV *abs16(#2002h), T2 DPH:k16 = 03 2002h The CPU loads the
value at address
03 2002h into T2.

MOV dbl(Lmem), pair(TAx) MOV dbl(*abs16(#2002h)), pair(T2) DPH:k16 = 03 2002h
(DPH:k16) + 1 = 03 2003h

The CPU reads the
values at addresses
03 2002h and
03 2003h and copies
them into T2 and T3,
respectively.
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Table 6−12. *(#k23) Used for Data-Memory Access

Example Syntax Example Instruction Address(es) Generated Description

MOV Smem, dst MOV *(#032002h), T2 k23 = 03 2002h The CPU loads the value at
address 03 2002h into T2.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(#032002h)), pair(T2) k23 = 03 2002h
k23 + 1 = 03 2003h

The CPU reads the values
at address 03 2002h
and address 03 2003h and
copies them into T2 and T3,
respectively.

6.5.2 Addressing Data Memory With Direct Addressing Modes

You can use direct addressing modes to access data memory in any
instruction with one of these syntax elements:

Smem Indicates one word (16 bits) of data

Lmem Indicates two adjacent words (32 bits) of data

When the CPL bit is 0, you can use the DP direct operand (@Daddr). When
the CPL bit is 1, you can use the SP direct operand *SP(offset). Table 6−13 and
Table 6−14 provide examples of using these operands to access data
memory.

For the DP direct addressing mode, the assembler calculates Doffset for the
address as follows:

Doffset = (Daddr – .dp) & 7Fh

where .dp is a value assigned by the .dp assembler directive, and & indicates
a bitwise AND operation. For examples of using the .dp directive and of the
Doffset calculation, see section 6.3.1.1. As shown in Table 6−13, when
DP = .dp, Doffset is equal to Daddr (in this case, both are 0005h).
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Table 6−13. @Daddr Used for Data-Memory Access

Example Syntax Example Instruction
Address(es) Generated
For DPH = 3, DP = .dp = 0 Description

MOV Smem, dst MOV @0005h, T2 DPH:(DP + Doffset)
= 03:(0000h + 0005h)= 03 0005h

The CPU loads the
value at address
03 0005h into T2.

MOV dbl(Lmem), pair(TAx) MOV dbl(@0005h),
pair(T2)

DPH:(DP + Doffset) = 03 0005h
DPH:(DP + Doffset – 1) = 03 0004h

The CPU reads the
values at addresses
03 0005h and
03 0004h and loads
these values into T2
and T3, respectively.
The second word is
read from the preceding
even address in
accordance with the
alignment rule for long
words.

Table 6−14. *SP(offset) Used for Data-Memory Access

Example Syntax Example Instruction
Address(es) Generated
For SP = FF00h and SPH = 0 Description

MOV Smem, dst MOV *SP(5), T2 SPH:(SP + offset) = 00 FF05h The CPU loads the
value at address
00 FF05h into T2.

MOV dbl(Lmem), pair(TAx) MOV dbl(*SP(5)),
pair(T2)

SPH:(SP + offset) = 00 FF05h
SPH:(SP + offset – 1) = 00 FF04h

The CPU reads the
values at addresses
00 FF05h and
00 FF04h, and loads
these values into T2
and T3, respectively.
The second word is
read from the preceding
even address in
accordance with the
alignment rule for long
words.

6.5.3 Addressing Data Memory With Indirect Addressing Modes

When you want to use indirect operands to access data memory, it is important
to know which operands you can use for a given instruction. Each instruction
syntax that supports indirect accesses to data memory includes one of the
syntax elements shown in Table 6−15. The last column of the table shows
which indirect operands can be used in place of the syntax element(s) for
accesses to data memory. As explained in section 6.4.1.4, the AR indirect
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operands available depend on whether DSP mode or control mode is selected
by the ARMS bit. After you have found an operand in Table 6−15, you can find
details about that operand in the sections that follow the table. For details
about the alignment of long words in data memory, see section 3.3.2,
Data Types.

Table 6−15. Choosing an Indirect Operand for a Data Memory Access 

Syntax Element Description Available Indirect Operands

Smem or Lmem Smem indicates one word (16 bits) of
data. Lmem indicates two consecutive
words (32 bits) of data.

AR indirect addressing mode:
DSP mode (ARMS = 0):  Control mode (ARMS = 1):
*ARn *ARn
*ARn+ *ARn+
*ARn− *ARn−
*+ARn
*−ARn
*(ARn + T0/AR0) *(ARn + T0/AR0)
*(ARn − T0/AR0) *(ARn − T0/AR0)
*ARn(T0/AR0) *ARn(T0/AR0)
*(ARn + T0B/AR0B)
*(ARn − T0B/AR0B)
*(ARn + T1)
*(ARn − T1)
*ARn(T1)
*ARn(#K16) *ARn(#K16)
*+ARn(#K16) *+ARn(#K16)

*ARn(short(#k3))

CDP indirect addressing mode:
*CDP
*CDP+
*CDP−
*CDP(#k16)
*+CDP(#k16)

Xmem or Ymem One word (16 bits) of data Dual AR indirect addressing mode:
*ARn
*ARn+
*ARn−
*(ARn + T0/AR0)
*(ARn − T0/AR0)
*ARn(T0/AR0)
*(ARn + T1)
*(ARn − T1)

Cmem One word (16 bits) of data Coefficient indirect addressing mode:
*CDP
*CDP+
*CDP−
*(CDP + T0/AR0)
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6.5.3.1 *ARn Used for Data-Memory Access

Operand Description

*ARn Address generated:
ARnH:( [BSAyy +] ARn)

ARn is not modified.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR4, T2 AR4H:AR4 = XAR4 The CPU reads the value at address
XAR4 and loads it into T2. AR4 is not
modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR4), pair(T2) First address:
XAR4

Second address:
If XAR4 is even
  XAR4 + 1
If XAR4 is odd
  XAR4 – 1

The CPU reads the values at
address XAR4 and the following or
preceding address, and loads them
into T2 and T3, respectively. AR4 is
not modified.

For details about the alignment of
long words in data memory, see
Data Types on page 3-5.

6.5.3.2 *ARn+ Used for Data-Memory Access

Operand Description

*ARn+ 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
If 16-bit operation: ARn = ARn + 1
If 32-bit operation: ARn = ARn + 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR4+, T2 AR4H:AR4 = XAR4 The CPU reads the value at
address XAR4 and loads it into
T2. After being used for the
address, AR4 is incremented
by 1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR4+), pair(T2) First address:
XAR4

Second address:
If XAR4 is even
  XAR4 + 1
If XAR4 is odd
  XAR4 – 1

The CPU reads the values at
address XAR4 and the following
or preceding address, and loads
them into T2 and T3, respectively.
After being used for the
addresses, AR4 is incremented
by 2.

For details about the alignment of
long words in data memory, see
Data Types on page 3-5.
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6.5.3.3 *ARn– Used for Data-Memory Access

Operand Description

*ARn– 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
If 16-bit operation: ARn = ARn – 1
If 32-bit operation: ARn = ARn – 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR4–, T2 AR4H:AR4 = XAR4 The CPU reads the value at address
XAR4 and loads it into T2. After being
used for the address, AR4 is
decremented by 1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR4–), pair(T2) First address:
XAR4

Second address:
If XAR4 is even
  XAR4 + 1
If XAR4 is odd
  XAR4 – 1

The CPU reads the values at
address XAR4 and the following or
preceding address, and loads them
into T2 and T3, respectively. After
being used for the addresses, AR4 is
decremented by 2.

For details about the alignment of
long words in data memory, see Data
Types on page 3-5.
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6.5.3.4 *+ARn Used for Data-Memory Access

Operand Description

*+ARn 1) ARn modified:
If 16-bit operation: ARn = ARn + 1
If 32-bit operation: ARn = ARn + 2

2) Address generated:
If 16-bit operation: ARnH:( [BSAyy +] ARn + 1)
If 32-bit operation: ARnH:( [BSAyy +] ARn + 2)

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *+AR4, T2 AR4H:(AR4 + 1)
= XAR4 + 1

Before being used for the
address, AR4 is incremented by
1. The CPU reads the value at
address XAR4 + 1 and loads it
into T2.

MOV dbl(Lmem), pair(TAx) MOV dbl(*+AR4), pair(T2) First address:
AR4H:(AR4 + 2)
= XAR4 + 2

Second address:
If XAR4 + 2 is even
  (XAR4 + 2) + 1
If XAR4 + 2 is odd
  (XAR4 + 2) – 1

Before being used for the
addresses, AR4 is incremented
by 2. The CPU reads the values
at address XAR4 + 2 and the
following or preceding address,
and loads them into T2 and T3,
respectively.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.5.3.5 *–ARn Used for Data-Memory Access

Operand Description

*–ARn 1) ARn modified:
If 16-bit operation: ARn = ARn – 1
If 32-bit operation: ARn = ARn – 2

2) Address generated:
If 16-bit operation: ARnH:( [BSAyy +] ARn – 1)
If 32-bit operation: ARnH:( [BSAyy +] ARn – 2)

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *–AR4, T2 AR4H:(AR4 – 1)
= XAR4 – 1

Before being used for the
address, AR4 is decremented by
1. The CPU reads the value at
address XAR4 – 1 and loads it
into T2.

MOV dbl(Lmem), pair(TAx) MOV dbl(*–AR4), pair(T2) First address:
AR4H:(AR4 – 2)
= XAR4 – 2

Second address:
If XAR4 – 2 is even
  (XAR4 – 2) + 1
If XAR4 – 2 is odd
  (XAR4 – 2) – 1

Before being used for the
addresses, AR4 is decremented
by 2. The CPU reads the values at
address XAR4 – 2 and the
following or preceding address
and loads them into T2 and T3,
respectively.

For details about the alignment of
long words in data memory, see
Data Types on page 3-5.
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6.5.3.6 *(ARn + T0/AR0) Used for Data-Memory Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn + T0) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn + T0

*(ARn + AR0) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn + AR0

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR4 + T0), T2 AR4H:AR4 = XAR4 The CPU reads the value at
address XAR4 and loads it
into T2. After being used for
the address, AR4 is
incremented by the number
in T0.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR4 + T0)), pair(T2) First address:
XAR4

Second address:
If XAR4 is even
  XAR4 + 1
If XAR4 is odd
  XAR4 – 1

The CPU reads the values at
address XAR4 and the
following or preceding
address and loads them into
T2 and T3, respectively. After
being used for the
addresses, AR4 is
incremented by the number
in T0.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.
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6.5.3.7 *(ARn – T0/AR0) Used for Data-Memory Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn – T0) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn – T0

*(ARn – AR0) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn – AR0

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR4 – T0), T2 AR4H:AR4 = XAR4 The CPU reads the value at
address XAR4 and loads it
into T2. After being used for
the address, AR4 is
decremented by the number
in T0.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR4 – T0)), pair(T2) First address:
XAR4

Second address:
If XAR4 is even
  XAR4 + 1
If XAR4 is odd
  XAR4 – 1

The CPU reads the values at
address XAR4 and the
following or preceding
address, and loads them into
T2 and T3, respectively. After
being used for the
addresses, AR4 is
decremented by the number
in T0.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.
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6.5.3.8 *ARn(T0/AR0) Used for Data-Memory Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*ARn(T0) Address generated:
ARnH:( [BSAyy +] ARn + T0)

ARn is not modified. ARn is
used as a base pointer. T0 is
used as an offset from that base
pointer.

*ARn(AR0) Address generated:
ARnH:( [BSAyy +] ARn + AR0)

ARn is not modified. ARn is
used as a base pointer. AR0
is used as an offset from that
base pointer.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR4(T0), T2 AR4H:(AR4 + T0)
= XAR4 + T0

The CPU reads the value at
address XAR4 + T0 and
loads it into T2. AR4 is not
modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR4(T0)), pair(T2) First address:
XAR4 + T0

Second address:
If XAR4 + T0 is even
  (XAR4 + T0) + 1
If XAR4 + T0 is odd
  (XAR4 + T0) – 1

The CPU reads the values at
address XAR4 + T0 and the
following or preceding
address, and loads them into
T2 and T3, respectively. AR4
is not modified.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.
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6.5.3.9 *(ARn + T0B/AR0B) Used for Data-Memory Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn + T0B) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn + T0
(done with reverse carry
propagation)

See Note about circular
addressing restriction.

*(ARn + AR0B) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn + AR0
(done with reverse carry
propagation)

See Note about circular
addressing restriction.

Note: When this bit-reverse operand is used, ARn cannot be used as a circular pointer. If ARn is configured in ST2_55 for
circular addressing, the corresponding buffer start address register value (BSAyy) is added to ARn, but ARn is not
modified so as to remain inside a circular buffer.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR4 + T0B), T2 AR4H:AR4 = XAR4 The CPU reads the value at
address XAR4 and loads it into
T2. After being used for the
address, AR4 is incremented by
the number in T0. Reverse carry
propagation is used during the
addition.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR4 + T0B)), pair(T2) First address:
XAR4

Second address:
If XAR4 is even
  XAR4 + 1
If XAR4 is odd
  XAR4 – 1

The CPU reads the values at
address XAR4 and the following
or preceding address and loads
them into T2 and T3,
respectively. After being used
for the address, AR4 is
incremented by the number in
T0. Reverse carry propagation
is used during the addition.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.5.3.10 *(ARn – T0B/AR0B) Used for Data-Memory Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn – T0B) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn – T0
(done with reverse carry
propagation)

See Note about circular
addressing restriction.

*(ARn – AR0B) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn – AR0
(done with reverse carry
propagation)

See Note about circular
addressing restriction.

Note: When this bit-reverse operand is used, ARn cannot be used as a circular pointer. If ARn is configured in ST2_55 for
circular addressing, the corresponding buffer start address register value (BSAyy) is added to ARn, but ARn is not
modified so as to remain inside a circular buffer.

Example Syntax Example Instruction
Address(es)
Generated
(Linear Addressing)

Description

MOV Smem, dst MOV *(AR4 – T0B), T2 AR4H:AR4 = XAR4 The CPU loads the value at
address XAR4 into T2. After
being used for the address,
AR4 is decremented by the
number in T0. Reverse
carry propagation is used
during the subtraction.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR4 – T0B)), pair(T2) First address:
XAR4

Second address:
If XAR4 is even
  XAR4 + 1
If XAR4 is odd
  XAR4 – 1

The CPU reads the values
at address XAR4 and the
following or preceding
address and loads them into
T2 and T3, respectively.
After being used for the
addresses, AR4 is
decremented by the number
in T0. Reverse carry
propagation is used during
the subtraction.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.
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6.5.3.11 *(ARn + T1) Used for Data-Memory Access

Operand Description

*(ARn + T1) 1) Address generated:
ARnH: [BSAyy +] ARn

2) ARn modified:
ARn = ARn + T1

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR7 + T1), AR3 AR7H:AR7 = XAR7 The CPU reads the value at
address XAR7 and loads it into
AR3. After being used for the
address, AR7 is incremented
by the number in T1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR5 + T1)), pair(AR2) First address:
AR5H:AR5 = XAR5

Second address:
If XAR5 is even
  XAR5 + 1
If XAR5 is odd
  XAR5 – 1

The CPU reads the values at
address XAR5 and the
following or preceding
address, and loads them into
AR2 and AR3, respectively.
After being used for the
addresses, AR5 is
incremented by the number in
T1.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.5.3.12 *(ARn – T1) Used for Data-Memory Access

Operand Description

*(ARn – T1) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn – T1

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR7 – T1), AR3 AR7H:AR7 = XAR7 The CPU reads the value at
address XAR7 and loads it into
AR3. After being used for the
address, AR7 is decremented
by the number in T1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR5 – T1)), pair(AR2) First address:
AR5H:AR5 = XAR5

Second address:
If XAR5 is even
  XAR5 + 1
If XAR5 is odd
  XAR5 – 1

The CPU reads the values at
address XAR5 and the
following or preceding address
and loads them into AR2 and
AR3, respectively. After being
used for the addresses, AR5 is
decremented by the number in
T1.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.5.3.13 *ARn(T1) Used for Data-Memory Access

Operand Description

*ARn(T1) Address generated:
ARnH:( [BSAyy +] ARn + T1)

ARn is not modified. ARn is used as a base pointer. T1 is used as an offset from that base
pointer.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR7(T1), AR3 AR7H:(AR7 + T1)
= XAR7 + T1

The CPU reads the value at
address XAR7 + T1 and loads it
into AR3. AR7 is not modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR5(T1)), pair(AR2) First address:
AR5H:(AR5 + T1)
= XAR5 + T1

Second address:
If XAR5 + T1 is even
  (XAR5 + T1) + 1
If XAR5 + T1 is odd
  (XAR5 + T1) – 1

The CPU reads the values at
address XAR5 + T1 and the
following or preceding address,
and loads them into AR2 and
AR3, respectively. AR5 is not
modified.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.

6.5.3.14 *ARn(#K16) Used for Data-Memory Access

Operand Description

*ARn(#K16) Address generated:
ARnH:( [BSAyy +] ARn + K16)

ARn is not modified. ARn is used as a base pointer. The 16-bit signed constant (K16) is used as
an offset from that base pointer.

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR7(#8), AR3 AR7H:(AR7 + 8)
= XAR7 + 8

The CPU reads the value at
address XAR7 + 8 and loads it
into AR3. AR7 is not modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR5(#20)), pair(AR2) First address:
AR5H:(AR5 + 20)
= XAR5 + 20

Second address:
If XAR5 + 20 is even
  (XAR5 + 20) + 1
If XAR5 + 20 is odd
  (XAR5 + 20) – 1

The CPU reads the values at
address XAR5 + 20 and the
following or preceding address,
and loads them into AR2 and
AR3, respectively. AR5 is not
modified.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.5.3.15 *+ARn(#K16) Used for Data-Memory Access

Operand Description

*+ARn(#K16) 1) ARn modified:
ARn = ARn + K16

2) Address generated:
ARnH:( [BSAyy +] ARn + K16)

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *+AR7(#8), AR3 AR7H:(AR7 + 8)
= XAR7 + 8

Before AR7 is used for the
address, the constant is added
to AR7. The CPU reads the
value at address XAR7 + 8
and loads it into AR3.

MOV dbl(Lmem), pair(TAx) MOV dbl(*+AR5(#20)), pair(AR2) First address:
AR5H:(AR5 + 20)
= XAR5 + 20

Second address:
If XAR5 + 20 is even
  (XAR5 + 20) + 1
If XAR5 + 20 is odd
  (XAR5 + 20) – 1

Before AR5 is used for the
addresses, the constant is
added to AR5. The CPU reads
the values at address
XAR5 + 20 and the following
or preceding address, and
loads them into AR2 and AR3,
respectively.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.



Addressing Data Memory

6-53Addressing ModesSPRU371F

6.5.3.16 *ARn(short(#k3)) Used for Data-Memory Access

Operand Description

*ARn(short(#k3)) Address generated:
ARnH:( [BSAyy +] ARn + k3)

ARn is not modified. ARn is used as a base pointer. The 3-bit unsigned constant (k3) is used as
an offset from that base pointer. k3 can be a number from 1 to 7.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR7(short(#1)), AR3 AR7H:(AR7 + 1)
= XAR7 + 1

The CPU reads the value
at address XAR7 + 1 and
loads it into AR3. AR7 is
not modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR5(short(#7))), pair(AR2) First address:
AR5H:(AR5 + 7)
= XAR5 + 7

Second address:
If XAR5 + 7 is even
  (XAR5 + 7) + 1
If XAR5 + 7 is odd
  (XAR5 + 7) – 1

The CPU reads the values
at address XAR5 + 7 and
the following or preceding
address, and loads them
into AR2 and AR3,
respectively. AR5 is not
modified.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.
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6.5.3.17 *CDP Used for Data-Memory Access

Operand Description

*CDP Address generated:
CDPH:[BSAC +] CDP

CDP is not modified.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *CDP, T2 CDPH:CDP = XCDP The CPU reads the value at address
XCDP and loads it into T2. CDP is
not modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*CDP), pair(T2) First address:
XCDP

Second address:
If XCDP is even
  XCDP + 1
If XCDP is odd
  XCDP – 1

The CPU reads the values at
address XCDP and the following or
preceding address, and loads them
into T2 and T3, respectively. CDP is
not modified.

For details about the alignment of
long words in data memory, see
Data Types on page 3-5.

MPY Xmem, Cmem, ACx
:: MPY Ymem, Cmem, ACy

MPY *AR0, *CDP, AC0
:: MPY *AR1, *CDP, AC1

CDPH:CDP = XCDP The CPU multiplies the value at
address XAR0 by the coefficient
at address XCDP and stores the
result to AC0. At the same time,
the CPU multiplies the value at
address XAR1 by the same
coefficient and stores the result to
AC1. CDP is not modified.

MOV dbl(Lmem), Cmem MOV dbl(*AR7), *CDP First address:
XCDP

Second address:
If XCDP is even
  XCDP + 1
If XCDP is odd
  XCDP – 1

The CPU reads the values at
addresses XAR7 and XAR7 ±  1.
Then it writes the values to
addresses XCDP and XCDP ± 1,
respectively. CDP is not modified.

Note: If you use algebraic instructions, you must enclose each coefficient indirect (Cmem) operand in the syntax element
coef(). For an example, see section 6.4.4.3.
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6.5.3.18 *CDP+ Used for Data-Memory Access

Operand Description

*CDP+ 1) Address generated:
CDPH:[BSAC +] CDP

2) CDP modified:
If 16-bit operation: CDP = CDP + 1
If 32-bit operation: CDP = CDP + 2

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *CDP+, T2 CDPH:CDP = XCDP The CPU reads the value at address
XCDP and loads it into T2. After
being used for the address, CDP is
incremented by 1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*CDP+), pair(T2) First address:
XCDP

Second address:
If XCDP is even
  XCDP + 1
If XCDP is odd
  XCDP – 1

The CPU reads the values at
address XCDP and the following or
preceding address, and loads them
into T2 and T3, respectively. After
being used for the addresses, CDP is
incremented by 2.

For details about the alignment of
long words in data memory, see Data
Types on page 3-5.

MPY Xmem, Cmem, ACx
:: MPY Ymem, Cmem, ACy

MPY *AR0, *CDP+, AC0
:: MPY *AR1, *CDP+, AC1

CDPH:CDP = XCDP The CPU multiplies the value at
address XAR0 by the coefficient
at address XCDP and stores the
result to AC0. At the same time,
the CPU multiplies the value at
address XAR1 by the same
coefficient and stores the result to
AC1. After being used for the
address, CDP is incremented by 1.

MOV dbl(Lmem), Cmem MOV dbl(*AR7), *CDP+ First address:
XCDP

Second address:
If XCDP is even
  XCDP + 1
If XCDP is odd
  XCDP – 1

The CPU reads the values at
addresses XAR7 and XAR7 ± 1.
Then it writes the values to
addresses XCDP and XCDP ± 1,
respectively. After being used for the
addresses, CDP is incremented
by 2.

Note: If you use algebraic instructions, you must enclose each coefficient indirect (Cmem) operand in the syntax element
coef(). For an example, see section 6.4.4.3.
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6.5.3.19 *CDP– Used for Data-Memory Access

Operand Description

*CDP– 1) Address generated:
CDPH:[BSAC +] CDP

2) CDP modified:
If 16-bit operation: CDP = CDP – 1
If 32-bit operation: CDP = CDP – 2

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *CDP–, T2 CDPH:CDP = XCDP The CPU reads the value at
address XCDP and loads it into
T2. After being used for the
address, CDP is decremented
by 1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*CDP–), pair(T2) First address:
XCDP

Second address:
If XCDP is even
  XCDP + 1
If XCDP is odd
  XCDP – 1

The CPU reads the values at
address XCDP and the
following or preceding address,
and loads them into T2 and T3,
respectively. After being used
for the addresses, CDP is
decremented by 2.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.

MPY Xmem, Cmem, ACx
:: MPY Ymem, Cmem, ACy

MPY *AR0, *CDP–, AC0
:: MPY *AR1, *CDP–, AC1

CDPH:CDP = XCDP The CPU multiplies the value at
address XAR0 by the coefficient
at address XCDP and stores the
result to AC0. At the same time,
the CPU multiplies the value at
address XAR1 by the same
coefficient and stores the result
to AC1. After being used for the
address, CDP is decremented
by 1.

MOV dbl(Lmem), Cmem MOV dbl(*AR7), *CDP– First address:
XCDP

Second address:
If XCDP is even
  XCDP + 1
If XCDP is odd
  XCDP – 1

The CPU reads the values at
addresses XAR7 and
XAR7 ± 1. Then it writes the
values to addresses XCDP and
XCDP ± 1, respectively. After
being used for the addresses,
CDP is decremented by 2.

Note: If you use algebraic instructions, you must enclose each coefficient indirect (Cmem) operand in the syntax element
coef(). For an example, see section 6.4.4.3.
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6.5.3.20 *CDP(#K16) Used for Data-Memory Access

Operand Description

*CDP(#K16) Address generated:
CDPH:( [BSAC +] CDP + K16)

CDP is not modified. CDP is used as a base pointer. The 16-bit signed constant (K16) is used as
an offset from that base pointer.

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *CDP(#8), AR3 CDPH:(CDP + 8)
= XCDP + 8

The CPU reads the value at
address XCDP + 8 and loads it
into AR3. CDP is not modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*CDP(#20)), pair(AR2) First address:
CDPH:(CDP + 20)
= XCDP + 20

Second address:
If XCDP + 20 is even
  (XCDP + 20) + 1
If XCDP + 20 is odd
  (XCDP + 20) – 1

The CPU reads the values at
address XCDP + 20 and the
following or preceding address,
and loads them into AR2 and
AR3, respectively. CDP is not
modified.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.5.3.21 *+CDP(#K16) Used for Data-Memory Access

Operand Description

*+CDP(#K16) 1) CDP modified:
CDP = CDP + K16

2) Address generated:
CDPH:( [BSAC +] CDP + K16)

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *+CDP(#8), AR3 CDPH:(CDP + 8)
= XCDP + 8

Before CDP is used for the
address, the constant is added
to CDP. The CPU reads the
value at address XCDP + 8 and
loads it into AR3.

MOV dbl(Lmem), pair(TAx) MOV dbl(*+CDP(#20)), pair(AR2) First address:
CDPH:(CDP + 20)
= XCDP + 20

Second address:
If XCDP + 20 is even
  (XCDP + 20) + 1
If XCDP + 20 is odd
  (XCDP + 20) – 1

Before CDP is used for the
addresses, the constant is
added to CDP. The CPU reads
the values at address
XCDP + 20 and the following or
preceding address, and loads
them into AR2 and AR3,
respectively.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.5.3.22 *(CDP + T0/AR0) Used for Data-Memory Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(CDP + T0) 1) Address generated:
CDPH:[BSAC +] CDP

2) CDP = CDP + T0

*(CDP + AR0) 1) Address generated:
CDPH:[BSAC +] CDP

2) CDP = CDP + AR0

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MPY Xmem, Cmem, ACx
:: MPY Ymem, Cmem, ACy

MPY *AR0, *(CDP + T0), AC0
:: MPY *AR1, *(CDP + T0), AC1

CDPH:CDP = XCDP The CPU multiplies the value at
address XAR0 by the coefficient
at address XCDP and stores the
result to AC0. At the same time,
the CPU multiplies the value at
address XAR1 by the same
coefficient and stores the result to
AC1. After being used for the
address, CDP is incremented by
the number in T0.

MOV dbl(Lmem), Cmem MOV dbl(*AR7), *(CDP + T0) First address:
XCDP

Second address:
If XCDP is even
  XCDP + 1
If XCDP is odd
  XCDP – 1

The CPU reads the values at
addresses XAR7 and XAR7 ± 1.
Then it writes the values to
addresses XCDP and XCDP ± 1,
respectively. After being used for
the addresses, CDP is
incremented by the number in T0.

For details about the alignment of
long words in data memory, see
Data Types on page 3-5.

Note: If you use algebraic instructions, you must enclose each coefficient indirect (Cmem) operand in the syntax element
coef(). For an example, see section 6.4.4.3.
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6.6 Addressing Memory-Mapped Registers

Absolute, direct, and indirect addressing can be used to address
memory-mapped registers (MMRs):

Addressing Type See ...

Absolute This page

Direct Page 6-61

Indirect Page 6-63

There are some restrictions on accesses to memory-mapped registers. See
section 6.7 for the details.

6.6.1 Addressing MMRs With the k16 and k23 Absolute Addressing Modes

The k16 absolute operand *abs16(#k16) and the k23 absolute operand
*(#k23) can be used to access memory-mapped registers in any instruction
with one of these syntax elements:

Smem Indicates one word (16 bits) of data

Lmem Indicates two adjacent words (32 bits) of data

See the examples in Table 6−16 and Table 6−17. Because the
memory-mapped registers are on main data page 0, to access them with
*abs16(#k16), you must first make sure DPH = 0.

Note:

Because of a multi-byte extension, an instruction using *abs16(#k16) or
*(#k23) cannot be executed in parallel with another instruction.

� When an instruction uses *abs16(#k16), the constant, k16, is encoded
in a 2-byte extension to the instruction.

� When an instruction uses *(#k23), the constant, k23, is encoded in a
3-byte extension to the instruction.
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Table 6−16. *abs16(#k16) Used for Memory-Mapped Register Access

Example Syntax Example Instruction

Address(es)
Generated
(DPH must be 0) Description

MOV Smem, dst MOV *abs16(#AR2), T2 DPH:k16 = 00 0012h AR2 is at address 00 0012h.
The CPU loads the content of
AR2 into T2.

MOV dbl(Lmem), pair(TAx) MOV dbl(*abs16(#AR2)), pair(T2) First Address:
 DPH:k16= 00 0012h
Second address:
(DPH:k16) + 1
= 00 0013h

AR2 and AR3 are at
addresses 00 0012h and
00 0013h, respectively. The
CPU reads the contents of
AR2 and AR3 and copies
them into T2 and T3,
respectively.

Table 6−17. *(#k23) Used for Memory-Mapped Register Access

Example Syntax Example Instruction
Address(es)
Generated Description

MOV Smem, dst MOV *(#AC0L), T2 k23 = 00 0008h AC0L represents the
address of the 16 LSBs of
AC0. The CPU loads the
content of AC0(15–0) into T2.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(#AC0L)), pair(T2) First Address:
k23 = 00 0008h
Second address:
k23 + 1 = 00 0009h

AC0L represents the
address of the 16 LSBs of
AC0. The CPU loads the
content of AC0(15–0) into T2
and the content of
AC0(31–16) into T3.

6.6.2 Addressing MMRs With the DP Direct Addressing Mode

When the CPL bit is 0, you can use the DP direct operand (@Daddr) to access
a memory-mapped register or registers (MMRs) if an instruction has one of
these syntax elements:

Smem Indicates one word (16 bits) of data

Lmem Indicates two adjacent words (32 bits) of data

Use the mmap() qualifier to indicate that the access is to a memory-mapped
register rather than to a data-memory location. If you use algebraic
instructions, mmap() is an instruction qualifier placed in parallel with the
instruction that performs a memory-mapped register access. If you use
mnemonic instructions, mmap() encloses the qualified operand.
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The mmap() qualifier forces the address-generation unit (DAGEN) to act as if:

DPH = 0 Accesses are made to main data page 0.

CPL = 0 Accesses are made relative to the DP.

DP = 0 Accesses are made relative to a local address of 0000h.

Table 6−18 provides examples of using @Daddr and mmap() to access
registers. For the address, the assembler calculates Doffset as follows:

Doffset = Daddr & 7Fh

where & indicates a bitwise AND operation. Note that Daddr is supplied by a
reference to AC0L (the 16 least significant bits of AC0). AC0L is mapped to
address 00 0008h in data space.

Table 6−18. @Daddr Used for Memory-Mapped Register Access

Example Syntax Example Instruction

Address(es)
Generated
(DPH = DP = 0) Description

MOV Smem, dst MOV mmap(@AC0L), AR2 DPH:(DP + Doffset)
= 00:(0000h + 0008h)
= 00 0008h

AC0L represents the
address of the 16 LSBs of
AC0. The CPU copies the
content of AC0(15–0) into
AR2.

MOV dbl(Lmem), pair(TAx) MOV dbl(mmap(@AC0L)), pair(AR2) First address:
DPH:(DP + Doffset)
= 00 0008h

Second address:
DPH:(DP + Doffset + 1)
= 00 0009h

AC0L represents the
address of the 16 LSBs of
AC0. The CPU copies the
content of AC0(15–0) into
AR2 and copies the
content of AC0(31–16) into
AR3.
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6.6.3 Addressing MMRs With Indirect Addressing Modes

You can use indirect operands to access a memory-mapped register or
registers if an instruction has one of these syntax elements:

Smem Indicates one word (16 bits) of data

Xmem Indicates one word (16 bits) of read data through DB bus

Ymem Indicates one word (16 bits) of write data through EB bus

Lmem Indicates two adjacent words (32 bits) of data

You must first make sure the pointer contains the correct data-space address.
For example, if XAR6 is the pointer and you want to access the low word of
AC0, you can use the following instruction to initialize XAR6:

AMOV #AC0L, XAR6

where AC0L is a keyword that represents the address of the low word of AC0.
Similarly, when CDP is the pointer, you can use:

AMOV #AC0L, XCDP

Figure 6−14 lists the indirect operands that support accesses of
memory-mapped registers, and the sections following the table provide details
and examples for the operands.

Figure 6−14. Indirect Operands for Memory-Mapped Register Accesses

AR indirect addressing mode:
DSP mode (ARMS = 0):  Control mode (ARMS = 1):
*ARn *ARn
*ARn+ *ARn+
*ARn− *ARn−
*+ARn
*−ARn
*(ARn + T0/AR0) *(ARn + T0/AR0)
*(ARn − T0/AR0) *(ARn − T0/AR0)
*ARn(T0/AR0) *ARn(T0/AR0)
*(ARn + T0B/AR0B)
*(ARn − T0B/AR0B)
*(ARn + T1)
*(ARn − T1)
*ARn(T1)
*ARn(#K16) *ARn(#K16)
*+ARn(#K16) *+ARn(#K16)

*ARn(short(#k3))

CDP indirect addressing mode:
*CDP
*CDP+
*CDP−
*CDP(#k16)
*+CDP(#k16)
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6.6.3.1 *ARn Used for Memory-Mapped Register Access

Operand Description

*ARn Address generated:
ARnH:( [BSAyy +] ARn)

ARn is not modified.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR6, T2

(AR6 references a register.)

AR6H:AR6 = XAR6 The CPU reads the value at
address XAR6 and loads it
into T2. AR6 is not modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR6), pair(T2)

(AR6 references a register.)

First address:
XAR6

Second address:
If XAR6 is even
  XAR6 + 1
If XAR6 is odd
  XAR6 – 1

The CPU reads the values
at address XAR6 and the
following or preceding
address, and loads them
into T2 and T3, respectively.
AR6 is not modified.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.

6.6.3.2 *ARn+ Used for Memory-Mapped Register Access

Operand Description

*ARn+ 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
If 16-bit operation: ARn = ARn + 1
If 32-bit operation: ARn = ARn + 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR6+, T2

(AR6 references
a register.)

AR6H:AR6 = XAR6 The CPU reads the value at
address XAR6 and loads it
into T2. After being used for
the address, AR6 is
incremented by 1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR6+), pair(T2)

(AR6 references
a register.)

First address:
XAR6

Second address:
If XAR6 is even
  XAR6 + 1
If XAR6 is odd
  XAR6 – 1

The CPU reads the values at
address XAR6 and the
following or preceding
address, and loads them into
T2 and T3, respectively. After
being used for the addresses,
AR6 is incremented by 2.

For details about the
alignment of long words in
data memory, see Data Types
on page 3-5.
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6.6.3.3 *ARn– Used for Memory-Mapped Register Access

Operand Description

*ARn– 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
If 16-bit operation: ARn = ARn – 1
If 32-bit operation: ARn = ARn – 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR6–, T2

(AR6 references a register.)

AR6H:AR6 = XAR6 The CPU reads the value at
address XAR6 and loads it
into T2. After being used for
the address, AR6 is
decremented by 1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR6–), pair(T2)

(AR6 references a register.)

First address:
XAR6

Second address:
If XAR6 is even
  XAR6 + 1
If XAR6 is odd
  XAR6 – 1

The CPU reads the values at
address XAR6 and the
following or preceding
address, and loads them into
T2 and T3, respectively. After
being used for the addresses,
AR6 is decremented by 2.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.
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6.6.3.4 *+ARn Used for Memory-Mapped Register Access

Operand Description

*+ARn 1) ARn modified:
If 16-bit operation: ARn = ARn + 1
If 32-bit operation: ARn = ARn + 2

2) Address generated:
If 16-bit operation: ARnH:( [BSAyy +] ARn + 1)
If 32-bit operation: ARnH:( [BSAyy +] ARn + 2)

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *+AR6, T2

(AR6 references a register.)

AR6H:(AR6 + 1) = XAR6 + 1 Before being used for the
address, AR6 is
incremented by 1. The CPU
reads the value at address
XAR6 + 1 and loads it into
T2.

MOV dbl(Lmem), pair(TAx) MOV dbl(*+AR6), pair(T2)

(AR6 references a register.)

First address:
AR6H:(AR6 + 2) = XAR6 + 2

Second address:
If XAR6 + 2 is even
  (XAR6 + 2) + 1
If XAR6 + 2 is odd
  (XAR6 + 2) – 1

Before being used for the
addresses, AR6 is
incremented by 2. The CPU
reads the values at address
XAR6 + 2 and the following
or preceding address, and
loads them into T2 and T3,
respectively.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.
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6.6.3.5 *–ARn Used for Memory-Mapped Register Access

Operand Description

*–ARn 1) ARn modified:
If 16-bit operation: ARn = ARn – 1
If 32-bit operation: ARn = ARn – 2

2) Address generated:
If 16-bit operation: ARnH:( [BSAyy +] ARn – 1)
If 32-bit operation: ARnH:( [BSAyy +] ARn – 2)

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *–AR6, T2

(AR6 references a register.)

AR6H:(AR6 – 1)
= XAR6 – 1

Before being used for the
address, AR6 is decremented
by 1. The CPU reads the value
at address XAR6 – 1 and loads
it into T2.

MOV dbl(Lmem), pair(TAx) MOV dbl(*–AR6), pair(T2)

(AR6 references a register.)

First address:
AR6H:(AR6 – 2)
= XAR6 – 2

Second address:
If XAR6 – 2 is even
  (XAR6 – 2) + 1
If XAR6 – 2 is odd
  (XAR6 – 2) – 1

Before being used for the
addresses, AR6 is
decremented by 2. The CPU
reads the values at address
XAR6 – 2 and the following or
preceding address, and loads
them into T2 and T3,
respectively.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.6.3.6 *(ARn + T0/AR0) Used for Memory-Mapped Register Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn + T0) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn + T0

*(ARn + AR0) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn + AR0

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR6 + T0), T2

(AR6 references a register.)

AR6H:AR6 = XAR6 The CPU reads the value at
address XAR6 and loads it
into T2. After being used for
the address, AR6 is
incremented by the number in
T0.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR6 + T0)), pair(T2)

(AR6 references a register.)

First address:
XAR6

Second address:
If XAR6 is even
  XAR6 + 1

If XAR6 is odd
  XAR6 – 1

The CPU reads the values at
address XAR6 and the
following or preceding
address, and loads them into
T2 and T3, respectively. After
being used for the addresses,
AR6 is incremented by the
number in T0.

For details about the
alignment of long words in
data memory, see Data Types
on page 3-5.
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6.6.3.7 *(ARn – T0/AR0) Used for Memory-Mapped Register Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn – T0) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn – T0

*(ARn – AR0) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn – AR0

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR6 – T0), T2

(AR6 references a register.)

AR6H:AR6 = XAR6 The CPU reads the value at
address XAR6 and loads it into
T2. After being used for the
address, AR6 is decremented
by the number in T0.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR6 – T0)), pair(T2)

(AR6 references a register.)

First address:
XAR6

Second address:
If XAR6 is even
  XAR6 + 1
If XAR6 is odd
  XAR6 – 1

The CPU reads the values at
address XAR6 and the
following or preceding address,
and loads them into T2 and T3,
respectively. After being used
for the addresses, AR6 is
decremented by the number in
T0.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.6.3.8 *ARn(T0/AR0) Used for Memory-Mapped Register Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*ARn(T0) Address generated:
ARnH:( [BSAyy +] ARn + T0)

ARn is not modified. ARn is used as
a base pointer. T0 is used as an
offset from that base pointer.

*ARn(AR0) Address generated:
ARnH:( [BSAyy +] ARn + AR0)

ARn is not modified. ARn is used as
a base pointer. AR0 is used as an
offset from that base pointer.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR6(T0), T2

(AR6 references a register.)

AR6H:(AR6 + T0)
= XAR6 + T0

The CPU reads the value at
address XAR6 + T0 and loads
it into T2. AR6 is not modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR6(T0)), pair(T2)

(AR6 references a register.)

First address:
XAR6 + T0

Second address:
If XAR6 + T0 is even
  (XAR6 + T0) + 1
If XAR6 + T0 is odd
  (XAR6 + T0) – 1

The CPU reads the values at
address XAR6 + T0 and the
following or preceding address,
and loads them into T2 and T3,
respectively. AR6 is not
modified.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.6.3.9 *(ARn + T0B/AR0B) Used for Memory-Mapped Register Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn + T0B) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn + T0
(done with reverse carry
propagation)

See Note about circular addressing
restriction.

*(ARn + AR0B) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn + AR0
(done with reverse carry
propagation)

See Note about circular addressing
restriction.

Note: When this bit-reverse operand is used, ARn cannot be used as a circular pointer. If ARn is configured in ST2_55 for
circular addressing, the corresponding buffer start address register value (BSAyy) is added to ARn, but ARn is not
modified so as to remain inside a circular buffer.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR6 + T0B), T2

(AR6 references a register.)

AR6H:AR6 = XAR6 The CPU reads the value at
address XAR6 and loads it into
T2. After being used for the
address, AR6 is incremented by
the number in T0. Reverse
carry propagation is used
during the addition.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR6 + T0B)), pair(T2)

(AR6 references a register.)

First address:
XAR6

Second address:
If XAR6 is even
  XAR6 + 1
If XAR6 is odd
  XAR6 – 1

The CPU reads the values at
address XAR6 and the
following or preceding address,
and loads them into T2 and T3,
respectively. After being used
for the address, AR6 is
incremented by the number in
T0. Reverse carry propagation
is used during the addition.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.6.3.10 *(ARn – T0B/AR0B) Used for Memory-Mapped Register Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn – T0B) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn – T0
(done with reverse carry
propagation)

See Note about circular addressing
restriction.

*(ARn – AR0B) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn – AR0
(done with reverse carry
propagation)

See Note about circular addressing
restriction.

Note: When this bit-reverse operand is used, ARn cannot be used as a circular pointer. If ARn is configured in ST2_55 for
circular addressing, the corresponding buffer start address register value (BSAyy) is added to ARn, but ARn is not
modified so as to remain inside a circular buffer.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR6 – T0B), T2

(AR6 references a register.)

AR6H:AR6 = XAR6 The CPU reads the value at
address XAR6 and loads it into
T2. After being used for the
address, AR6 is decremented
by the number in T0. Reverse
carry propagation is used during
the subtraction.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR6 – T0B)), pair(T2)

(AR6 references a register.)

First address:
XAR6

Second address:
If XAR6 is even
  XAR6 + 1
If XAR6 is odd
  XAR6 – 1

The CPU reads the values at
address XAR6 and the following
or preceding address, and loads
them into T2 and T3,
respectively. After being used
for the addresses, AR6 is
decremented by the number in
T0. Reverse carry propagation
is used during the subtraction.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.6.3.11 *(ARn + T1) Used for Memory-Mapped Register Access

Operand Description

*(ARn + T1) 1) Address generated:
ARnH: [BSAyy +] ARn

2) ARn modified:
ARn = ARn + T1

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR7 + T1), AR3

(AR7 references a register.)

AR7H:AR7 = XAR7 The CPU reads the value at
address XAR7 and loads it into
AR3. After being used for the
address, AR7 is incremented
by the number in T1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR5 + T1)), pair(AR2)

(AR5 references a register.)

First address:
AR5H:AR5 = XAR5

Second address:
If XAR5 is even
  XAR5 + 1
If XAR5 is odd
  XAR5 – 1

The CPU reads the values at
address XAR5 and the
following or preceding
address, and loads them into
AR2 and AR3, respectively.
After being used for the
addresses, AR5 is
incremented by the number in
T1.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.6.3.12 *(ARn – T1) Used for Memory-Mapped Register Access

Operand Description

*(ARn – T1) 1) Address generated:
ARnH:( [BSAyy +] ARn)

2) ARn modified:
ARn = ARn – T1

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *(AR7 – T1), AR3

(AR7 references a register.)

AR7H:AR7 = XAR7 The CPU reads the value at
address XAR7 and loads it
into AR3. After being used for
the address, AR7 is
decremented by the number
in T1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*(AR5 – T1)), pair(AR2)

(AR5 references a register.)

First address:
AR5H:AR5 = XAR5

Second address:
If XAR5 is even
  XAR5 + 1
If XAR5 is odd
  XAR5 – 1

The CPU reads the values at
address XAR5 and the
following or preceding
address, and loads them into
AR2 and AR3, respectively.
After being used for the
addresses, AR5 is
decremented by the number
in T1.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.
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6.6.3.13 *ARn(T1) Used for Memory-Mapped Register Access

Operand Description

*ARn(T1) Address generated:
ARnH:( [BSAyy +] ARn + T1)

ARn is not modified. ARn is used as a base pointer. T1 is used as an offset from that base
pointer.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR7(T1), AR3

(AR7 references a register.)

AR7H:(AR7 + T1)
= XAR7 + T1

The CPU reads the value at
address XAR7 + T1 and loads
it into AR3. AR7 is not
modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR5(T1)), pair(AR2)

(AR5 references a register.)

First address:
AR5H:(AR5 + T1)
= XAR5 + T1

Second address:
If XAR5 + T1 is even
  (XAR5+ T1) + 1
If XAR5 + T1 is odd
  (XAR5+ T1) – 1

The CPU reads the values at
address XAR5 + T1 and the
following or preceding
address, and loads them into
AR2 and AR3, respectively.
AR5 is not modified.

For details about the
alignment of long words in
data memory, see Data Types
on page 3-5.

6.6.3.14 *ARn(#K16) Used for Memory-Mapped Register Access

Operand Description

*ARn(#K16) Address generated:
ARnH:( [BSAyy +] ARn + K16)

ARn is not modified. ARn is used as a base pointer. The 16-bit signed constant (K16) is used as
an offset from that base pointer.

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR7(#9), AR3

(AR7 references a register.)

AR7H:(AR7 + 9)
= XAR7 + 9

The CPU reads the value at
address XAR7 + 9 and loads
it into AR3. AR7 is not
modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR5(#40)), pair(AR2)

(AR5 references a register.)

First address:
AR5H:(AR5 + 40)
= XAR5 + 40

Second address:
If XAR5 + 40 is even
  (XAR5+ 40) + 1
If XAR5 + 40 is odd
  (XAR5+ 40) – 1

The CPU reads the values at
address XAR5 + 40 and the
following or preceding
address, and loads them into
AR2 and AR3, respectively.
AR5 is not modified.

For details about the
alignment of long words in
data memory, see Data Types
on page 3-5.
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6.6.3.15 *+ARn(#K16) Used for Memory-Mapped Register Access

Operand Description

*+ARn(#K16) 1) ARn modified:
ARn = ARn + K16

2) Address generated:
ARnH:( [BSAyy +] ARn + K16)

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *+AR7(#9), AR3

(AR7 references a register.)

AR7H:(AR7 + 9)
= XAR7 + 9

Before AR7 is used for the
address, the constant is
added to AR7. The CPU
reads the value at address
XAR7 + 9 and loads it into
AR3.

MOV dbl(Lmem), pair(TAx) MOV dbl(*+AR5(#40)), pair(AR2)

(AR5 references a register.)

First address:
AR5H:(AR5 + 40)
= XAR5 + 40

Second address:
If XAR5 + 40 is even
  (XAR5 + 40) + 1
If XAR5 + 40 is odd
  (XAR5 + 40) – 1

Before AR5 is used for the
addresses, the constant is
added to AR5. The CPU
reads the values at address
XAR5 + 40 and the following
or preceding address, and
loads them into AR2 and AR3,
respectively.

For details about the
alignment of long words in
data memory, see Data Types
on page 3-5.
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6.6.3.16 *ARn(short(#k3)) Used for Memory-Mapped Register Access

Operand Description

*ARn(short(#k3)) Address generated:
ARnH:( [BSAyy +] ARn + k3)

ARn is not modified. ARn is used as a base pointer. The 3-bit unsigned constant (k3) is used as
an offset from that base pointer. k3 can be a number from 1 to 7.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *AR7(short(#2)), AR3

(AR7 references a register.)

AR7H:(AR7 + 2)
= XAR7 + 2

The CPU reads the value
at address XAR7 + 2 and
loads it into AR3. AR7 is
not modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*AR5(short(#7))), pair(AR2)

(AR5 references a register.)

First address:
AR5H:(AR5 + 7)
= XAR5 + 7

Second address:
If XAR5 + 7 is even
  (XAR5+ 7) + 1
If XAR5 + 7 is odd
  (XAR5+ 7) – 1

The CPU reads the values
at address XAR5 + 7 and
the following or preceding
address, and loads them
into AR2 and AR3,
respectively. AR5 is not
modified.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.

6.6.3.17 *CDP Used for Memory-Mapped Register Access

Operand Description

*CDP Address generated:
CDPH:[BSAC +] CDP

CDP is not modified.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *CDP, T2

(CDP references a register.)

CDPH:CDP = XCDP The CPU reads the value at
address XCDP and loads it
into T2. CDP is not modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*CDP), pair(T2)

(CDP references a register.)

First address:
XCDP

Second address:
If XCDP is even
  XCDP + 1
If XCDP is odd
  XCDP – 1

The CPU reads the values at
address XCDP and the
following or preceding
address, and loads them into
T2 and T3, respectively. CDP
is not modified.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.
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6.6.3.18 *CDP+ Used for Memory-Mapped Register Access

Operand Description

*CDP+ 1) Address generated:
CDPH:[BSAC +] CDP

2) CDP modified:
If 16-bit operation: CDP = CDP + 1
If 32-bit operation: CDP = CDP + 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *CDP+, T2

(CDP references a register.)

CDPH:CDP = XCDP The CPU reads the value at
address XCDP and loads it into T2.
After being used for the address,
CDP is incremented by 1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*CDP+), pair(T2)

(CDP references a register.)

First address:
XCDP

Second address:
If XCDP is even
  XCDP + 1
If XCDP is odd
  XCDP – 1

The CPU reads the values at
address XCDP and the following or
preceding address, and loads
them into T2 and T3, respectively.
After being used for the addresses,
CDP is incremented by 2.

For details about the alignment of
long words in data memory, see
Data Types on page 3-5.
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6.6.3.19 *CDP– Used for Memory-Mapped Register Access

Operand Description

*CDP– 1) Address generated:
CDPH:[BSAC +] CDP

2) CDP modified:
If 16-bit operation: CDP = CDP – 1
If 32-bit operation: CDP = CDP – 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

MOV Smem, dst MOV *CDP–, T2

(CDP references a register.)

CDPH:CDP = XCDP The CPU reads the value at
address XCDP and loads it
into T2. After being used for
the address, CDP is
decremented by 1.

MOV dbl(Lmem), pair(TAx) MOV dbl(*CDP–), pair(T2)

(CDP references a register.)

First address:
XCDP

Second address:
If XCDP is even
  XCDP + 1
If XCDP is odd
  XCDP – 1

The CPU reads the values
at address XCDP and the
following or preceding
address, and loads them
into T2 and T3, respectively.
After being used for the
addresses, CDP is
decremented by 2.

For details about the
alignment of long words in
data memory, see Data
Types on page 3-5.
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6.6.3.20 *CDP(#K16) Used for Memory-Mapped Register Access

Operand Description

*CDP(#K16) Address generated:
CDPH:( [BSAC +] CDP + K16)

CDP is not modified. CDP is used as a base pointer. The 16-bit signed constant (K16) is used as
an offset from that base pointer.

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *CDP(#9), AR3

(CDP references a register.)

CDPH:(CDP + 9)
= XCDP + 9

The CPU reads the value at
address XCDP + 9 and loads it
into AR3. CDP is not modified.

MOV dbl(Lmem), pair(TAx) MOV dbl(*CDP(#40)), pair(AR2)

(CDP references a register.)

First address:
CDPH:(CDP + 40)
= XCDP + 40

Second address:
If XCDP + 40 is even
  (XCDP+ 40) + 1
If XCDP + 40 is odd
  (XCDP+ 40) – 1

The CPU reads the values at
address XCDP + 40 and the
following or preceding address,
and loads them into AR2 and
AR3, respectively. CDP is not
modified.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.6.3.21 *+CDP(#K16) Used for Memory-Mapped Register Access

Operand Description

*+CDP(#K16) 1) CDP modified:
CDP = CDP + K16

2) Address generated:
CDPH:( [BSAC +] CDP + K16)

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction

Address(es)
Generated
(Linear Addressing) Description

MOV Smem, dst MOV *+CDP(#9), AR3

(CDP references a register.)

CDPH:(CDP + 9)
= XCDP + 9

Before CDP is used for the
address, the constant is added
to CDP. The CPU reads the
value at address XCDP + 9
and loads it into AR3.

MOV dbl(Lmem), pair(TAx) MOV dbl(*+CDP(#40)), pair(AR2)

(CDP references a register.)

First address:
CDPH:(CDP + 40)
= XCDP + 40

Second address:
If XCDP + 40 is even
  (XCDP + 40) + 1
If XCDP + 40 is odd
  (XCDP + 40) – 1

Before CDP is used for the
addresses, the constant is
added to CDP. The CPU reads
the values at address
XCDP + 40 and the following
or preceding address, and
loads them into AR2 and AR3,
respectively.

For details about the alignment
of long words in data memory,
see Data Types on page 3-5.
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6.7 Restrictions on Accesses to Memory-Mapped Registers

In the instruction syntaxes listed in Table 6−19, Smem cannot reference a
memory-mapped register (MMR). No instruction can access a byte within
a memory-mapped register. If Smem is an MMR in one of the following
syntaxes, the DSP sends a hardware bus-error interrupt (BERRINT) request
to the CPU.

Table 6−19. Instructon Syntaxes in Which the Smem Operand Cannot be an
MMR Reference

Syntax in Which Smem
Cannot be an MMR Reference Instruction Type

MOV [uns(]high_byte(Smem)[)], dst Accumulator, Auxiliary, or
Temporary Register Load

MOV [uns(]low_byte(Smem)[)], dst
Temporary Register Load

MOV high_byte(Smem) << #SHIFTW, ACx

MOV low_byte(Smem) << #SHIFTW, ACx

MOV src, high_byte(Smem) Accumulator, Auxiliary, or
Temporary Register Store

MOV src, low_byte(Smem)
Temporary Register Store

In the cases listed in Table 6−20, a memory-mapped register (MMR) cannot
be referenced; otherwise, the DSP sends a hardware bus-error interrupt
(BERRINT) request to the CPU.

Table 6−20. Cases in Which an MMR Reference Cannot be Made

Cases in Which an
MMR Reference Cannot be Made Note

Xmem of dual write

Ymem of dual read

Cmem of coefficient read

Stack access

FAB bus cannot access MMRs.

CAB bus cannot access MMRs.

BAB bus cannot access MMRs.

By call/return/intr/trap/push/pop

When a bus-error occurs, the functionality of the instruction that caused the
error, and of any instruction executed in parallel, cannot be assured.
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6.8 Addressing Register Bits

Direct addressing (see section 6.8.1) and indirect addressing (see section
6.8.2) can be used to address individual register bits or pairs of register bits.
None of the absolute addressing modes support accesses to register bits. Any
access way for I/O space can not be combined with these addressing register
bits.

6.8.1 Addressing Register Bits With the Register-Bit Direct Addressing Mode

You can use the register-bit direct operand @bitoffset to access a register bit
if an instruction has the following syntax element:

Baddr Indicates the address of one bit of data. Only the register bit
test/set/clear/complement instructions support Baddr, and these
instructions enable you to access bits in the following registers
only: the accumulators (AC0–AC3), the auxiliary registers
(AR0–AR7), and the temporary registers (T0–T3).

Table 6−21 provides examples of using @bitoffset to access register bits.

Table 6−21. @bitoffset Used for Register-Bit Access

Example Syntax Example Instruction
Bit Address(es)
Generated Description

BSET Baddr, src BSET @0, AC3 0 The CPU sets bit 0 of AC3.

BTSTP Baddr, src BTSTP @30, AC3 30 and 31 The CPU tests bits 30 and 31 of AC3. It
copies the content of AC0(30) into the TC1
bit of status register ST0_55, and it copies
the content of AC0(31) into the TC2 bit of
ST0_55.

6.8.2 Addressing Register Bits With Indirect Addressing Modes

You can use indirect operands to access register bits if an instruction has the
following syntax element:

Baddr Indicates the address of one bit of data. Only the register bit
test/set/clear/complement instructions support Baddr, and these
instructions enable you to access bits in the following registers
only: the accumulators (AC0–AC3), the auxiliary registers
(AR0–AR7), and the temporary registers (T0–T3).

You must first make sure the pointer contains the correct bit number. For
example, if AR6 is the pointer and you want to access bit 15 of a register, you
could use the following instruction to initialize AR6:

MOV #15, AR6
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Figure 6−15 lists the indirect operands that support accesses of register bits,
and the sections following the table provide details and examples for the
operands.

Figure 6−15. Indirect Operands for Register-Bit Accesses

AR indirect addressing mode:
DSP mode (ARMS = 0):  Control mode (ARMS = 1):
*ARn *ARn
*ARn+ *ARn+
*ARn− *ARn−
*+ARn
*−ARn
*(ARn + T0/AR0) *(ARn + T0/AR0)
*(ARn − T0/AR0) *(ARn − T0/AR0)
*ARn(T0/AR0) *ARn(T0/AR0)
*(ARn + T0B/AR0B)
*(ARn − T0B/AR0B)
*(ARn + T1)
*(ARn − T1)
*ARn(T1)
*ARn(#K16) *ARn(#K16)
*+ARn(#K16) *+ARn(#K16)

*ARn(short(#k3))

CDP indirect addressing mode:
*CDP
*CDP+
*CDP−
*CDP(#k16)
*+CDP(#k16)

6.8.2.1 *ARn Used for Register-Bit Access

Operand Description

*ARn Bit address generated:
[BSAyy +] ARn

ARn is not modified.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *AR2, AC3 AR2

Assume AR2 = 0.

The CPU sets bit 0 of AC3. AR2 is not
modified.

BTSTP Baddr, src BTSTP *AR5, AC3 AR5
AR5 + 1

Assume AR5 = 30.

The CPU tests bits 30 and 31 of AC3.
It copies the content of AC3(30) into
the TC1 bit of status register ST0_55,
and it copies the content of AC3(31)
into the TC2 bit of ST0_55. AR5 is not
modified.
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6.8.2.2 *ARn+ Used for Register-Bit Access

Operand Description

*ARn+ 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
If 1-bit operation: ARn = ARn + 1
If 2-bit operation: ARn = ARn + 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *AR2+, AC3 AR2

Assume AR2 = 0.

The CPU sets bit 0 of AC3. After being
used for the address. AR2 is
incremented by 1.

BTSTP Baddr, src BTSTP *AR5+, AC3 AR5
AR5 + 1

Assume AR5 = 30.

The CPU tests bits 30 and 31 of AC3. It
copies the content of AC3(30) into the
TC1 bit of status register ST0_55, and it
copies the content of AC3(31) into the
TC2 bit of ST0_55. After being used for
the addresses. AR5 is incremented
by 2.

6.8.2.3 *ARn– Used for Register-Bit Access

Operand Description

*ARn– 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
If 1-bit operation: ARn = ARn – 1
If 2-bit operation: ARn = ARn – 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *AR2–, AC3 AR2

Assume AR2 = 0.

The CPU sets bit 0 of AC3. After being
used for the address, AR2 is
decremented by 1.

BTSTP Baddr, src BTSTP *AR5–, AC3 AR5
AR5 + 1

Assume AR5 = 30.

The CPU tests bits 30 and 31 of AC3. It
copies the content of AC3(30) into the
TC1 bit of status register ST0_55, and it
copies the content of AC3(31) into the
TC2 bit of ST0_55. After being used for
the addresses, AR5 is decremented
by 2.
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6.8.2.4 *+ARn Used for Register-Bit Access

Operand Description

*+ARn 1) ARn modified:
If 1-bit operation: ARn = ARn + 1
If 2-bit operation: ARn = ARn + 2

2) Bit address generated:
If 1-bit operation: [BSAyy +] ARn + 1
If 2-bit operation: [BSAyy +] ARn + 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *+AR2, AC3 (AR2 + 1)

Assume (AR2 + 1) = 1.

Before being used for the address, AR2
is incremented by 1. The CPU sets bit 1 of
AC3.

BTSTP Baddr, src BTSTP *+AR5, AC3 (AR5 + 2)
(AR5 + 2) + 1

Assume (AR5 + 2) = 30.

Before being used for the addresses,
AR5 is incremented by 2. The CPU tests
bits 30 and 31 of AC3. It copies the
content of AC3(30) into the TC1 bit of
status register ST0_55, and it copies the
content of AC3(31) into the TC2 bit of
ST0_55.

6.8.2.5 *–ARn Used for Register-Bit Access

Operand Description

*–ARn 1) ARn modified:
If 1-bit operation: ARn = ARn – 1
If 2-bit operation: ARn = ARn – 2

2) Bit address generated:
If 1-bit operation: [BSAyy +] ARn – 1
If 2-bit operation: [BSAyy +] ARn – 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *–AR2, AC3 (AR2 – 1)

Assume (AR2 – 1) = 1.

Before being used for the address, AR2
is decremented by 1. The CPU sets bit
1 of AC3.

BTSTP Baddr, src BTSTP *–AR5, AC3 (AR5 – 2)
(AR5 – 2) + 1

Assume (AR5 – 2) = 30.

Before being used for the addresses,
AR5 is decremented by 2. The CPU
tests bits 30 and 31 of AC3. It copies the
content of AC3(30) into the TC1 bit of
status register ST0_55, and it copies
the content of AC3(31) into the TC2 bit
of ST0_55.
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6.8.2.6 *(ARn + T0/AR0) Used for Register-Bit Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn + T0) 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn + T0

*(ARn + AR0) 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn + AR0

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *(AR2 + T0), AC3 AR2

Assume AR2 = 0.

The CPU sets bit 0 of AC3. After
being used for the address, AR2 is
incremented by the number in T0.

BTSTP Baddr, src BTSTP *(AR5 + T0), AC3 AR5
AR5 + 1

Assume AR5 = 30.

The CPU tests bits 30 and 31
of AC3. It copies the content of
AC3(30) into the TC1 bit of status
register ST0_55, and it copies the
content of AC3(31) into the TC2 bit
of ST0_55. After being used for the
addresses, AR5 is incremented by
the number in T0.

6.8.2.7 *(ARn – T0/AR0) Used for Register-Bit Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn – T0) 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn – T0

*(ARn – AR0) 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn – AR0

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *(AR2 – T0), AC3 AR2

Assume AR2 = 0.

The CPU sets bit 0 of AC3. After being
used for the address, AR2 is
decremented by the number in T0.

BTSTP Baddr, src BTSTP *(AR5 – T0), AC3 AR5
AR5 + 1

Assume AR5 = 30.

The CPU tests bits 30 and 31 of AC3. It
copies the content of AC3(30) into the
TC1 bit of status register ST0_55, and
it copies the content of AC3(31) into
the TC2 bit of ST0_55. After being
used for the addresses, AR5 is
decremented by the number in T0.
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6.8.2.8 *ARn(T0/AR0) Used for Register-Bit Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*ARn(T0) Bit address generated:
[BSAyy +] ARn + T0

ARn is not modified. ARn is used as
a base pointer. T0 is used as an
offset from that base pointer.

*ARn(AR0) Bit address generated:
[BSAyy +] ARn + AR0

ARn is not modified. ARn is used as
a base pointer. AR0 is used as an
offset from that base pointer.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *AR2(T0), AC3 (AR2 + T0)

Assume AR2 = 0
and T0 = 15.

The CPU sets bit 15 of AC3. AR2 is
not modified.

BTSTP Baddr, src BTSTP *AR5(T0), AC3 (AR5 + T0)
(AR5 + T0) + 1

Assume AR5 = 25
and T0 = 5.

The CPU tests bits 30 and 31
of AC3. It copies the content of
AC3(30) into the TC1 bit of status
register ST0_55, and it copies the
content of AC3(31) into the TC2 bit
of ST0_55. AR5 is not modified.
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6.8.2.9 *(ARn + T0B/AR0B) Used for Register-Bit Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn + T0B) 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn + T0
(done with reverse carry
propagation)

See Note about circular addressing
restriction.

*(ARn + AR0B) 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn + AR0
(done with reverse carry
propagation)

See Note about circular addressing
restriction.

Note: When this bit-reverse operand is used, ARn cannot be used as a circular pointer. If ARn is configured in ST2_55 for
circular addressing, the corresponding buffer start address register value (BSAyy) is added to ARn, but ARn is not
modified so as to remain inside a circular buffer.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *(AR2 + T0B), AC3 AR2

Assume AR2 = 0.

The CPU sets bit 0 of AC3. After
being used for the address, AR2 is
incremented by the number T0.
Reverse carry propagation is used
during the addition.

BTSTP Baddr, src BTSTP *(AR5 + T0B), AC3 AR5
AR5 + 1

Assume AR5 = 30.

The CPU tests bits 30 and 31
of AC3. It copies the content of
AC3(30) into the TC1 bit of status
register ST0_55, and it copies the
content of AC3(31) into the TC2 bit
of ST0_55. After being used for the
addresses, AR5 is incremented by
the number T0. Reverse carry
propagation is used during the
addition.
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6.8.2.10 *(ARn – T0B/AR0B) Used for Register-Bit Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn – T0B) 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn – T0
(done with reverse carry
propagation)

See Note about circular addressing
restriction.

*(ARn – AR0B) 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn – AR0
(done with reverse carry
propagation)

See Note about circular addressing
restriction.

Note: When this bit-reverse operand is used, ARn cannot be used as a circular pointer. If ARn is configured in ST2_55 for
circular addressing, the corresponding buffer start address register value (BSAyy) is added to ARn, but ARn is not
modified so as to remain inside a circular buffer.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *(AR2 – T0B), AC3 AR2

Assume AR2 = 0.

The CPU sets bit 0 of AC3. After being
used for the address, AR2 is
decremented by the number in T0.
Reverse carry propagation is used
during the subtraction.

BTSTP Baddr, src BTSTP *(AR5 – T0B), AC3 AR5
AR5 + 1

Assume AR5 = 30.

The CPU tests bits 30 and 31 of AC3. It
copies the content of AC3(30) into the
TC1 bit of status register ST0_55, and it
copies the content of AC3(31) into the
TC2 bit of ST0_55. After being used for
the addresses, AR5 is decremented by
the number in T0. Reverse carry
propagation is used during the
subtraction.
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6.8.2.11 *(ARn + T1) Used for Register-Bit Access

Operand Description

*(ARn + T1) 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn + T1

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BCLR Baddr, src BCLR *(AR4 + T1), AC2 AR4

Assume AR4 = 0.

The CPU clears bit 0 of AC2. After being
used for the address, AR4 is
incremented by the number in T1.

BTSTP Baddr, src BTSTP *(AR1 + T1), AC2 AR1
AR1 + 1

Assume AR1 = 30.

The CPU tests bits 30 and 31 of AC2. It
copies the content of AC2(30) into the
TC1 bit of status register ST0_55, and it
copies the content of AC2(31) into the
TC2 bit of ST0_55. After being used for
the addresses, AR1 is incremented by
the number in T1.

6.8.2.12 *(ARn – T1) Used for Register-Bit Access

Operand Description

*(ARn – T1) 1) Bit address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn – T1

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BCLR Baddr, src BCLR *(AR4 – T1), AC2 AR4

Assume AR4 = 0.

The CPU clears bit 0 of AC2. After
being used for the address, AR4 is
decremented by the number in T1.

BTSTP Baddr, src BTSTP *(AR1 – T1), AC2 AR1
AR1 + 1

Assume AR1 = 30.

The CPU tests bits 30 and 31 of AC2. It
copies the content of AC2(30) into the
TC1 bit of status register ST0_55, and
it copies the content of AC2(31) into
the TC2 bit of ST0_55. After being
used for the addresses, AR1 is
decremented by the number in T1.
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6.8.2.13 *ARn(T1) Used for Register-Bit Access

Operand Description

*ARn(T1) Bit address generated:
[BSAyy +] ARn + T1

ARn is not modified. ARn is used as a base pointer. T1 is used as an offset from that base
pointer.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BCLR Baddr, src BCLR *AR4(T1), AC2 (AR4 + T1)

Assume AR4 = 0
and T1 = 15.

The CPU clears bit 15 of AC2. AR4 is
not modified.

BTSTP Baddr, src BTSTP *AR1(T1), AC2 (AR1 + T1)
(AR1+ T1) + 1

Assume AR1 = 25
and T1 = 5.

The CPU tests bits 30 and 31 of AC2.
It copies the content of AC2(30) into
the TC1 bit of status register ST0_55,
and it copies the content of AC2(31)
into the TC2 bit of ST0_55. AR1 is not
modified.

6.8.2.14 *ARn(#K16) Used for Register-Bit Access

Operand Description

*ARn(#K16) Bit address generated:
[BSAyy +] ARn + K16

ARn is not modified. ARn is used as a base pointer. The 16-bit signed constant (K16) is used as
an offset from that base pointer.

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BCLR Baddr, src BCLR *AR4(#31), AC2 (AR4 + 31)

Assume AR4 = 0.

The CPU clears bit 31 of AC2. AR4 is not
modified.

BTSTP Baddr, src BTSTP *AR1(#5), AC2 (AR1 + 5)
(AR1+ 5) + 1

Assume AR1 = 16.

The CPU tests bits 21 and 22 of AC2. It
copies the content of AC2(21) into the TC1
bit of status register ST0_55, and it copies
the content of AC2(22) into the TC2 bit of
ST0_55. AR1 is not modified.
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6.8.2.15 *+ARn(#K16) Used for Register-Bit Access

Operand Description

*+ARn(#K16) 1) ARn modified:
ARn = ARn + K16

2) Bit address generated:
[BSAyy +] ARn + K16

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BCLR Baddr, src BCLR *+AR4(#31), AC2 (AR4 + 31)

Assume AR4 = 0.

Before AR4 is used for the address, the
constant is added to AR4. The CPU
clears bit 31 of AC2.

BTSTP Baddr, src BTSTP *+AR1(#5), AC2 (AR1 + 5)
(AR1 + 5) + 1

Assume AR1 = 16.

Before AR1 is used for the addresses,
the constant is added to AR1. The CPU
tests bits 21 and 22 of AC2. It copies the
content of AC2(21) into the TC1 bit of
status register ST0_55, and it copies the
content of AC2(22) into the TC2 bit of
ST0_55.

6.8.2.16 *ARn(short(#k3)) Used for Register-Bit Access

Operand Description

*ARn(short(#k3)) Bit address generated:
[BSAyy +] ARn + k3

ARn is not modified. ARn is used as a base pointer. The 3-bit unsigned constant (k3) is used as
an offset from that base pointer. k3 can be a number from 1 to 7.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BCLR Baddr, src BCLR *AR4(short(#3)), AC2 (AR4 + 3)

Assume AR4 = 0.

The CPU clears bit 3 of AC2.
AR4 is not modified.

BTSTP Baddr, src BTSTP *AR1(short(#5)), AC2 (AR1 + 5)
(AR1+ 5) + 1

Assume AR1 = 16.

The CPU tests bits 21 and 22
of AC2. It copies the content of
AC2(21) into the TC1 bit
of status register ST0_55, and it
copies the content of AC2(22)
into the TC2 bit of ST0_55. AR1
is not modified.
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6.8.2.17 *CDP Used for Register-Bit Access

Operand Description

*CDP Bit address generated:
[BSAC +] CDP

CDP is not modified.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *CDP, AC3 CDP

Assume CDP = 0.

The CPU sets bit 0 of AC3. CDP is not
modified.

BTSTP Baddr, src BTSTP *CDP, AC3 CDP
CDP + 1

Assume CDP = 30.

The CPU tests bits 30 and 31 of AC3. It
copies the content of AC3(30) into the
TC1 bit of status register ST0_55, and it
copies the content of AC3(31) into the
TC2 bit of ST0_55. CDP is not modified.

6.8.2.18 *CDP+ Used for Register-Bit Access

Operand Description

*CDP+ 1) Bit address generated:
[BSAC +] CDP

2) CDP modified:
If 1-bit operation: CDP = CDP + 1
If 2-bit operation: CDP = CDP + 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *CDP+, AC3 CDP

Assume CDP = 0.

The CPU sets bit 0 of AC3. After
being used for the address, CDP is
incremented by 1.

BTSTP Baddr, src BTSTP *CDP+, AC3 CDP
CDP + 1

Assume CDP = 30.

The CPU tests bits 30 and 31
of AC3. It copies the content of
AC3(30) into the TC1 bit of status
register ST0_55, and it copies the
content of AC3(31) into the TC2 bit
of ST0_55. After being used for the
addresses, CDP is incremented
by 2.
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6.8.2.19 *CDP– Used for Register-Bit Access

Operand Description

*CDP– 1) Bit address generated:
[BSAC +] CDP

2) CDP modified:
If 1-bit operation: CDP = CDP – 1
If 2-bit operation: CDP = CDP – 2

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BSET Baddr, src BSET *CDP–, AC3 CDP

Assume CDP = 0.

The CPU sets bit 0 of AC3. After being
used for the address, CDP is
decremented by 1.

BTSTP Baddr, src BTSTP *CDP–, AC3 CDP
CDP + 1

Assume CDP = 30.

The CPU tests bits 30 and 31 of AC3. It
copies the content of AC3(30) into the
TC1 bit of status register ST0_55, and it
copies the content of AC3(31) into the
TC2 bit of ST0_55. After being used for
the addresses, CDP is decremented
by 2.

6.8.2.20 *CDP(#K16) Used for Register-Bit Access

Operand Description

*CDP(#K16) Bit address generated:
[BSAC +] CDP + K16

CDP is not modified. CDP is used as a base pointer. The 16-bit signed constant (K16) is used as
an offset from that base pointer.

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BCLR Baddr, src BCLR *CDP(#31), AC2 (CDP + 31)

Assume CDP = 0.

The CPU clears bit 31 of AC2. CDP is
not modified.

BTSTP Baddr, src BTSTP *CDP(#5), AC2 (CDP + 5)
(CDP+ 5) + 1

Assume CDP = 16.

The CPU tests bits 21 and 22 of AC2.
It copies the content of AC2(21) into
the TC1 bit of status register ST0_55,
and it copies the content of AC2(22)
into the TC2 bit of ST0_55. CDP is not
modified.
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6.8.2.21 *+CDP(#K16) Used for Register-Bit Access

Operand Description

*+CDP(#K16) 1) CDP modified:
CDP = CDP + K16

2) Bit address generated:
[BSAC +] CDP + K16

Note: When an instruction uses this operand, the constant, K16, is encoded in a 2-byte extension to the instruction. Because of
the extension, an instruction using this operand cannot be executed in parallel with another instruction.

Example Syntax Example Instruction
Address(es) Generated
(Linear Addressing) Description

BCLR Baddr, src BCLR *+CDP(#31), AC2 (CDP + 31)

Assume CDP = 0.

Before CDP is used for the address, the
constant is added to CDP. The CPU
clears bit 31 of AC2.

BTSTP Baddr, src BTSTP *+CDP(#5), AC2 (CDP + 5)
(CDP + 5) + 1

Assume CDP = 16.

Before CDP is used for the addresses,
the constant is added to CDP. The CPU
tests bits 21 and 22 of AC2. It copies the
content of AC2(21) into the TC1 bit of
status register ST0_55, and it copies the
content of AC2(22) into the TC2 bit of
ST0_55.
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6.9 Addressing I/O Space

Absolute, direct, and indirect addressing can be used to address the
peripheral registers in I/O space:

Addressing Type See ...

Absolute This page

Direct Page 6-98

Indirect Page 6-98

There are some restrictions on accesses to I/O space. See section 6.10 for the
details.

6.9.1 Addressing I/O Space With the I/O Absolute Addressing Mode

The defined operand *port(#k16) of the algebraic syntax or the qualified
operand port(#k16) of the mnemonic syntax can be used to access only
I/O space. You can use this operand in any instruction with the following syntax
element:

Smem Indicates one word (16 bits) of data

Table 6−22 provides examples of using *port(#k16) or port(#k16) to access
locations in I/O space.

Note:

When an instruction uses *port(#k16) or port(#k16), the unsigned 16-bit
constant, k16, is encoded in a 2-byte extension to the instruction. Because
of the extension, an instruction using this operand cannot be executed in
parallel with another instruction.

Table 6−22. *port(#k16) or port(#k16) Used for I/O-Space Access

Example Syntax Example Instruction Address(es) Generated Description

dst = Smem
or
MOV Smem, dst

AR2 = *port(#2)
or
MOV port(#2), AR2

k16 = 0002h The CPU loads the value at
I/O address 0002h into AR2.

Smem = src
or
MOV src, Smem

*port(#0F000h) = AR0
or
MOV AR0, port(#0F000h)

k16 = F000h The CPU stores the content of AR0 to
the location at I/O address F000h.
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6.9.2 Addressing I/O Space With the PDP Direct Addressing Mode

You can use the PDP direct operand @Poffset to access I/O space if an
instruction has the following syntax element:

Smem Indicates one word (16 bits) of data

You must use a port() qualifier to indicate that you are accessing an I/O-space
location rather than a data-memory location. If you use algebraic instructions,
you place the readport() instruction qualifier or the writeport() instruction
qualifier in parallel with the instruction that performs the I/O-space access. If
you use mnemonic instructions, port() must enclose the qualified read or write
operand.

Table 6−23 provides examples of using @Poffset and the port() qualifier to
access I/O space. The 9-bit peripheral data page (PDP) value is concatenated
with the 7 bits of Poffset.

Table 6−23. @Poffset Used for I/O-Space Access

Example Syntax Example Instruction
Address Generated
For PDP = 511 Description

MOV Smem, dst MOV port(@0), T2 PDP:Poffset = FF80h An offset of 0 indicates the top of
the current peripheral data page. The
CPU copies the value at the top of
peripheral data page 511 (address
FF80h) and loads it into T2.

MOV src, Smem MOV T2, port(@127) PDP:Poffset = FFFFh An offset of 127 indicates the bottom
of the current peripheral data page.
The CPU copies the content of T2 and
writes it to the bottom of peripheral
data page 511 (address FFFFh).

6.9.3 Addressing I/O Space With Indirect Addressing Modes

You can use an indirect operand to access I/O space if an instruction has the
following syntax element:

Smem Indicates one word (16 bits) of data

You must use a port() qualifier to indicate that you are accessing an I/O-space
location rather than a data-memory location. If you use algebraic instructions,
you place the readport() instruction qualifier or the writeport() instruction
qualifier in parallel with the instruction that performs the I/O-space access. If
you use mnemonic instructions, port() must enclose the qualified read or write
operand.

Figure 6−16 lists the indirect operands that support accesses to I/O space,
and the sections following the table provide details and examples for the
operands. These examples use mnemonic instructions.
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Figure 6−16. Indirect Operands for I/O-Space Accesses

AR indirect addressing mode:
DSP mode (ARMS = 0): Control mode (ARMS = 1):
*ARn *ARn
*ARn+ *ARn+
*ARn− *ARn−
*+ARn
*−ARn
*(ARn + T0/AR0) *(ARn + T0/AR0)
*(ARn − T0/AR0) *(ARn − T0/AR0)
*ARn(T0/AR0) *ARn(T0/AR0)
*(ARn + T0B/AR0B)
*(ARn − T0B/AR0B)
*(ARn + T1)
*(ARn − T1)
*ARn(T1)

*ARn(short(#k3))

CDP indirect addressing mode:
*CDP
*CDP+
*CDP−

6.9.3.1 *ARn Used for I/O-Space Access

Operand Description

*ARn I/O address generated:
[BSAyy +] ARn

ARn is not modified.

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*AR4), T2 AR4

Assume AR4 = FF80h.

The CPU reads the value at
I/O address FF80h and loads it into
T2. AR4 is not modified.

MOV src, Smem MOV T2, port(*AR5) AR5

Assume AR5 = FFFFh.

The CPU reads the content of T2 and
writes it to I/O address FFFFh. AR5 is
not modified.
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6.9.3.2 *ARn+ Used for I/O-Space Access

Operand Description

*ARn+ 1) I/O address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn + 1

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*AR4+), T2 AR4

Assume AR4 = FF80h.

The CPU reads the value at
I/O address FF80h and loads it into
T2. After being used for the address,
AR4 is incremented by 1.

MOV src, Smem MOV T2, port(*AR5+) AR5

Assume AR5 = FFFFh.

The CPU reads the content of T2 and
writes it to I/O address FFFFh. After
being used for the address, AR5 is
incremented by 1.

6.9.3.3 *ARn– Used for I/O-Space Access

Operand Description

*ARn– 1) I/O address generated: [BSAyy +] ARn

2) ARn modified: ARn = ARn – 1

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*AR4–), T2 AR4

Assume AR4 = FF80h.

The CPU reads the value at
I/O address FF80h and loads it into
T2. After being used for the
address, AR4 is decremented by 1.

MOV src, Smem MOV T2, port(*AR5–) AR5

Assume AR5 = FFFFh.

The CPU reads the content of T2
and writes it to I/O address FFFFh.
After being used for the address,
AR5 is decremented by 1.
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6.9.3.4 *+ARn Used for I/O-Space Access

Operand Description

*+ARn 1) ARn modified: ARn = ARn + 1

2) I/O address generated: [BSAyy +] ARn + 1

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*+AR4), T2 (AR4 + 1)

Assume AR4 = FF7Fh.

Before being used for the
address, AR4 is incremented by 1.
The CPU reads the value at
I/O address FF80h and loads it
into T2.

MOV src, Smem MOV T2, port(*+AR5) (AR5 + 1)

Assume AR5 = FFFEh.

Before being used for the
address, AR5 is incremented by 1.
The CPU reads the content of T2
and writes it to I/O address
FFFFh.

6.9.3.5 *–ARn Used for I/O-Space Access

Operand Description

*–ARn 1) ARn modified: ARn = ARn – 1

2) I/O address generated: [BSAyy +] ARn – 1

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*–AR4), T2 (AR4 – 1)

Assume AR4 = FF80h.

Before being used for the address,
AR4 is decremented by 1. The CPU
reads the value at I/O address
FF7Fh and loads it into T2.

MOV src, Smem MOV T2, port(*–AR5) (AR5 – 1)

Assume AR5 = FFFFh.

Before being used for the address,
AR5 is decremented by 1. The CPU
reads the content of T2 and writes it
to I/O address FFFEh.
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6.9.3.6 *(ARn + T0/AR0) Used for I/O-Space Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn + T0) 1) I/O address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn + T0

*(ARn + AR0) 1) I/O address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn + AR0

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*(AR4 + T0)), T2 AR4

Assume AR4 = FF80h.

The CPU reads the value at
I/O address FF80h and loads it into
T2. After being used for the address,
AR4 is incremented by the number in
T0.

MOV src, Smem MOV T2, port(*(AR5 + T0)) AR5

Assume AR5 = FFFFh.

The CPU reads the content of T2 and
writes it to I/O address FFFFh. After
being used for the address, AR5 is
incremented by the number in T0.

6.9.3.7 *(ARn – T0/AR0) Used for I/O-Space Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn – T0) 1) I/O address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn – T0

*(ARn – AR0) 1) I/O address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn – AR0

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*(AR4 – T0)), T2 AR4

Assume AR4 = FF80h.

The CPU reads the value at I/O address
FF80h and loads it into T2. After being
used for the address, AR4 is
decremented by the number in T0.

MOV src, Smem MOV T2, port(*(AR5 – T0)) AR5

Assume AR5 = FFFFh.

The CPU reads the content of T2 and
writes it to I/O address FFFFh. After
being used for the address, AR5 is
decremented by the number in T0.
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6.9.3.8 *ARn(T0/AR0) Used for I/O-Space Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*ARn(T0) I/O address generated:
[BSAyy +] ARn + T0

ARn is not modified. ARn is
used as a base pointer. T0 is
used as an offset from that
base pointer.

*ARn(AR0) I/O address generated:
[BSAyy +] ARn + AR0

ARn is not modified. ARn is
used as a base pointer. AR0
is used as an offset from that
base pointer.

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*AR4(T0)), T2 (AR4 + T0)

Assume AR4 = FF7Dh
and T0 = 3.

The CPU reads the value at I/O address
FF80h and loads it into T2. AR4 is not
modified.

MOV src, Smem MOV T2, port(*AR5(T0)) (AR5 + T0)

Assume AR5 = FFFAh
and T0 = 5.

The CPU reads the content of T2 and
writes it to I/O address FFFFh. AR5 is
not modified.

6.9.3.9 *(ARn + T0B/AR0B) Used for I/O-Space Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn + T0B) 1) I/O address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn + T0
(done with reverse carry
propagation)

See Note about circular addressing
restriction.

*(ARn + AR0B) 1) I/O address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn + AR0
(done with reverse carry
propagation)

See Note about circular addressing
restriction.

Note: When this bit-reverse operand is used, ARn cannot be used as a circular pointer. If ARn is configured in ST2_55 for
circular addressing, the corresponding buffer start address register value (BSAyy) is added to ARn, but ARn is not
modified so as to remain inside a circular buffer.

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*(AR4 + T0B)), T2 AR4

Assume AR4 = FF80h.

The CPU reads the value at I/O address
FF80h and loads it into T2. After being
used for the address, AR4 is
incremented by the number in T0.
Reverse carry propagation is used
during the addition.

MOV src, Smem MOV T2, port(*(AR5 + T0B)) AR5

Assume AR5 = FFFFh.

The CPU reads the content of T2 and
writes it to I/O address FFFFh. After
being used for the address, AR5 is
incremented by the number in T0.
Reverse carry propagation is used
during the addition.
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6.9.3.10 *(ARn – T0B/AR0B) Used for I/O-Space Access

C54CM = 0 C54CM = 1

Operand Description Operand Description

*(ARn – T0B) 1) I/O address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn – T0
(done with reverse carry
propagation)

See Note about circular
addressing restriction.

*(ARn – AR0B) 1) I/O address generated:
[BSAyy +] ARn

2) ARn modified:
ARn = ARn – AR0
(done with reverse carry
propagation)

See Note about circular
addressing restriction.

Note: When this bit-reverse operand is used, ARn cannot be used as a circular pointer. If ARn is configured in ST2_55 for
circular addressing, the corresponding buffer start address register value (BSAyy) is added to ARn, but ARn is not
modified so as to remain inside a circular buffer.

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*(AR4 – T0B)), T2 AR4

Assume AR4 = FF80h.

The CPU reads the value at I/O address
FF80h and loads it into T2. After being
used for the address, AR4 is
decremented by the number in T0.
Reverse carry propagation is used
during the subtraction.

MOV src, Smem MOV T2, port(*(AR5 – T0B)) AR5

Assume AR5 = FFFFh.

The CPU reads the content of T2 and
writes it to I/O address FFFFh. After
being used for the address, AR5 is
decremented by the number in T0.
Reverse carry propagation is used
during the subtraction.

6.9.3.11 *(ARn + T1) Used for I/O-Space Access

Operand Description

*(ARn + T1) 1) I/O address generated: [BSAyy +] ARn

2) ARn modified: ARn = ARn + T1

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*(AR7 + T1)), AR3 AR7

Assume AR7 = FF80h.

The CPU reads the value at I/O address
FF80h and loads it into AR3. After being
used for the address, AR7 is
incremented by the number in T1.

MOV src, Smem MOV AR4, port(*(AR5 + T1)) AR5

Assume AR5 = FFFFh.

The CPU reads the content of AR4 and
writes it to I/O address FFFFh. After
being used for the address, AR5 is
incremented by the number in T1.
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6.9.3.12 *(ARn – T1) Used for I/O-Space Access

Operand Description

*(ARn – T1) 1) I/O address generated: [BSAyy +] ARn

2) ARn modified: ARn = ARn – T1

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*(AR7 – T1)), AR3 AR7

Assume AR7 = FF80h.

The CPU reads the value at I/O address
FF80h and loads it into AR3. After being
used for the address, AR7 is
decremented by the number in T1.

MOV src, Smem MOV AR4, port(*(AR5 – T1)) AR5

Assume AR5 = FFFFh.

The CPU reads the content of AR4 and
writes it to I/O address FFFFh. After
being used for the address, AR5 is
decremented by the number in T1.

6.9.3.13 *ARn(T1) Used for I/O-Space Access

Operand Description

*ARn(T1) I/O address generated: [BSAyy +] ARn + T1

ARn is not modified. ARn is used as a base pointer. T1 is used as an offset from that base pointer.

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*AR7(T1)), AR3 (AR7 + T1)

Assume AR7 = FF7Dh
and T1 = 3.

The CPU reads the value at
I/O address FF80h and loads
it into AR3. AR7 is not
modified.

MOV src, Smem MOV AR4, port(*AR5(T1)) (AR5 + T1)

Assume AR5 = FFFAh
and T1 = 5.

The CPU reads the content of
AR4 and writes it to
I/O address FFFFh. AR5 is
not modified.

6.9.3.14 *ARn(short(#k3)) Used for I/O-Space Access

Operand Description

*ARn(short(#k3)) Address generated: [BSAyy +] ARn + k3

ARn is not modified. ARn is used as a base pointer. The 3-bit unsigned constant (k3) is used as
an offset from that base pointer. k3 can be a number from 1 to 7.

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*AR7(short(#4))), AR3 (AR7 + 4)

Assume AR7 = FF70h.

The CPU reads the value at I/O address
FF74h and loads it into AR3. AR7 is not
modified.

MOV src, Smem MOV AR4, port(*AR5(short(#7))) (AR5 + 7)

Assume AR5 = FFF0h.

The CPU reads the content of AR4 and
writes it to I/O address FFF7h. AR5 is not
modified.
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6.9.3.15 *CDP Used for I/O-Space Access

Operand Description

*CDP I/O address generated: [BSAC +] CDP

CDP is not modified.

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*CDP), T2 CDP

Assume CDP = FF80h.

The CPU reads the value at
I/O address FF80h and loads
it into T2. CDP is not modified.

MOV src, Smem MOV T2, port(*CDP) CDP

Assume CDP = FFFFh.

The CPU reads the content of
T2 and writes it to I/O address
FFFFh. CDP is not modified.

6.9.3.16 *CDP+ Used for I/O-Space Access

Operand Description

*CDP+ 1) I/O address generated: [BSAC +] CDP

2) CDP modified: CDP = CDP + 1

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*CDP+), T2 CDP

Assume CDP = FF80h.

The CPU reads the value at I/O address
FF80h and loads it into T2. After being
used for the address, CDP is
incremented by 1.

MOV src, Smem MOV T2, port(*CDP+) CDP

Assume CDP = FFFFh.

The CPU reads the content of T2 and
writes it to I/O address FFFFh. After
being used for the address, CDP is
incremented by 1.

6.9.3.17 *CDP– Used for I/O-Space Access

Operand Description

*CDP– 1) I/O address generated: [BSAC +] CDP

2) CDP modified: CDP = CDP – 1

Example Syntax Example Instruction
Address Generated
(Linear Addressing) Description

MOV Smem, dst MOV port(*CDP–), T2 CDP

Assume CDP = FF80h.

The CPU reads the value at
I/O address FF80h and loads it into
T2. After being used for the address,
CDP is decremented by 1.

MOV src, Smem MOV T2, port(*CDP–) CDP

Assume CDP = FFFFh.

The CPU reads the content of T2 and
writes it to I/O address FFFFh. After
being used for the address, CDP is
decremented by 1.
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6.10 Restrictions on Accesses to I/O Space

The following indirect operands cannot be used for accesses to I/O space. An
instruction using one of these operands requires a 2-byte extension for the
constant. This extension would prevent the use of the port() qualifier needed
to indicate an I/O-space access.

Table 6−24. Indirect Operands That do not Support Accesses to I/O Space

Operand That Does not
Support I/O-Space Accesses Pointer Modification

*ARn(#K16) ARn is not modified. ARn is used as a
base pointer. The 16-bit signed constant
(K16) is used as an offset from that base
pointer.

*+ARn(#K16) The 16-bit signed constant (K16) is
added to ARn before the address
is generated.

*CDP(#K16) CDP is not modified. CDP is used as a
base pointer. The 16-bit signed constant
(K16) is used as an offset from that base
pointer.

*+CDP(#K16) The 16-bit signed constant (K16) is
added to CDP before the address
is generated.

Also, the delay operation cannot be used for accesses to I/O space. Therefore,
the syntaxes listed in Table 6−25 do not support I/O-space accesses.

Table 6−25. Instruction Syntaxes That do not Support Accesses to I/O Space

Syntax That Does not
Support I/O-Space Accesses Instruction Type

DELAY Smem Memory Delay

MACM[R]Z [T3 = ] Smem, Cmem, ACx Multiply and Accumulate with delay

Any illegal access to I/O space generates a hardware bus-error interrupt
(BERRINT) to be handled by the CPU.
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6.11 Circular Addressing

Circular addressing can be used with any of the indirect addressing modes.
Each of the eight auxiliary registers (AR0–AR7) and the coefficient data
pointer (CDP) can be independently configured to be linearly or circularly
modified as they act as pointers to data or to register bits. This configuration
is done with a bit in status register ST2_55 (see Table 6−26). To choose
circular modification, set the bit.

The size of a circular buffer is defined by one of three registers—BK03, BK47,
or BKC (see Table 6−26). The buffer size register defines the number of words
in a buffer of words, or it defines the number of bits in a buffer of bits within a
register.

For a buffer of words in data space, the buffer must be placed in one of the
128 main data pages of data space. Each address within the buffer has 23 bits,
and the 7 MSBs are the main data page. Set the main data page in CDPH or
ARnH, where n is the number of the auxiliary register. CDPH can be loaded
individually, but ARnH must be loaded via its extended auxiliary register. For
example, to load AR0H, you must load XAR0, which is the concatenation
AR0H:AR0. Within the main data page, the start of the buffer is defined by the
value you load into the appropriate 16-bit buffer start address register (see
Table 6−26). The value you load into the pointer (ARn or CDP) acts as an
index, selecting words relative to the start address.

For a buffer of bits, the buffer start address register defines the reference bit,
and the pointer selects bits relative to the position of that reference bit. You
need only load ARn or CDP; you do not have to load XARn or XCDP.

Table 6−26. Pointers and the Associated Bits and Registers for
Circular Addressing 

Pointer
Linear/Circular

Configuration Bit
Supplier of

Main Data Page
Buffer Start Address

Register
Buffer Size

Register

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

CDP

ST2_55(0) = AR0LC

ST2_55(1) = AR1LC

ST2_55(2) = AR2LC

ST2_55(3) = AR3LC

ST2_55(4) = AR4LC

ST2_55(5) = AR5LC

ST2_55(6) = AR6LC

ST2_55(7) = AR7LC

ST2_55(8) = CDPLC

AR0H

AR1H

AR2H

AR3H

AR4H

AR5H

AR6H

AR7H

CDPH

BSA01

BSA01

BSA23

BSA23

BSA45

BSA45

BSA67

BSA67

BSAC

BK03

BK03

BK03

BK03

BK47

BK47

BK47

BK47

BKC
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6.11.1 Configuring AR0–AR7 and CDP for Circular Addressing

Each auxiliary register ARn has its own linear/circular configuration bit in
ST2_55:

ARnLC ARn Is Used For ...

0 Linear addressing

1 Circular addressing

The CDPLC bit in status register ST2_55 configures the DSP to use CDP for
linear addressing or circular addressing:

CDPLC CDP Is Used For ...

0 Linear addressing

1 Circular addressing

You can use the circular addressing instruction qualifier if you want every
pointer used by the instruction to be modified circularly. If you are using
mnemonic instructions, just add .CR to the end of the instruction mnemonic
(for example, ADD.CR). If you are using algebraic instructions, add the
circular() qualifier in parallel with the instruction (instruction || circular()).
The circular addressing instruction qualifier overrides the linear/circular
configuration in ST2_55.

6.11.2 Circular Buffer Implementation

As an example of how to set up a circular buffer, consider this procedure for
a circular buffer of words in data memory:

1) Initialize the appropriate buffer size register (BK03, BK47, or BKC). For
example, for a buffer of size 8, load the BK register with 8.

2) Initialize the appropriate configuration bit in ST2_55 to choose circular
modification for the selected pointer.

3) Initialize the appropriate extended register (XARn or XCDP) to select a
main data page (in the 7 most significant bits). For example, if auxiliary
register 3 (AR3) is the circular pointer, load extended auxiliary register 3
(XAR3). If CDP is the circular pointer, load XCDP.

4) Initialize the appropriate buffer start address register (BSA01, BSA23,
BSA45, BSA67, or BSAC). The main data page, in XARn(22−16) or
XCDP(22−16), concatenated with the content of the BSA register defines
the 23-bit start address of the buffer.
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5) Load the selected pointer, ARn or CDP, with a value from 0 to
(buffer size − 1). For example, if you are using AR1 and the buffer size
is 8, load AR1 with a value less than or equal to 7.

A circular buffer of size R must start on an N-bit boundary, where N is the
smallest integer that satisfies the relationship, 2N > R. For example, for a
buffer size R = 8, N is 4. In this case, the top of the circular buffer is
the address generated when the 4 LSBs of the pointer (ARn or CDP) are
0s. When the address incrementing leads beyond the buffer, the 4 LSBs of
the pointer are forced to 0s.

If you are using indirect addressing operands with offsets, make sure that the
absolute value of each offset is less than or equal to (buffer size − 1). Likewise,
if the circular pointer is to be incremented or decremented by a programmed
amount (supplied by a constant or by T0, AR0, or T1), make sure the absolute
value of that amount is less than or equal to (buffer size − 1).

After the initialization, you have a 23-bit address of the following form:

ARnH:(BSAxx + ARn),
or
CDPH:(BSAC + CDP)

Increments and decrements are made to the 16-bit pointer (ARn or CDP) only.
You cannot address data across main data pages without changing the value
in the corresponding extension register (ARnH or CDPH).

Note:

Although an increment past FFFFh or a decrement past 0000h causes the
pointer value to wrap around, do not make use of this behavior; it is
not supported. Also, the BSAxx or BSAC addition must not increment the
address beyond FFFFh.
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Example 6−1 demonstrates initializing and then accessing a circular buffer.

Example 6−1. Initializing and Accessing a C55x Circular Buffer

MOV #3, BK03
BSET AR1LC
AMOV #010000h, XAR1
MOV #0A02h, BSA01
MOV #0000h, AR1

MOV *AR1+, AC0

MOV *AR1+, AC0

MOV *AR1+, AC0

MOV *AR1+, AC0

; Circular buffer size is 3 words
; AR1 is configured to be modified circularly
; Circular buffer is in main data page 01
; Circular buffer start address is 010A02h
; Index (in AR1) is 0000h

; AC0 loaded from 010A02h + (AR1) = 010A02h,
; and then AR1 = 0001h
; AC0 loaded from 010A02h + (AR1) = 010A03h,
; and then AR1 = 0002h
; AC0 loaded from 010A02h + (AR1) = 010A04h,
; and then AR1 = 0000h
; AC0 loaded from 010A02h + (AR1) = 010A02h,
; and then AR1 = 0001h

6.11.3 TMS320C54x Compatibility

In the TMS320C54x-compatible mode (when the C54CM bit is 1), the circular
buffer size register BK03 is used with all the auxiliary registers, and BK47 is
not used. The TMS320C55x device enables you to emulate TMS320C54x
circular buffer management by following these programming rules:

� Initialize BK03 with the desired buffer size.

� Initialize the appropriate configuration bit in ST2_55 to set circular activity
for the selected pointer.

� Initialize the appropriate extended auxiliary register (XARn) with the main
data page in the seven most significant bits (ARnH).

� Initialize the pointer (ARn or CDP) to set the start address.

� Initialize the appropriate buffer start address register to 0, so that it has no
effect.

If you are using indirect addressing operands with offsets, make sure that the
absolute value of each offset is less than or equal to (buffer size − 1). Likewise,
if the circular pointer is to be incremented or decremented by a programmed
amount (supplied by a constant or by T0, AR0, or T1), make sure the absolute
value of that amount is less than or equal to (buffer size − 1).
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The code in Example 6−2 emulates a C54x circular buffer.

Example 6−2. Emulating a C54x Circular Buffer

MOV #3, BK03
BSET AR1LC
AMOV #010000h, XAR1
MOV #0A01h, AR1
MOV #0h, BSA01

MOV *AR1+, AC0
MOV *AR1+, AC0
MOV *AR1+, AC0

; Circular buffer size is 3 words
; AR1 is configured to be modified circularly
; Circular buffer is in main data page 01
; Circular buffer start address is 010A00h
; BSA01 is 0, so that it has no effect

; AC0 loaded from 010A01h, and then AR1 = 0A02h
; AC0 loaded from 010A02h, and then AR1 = 0A00h
; AC0 loaded from 010A00h, and then AR1 = 0A01h

This circular buffer implementation has the disadvantage that it requires the
alignment of the circular buffer on an 8-word address boundary. To remove this
constraint, you can initialize BSA01 with an offset, as shown in Example 6−3.

Example 6−3. Avoiding the Alignment Constraint in Example 6−2

MOV #3, BK03
BSET AR1LC
AMOV #010000h, XAR1
MOV #0A01h, AR1
MOV #2h, BSA01

MOV *AR1+, AC0

MOV *AR1+, AC0

MOV *AR1+, AC0

; Circular buffer size is 3 words
; AR0 is configured to be modified circularly
; Circular buffer is in main data page 01
; Circular buffer start address is 010A00h
; Add an offset of 2 to the buffer start address,
; so that the effective start address is 010A02h

; AC0 loaded from 010A01h + 2h = 010A03h,
; and then AR1 = 0A02h
; AC0 loaded from 010A02h + 2h = 010A04h,
; and then AR1 = 0A00h
; AC0 loaded from 010A00h + 2h = 010A02h,
; and then AR1 = 0A01h
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Revision History

This document was revised to SPRU371F from SPRU371E, which was dated
November 2003. Notable changes made since the last revision are listed in
Table A−1.

Table A−1. Revision History 

Page Additions/Modifications/Deletions

Global Notes were added in appropriate sections of this document to highlight the following important
information:

If a 16-bit address or pointer is incremented past FFFFh or decremented past 0000h, the address
or pointer value wraps around. However, this behavior must not be used; it is not supported. Also,
during circular addressing, the BSAxx or BSAC addition must not increment the address beyond
FFFFh.

2-35 The following Note was added to section 2.9.2, Block-Repeat Registers (BRC0, BRC1, BRS1,
RSA0, RSA1, REA0, REA1):

Make sure the last three instructions of a level 0 loop do not write to BRC0. Likewise, make sure the
last three instructions of a level 1 loop do not write to BRC1.

2-54 Section 2.10.3.4, DBGM Bit of ST2_55, was revised to indicate that writes to ST2_55 do not affect
DBGM.

Index-1 The index was revised.
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Index-1

Index

@bitoffset 6-11
@Daddr 6-37
*(#k23) 6-5
*(ARn + T0/AR0) 6-18, 6-22, 6-27
*(ARn + T0B/AR0B) 6-19
*(ARn + T1) 6-20, 6-27
*(ARn − T0/AR0) 6-18, 6-23, 6-27
*(ARn − T0B/AR0B) 6-19
*(ARn − T1) 6-20, 6-27
*(CDP + T0/AR0) 6-34
*+ARn 6-18
*+ARn(#K16) 6-21, 6-24
*+CDP(#K16) 6-32
*−ARn 6-18
*abs16(#k16) 6-4
*ARn 6-17, 6-22, 6-27
*ARn(#K16) 6-21, 6-23
*ARn(short(#k3)) 6-24
*ARn(T0/AR0) 6-19, 6-23, 6-27
*ARn(T1) 6-20
*ARn+ 6-17, 6-22, 6-27
*ARn− 6-17, 6-22, 6-27
*CDP 6-31, 6-34
*CDP(#K16) 6-31
*CDP+ 6-31, 6-34
*CDP− 6-31, 6-34
*port(#k16) 6-6
*SP(offset) 6-37
16-bit stacks with fast or slow return 4-4
16-bit versus 32-bit operations in D-unit ALU

(C16 bit) 2-45
32-bit mode or 40-bit mode of computation

(M40 bit) 2-49
32-bit stack with slow return 4-4
40-bit mode or 32-bit mode of computation

(M40 bit) 2-49
54x-compatible mode bit 2-45

A
A unit 1-12
A-unit arithmetic logic unit (A-unit ALU) 1-13
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