OMAP5910/5912 Applications Processor
Timers
Reference Guide

Literature Number: SPRU891
February 2005

OMAP")

{'f TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This document describes the timers present in the OMAP5910/5912 devices.

Related Documentation From Texas Instruments

Documentation that describes the OMAP5910/5912 devices, related
peripherals, and other technical collateral, is available in the OMAP5910
Product Folder on TI's website: www.ti.com/omap5910, and in the OMAP5912
Product Folder on TI's website: www.ti.com/omap5912.

Trademarks

OMAP and the OMAP symbol are trademarks of Texas Instruments.

SPRU891 Timers 3

Contents

1 INErOAUCTION oottt e e e
2 MPU and DSP Private TiMersttt E
2.1 Introduction to the MPU and DSP Private Timersccovvinn... E
211 FEAMUIES ... E

2.1.2 Functional Block Diagram E

2.2 Common Architecture and Operations, E
221 Clock Control E

2.2.2 Interrupt Period E

2.2.3 PowerManagement ﬁ

2.2.4 ResetConsiderations i ﬁ

2.25 Interrupt SUPPOIT E

2.2.6 One-Shot Mode versus Auto-Reload Mode 18

2.2.7 nitialization ... E

2.2.8 CommoON OPEerationsiiiiii i E

2.2.9 Emulation Considerations o i z

2.2.10 Pseudo Code Example Z

2.3 MPU Private Timer RegiSters e z
2.4 DSP Private TImer Registers z

3 Watchdog Timers . ..o e E
3.1 IntroduCtion E

3. L1 PUIPOSE .o E

312 FeatUIeS ... Z

3.1.3 Functional Block Diagram i Z

3.1.4 Supported MOOES E

3.2 Common Architecture and Operationscoiiiiiiiiiinnenniinn... E
3.21 Clock Control E

3.22 TiMeoUt Period E

3.2.3 PowerManagement @

3.24 ResetConsiderations E

3.2.5 INteITUPt SUPPOIt o E

3.2.6 Common OPErationsuuiiiiirtt i z

3.2.7 Emulation Considerations i z

4 Timers SPRU891

Contents

3.3 Watchdog Mode Operationsottt e e

3.3.1 Initialization o

3.3.2 Programming the Watchdog Timer in WatchdogMode

3.3.3 Pseudo Code EXxamplet

3.4 Housekeeping Mode Operationsttt e

3.4.1 Initialization

3.4.2 Programming the Watchdog Timer in HousekeepingMode

3.4.3 Pseudo Code Example

3.5 MPU Watchdog Timer RegiStersot e

3.6 DSP Watchdog Timer RegiSterst e

4 32-KHzZ OS TimM el . o e e et e e e e e e e

4.1 INrOdUCHION ..o e e

4.1 PUMPOSE .ottt it e

4.1.2 FRAIUIES .

4.1.3 Functional Block Diagramt e

4.2 Common Architecture and Operationsuituiin et

4.2.1 Interrupt Periodo

4.2.2 Clock Control

4.2.3 Power Managementt

4.2.4 Reset Considerationst

4.2.5 INterrupt SUPPOIt .o

4.2.6 Auto-Reload Mode versus One-ShotModeccoviiun...

427 Initializationo

4.2.8 CommON OPEratioNS v ittt et et

4.2.9 Emulation Considerations i

4.2.10 Pseudo Code Example

4.3 32-KHz OS Timer ReQISErSot e

5 32-KHz Synchronization Timer e

5.1 INtrodUCHioN

5.1 1 PUIPOSE .ttt

5.1.2 FRAIUIES ..

5.1.3 Functional Block Diagramt

5.2 Common Architecture and Operationsiuierii it

5.2.1 Clock Control

5.2.2 Reset Considerationsuuitit i

5.2.3 Common OPErationSttt et

5.3 Synchronization Timer RegiSters
SPRU891 Timers

=
51
31
32
32
32
32
33
34
30
39
39
39
39
m|
m|
m
41
42
22)
22
23
23
24
2
25
45
48]
48
48
m
m
|
|
50
50
5

Contents

52
52
52
53
53
54
54
55

1]

58
59
60
61

|

63
64
65

[218]

69

69)

6 General PUrpoSe TIMerS ... e e e e e
6.1 INrOUCHION ..ot e e e
B.1.1 PUIMPOSE ...ttt

6.1.2 FEaUMBS ..t

6.1.3 Functional Block Diagram

6.1.4 Supported MOOES

6.2 Common Architecture and Operationst
6.2.1 Clock Control

6.2.2 TIMEOUL PEriOd e

6.2.3 Power Managementt

6.2.4 Register Write Mode: Posted versus Non-Posted

6.2.5 Reset ConsSiderationsttt

6.2.6 INtErruPt SUPPOItt

6.2.7 Initialization

6.2.8 Common OPEratioNSttt e

6.2.9 Emulation Considerationst
6.2.10 Pseudo Code Example

6.3 Compare Mode OpEerationNsiuiuet ettt
6.3.1 Pseudo Code EXampleo

6.4 Pulse-Width Modulation e
6.4.1 PWMOUPUt SIgnal

6.5 GP TIMer ReQISIErS . ..t

6 Timers SPRU891

O© oo ~NO UL, WNPE

e T ol
ahwNPRPOo

Figures

OMAPSO9L12 TIMEIS . ottt ettt et e e e e e et e e e e e e e
MPU/DSP Private Timer Block Diagramc. it e
Clock Input to MPU/DSP Private TImMersooo ittt e
Watchdog Timer Block Diagramoot e ettt
Clock Input to Watchdog Timers

32-KHz OS Timer Block Diagram
Clock Input 10 32-KHZ OS TiMEIS . .. it e
32-KHz Synchronization TImer Block Diagram,
Clock Input to the 32-KHz Synchronization Timers
GP Timer Block Diagramo
Clock Input for GP TIMerSo e e e e e
Wakeup Request GENEration . ..ottt ettt e
GP Timer Interrupt ArchiteCture i e e e
Timing Diagram of Pulse-Width Modulation With SCPWM Bit = 0
Timing Diagram of Pulse-Width Modulation With SCPWM Bit = 1

SPRU891 Timers

13]
14]
15|
27]
28|
40|
41]
|
49
53
4]
5
60
=
=

Tables

© O ~NO UL WNPE

W WWWWWWNDNNNNNMNNMNNMNNNRPRERPPRPEPERPEPRPERPRERREPR
OO DA WNRPFPOOONOOTUIUOPMWNRPOOONO OGMWDNEO

Prescaler Value and Clock Divisor for MPU/DSP Private Timer 16
Example of MPU Private Timer Interrupt Periods z
MPU/DSP Private Timer Interrupt Number 18]
Register Base Addresses of MPU Private Timers Z
MPU Private Timer RegiSters i i 22
MPU Control Timer Register (MPU_CNTL_TIMER) Z
MPU Load Timer Register Value (MPU_LOAD_TIMER) 23]
MPU Read Timer Register Value (MPU_READ TIMER) i, g
Base Addresses of DSP Private Timer Registerso, 23]
DSP Private Timer RegiSterst e z
DSP Control Timer Register (DSP_CNTL_TIMER) it 24
DSP Load Timer Register Low (DSP_LOAD_TIMER_LO) E
DSP Load Timer Register High (DSP_LOAD_TIMER HI) [25)
DSP Read Timer Register Low (DSP_READ_TIMER_LO) ..., E
DSP Read Timer Register High (DSP_READ _TIMER HI) 25)
Watchdog Timer CharacteriStiCst e E
MPU Watchdog Timer Registers et 34
MPU Watchdog Control Timer Register (MPU_WDT_CNTL_TIMER) E
MPU Watchdog Load Timer Register (MPU_WDT _LOAD TIMER) 35)
MPU Watchdog Read Timer Register (MPU_WDT_READ_TIMER) E
MPU Watchdog Timer Mode Register (MPU_WDT_TIMER_MODE) 36
DSP Watchdog Timer RegISterso e e E
DSP Watchdog Control Timer Register (DSP_WDT_CNTL_TIMER) 37|
DSP Watchdog Load Timer Register (DSP_WDT_LOAD _TIMER) 37
DSP Watchdog Read Timer Register (DSP_WDT READ TIMER) E
DSP Watchdog Timer Mode Register (DSP_WDT_TIMER_MODE) 38
Timer Interrupt Period Accordingto TVR Value E
OS TImMer ReQIStersS i 46
OS Timer Register Access Timing Constraintsciiiiiiieinennnann. E
OS Timer Control Register (OS_TIMER_CNTL)t 47
OS Timer Tick Value Register (OS_TIMER_TICK VAL) ..ot E
OS Timer Tick Counter Register (OS_TIMER_TICK_CNTR), 47
Synchronization Timer RegIStersottt e e e E
Synchronization Timer Identification Register (32K_SYN_CNT_REV) 51
Synchronization Timer Read Counter Register (32K_SYN CNT . CR) E
Function Domain Clock forthe GP Timer 55

Timers SPRU891

Tables

37 Clock DIVISOr ValUES oot e e e e e
38 TLDR Value and Corresponding Timeout Period (where PS=1)
39 GP Timer Interrupt LiNES o e e e
40 OMAP5912 ZDY Package: Pin Mux Configuration for the PWM Output Pins
41 OMAP5912 727G Package: Pin Mux Configuration for the PWM Output Pins
42 GP Timer Register Base ADAress
43 GP TimMer RegiSterS . .. e e e e e
44 Timer Identification Register (GPTMR_TIDR) i i
45 Timer OCP Configuration Register (GPTMR_TIOCP_CFG)ciiiiiiin...
46 Timer System Status Register (GPTMR_TISTAT) i
a7 Timer Status Register (GPTMR_TISR)t e et
48 Timer Interrupt Enable Register (GPTMR_TIER) ... i
49 Timer Wakeup Enable Register (GPTMR_TWER)
50 Timer Control Register (GPTMR_TCLR) e
51 Timer Counter Register (GPTMR_TCRR)t
52 Timer Load Register (GPTMR_TLDR) ot
53 Timer Trigger Register (GPTMR_TTGR)t
54 Timer Write Pending Status Register (GPTMR_TWPS)ttt
55 Timer Match Register (GPTMR_TMAR)ot e e e e
56 Timer Synchronization Interface Control Register (GPTMR_TSICR)
SPRU891 Timers

B EENERNNNEEEEEEEEE

76|

This page is intentionally left blank.

10 Timers SPRU891

SPRU891

Timers

Both the OMAP5912 and OMAP5910 application processors have three MPU
private timers, three DSP private timers, one MPU watchdog timer, one DSP
watchdog timer, and one 32-KHz operating system (OS) timer. The
OMAP5912 processor also has one reserved 32-KHz watchdog timer, one
32-KHz synchronization timer, and eight general-purpose (GP) timers.

The MPU and DSP private timers are used for general housekeeping functions
inside OMAP5910/5912.

The watchdog timers reset or generate an interrupt to MPU or DSP when they
reach timeout. They can be used to detect user programs stuck in an infinite
loop, loss of program control, or a runaway condition. In addition, they have
general housekeeping capabilities.

The 32-KHz OS timer is able to generate periodical interrupts to the OS. This
is used to keep track of the current time to control the operation of the device
drivers, and also for OS scheduling purposes. If the OMAP chip is in deep
sleep mode, it can also be used to wake up the system.

Using the reserved 32-KHz watchdog timer is not supported. It needs to be
disabled upon reset.

The 32-KHz synchronization timer is a simple counter which can be used by
the 32-KHz input clock to enable synchronization between devices, but only
when the OMAP5912 is used in conjunction with another component (e.g., a
modem) having the same clock input.

Each GP timer has the housekeeping capability. In addition, its internal
compare logic allows interrupt events on the programmable counter matching
value. If it is clocked by the 32-KHz input, it can be used to wake up the chip
from deep sleep. GP timers 1, 2, and 3 can also be configured to provide a
programmable pulse-width modulation (PWM) output on the dedicated output

pin.

Timers 11

Introduction

1

12

Introduction

Timers

Figure 1 shows all the timers in the OMAP5912. The diagram also applies to
the OMAP5910, except that OMAP5910 does not have the reserved 32-KHz
watchdog timer, the synchronization timer, or the GP timers.

There are three MPU private timers and an MPU watchdog timer. These are
MPU private peripherals and only accessed by the MPU via the MPU private
peripheral bus.

There are three DSP private timers and a DSP watchdog timer. These are DSP
private peripherals and are accessed by the DSP via the DSP private
peripheral bus.

Eight general-purpose (GP) timers and a 32-KHz synchronization timer are
MPU and DSP shared peripherals. They are accessed by both processors via
the MPU and DSP public peripheral buses.

The 32-KHz operating system (OS) timer is an MPU public peripheral. It is
accessed by the MPU via the MPU public peripheral bus and the system DMA
via the system DMA bus.

The system clock (12 MHz, 13 MHz, or 19.2 MHz) is turned off in deep sleep
mode, but the 32-KHz clock remains active. As it is active, the 32-KHz OS timer
can be used to wake up the chip from deep sleep. If a GP timer is configured
to be clocked by the 32-KHz signal, it can also wake up the chip from deep
sleep. The MPU watchdog timer also has the wakeup capability, as it resets
both the MPU and DSP upon timeout. The DSP watchdog timer only resets the
DSP when its counter expires.

SPRUS891

Introduction

Figure 1. OMAP5912 Timers

DSP TIPB private Other DSP
private peripherals
Endianism DSP private
conversion STIO 16 peripherals
TIPB port 3 DSP private timers

Watchdog timer
DSP Level 1/2

|
[
|
|
|
|
|
DSP MMU DSP INT handlers |
|
16 DSP TIPB public |
TIPB port | MPU/DSP
— DPLL1 | shared peripherals
_ R Endianism
MPUI port [—< > conversion CLKM1 | 8 x GP timers
) CLKM2 | 32-KHz sync timer
Traffic T
controller CLKM3 I Other peripherals
v |
MPUI l
Svstem DMA System DMA bus | MPU public
4 | peripherals
MPU MPU TIPB : 32-KHz OS timer
li)
ARM926EJS bus TIPB public l Other peripherals
MP brid 2
(MPU core) 32 riage MPUTIPB |
private |
|
|
MPU private peripherals |
3 MPU private timers _ Other MPU
Watchdog timer | private peripherals
Reserved 32-kHz watchdog timer I
OMAP 3.2 Gigacell MPU INT handlers |
|
S S S, -

SPRU891 Timers 13

MPU and DSP Private Timers

2 MPU and DSP Private Timers

This section presents the purpose and features of the MPU and DSP private
timers in the OMAP5912. This information also applies to the OMAP5910.

There are three MPU private timers and three DSP private timers inside the
OMAP5912 that are typically used for general housekeeping functions.

2.1 Introduction to the MPU and DSP Private Timers

211 Features
The features of the MPU/DSP private timers are as follows:
[0 32-bit down count
[Interrupt to MPU/DSP when the timer expires
[0 Programmable timer period
(1 Auto-reload mode and one-shot mode
(1 On-the-fly read capability
2.1.2 Functional Block Diagram

Figure 2 shows the MPU/DSP private timer block diagram. The functionality
of the MPU and DSP private timers is identical except that the MPU timers
interface to the 32-bit MPU private peripheral bus, and the DSP timers
interface to the 16-bit DSP private peripheral bus.

Figure 2. MPU/DSP Private Timer Block Diagram

r—-—-————F—"F—"" """ """ """ """ """ " —" —" —~"—"—————— |
MPU/DSP | I
TIPB Tl peripheral bus interface |
(private) | |
| |
| Timer control |
| Timer | | Timer | |
| Clock Prescale Start/ Auto LOAD READ | |
| enable value stop reload value value |
| (PTV) (ST) (AR) |
I I
I I
MPU/DSP : Clock driver | mpuDSP
private 4|_A:D—> divide by [32-bit counter L private
timer 2(PTV+I | timer
input | | interrupt
cloeck 1

14 Timers SPRU891

Common Architecture and Operations

2.2 Common Architecture and Operations

221 Clock Control
Figure 3 shows the clocking for the MPU and DSP private timers.

CK_REF is the 12-, 13- or 19.2-MHz OMAP system clock (12-, 13- or
19.2-MHz oscillator, or from external clock input).

Figure 3. Clock Input to MPU/DSP Private Timers

Clock
operating
mode

:

CK_REF
(OMAP5912 > DPLL1 >
system clock) MUX
> > MUX controlled by
ARM_CKCTL[ARM_TIMXO(12))/
»| DSP_CKCTL[DSP_TIMXO(8)]

r-r-r—————————————— - Timer
| MPU/DSP private timers | reference clock
I | ”
| | MPU_CNTL_TIMER[CLOCK_ENABLEG))/ | _ | A'FE'\'ZEIBTS(L?;[ENSV% &rgr?é%] L

¢ : DSP_CNTL_TIMER[CLOCK_ENABLE(5)] l DSPIDLECTZEN_TIMCK()]

22.1.1 Configuration of the Input Reference Clock

The timer reference clock for the MPU/DSP private timer module is controlled
by the OMAP5912 clock generation and reset module. By configuring the
ARM_/DSP_TIMXO bit in the ARM_/DSP_CKCTL register of the clock
module, you can select from two possible clock sources:

1) ARM_/DSP_TIMXO = 0: Select the OMAP5912 system clock as the timer
reference clock for the MPU/DSP private timers.

2) ARM_/DSP_TIMXO = 1: Select the output from the DPLL1 module as the
timer reference clock for the MPU/DSP private timers.

The default selection is the output from DPLL1. When operating from DPLL1,
the private timer should be stopped before programming a change to the
DPLL1 frequency divisor. For detailed information on programming DPLL1,
see the Clock Generation and Reset Management section in the OMAP5912
Multimedia Processor OMAP 3.2 Subsystem Reference Guide (SPRU749).

The timer reference clocks can be stopped or activated by configuring the
EN_TIMCK bit in the ARM_/DSP_IDLECT?2 register.

SPRU891 Timers 15

Common Architecture and Operations

(1 EN_TIMCK = 0: The timer reference clock is stopped.

(1 EN_TIMCK =1: The timer reference clock is activated and can be
stopped by configuring the IDLTIM_ARM/_DSP bit in the
ARM_/DSP_IDLECTLA1 register.

B IDLTIM_ARM/_DSP = 0: The timer reference clock remains active
when the MPU/DSP enters the idle mode.

W IDLTIM_ARM/_DSP = 1: The timer reference clock is stopped in
conjunction with the MPU/DSP clock when the MPU/DSP enters the
idle mode.

2.2.1.2 Input Clock Enable

The MPU/DSP private timer reference clock can be disabled with the
CLOCK_ENABLE bit in the MPU_/DSP_CNTL_TIMER register.

2.2.2 Interrupt Period

The MPU/DSP private timer generates an interrupt to the MPU/DSP when the
counter passes 0. The interrupt period is defined by:

[0 The frequency of the timer reference clock for the MPU/DSP private timer
(see section 2.2.1).

[The value of the prescaler bit field (PTV) in the MPU_/DSP_CNTL_TIMER
register. The input reference clock to the timer is divided by 2(PTV+1) The
PTV value is in the range from 0 to 7. Table 1 lists some valid PTV values
and the corresponding clock divisor.

[The values of the load registers: MPU_LOAD_ TIMER and
DSP_LOAD_TIMER_HI/_LO.

Table 1. Prescaler Value and Clock Divisor for MPU/DSP Private Timer

PTV Bit Field in MPU/DSP Private Timer

Control Register Input Clock Divisor
PTV, (PTV =0..7) 2(PTV+1)

000 2

111 256

The following equations are used to determine the timer interrupt period.

For the MPU private timer:

TMPU Timeout = TMPU ref clk X (<MPU_LOAD_TIMER>+1) X 2 (PTV+1)

16 Timers SPRU891

Table 2.

2.2.3

224

SPRU891

Common Architecture and Operations

For the DSP private timer:
Tpsp Timeout =TDSP ref clk X (<DSP _LOAD TIMER HI, LO>+1) x 2 (PTV+1)

where Tiypuy ref clk and Tpsp ref clk are the periods of the input reference
clocks for the MPU and DSP private timers.

Based on these equations, Table 2 calculates examples for various MPU
private timer interrupt periods for a hypothetical input reference clock
frequency of 100 MHz (Tmpy_ref clk = 10 ns).

Example of MPU Private Timer Interrupt Periods

MPU_LOAD_TIMER PTV =000 PTV =111
0x0 (granularity) 20 nst 2.56 us
OxXFFFF FFFF 859s 10995 s (3 hr 3 min 15 s)

(max period)

T Although the timer can be programmed to generate 20ns periodical interrupts, this is not recom-
mended, as the TIPB bus and the ARM interrupt handling mechanism are not fast enough to han-
dle those interrupts.

Power Management

Before the MPU/DSP subsystem can enter any of the low power states, the
MPU/DSP timer reference clock must be stopped in the following two ways:

[J Setthe EN_TIMCK bitin the MPU_/DSP_IDLECT?2 register to 0 to force
the clock to stop.

(] Leave the EN_TIMCK bit in the MPU_/DSP_IDLECT?2 register as 1, but
stop all the MPU/DSP private timers by configuring the ST bit in the
MPU_/DSP_CNTL_TIMER register and set the IDLTIM_ARM/_DSP bit to
1. Setting the IDLTIM_ARM/_DSP bit to 1 causes the input reference clock
to be stopped in conjunction with MPU/DSP clock when the idle mode is
entered.

For details on OMAP5912 power management, see the OMAP5912
Multimedia Processor Power Management Reference Guide (SPRU753).

Reset Considerations

Upon reset, the MPU/DSP timer module is in the following state:

(1 The input reference clock is from DPLL1 (ARM_CKCTL[ARM_TIMXOJ/
DSP_CKCTL[DSP_TIMXQ] = 1).

[The input reference clock is stopped (EN_TIMCK bit is O in the
ARM_/DSP_IDLECT?2 register).

Timers 17

Common Architecture and Operations

2.2.5

Table 3.

2.2.6

18

(1 The input clock is not enabled inside timer module (CLOCK_ENABLE bit
is 0 in the MPU_/DSP_CNTL_TIMER register).

[The timer is in one-shot mode.

[The timer is stopped (ST bit is 0 in the MPU_/DSP_CNTL_TIMER
register).

Interrupt Support

An interrupt is generated to the MPU/DSP when an MPU/DSP private timer
decrements to 0. Table 3 shows the interrupt number used by each MPU/DSP
private timer.

MPU/DSP Private Timer Interrupt Number

Timer Interrupt Number
MPU private timer 1 MPU level 1 interrupt #26
MPU private timer 2 MPU level 1 interrupt #30
MPU private timer 3 MPU level 1 interrupt #16
DSP private timer 1 DSP level 1 interrupt #23
DSP private timer 2 DSP level 1 interrupt #22
DSP private timer 3 DSP level 1 interrupt #8

All interrupts are falling edge sensitive.

For details about OMAP5912 interrupt handling, see the OMAP5912
Multimedia Processor Interrupts Reference Guide (SPRU757).

One-Shot Mode versus Auto-Reload Mode

Timers

An MPU/DSP private timer works in one-shot mode if the AR(1) bit in the
MPU_/DSP_CNTL_TIMER register is 0. In this mode, when the timer counter
expires an interrupt is generated and the timer is stopped. The ST(0) bit is
automatically reset by the internal logic.

The MPU/DSP private timer works in auto-reload mode if the AR(1) bitis 1. In
this mode, when the timer counter expires an interrupt is generated and the
new count value is loaded from the MPU_LOAD_TIMER register or the
DSP_LOAD_TIMER_HI/_LO register. The timer continues counting down
from the new loaded count value.

SPRUS891

227

SPRU891

Initialization

Common Architecture and Operations

The following procedure is an example of MPU/DSP private timer initialization.

1)

2)

3)

Configure the timer input reference clock.

a) Program the ARM_/DSP_TIMXO bit in the ARM_/DSP_CKCTL
register to select the reference for the timer clock (1: DPLL1 is
selected; 0: OMAP5912 system clock is selected). If DPLL1 is
selected, the DPLL1 needs to be programmed.

b) Setthe EN_TIM bit in the ARM_/DSP_IDLECT? register to activate
the timer reference clock.

Configure the interrupt controller module. For the MPU private timer:
a) Enable the MPU global interrupt.

b) Program the corresponding level 1 interrupt priority level (ILR)
register for the timer interrupt being used. For the MPU private timers
1, 2, and 3, itis ILR26, ILR30, and ILR16 respectively.

i) Program the PRIORITY field to set the interrupt priority (O highest;
31 lowest).

i) Setthe SENS_LEVEL bit to 0 as falling edge sensitive.
iii) Setthe FIQ bit to 1 to set the interrupt as a FIQ.

c) Prepare the FIQ ISR and place its address to the appropriate entry of
the interrupt vector (entry 7 in the vector).

d) Prepare the timer ISR.

e) Enable the specific timer interrupt by clearing the corresponding bit in
the MPU interrupt level 1 mask register.

Configure the interrupt controller module. For the DSP private timer:
a) Enable the DSP global interrupt.

b) Prepare the timer ISR and put its address in the appropriate entry of
the interrupt vector (based on the interrupt number being used).

c) Enable the specific timer interrupt by clearing the corresponding bit in
the DSP interrupt level 1 mask register.

Timers 19

Common Architecture and Operations

2.2.8

2.2.8.1

2.2.8.2

20

Common Operations

Start/Stop an MPU/DSP Private Timer

Read Timer

Timers

Setting the ST hit in the MPU_/DSP_CNTL_TIMER register starts the MPU/DSP
private timer. At start, the timer loads the values in the MPU_LOAD_TIMER
register or the DSP_LOAD_TIMER_HI and DSP_LOAD_TIMER_LO registers
into the counter.

Clearing the ST bit stops the MPU/DSP private timer. When stopped, the timer
keeps the current value.

Note:

Only the ST and EN_TIMCLK bits in the MPU_/DSP_CNTL_TIMER register
can be written while the timer is running.

Undefined results occur if following configurations are changed while the tim-
er is running:

[Prescaler (PTV) and auto-reload (AR) bits in the MPU_/DSP_CNTL_TIM-
ER register

(O MPU_LOAD_TIMER register
(1 DSP_LOAD_TIMER_HI/_LO registers

Count Value

The timer value can be read from the MPU_/DSP_READ_TIMER register
either on-the-fly or after the timer is stopped.

For the MPU, the MPU_READ_TIMER is a 32-bit register and can be read
directly.

However, the DSP peripheral bus only has a width of 16 bits. To correctly read
the value of the DSP private timers, the upper 16 bits must be read prior to the
lower 16 bits. When the upper read occurs, the lower 16 bits are
simultaneously stored in a temporary register. The contents of this temporary
register are provided by an access to the lower 16 bits.

SPRUS891

2.2.9

2.2.10

SPRU891

Common Architecture and Operations

Emulation Considerations

The FREE bit in the MPU_/DSP_CNTL_TIMER register defines the behavior
of the MPU/DSP private timer when the debugger halts its parent processor.

(1 FREE = 1: Keep running while the debugger halts its processor.

(1 FREE = 0: Stop the timer while the debugger halts its processor (even if
the ST bit in the timer control register is set).

Pseudo Code Example

The pseudo code below shows how to use an MPU/DSP private timer.

1)

Initialization.

2) Program the timer to the desired interrupt period and mode.

3)

4)

a)

b)

c)

d)

e)

Program the MPU_/DSP_LOAD_TIMER register to set the load
value.

Program the PTV field in the MPU_/DSP_CNTL_TIMER register to
set the clock divider value (PTV =0 ... 7).

Program the AR bit in the MPU_/DSP_CNTL_TIMER register. (1:
auto-reload mode; 0: one-shot mode)

Program the FREE bit in the MPU_/DSP_CNTL_TIMER register. (1:
run free during emulation stop; 0: stop during emulation stop)

Load the desired counter value to the MPU_LOAD_TIMER register or
DSP_LOAD_TIMER_HI/_LO register.

Set the CLOCK _ENABLE bit in the MPU_/DSP_CNTL_TIMER
register to enable the input clock.

Start the timer by setting the ST bit in the MPU_CNTL_TIMER register and
wait until an interrupt happens.

When an interrupt happens, control jumps depending on the timer:

a)

b)

For the MPU private timer, control jumps to the FIQ ISR, which should:

i) Read the interrupt level 1 source register for FIQ to get the
interrupt number, which should be the timer interrupt number.

ii) Call the timer ISR to process the interrupt.

iii) Setthe NEW_FIQ_ARG bit in the interrupt level 1 control register
to acknowledge the interrupt, which will allow new FIQ
generation.

For the DSP private timer, control jumps the timer ISR in which the
interrupt is processed.

Timers 21

Common Architecture and Operations

2.3 MPU Private Timer Registers

Table 4 lists the register base addresses of the MPU private timers. Table 5
lists the registers. All the registers are 32 bits. Table 6 through Table 8 are the
descriptions for each register.

Table 4. Register Base Addresses of MPU Private Timers
MPU Private Timer MPU Byte Address
Timer 1 OXFFFE: C500
Timer 2 OxFFFE: C600
Timer 3 OxFFFE: C700
Table 5. MPU Private Timer Registers
MPU Byte Base Address = OxFFFE C500, OxFFFE C600, OxFFFE C700
Name Description R/W Offset
MPU_CNTL_TIMER MPU control timer R/W 0x00
MPU_LOAD_TIMER MPU load timer W 0x04
MPU_READ_TIMER MPU read timer R 0x08

Table 6.

MPU Control Timer Register (MPU_CNTL_TIMER)

MPU Byte Base Address = OxFFFE C500, OxFFFE C600, OxFFFE C700, Byte Offset = 0x00

Bit Name Function R/W Reset
31:7 RESERVED Reserved. 0x0000000
6 FREE Defines the behavior of the MPU private timer R/W 0
when the debugger halts its parent processor.
0: Stop counting even if ST =1.
1: Keep counting if ST=1.
5 CLOCK_ENABLE Enable input reference clock to the MPU private R/W 0
timer module
0: Disable.
1: Enable.
4:2 PTV Prescale timer input reference clock R/W 000
Clock divisor = 2(PTV+1)
22 Timers SPRU891

Common Architecture and Operations

Table 6. MPU Control Timer Register (MPU_CNTL_TIMER) (Continued)

MPU Byte Base Address = OxFFFE C500, OxFFFE C600, OxFFFE C700, Byte Offset = 0x00
Bit Name Function R/W Reset

1 AR 0: One-shot mode. R/W 0
1: Auto-reload mode.

0 ST 0: Stop timer value decrement. R/W 0
1: Start timer value decrement.

In one-shot mode (AR = 0), this bit is cleared
automatically when the timer value expires.

Table 7. MPU Load Timer Register Value (MPU_LOAD_TIMER)

MPU Byte Base Address = OxFFFE C500, OxFFFE C600, OXFFFE C700, Byte Offset = 0x04
Bit Name Function R/W Reset

31:0 MPU_LOAD_TIMER This value is loaded when the timer expires or when w Undefined
it starts.

Table 8. MPU Read Timer Register Value (MPU_READ_TIMER)

MPU Byte Base Address = OxFFFE C500, OxFFFE C600, OxFFFE C700, Byte Offset = 0x08

Bit Name Function R/W Reset
31:0 MPU_READ_TIMER Value of the timer. R Undefined
24 DSP Private Timer Registers

Table 9 lists the register base addresses of the DSP private timers. Table 10
lists the registers. Table 11 through Table 15 are the descriptions for each
register.

All the registers are 16 bits except the DSP_CNTL_TIMER register, which is
32 bits.

Table 9. Base Addresses of DSP Private Timer Registers

DSP Private Timer DSP Word Address (I/0O Space)
Timer 1 0x2800
Timer 2 0x2C00
Timer 3 0x3000

SPRU891 Timers 23

Common Architecture and Operations

Table 10. DSP Private Timer Registers

DSP Word
Name Description R/W Offset
DSP_CNTL_TIMER DSP control timer R/W 0x00
DSP_LOAD_TIMER_LO DSP load timer value, 1/2 LSW w 0x03
DSP_LOAD_TIMER_HI DSP load timer value, 1/2 MSW W 0x02
DSP_READ _TIMER_LO DSP read timer value, 1/2 LSW R 0x05
DSP_READ_TIMER_HI DSP read timer value, 1/2 MSW R 0x04
Table 11. DSP Control Timer Register (DSP_CNTL_TIMER)
DSP Word Base Address = 0x2800, 0x2C00, 0x3000, Word Offset = 0x00
Bit Name Function R/W Reset
15:7 RESERVED Reserved. 0x000
6 FREE Defines the behavior of the DSP private timer when R/W 0
the debugger halts its parent processor.
0: Stop counting even if ST =1.
1: Keep counting if ST=1.
5 CLOCK_ENABLE Enables input reference clock to the DSP OS timer R/W 0
module
0: Disable.
1: Enable.
4.2 PTV Prescale timer input reference clock R/W 000
Clock divisor = 2(PTV+1)
1 AR 0: One-shot mode. R/W 0
1: Auto-reload mode.
0 ST 0: Stop timer value decrement. R/W 0
1: Start timer value decrement.
In one-shot mode (AR = 0), this bit is cleared
automatically when the timer expires.
24 Timers SPRUS891

Common Architecture and Operations

Table 12. DSP Load Timer Register Low (DSP_LOAD_TIMER_LO)

DSP Word Base Address = 0x2800, 0x2C00, 0x3000, Word Offset = 0x03

Bit Name Function R/W Reset
15:0 DSP_LOAD_TIMER_LO This value is loaded when the timer expires or W Undefined
when it starts.
Table 13. DSP Load Timer Register High (DSP_LOAD_TIMER_HI)
DSP Word Base Address = 0x2800, 0x2C00, 0x3000, Word Offset = 0x02
Bit Name Function R/W Reset
15:0 DSP_LOAD_TIMER_HI This value is loaded when the timer expires or w Undefined
when it starts.
Table 14. DSP Read Timer Register Low (DSP_READ_TIMER_LO)
DSP Word Base Address = 0x2800, 0x2C00, 0x3000, Word Offset = 0x05
Bit Name Function R/W Reset
15:0 DSP_READ_TIMER_LO Value of the timer bits (15:0): To read a correct R Undefined
value for DSP private timer, the upper 16 bits
(from DSP_READ_TIMER_HI) must read prior
to reading this register.
Table 15. DSP Read Timer Register High (DSP_READ_TIMER_HI)
DSP Word Base Address = 0x2800, 0x2C00, 0x3000, Word Offset = 0x04
Bit Name Function R/W Reset
15:0 DSP_READ_TIMER_HI Value of the timer bits (31:16): To read correct R Undefined

value for DSP private timer, this register must
be read first, followed by lower 16 bits of
DSP_READ_TIMER_LO.

SPRU891 Timers

25

Watchdog Timers

3

3.1

3.11

26

Watchdog Timers

Introduction

Purpose

Timers

There are three watchdog timers inside the OMAP5912: one MPU watchdog
timer, one DSP watchdog timer, and one reserved 32-KHz watchdog timer.

Using the 32-KHz watchdog is not supported. Upon system reset, it needs to
be disabled before it expires (in approximately 19s) via the following
procedure:

(* (volatile int*)OxXFFFEB048) = OxXAAAA;

// wait until the write operation is completed

while (((*(volatile int *)OxFFFEB034) & 0x10) == 0x10);
(* (volatile int*)0xFFFEB048) = 0x5555;

// wait until the write operation is completed

while (((*(volatile int *)OxFFFEB034) & 0x10) == 0x10);

This section presents the purpose and features of the MPU and DSP watchdog
timers in the OMAP5912. All the information also applies to the OMAP5910.

There are two useful watchdog timers inside the OMAP5912. One is in the
MPU subsystem (controlled by the MPU), and the other is in the DSP
subsystem (controlled by the DSP). Each watchdog timer can be configured
either as a watchdog timer or a housekeeping timer.

When the timer is configured as a watchdog timer, the software must
periodically write to the count register before the counter expires. If the counter
expires, the MPU watchdog timer resets the OMAP3.2 gigacell except the
DPLL1, while the DSP watchdog timer resets the DSP only. The watchdog
timers can be used to detect user programs that are stuck in an infinite loop,
have a loss of program control, or are in a runaway condition.

When used as a housekeeping timer, it is 16-bit counter configurable either to
auto-reload mode or one-shot mode with on-the-fly read capability. It
generates an interrupt to the MPU/DSP when the count expires.

SPRUS891

3.1.2

3.1.3

Figure 4.

MPU or DSP
TIPB
(private)

MPU/DSP

_watchdo
input cloc

SPRU891

k

Features

Watchdog Timers

The following are features of the MPU/DSP watchdog timers:

u

l:I
d
d
d

16 bit count down

Possesses on-the-fly read capability

Fixed low input clock frequency (system_clock/14)

Programmable reset or interrupt period

If configured as a watchdog timer, the MPU watchdog timer resets both the
MPU and DSP when the counter passes 0, while the DSP watchdog timer

resets the DSP only

If configured as a housekeeping timer:

B Supports both auto-reload and one-shot mode

B Generates an interrupt to MPU/DSP when counter passes 0

Functional Block Diagram

Both watchdog timers have identical functionality, except that the MPU timer
interfaces to the 32-bit MPU private peripheral bus, and the DSP timer
interfaces to the 16-bit DSP private peripheral bus.

Watchdog Timer Block Diagram

TI peripheral bus interface

|
| |
| |
I Timer control |
| Timer | | Timer || Timer | |
Prescale Start/ Auto LOAD | | READ || mode | |
| value stop reload value value control |
| (PTV) (ST) (AR) |
I | I
! - |
| |
Clock driver Output [~
—:—' divide by 16-bit counter > eventI :
2(PTV+1) contro 1
- -]

MPU+DSP
/DSP reset

MPU/DSP
watchdog
timer interrupt

Timers 27

Watchdog Timers

314 Supported Modes

A watchdog timer can be configured as either a watchdog timer or a
housekeeping timer.

Both the MPU and DSP watchdog timers are configured for watchdog mode
after reset. For specific watchdog mode information, see section 3.3.

Both MPU and DSP watchdog timers can also be configured to work as 16-bit
housekeeping timers, supporting both auto-reload and one-shot mode with
on-the-fly read capability. For specific housekeeping mode information, see
section 3.4.

3.2 Common Architecture and Operations

3.2.1 Clock Control

Figure 5 shows the clocking for the MPU and DSP watchdog timers.

CK_REF is the 12-, 13- or 19.2-MHz system clock (12-, 13- or 19.2-MHz
oscillator, or from external clock input).

Figure 5. Clock Input to Watchdog Timers

Input Watchdog
cK REF - reference IDLE condition it MPU/DSP
— requency cloc + SW enable: cloc
(OMASPESSt9e1rﬁ) divided > ARM /DSP > watchdog
% e by 14 - — timer
cloc IDLECT2[EN_WDTCK(0)]

3.2.11 Configuration of the Input Reference Clock for Watchdog Timers

28 Timers

The input reference clocks for the watchdog timer modules are derived from
OMAP5912 system clock, divided by 14. For example, if the system clock is
12 MHz, the watchdog input reference clock will be about 0.86 MHz.

If the MPU/DSP watchdog timer is configured for watchdog mode, the input
reference clock is always active, regardless of the EN_WDTCK bit value in the
MPU_/DSP_IDLECT?2 register.

If the watchdog timer is configured for housekeeping mode, the input clock can

be stopped or activated by configuring the EN_WDTCK bit in the
MPU_/DSP_IDLECT2 register.

SPRUS891

Watchdog Timers

(1 EN_WDTCK = 0: The input reference clock is stopped.

(1 EN_WDTCK = 1: The input reference clock is activated and can be stopped
by configuring the IDLWDT_ARM/_DSP bit in the ARM_/DSP_IDLECTL1
register.

B IDLWDT_ARM/_DSP = 0: The input reference clock remains active
when the MPU/DSP enters the idle mode.

B IDLWDT_ARM/_DSP = 1: The input reference clock is stopped in
conjunction with the MPU/DSP clock when the MPU/DSP enters the
idle mode.

3.2.2 Timeout Period

The timeout period of an MPU/DSP watchdog timer is defined by:

[The frequency of the input reference clock, which is the OMAP system
clock frequency divided by 14.

(1 The value of the prescaler bit field (PTV) in the MPU_/DSP_WDT_CNTL
register. The input clock frequency is further divided by 2(PTV+1) \When the
watchdog timer is in watchdog mode, the PTV value is fixed to 7. When
the watchdog is configured as a housekeeping timer, PTV is in the range
Oto7.

(1 The value of the load register, MPU_/DSP_WDT_LOAD.

The following equation is used to determine the timeout period.
TWDT Timeout = TWDT ref clk X (<MPU /DSP WDT LOAD>+1) X 2 (PTV+1)

where TwpT ref clk is the input reference clock period of the watchdog timer.

Table 16 shows the characteristics of the watchdog timer for different
MPU_/DSP_WDT_LOAD values.

Table 16. Watchdog Timer Characteristics

OMAP System WDT _ref clk MPU_/DSP_WDT_LOAD TWDT Timeout(PTV=7)
Clock -
12 MHz 1167 ns 0x0001 597.34 us
12 MHz 1167 ns OXFFFF 19.57 s
SPRU891 Timers 29

Watchdog Timers

3.2.3

3.24

3.2.5

30

Power Management

Before the MPU/DSP subsystem enters any of the low power states, the
corresponding input reference clock to the watchdog timer must be stopped,
as it implies that the watchdog timer must be configured for housekeeping
mode.

There are two ways to stop the input reference clock when the MPU/DSP
watchdog timer is in housekeeping mode:

(1 Setthe EN_WDTCK bit in the MPU_/DSP_IDLECT? register to 0 to force
the clock to stop.

[Setthe EN_WDTCK bitinthe MPU_/DSP_IDLECT2 register to 1, but stop
the MPU/DSP watchdog timer by setting the ST bit in the
MPU_/DSP_WDT_CNTL register, and program the IDLWDT_ARM/
_DSP bit to 1. This causes the input reference clock to be stopped
automatically in conjunction with the MPU/DSP clock when the idle mode
is entered.

For details on OMAP5912 power management, see the OMAP5912
Multimedia Processor Power Management Reference Guide (SPRU753).

Reset Considerations

Both the MPU and DSP watchdog timers are configured for watchdog mode
after powerup. The default value of the MPU_/DSP_WDT_LOAD register is
OXFFFF.

When the MPU watchdog expires, it resets the OMAP3.2 gigacell, except for
the DPLL1. When the DSP watchdog expires, it resets only the DSP.

If the OMAP system clock is 12 MHz, the reset occurs in approximately 19
seconds upon powerup, unless the default setting is changed.

Interrupt Support

Timers

If the watchdog is configured as a housekeeping timer, the timer can be
configured to generate an interrupt when the counter expires.

MPU watchdog timer uses MPU level 1 interrupt #27. DSP watchdog timer
uses DSP level 1 interrupt #13. Both interrupts are falling edge sensitive.

For details about OMAP5912 interrupt handling, see the OMAP5912
Multimedia Processor Interrupts Reference Guide (SPRU757).

SPRUS891

Watchdog Timers

3.2.6 Common Operations
3.2.6.1 Read Timer Values

The timer values can be read from the respective MPU or DSP read timer
register (MPU_/DSP_WDT_READ) either on-the-fly or after the timer is
stopped.

3.2.7 Emulation Considerations

The FREE bit in the MPU_/DSP_WDT_CNTL_TIMER register defines the
MPU/DSP watchdog behavior in housekeeping mode when the debugger
halts its parent processor.

(1 FREE = 1: Keep running while the debugger halts its processor.

(1 FREE = 0: Stop the timer while the debugger halts its processor, even if
the ST bit in the timer control register is set.

If the MPU/DSP watchdog timer is configured for watchdog mode, it keeps
counting until it expires, regardless of this bit.

3.3 Watchdog Mode Operations

3.31 Initialization
On power up, the MPU/DSP watchdog timer defaults to watchdog mode.

When the timer is in housekeeping mode, it can be switched back to watchdog
mode by setting the WATCHDOG bit in the MPU_/DSP_WDT_TIMER_MODE
register. In this case, the value loaded into MPU_/DSP_WDT_LOAD register
is set to the maximum value (OxFFFF), as on power up.

Note:

In watchdog mode, the MPU_/DSP_WDT_CNTL register must not be used.
The watchdog timer cannot be stopped by clearing the ST bit. The prescale
(PTV) value is fixed to 7 regardless of the PTV field value. Auto-reload and
one-shot do not apply because, if the counter expires, the processor is reset
and the watchdog registers are reinitialized.

3.3.2 Programming the Watchdog Timer in Watchdog Mode

When used as a watchdog timer, it is the responsibility of the software to
periodically write to the MPU_/DSP_WDT_LOAD register before the counter
expires. The newly loaded value must be different from the previous value,
otherwise the write will not be taken into account. Due to internal sequencing,
three timer clock periods must pass before a new value can be written into the
register. If the OMAP system clock (CLK_REF) is 12 MHz, the duration of three
timer clock periods is approximately 3.5 us.

SPRU891 Timers 31

Watchdog Timers

3.3.3

3.4
3.4.1

3.4.2

32

Pseudo Code Example

The following procedure shows how to use the watchdog timer in watchdog
mode.

1) Arrange a routine which is executed periodically before the WDT expires.
For example, this routine can be launched by the MPU/DSP private timers
or GP timers.

2) If the watchdog timer is in housekeeping mode, start the watchdog timer
by setting the WATCHDOG bit in the MPU_/DSP_WDT_TIMER_MODE
register.

3) Wait until an interrupt occurs before the watchdog times out. Inside the
ISR, reload the MPU_/DSP_WDT_LOAD register with a different value
from the current one.

Housekeeping Mode Operations

Initialization

On power up, the MPU/DSP watchdog timer defaults to watchdog mode. By
writing a predefined sequence to the WATCHDOG_DIS field of the
MPU_/DSP_WDT_TIMER_MODE register, the timer can be switched to
housekeeping mode. A sequence decode is initialized when OxF5 is written.
Once in this state, if the next write is different from OxAO, the state machine
causes a reset as if the watchdog timer has timed out. The watchdog timer
cannot be disabled by simply clearing the WATCHDOG bit in the
MPU_/DSP_WDT_TIMER_MODE register.

Programming the Watchdog Timer in Housekeeping Mode

Timers

The timer in housekeeping mode is started by setting the ST bit in the control
timer register (MPU_/DSP_WDT_CNTL) to 1. It is stopped by resetting this bit
to 0. When the timer is stopped, the timer counter keeps the current value.

If the AR bit in the MPU_/DSP_WDT_CNTL_TIMER register is 0, the timer
decrements from the loaded value down to O and then stops. If the AR bit is
1, the timer continues. A new value from the MPU_/DSP_WDT_LOAD register
is loaded into the timer counter when it expires.

Note:

Only the ST bit in the MPU_/DSP_WDT_CNTL register can be written while
the timer is running. Undefined results occur if the PTV or AR bits in the
MPU_/DSP_WDT_CNTL register are written. Undefined results occur if the
MPU_/DSP_WDT_LOAD register is written while the timer is running.

SPRUS891

3.4.3

SPRU891

Watchdog Timers

Pseudo Code Example

The following procedure shows how to switch a watchdog timer into
housekeeping mode and how to use the timer.

1)

2)

3)

4)

5)

Switch the timer to housekeeping mode, if necessary:

a)
b)

Write OxF5 to the MPU_/DSP_WDT_TIMER_MODE register.
Write 0xXAO to the MPU_/DSP_WDT_TIMER_MODE register.

Enable the watchdog timer input clock by setting the EN_WDTCK bit in the
ARM_/DSP_IDLECT?2 register.

Configure the timer:

a)
b)
c)

d)

Program the MPU_/DSP_WDT_LOAD_TIMER register to the desired
load value.

Program the PTV field in the MPU_/DSP_WDT_CNTL_TIMER
register to set the clock divider value (PTV =0 ... 7).

Program the AR bit in the MPU_/DSP_WDT_CNTL_TIMER register.
(1: auto-reload mode; 0: one-shot mode)

Program the FREE bit in the MPU_/DSP_WDT_CNTL_TIMER
register. (1: run free during emulation stop; 0: stop during emulation
stop)

Configure the MPU interrupt controller module for the MPU watchdog
timer:

a)
b)

c)

d)
e)

Enable the MPU global interrupt.

Program the corresponding level 1 interrupt priority level (ILR)
register for the timer interrupt being used. (For the MPU watchdog
timer, ILR27.)

i) Program the PRIORITY field to set the interrupt priority (O highest;
31 lowest).

i) Setthe SENS_LEVEL bit to 0 as falling edge sensitive.
iii) Setthe FIQ bit to 1 to set the interrupt as a FIQ.

Prepare the FIQ ISR and place its address the appropriate entry of the
interrupt vector (entry 7 in the vector).

Prepare the watchdog timer ISR.

Enable the specific timer interrupt by clearing the corresponding bit in
the MPU level 1 interrupt mask register.

Configure the DSP interrupt controller module for DSP watchdog timer:

a)
b)

c)

Enable the DSP global interrupt.

Prepare the watchdog timer ISR and put its address in entry 13 of the
interrupt vector.

Enable the timer interrupt by clearing the corresponding bit the in the
DSP level 1 interrupt mask register.

Timers 33

Watchdog Timers

6) When the interrupt occurs:
a) For the MPU watchdog timer, control jumps to the FIQ ISR, which will:
i) Read the level 1 interrupt source register for FIQ to get the
interrupt number (which should be interrupt #27).
if) Call the timer ISR to process the interrupt.
iiiy Setthe NEW_FIQ_ARG bit in the interrupt level 1 control register
to acknowledge the interrupt.

b) For the DSP watchdog timer, control jumps to the watchdog timer ISR
in which the interrupt is processed.

3.5 MPU Watchdog Timer Registers

Table 17 lists the MPU watchdog timer registers. All the registers are 16 bits.
The base (byte) address is OXFFFE C800. Table 18 through Table 21 provide
the descriptions for each register.

Table 17. MPU Watchdog Timer Registers

Name Description R/W MPU (Byte) Address
MPU_WDT_CNTL_TIMER MPU watchdog control timer R/W OxFFFE C800
MPU_WDT_LOAD_TIMER MPU watchdog load timer W OxFFFE C804
MPU_WDT_READ_TIMER MPU watchdog read timer value R OxFFFE C804
MPU_WDT_TIMER_MODE MPU watchdog timer mode R/W OxFFFE C808

Table 18. MPU Watchdog Control Timer Register (MPU_WDT_CNTL_TIMER)

MPU Byte Address = OxFFFE C800, Byte Offset 0x00

Reset
Bits Name Description R/W Value

15-12 RESERVED Reserved. R/W

11-9 PTV Prescale clock timer value R/W 0
Clock divisor = 2(PTV+1) if the timer is in house-
keeping mode.
Clock divisor is fixed 256 if the timer is in watch-
dog mode.

8 AR Auto-reload/One-shot timer when in housekeep- R/W 0
ing mode.

0: One-shot timer.

1: Auto-reload timer.

34 Timers SPRU891

Watchdog Timers

Table 18. MPU Watchdog Control Timer Register (MPU_WDT_CNTL_TIMER)
(Continued)

Reset
Bits Name Description R/W Value
7 ST Start/Stop timer when in housekeeping mode R/W 0
0: Stop the timer.
1: Start the timer.
6-2 RESERVED Reserved.
1 FREE It defines the behavior of the MPU watchdog tim- R/W 1
er in housekeeping mode when the debugger
halts its parent processor.
0: Stop counting even if ST =1.
1: Keep counting if ST=1.
The MPU watchdog timer keeps counting in
watchdog mode, regardless of this bit value.
0 RESERVED Reserved.
Table 19. MPU Watchdog Load Timer Register (MPU_WDT_LOAD_TIMER)
MPU Byte Base Address = OXFFFE C800, Offset = 0x04
Reset
Bit Name Description R/W Value
15-0 MPU_WDT_ Housekeeping mode: This value is loaded when w OxFFFF
LOAD_TIMER the timer expires or when it starts.
Watchdog mode: Reload the timer with this value.
Table 20. MPU Watchdog Read Timer Register (MPU_WDT_READ_TIMER)
MPU Byte Base Address = OxFFFE C800, Offset = 0x04
Reset
Bit Name Description R/W Value
15-0 MPU_WDT_ Current timer value. R OxFFFF

READ_TIMER

SPRU891 Timers 35

Watchdog Timers

Table 21. MPU Watchdog Timer Mode Register (MPU_WDT_TIMER_MODE)

MPU Byte Base Address = OxFFFE C800, Offset = 0x08

Reset
Bit Name Description R/W Value
15 WATCHDOG Write access w 1
1: Switch the timer mode back to watchdog
mode.
0: No effect.
14-8 RESERVED Reserved.
7-0 WATCHDOG_DIS Write access only W 0

Writing a predefined sequence (0OxF5, followed
by 0xA0) in this field switches the timer from
watchdog mode to housekeeping mode.

After receiving OxF5, if the second write access
is different from 0xAOQ, the MPU and DSP cores
are reset.

3.6 DSP Watchdog Timer Registers

Table 22 shows the DSP watchdog timer registers. All of the registers are 1/O
space mapped. Table 23 through Table 26 describe the register bits.

Table 22. DSP Watchdog Timer Registers

DSP (Word) Address

Register Name Description R/W (/O Space)
DSP_WDT_CNTL_TIMER DSP watchdog control timer R/W 0x3400
DSP_WDT_LOAD_TIMER DSP watchdog load timer W 0x3402
DSP_WDT_READ_TIMER DSP watchdog read timer value R 0x3402
DSP_WDT_TIMER_MODE DSP watchdog timer mode R/W 0x3404

36 Timers SPRU891

Watchdog Timers

Table 23. DSP Watchdog Control Timer Register (DSP_WDT_CNTL_TIMER)

DSP Word Base Address = 0x3400, Word Offset = 0x00

Reset
Bit Name Description R/W Value
15-12 Reserved Reserved.
11-9 PTV Prescale clock timer value R/W 0
Clock divisor = 2(PTV+1) in housekeeping mode.
Clock divisor is fixed 256 in watchdog mode.
8 AR Auto-reload/One-shot timer when in housekeeping mode R/W 0
0: One-shot timer.
1: Auto-reload timer.
7 ST Start/Stop the timer when in housekeeping mode R/W 0
0: Stop the timer.
1: Start the timer.
6-2 Reserved.
1 FREE It defines the behavior of the DSP watchdog timer in R/W 1
housekeeping mode when the debugger halts its parent
processor.
0: Stop counting even if ST =1.
1: Keep counting if ST=1.
The DSP watchdog timer keeps counting in watchdog
mode, regardless of this bit value.
0 Reserved.
Table 24. DSP Watchdog Load Timer Register (DSP_WDT_LOAD_TIMER)
DSP Word Base Address = 0x3400, Word Offset = 0x02
Reset
Bit Name Description R/W Value
15-0 DSP_WDT_ Housekeeping mode. This value is loaded when the W OXFFFF
LOAD_TIMER timer expires or when it starts.
Watchdog mode. Reload the timer with this value.
SPRU891 Timers 37

Watchdog Timers

Table 25. DSP Watchdog Read Timer Register (DSP_WDT_READ_TIMER)

DSP Word Base Address = 0x3400, Word Offset = 0x02

Reset
Bit Name Description R/W Value
15-0 DSP_WDT_ Read the timer value. R OXFFFF
READ_TIMER
Table 26. DSP Watchdog Timer Mode Register (DSP_WDT_TIMER_MODE)
DSP Word Base Address = 0x3400, Word Offset = 0x04
Reset
Bit Name Description R/W Value
15 WATCHDOG Write access: W 1
1: Switch back from timer mode to watchdog
mode.
0: No effect.
Read access (status of timer mode):
0: General housekeeping timer.
1: Watchdog timer.
14-8 RESERVED Reserved.
7-0 WATCHDOG_DIS Write access only: W 1
Writing a predefined sequence (0xF5, followed by
0xAO0) in this field switches from watchdog mode to
housekeeping mode. After receiving OxF5, if the
second write access is different from 0xAQ, the
DSP core is reset.
38 Timers SPRU891

32-KHz OS Timer

4 32-KHz OS Timer

4.1

41.1

4.1.2

SPRU891

Introduction

Purpose

Features

This section presents the purpose and features of the 32-KHz OS timer in the
OMAP5912. This information also applies to the OMAP5910.

The OS on the MPU subsystem requires interrupts at regular time intervals to
keep track of the current time to control the operation of the device drivers and
also for OS scheduling purposes. The OS time interval can be from 1 ms to
30 ms.

For example, Microsoft Windows CE scheduling has the following requirements:
[The periodic interrupt occurs every 1-25 ms

[The timer is expected to run in all modes except when suspended

The MPU private timers run with the system clock (CLK_REF) or DPLL1,
which may be disabled during the sleep mode. The 32-KHz OS timer runs with

32-KHz clock, and can keep running during the sleep mode. Therefore, it is
able to provide the required OS timing interval in all circumstances.

Note:
32-KHz here refers to 32678, not 32000.

The 32-KHz OS timer is a 24-bit down-counter that generates interrupts to the
MPU. The following features are available:

24-bit down count

Timer reset

Timer start/stop

Interrupt generation as timer counter expires

Support of both auto-reload mode and one-shot mode
On-the-fly register read and write

Interrupt enable/disable

Wake up the OMAP chip from deep sleep mode

[EE NN NN

Timers 39

32-KHz OS Timer

4.1.3 Functional Block Diagram
Figure 6. 32-KHz OS Timer Block Diagram
r—-——-—--——-————-——-— A
mpu | I
public <} Peripheral bus interface |
TIPB | |
| |
: Timer control :
| Tick |
| value Start/ Auto Interrupt |
| reg. stop reload enable
I (TSS) (ARL) (IT_ENA) I
| |
| |
| |
32-KHz OS | |
timer 24-bit counter —»| Comparator
input clock | |
- 4
4.2 Common Architecture and Operations
4.2.1 Interrupt Period

Table 27. Timer Interrupt Period According to TVR Value

40

MPU OS
timer
interrupt

The timer interrupt period is defined by the value loaded into the tick value
(OS_TIMER_TICK_VAL) register, as shown in the following equation:

IRQ period =

(OS_TIMER TICK VAL+1) /32768

Table 27 shows examples for various OS timer interrupt periods.

OS_TIMER_TICK_VAL register

Interrupt Period

Timers

0x0000 0001
0x0000 028F
0x0000 O7FF
0x0000 FFFF

OXO00FF FFFF

61 us
19.9 ms
62.5ms
2s

512s

SPRUS891

32-KHz OS Timer

Setting the OS_TIMER_TICK VAL register to 0 is not allowed and
leads to unpredictable results.

422 Clock Control

Figure 7 shows the clock input to the OS timer.

The functional domain clock directs the operation of the 32-KHz OS timer. It
can be sourced from either the 32-KHz oscillator or an external 32-KHz clock.
The clock is active even if the OMAP5912 device is in deep sleep mode.

The interface clock allows the MPU to access the registers of the 32-KHz OS
timer. Its source is the external OS and reference peripheral clock
(ARMXOR_CK), which is derived from OMAP5912 system clock.

Figure 7. Clock Input to 32-KHz OS Timers

(OMCAKFTSF\;EZ N IDLE condition + SW enable: ARMXOR—C’E Internal
system ARM_IDLECT2[EN_XORPCK(2)] " interface
clock) domain
329(?45 — RTC .| Functional
power - domain
splitter
32-KHz CLK_IN

32-KHz OS timer

4221 Internal Interface Clock Enable for the OS Timer

SPRU891

ARMXOR_CK can be stopped or activated by configuring the EN_XORPCK
bit in the ARM_IDLECT?2 register.

0 EN_XORPCK =0: ARMXOR_CK is disabled.

[EN_XORPCK =1: ARMXOR_CK is active and can be disabled by
configuring the IDLXOR_ARM bit in the ARM_IDLECTL1 register.

B IDLXORP_ARM = 0: ARMXOR_CK remains active even if the MPU
enters the idle mode.

B IDLXORP_ARM = 1: ARMXOR_CK is stopped when the MPU enters
the idle mode.

Timers 41

32-KHz OS Timer

4.2.3

4231

4.2.3.2

4.2.4

4.2.5

42

Power Management

Host Sleep

Wakeup

Before the MPU enters any low power states, ARMXOR_CK (as the internal
interface clock for the OS timer) must be stopped in either of the following
ways:

[Setting the EN_XORPCK bit in the ARM_IDLECT? register to 0 to force
the clock to stop.

[Setting the EN_XORPCK bit in the ARM_IDLECT2 register to 1, but
stopping the OS timer by configuring the TSS bit in the OS_TIMER_CNTL
register, and other peripherals connected to ARMXOR_CK, in which case
ARMXOR_CK will be stopped automatically in conjunction with the MPU
clock when the MPU enters the idle mode.

For details on OMAP5912 power management, see the OMAP5912
Multimedia Processor Power Management Reference Guide (SPRU753).

By enabling its interrupt, the 32-KHz OS timer can wake up the OMAP device
from deep sleep mode when the counter passes through O.

Note:

The 32-KHz OS timer uses its own dedicated interrupt line to wake up the
MPU from deep sleep mode, while the GP timers use the shared peripheral
wakeup interrupt line to wake up the MPU. For details on the GP timer wa-
keup capability, see section 6.2.3.

Reset Considerations

After reset, the OS timer is halted and left in auto-reload mode with interrupt
generation disabled.

Interrupt Support

Timers

If the 32-KHz OS timer interrupt is enabled, an interrupt is generated when its
counter decrements to 0. The 32-KHz OS timer uses MPU level 2, interrupt
#22. It is falling-edge sensitive.

For details about OMAP5912 interrupt handling, see the OMAP5912
Multimedia Processor Interrupts Reference Guide (SPRU757).

SPRUS891

4.2.6

4.2.7

SPRU891

32-KHz OS Timer

Auto-Reload Mode versus One-Shot Mode

The 32-KHz OS timer supports both auto-reload mode and one-shot mode.

The tick value (OS_TIMER_TICK_VAL) register specifies the desired value for
the timer to start counting. The tick counter (OS_TIMER_TICK_CNTR)
register is loaded with this value and then starts to count down. When the
counter reaches 0, the timer generates an interrupt to the MPU interrupt
handler.

In auto-reload mode, once the interrupt is back to the high level, the
OS_TIMER_TICK_CNTR register is reloaded from the OS_TIMER_TICK_VAL
register and starts to count down again.

In one-shot mode, once the interrupt is back to the high level, the timer is
automatically stopped (the TSS bit in the OS_TIMER_CNTL register is
cleared).

Initialization

The initialization procedure for the OS timer is shown below.

1) Enable the interface clock by setting the EN_XORPCK bit in the
ARM_IDLECT?2 register.

2) Configure the MPU interrupt controller module:
a) Enable the MPU global interrupt.

b) Program the corresponding level 2 interrupt priority level (ILR) register
(for the OS timer, it is ILR22).

i) Program the PRIORITY field to set the interrupt priority (O highest;
31 lowest).

i) Setthe SENS_LEVEL bit to 0 as falling edge sensitive.
iii) Setthe FIQ bit to 1 to set the interrupt as a FIQ.

c) Prepare the FIQ ISR and place its address the appropriate entry of the
interrupt vector (entry 7 in the vector).

d) Prepare the ISR for the OS timer interrupt.

e) Enable the OS timer interrupt by clearing the corresponding bit in the
MPU level 2 interrupt mask register.

Timers 43

32-KHz OS Timer

4.2.8

4281

4.2.8.2

4.2.8.3

4.2.8.4

4.2.9

44

Common Operations

Read Timer Counter

Setting the TSS bit in the OS_TIMER_CNTL register starts the timer count.

Start/Stop

Writing 1 to the TSS bit in the OS_TIMER_CNTL register will launch the timer
to start counting.

Resetting the TSS bit causes the counter to be stopped on the next 32-KHz
clock cycle. Then the timer counter keeps the current value.

Loading/Auto-Reloading
Loading the counter in the timer can be done in two ways:

[Writing a 1 to the TRB bit in the OS_TIMER_CNTL register. The counter
will be reloaded on the next 32-KHz clock cycle, whether or not the timer
is counting.

[Waiting until the counter reaches 0. It then is reloaded from the
OS_TIMER_TICK_ VAL register if the auto-reload bit (ARL) is set to 1.
Otherwise, the timer is stopped.

Peripheral Alignment and Data Width

The TIPB interface data path is 32 bits wide. To keep software compatible with
earlier 16-bit timer versions, the access width is taken into account when
writing to the registers. This means that writing 8 bits (or 16 bit) sets 24 MSB
(or 16 MSB) to 0.

For read accesses, all 32 bits are always output. All unused register bits
remain at 0.

Emulation Considerations

The 32-KHz OS timer keeps running even if the debugger halts the MPU.

Timers SPRU891

4.2.10

4.3

SPRU891

32-KHz OS Timer

Pseudo Code Example

The pseudo code below shows how to use the OS timer.

1)

2)

3)

4)

5)

6)

7)

8)

Initialize the OS timer.

Configure the OS timer:

a) Enable the OS timer to generate interrupts upon counter expiring by
setting the IT_ENA bit in the OS_TIMER_CNTL register.

b) Program the ARL bit in the OS_TIMER_CNTL register to configure the
working mode. (ARL=1: auto-reload mode; ARL=0: one-shot mode)

Write the desired counter initial value to the OS_TIMER_TICK VAL
register.

Trigger the OS timer to load the initial counter value:
a) Setthe TRB hitinthe OS_TIMER_CNTL register.

b) Poll the TRB hit. When it is cleared, the OS_TIMER_TICK_CNTR
register has been loaded with the OS_TIMER_TICK_VAL register.

Start the timer by setting the TSS in the OS_TIMER_CNTL register.

When the counter reaches 0, an interrupt occurs and control jumps to the
FIQ ISR, which will:

a) Read the MPU level 1 and 2 interrupt source register for FIQ to get the
interrupt number (which should be level 2 interrupt #22).

b) Call the OS timer ISR.

c) Setthe NEW_FIQ_ ARG bit in both the level 2 and level 1 interrupt
control registers to acknowledge the interrupt.

If the OS timer is configured for auto-reload mode, the counter is reloaded
from the OS_TIMER_TICK VAL register on the next cycle and then starts
to count down again.

If the OS timer is configured for one-shot mode, repeating step 3-5 will
allow the OS timer to generate the next interrupt.

32-KHz OS Timer Registers

Table 28 lists the OS timer registers which are all 32 bits. The base (byte)
address is OxFFFB 9000. Table 29 lists the register access timing constraints.
Table 30 through Table 32 provide the descriptions for each register.

Timers 45

32-KHz OS Timer

Table 28. OS Timer Registers

Name Description R/W MPU (Byte) Address
OS_TIMER_TICK VAL Tick value register R/W OxFFFB 9000
OS_TIMER_TICK_CNTR Tick counter register R OxFFFB 9004
OS_TIMER_CNTL Timer control register R/W OxFFFB 9008

Table 29. OS Timer Register Access Timing Constraints

Register Name Read Write
OS_TIMER_TICK VAL Can be read anytime. The value read Two consecutive writes must be separated
is the last value written. by at least one 32-KHz clock period (31.25
us). Otherwise, the value written is not
assured.

OS_TIMER_TICK_CNTR Reads are resynchronized with the Writing to this register has no effect.
interface clock. This register can be
read while the interface clock is
active, regardless of the timer
functional clock status.

OS_TIMER_CNTL Can be read anytime. The value read Two consecutive writes must be separated
is the last value written. by at least one 32-KHz clock period (31.25).
Otherwise, the value written is not assured.

46 Timers SPRU891

32-KHz OS Timer

Table 30. OS Timer Control Register (OS_TIMER_CNTL)

MPU Byte Base Address = OxFFFB 9000, Byte Offset = 0x08

Bit Name Function R/W Reset Value
31-4 Reserved Reserved.
3 ARL Auto-reload/One-shot mode R/W 1

0: One-shot mode. When the counter
reaches zero, an interrupt is generated and
the timer is stopped.

1: Auto-reload mode.

2 IT_ENA Interrupt enable/disable R/W 0
0: Interrupt is disabled.
1: Interrupt is enabled.

1 TRB Timer reload bit R/W 0

1: Reloads the counter. Once the counter
is reloaded, TRB is reset.

0 TSS Start/Stop timer R/W 0
0: Stop timer.
1: Start timer.

If one-shot mode is selected (ARL = 0),
this bit is automatically cleared when the
timer expires.

Table 31. OS Timer Tick Value Register (OS_TIMER_TICK_VAL)

MPU Byte Base Address = OxFFFB 9000, Byte Offset = 0x00

Bit Name Function R/W Reset Value
31-24 Reserved Reserved. R 0x00
23-0 TICK_VALUE This value is loaded when the timer ex- R/W OXFFFFFF

pires or when it starts.

Table 32. OS Timer Tick Counter Register (OS_TIMER_TICK_CNTR)

MPU Byte Base Address = OxFFFB 9000, Byte Offset = 0x04

Bit Name Function R/W Reset Value
31-24 Reserved Reserved. R 0x0
23-0 TICK_COUNTER Current value of the timer counter. R OXFFFFFF

SPRU891 Timers 47

32-KHz Synchronization Timer

5 32-KHz Synchronization Timer

5.1

511

5.1.2

5.1.3

Figure 8.

OoCP
data in

i

Introduction

Purpose

Features

This section details the purpose and features of the 32-KHz synchronization
timer in the OMAP5912. The information does not apply to the OMAP5910
device as it does not have this timer.

The 32-KHz synchronization timer is a simple 32-bit counter clocked by the
32-KHz input. Upon waking up from the deep sleep mode, the 32-KHz
synchronization timer can be used to determine the sleep duration.

The following features are available with the 32-KHz synchronization timer:

(1 32-bit count up

[Synchronization with the 32-KHz input clock
(4 On-the-fly count value read

(1 Dynamically shared by MPU and DSP

Functional Block Diagram

32-KHz Synchronization TImer Block Diagram

: f > ocp
—] OCP bus interface I—>} data out

»

: i >

r— 7771

OCP clock —— | Synchronization |

CLK32K_IN —DO
e Jd

48

I ——
7

Internal reset

Synchronization f¢— PWRON_RESET

r—— "] T A
| Read +

I counter

Timers

A\ 4
O
Py

[+\

O/

I -
|
|

SPRUS891

32-KHz Synchronization Timer

5.2 Common Architecture and Operations

5.2.1 Clock Control

There are two input clocks for the synchronization timer: interface clock and
function domain clock, as shown in Figure 9.

The 32-KHz synchronization timer is clocked by the 32-KHz oscillator or an
external 32-KHz clock. It can remain active even if the OMAP5912 device is
in deep sleep mode. For the external 32-KHz clock requirements, see the
OMAP5912 Multimedia Processor Clocks Reference Guide (SPRU751).

The clock input source for the internal interface domain is the ARM peripheral
clock (ARMPER_CK), which is derived from the OMAP5912 system clock.

Figure 9. Clock Input to the 32-KHz Synchronization Timers

Clock
operating
mode

CK_REF ¢
(OMAP5912 DPLL1
system clock) ﬁ_y MUX

Y

A\ 4

A\ 4

Frequency divider
ARM_CKCTL[PERDIV(1:0)]

A

IDLE condition + SW enable:
ARM_IDLECT2[EN_PERCK(2)]

ARM peripheral clock

ARMPER_CK
\4
32-KHz sync timer
OCP

interface

domain
0SC — RTC R Functional

32-KHz power " domain

splitter
32-KHz CLK_IN

SPRU891 Timers 49

32-KHz Synchronization Timer

5211

5.2.2

5.2.3

5231

50

Interface Clock Configuration

The internal interface clock for the synchronization timer is the ARM peripheral
clock. This clock can be derived from the OMAP5912 system clock or from the
DPLL1 clock. The frequency can be further scaled down by configuring the
PERDIV bits in the ARM_CKCTL register. The divisor value can be 1, 2, 4 or
8. For detailed information on ARM peripheral clock, see the OMAP5912
Multimedia Processor Clocks Reference Guide (SPRU751).

ARMPER_CK can be stopped or activated by configuring the EN_PERCK bit
in the ARM_IDLECT?2 register.

(1 EN_PERCK =0: The ARMPER_CK is stopped.

(0 EN_PERCK=1: ARMPER_CK is activated and can be stopped by
configuring the IDLLPER_ARM bit in the ARM_IDLECTLL1 register.

B IDLLPER_ARM = 0: ARMPER_CK remains active even if the MPU
and TC enter the idle mode.

B IDLLPER_ARM = 1: ARMPER_CK is stopped in conjunction with the
MPU and TC clocks when the idle mode is entered.

Reset Considerations

The synchronization timer module is reset with the external asynchronous
powerup reset (PWRON_RESET).

When PWRON_RESET is released after three 32-KHz clock periods, the
counter starts counting up from the reset value of the read counter
(32K_SYNC_CNT_CR) register on the falling edge of the 32-KHz clock. The
reset value of 32K_SYNC_CNT_CR is 0x03.

Common Operations

Read Timer Counter

Timers

The counter value can be read from the 32-bit read counter register
(32K_SYNC_CNT_CR). For the DSP, it is necessary to perform two 16-bit
accesses to read the register. Thus, in the case of the DSP, the LSW should
be read first, followed by the MSW.

Internal synchronization logic allows the counter value to be read while the

counter is running. The time latency to read a synchronized register is one
interface (ARMPER_CK) clock cycle.

SPRUS891

5.3 Synchronization Timer Registers

32-KHz Synchronization Timer

Table 33 lists the synchronization timer registers. All of the registers are 32
bits. The base (byte) address in MPU space is OXFFFB : C400. The base
(word) address in DSP 10 space is 0xE200. Table 34 and Table 35 include the

descriptions for each register.

Table 33. Synchronization Timer Registers

Name Description R/W MPU Byte Address DSP Word Address

32K_SYN_CNT_REV 32k synchronization R OxFFFB C400 (MSW) 0xE201 (MSW)

count CID revision
identification

OXFFFB C402 (LSW) OxE200 (LSW)

32K_SYN_CNT_CR 32k synchronization R OxFFFB C400 (MSW) 0xE209 (MSW)

count read counter

OXFFFB C402 (LSW) OxE208 (LSW)

Table 34. Synchronization Timer Identification Register (32K_SYN_CNT_REV)

MPU Byte Base Address = OxFFFB C400, Byte Offset = 0x02 LSW, 0x00 MSW
DSP Word Base Offset = 2E00, Word Offset = 0x00 LSW, 0x01 MSW

Bit Name Function R/W Reset
31:8 RESERVED Reads return 0 0x000000
7.0 CID_REV Module HW revision number of the current timer R 0x10

module: value set by hardware.

Four LSBs of CID_REYV indicate a minor
revision.
Four MSBs of CID_REYV indicate a major
revision.

Table 35. Synchronization Timer Read Counter Register (32K_SYN_CNT_CR)

MPU Byte Base Address = OxFFFB C400, Byte Offset = 0x12 LSW, 0x10 MSW
DSP Word Base Offset = 0x2E00, Word Offset = 0x08 LSW, 0x09 MSW

Bit Name Function R/W Reset
31:16 COUNTER_HI Value of 32-KHz synchronization timer counter R 0x0000
(16-bit MSB).
15:0 COUNTER_LO Value of 32-KHz synchronization timer counter R 0x0003
(16-bit LSB).
SPRU891 Timers 51

General Purpose Timers

6 General Purpose Timers

6.1 Introduction

This section presents the purpose and features of the general purpose (GP)
timers in the OMAP5912. The GP timers are not available on the OMAP5910.

6.1.1 Purpose

There are eight instances of GP timers in this peripheral module. Each timer
instance contains a 32-bit free running upward counter that has housekeeping
timer capability. In addition, the built-in compare logic allows an interrupt event
on the programmable counter matching value.

The GP timer 1, 2 and 3 can be configured to provide a programmable
pulse-width modulation (PWM) output on the corresponding dedicated output
pin. The output pin can be programmed to generate one pulse or to toggle
when an overflow or a match event occurs.

6.1.2 Features
The GP timer has the following features:

32-bit count up with compare logic

Supports both one-shot and auto-reload mode

Can be started/stopped

Programmable divider for input clock

16-/32-bit addressing

On-the-fly read/write registers

Interrupts generated on overflow and compare events

Interrupt enable/disable

Wakeup enable/disable

Register writes performed using either a posted or non-posted
methodology

Dedicated output trigger/PWM signal for GP timer 1, 2, and 3

Statically shared by the MPU and DSP (Note: The MPU and the DSP must
acquire ownership of the timer by software before using the timer. The
MPU has default ownership.)

U0 UoUUUouUuouooo

52 Timers SPRU891

General Purpose Timers

6.1.3 Functional Block Diagram
Figure 10. GP Timer Block Diagram
r--——r-—H—H—H™"—F—FFFT"—\"—-»\==--""""/""""""""-"-"-"-"-"--"-"-"\-yF"""———= A
| Host 32 bits (16 bits addressable) |
| |
| OCP interface |
| A A A A A A A A A |
I A\ 4 A\ 4 A\ 4 | A\ 4 | A\ 4 A\ 4 A\ 4 I
: TCLR | | TTGR TCRR | | TMAR [|Tsicr| | |Twps TIOCP TISTAT :
| | _CFG
a
I —\ Y Y Timer I
> > — int t
| L/ TISR TIER Intertupt inferrp
Comp e > i o9
| Timer |
| wakeup |
| | TWER]| dle
: V%akgup request I
ogic
| Timer |
counter Idle ac
| Ly | Pulse ——ji——h——ﬂ
PWM
Timer cloc > ; Timer PWM

I i lock logic i I

Prescaler 9 »
| |
R d
6.1.4 Supported Modes

SPRU891

A GP timer supports two major functional modes: housekeeping mode and
compare mode.

When used as a housekeeping timer, the timer supports both one-shot and
auto-reload mode. An interrupt can be generated upon the counter overflow.

When the internal compare logic is enabled, a GP timer allows interrupt events
on the programmable counter matching value. By default, the compare mode
is disabled upon reset. For specific information on compare mode, see section
6.3.

The overflow and counter matching interrupts can be enabled at the same
time. Upon the interrupt, the interrupt source can be identified by reading the
interrupt status register (GPTMR_TISR).

For GP timer 1, 2, and 3, a dedicated output signal can be pulsed or toggled
on overflow and match events. This offers timing stamp trigger signal or
pulse-width modulation (PWM) signal sources. For detailed information on
PWM, see section 6.3.

Timers 53

General Purpose Timers

6.2 Common Architecture and Operations

6.2.1 Clock Control

There are two input clocks for each GP timer, the OCP interface clock and the
function domain clock. Figure 11 shows the clock input to GP timers.

Figure 11. Clock Input for GP TImers

Clock
operating
mode
CK_REF ¢
(OMAP5912 —o DPLL1 >
system clock) MUX

\4

Frequency divider
ARM_CKCTL[PERDIV(1:0)]

\4

IDLE condition + SW enable:
ARM_IDLECT2[EN_PERCK(2)]

ARM peripheral clock

ARMPER_CK
\4
GP timers
AUTO
A IDLE
IDLE condition + SW enable: \ i
ARM_IDLECT2[EN_XORPCK(1)] [] OCP interface
domain
osc [] RTC . Functional
32-KHz = . > domain
T power >
splitter
32-KHz CLK_IN ——»
TIMER.EXTCLK pin

1

MOD_CONF_CTRL_1

54 Timers SPRU891

6.2.1.1

General Purpose Timers

Configuration of the Input Clock for GP Timers

The OCP interface clock for the GP timer is the ARM peripheral clock
(ARMPER_CK), which also serves as the interface clock for the 32-KHz
synchronization timer. For detailed information on the ARM peripheral clock,
see the OMAP5912 Multimedia Processor Clocks Reference Guide
(SPRU751).

For each GP timer, there are three possible sources for the function domain
clock. The selection is done by configuring the
CONF_MOD_GPTIMERx_CLK_SEL_R field in the MOD_CONF_CTRL_1
register (where x=1...8). Table 36 lists all the clock sources and the
corresponding value of CONF_MOD_GPTIMERx_CLK_SEL_R. For
additional information on MOD_CONF_CTRL_1, see the OMAP5912
Multimedia Processor Initialization Guide (SPRU752).

Table 36. Function Domain Clock for the GP Timer

6.2.2

Input Clock CONF_MOD_GPTIMERX_CLK_SEL_R
ARMXOR_CK 00
32-KHz clock 01
TIMER.EXTCLK pin 10

The default function domain clock is ARMXOR_CK. ARMXOR_CK is the
external OS and reference peripheral clock which also serves as the interface
domain clock for the 32-KHz OS timer.

Timeout Period

The GP timer is composed of a prescaler stage and a timer counter.

The prescaler stage is clocked with the function domain clock and acts as a
clock divider for the timer counter stage to reduce the input function clock
frequency. It is enabled when the PRE bit in the timer control register
(GPTMR_TCLR) is set. The clock divisor (PS) value can be configured by
programming the PTV field in GPTMR_TCLR.

Table 37 lists the PS values based on various PRE and PTV configurations.

Table 37. Clock Divisor Values

SPRU891

PRE PTV Divisor (PS)
0 X 1
1 n 2n+l
(n=0...7)

Timers 55

General Purpose Timers

The timeout period depends on:
(1 Value of the clock divisor (PS)
[Value loaded into the timer load register (GPTMR_TLDR)

timeout period = (0xXFFFF FFFF - TLDR + 1) X
timer clock period X clock divider (PS)

Where timer_clock_period = 1/timer_clock_frequency.

For example, Table 38 shows various timeout periods with a 32-KHz timer
function clock and where PS = 1.

Table 38. TLDR Value and Corresponding Timeout Period (where PS = 1)

6.2.3
6.2.3.1

6.2.3.2

56

GPTMR_TLDR Timeout Period

0x0000 0000 37h
OxFFFF 0000 2s
OXFFFF FFFF 31.25us

Power Management

Host Sleep

Before the MPU subsystem enters any the low power state, both the
ARMPER_CK and the ARMXOR_CK must be stopped. To stop
ARMPER_CK, see section 5.2.1.1 (interface clock configuration for the
synchronization timer). To stop ARMXOR_CK, see section 4.2.3 (power
management for the OS timer).

GP Timer Sleep

Timers

When a GP timer is in the idle state, its interface clock is switched off. If the
functional clock is from ARMXOR_CK, it is also off. If the functional clock is the
32-KHz clock, the GP timer can keep counting even in the idle state, as long
as it is not stopped. As such, the GP timer can be used to wake up the MPU
when the MPU subsystem is in deep sleep mode.

Before the MPU subsystem enters the deep sleep mode, most peripherals
must be idle, including all of the GP timers. A GP timer can either enter the idle
state or remain active, depending on the value of the IDLEMODE field in the
timer OCP configuration register (GPTMR_TIOCP_CFG) as follows:

(1 IDLEMODE = No-idle (01), the timer does not go into idle state.

(] IDLEMODE = Force-idle (00), the timer goes into idle state independently
of the internal module state.

(1 IDLEMODE = Smart-idle (10), the timer behavior is defined by the
AUTOIDLE bit in the GPTMR_TIOCP_CFG register. If the bit is 1, the timer
goes into the idle state when the timer is not used. If the bit is O, the timer
does not go into the idle state.

SPRUS891

General Purpose Timers

6.2.3.3 Wakeup

When the MPU subsystem is in the deep sleep mode, the wakeup capability
of the GP timer can be used to wake up the MPU if the 32-KHz clock is selected
as its function clock. The wakeup capability can be enabled by configuring the
ENAWAKEUP bit in the GPTMR_TIOCP_CFG register. With the wakeup
capability enabled, a wakeup request (interrupt) can be sent to the MPU when
an overflow or match event happens. Note that a wakeup request can be
generated only if the MPU subsystem is in low power mode. Figure 12 shows
the wakeup request generation.

Figure 12. Wakeup Request Generation

} Timer
wakeup

—

T’ MPU idle

Interrupt
sources
\ \
r———gf——————— t+———"
: MAT_IT_FLAG OVF_IT_FLAG :
| TISR |
e d

When the MPU receives a wakeup request issued by the GP timer, the
following sequence happens:

1) The interface clock is reactivated if it had been switched off (AUTOIDLE
bit in the GPTMR_TIOCP_CFG register was set).

2) The MPU deactivates the idle request signal.

3) The timer deactivates the idle acknowledge signal.

4) The MPU can then read the corresponding bit in the GPTMR_TISR
register to find out which interrupt source has triggered the wakeup
request.

5) After acknowledging the wakeup request, the MPU resets the status bit
and releases the interrupt line by writing a 1 to the corresponding bit in the
GPTMR_TISR register.

SPRU891 Timers 57

General Purpose Timers

For details on OMAP5912 power management, see the OMAP5912
Multimedia Processor Power Management Reference Guide (SPRU753).

6.2.4 Register Write Mode: Posted versus Non-Posted

All the GP timer registers are 32 bits wide, accessible via OCP interface with
16-bit or 32-bit OCP access (read/write). The 16-bit wide access mode
requires two consecutive write operations (16 LSBs followed by 16 MSBs).

The host processor uses the OCP bus protocol to write the GPTMR_TLDR,
_TCRR, _TIER, _TISR, _TCLR, _TIOCP_CFG, _TWER, _TTGR, _TSICR
and _TMAR registers synchronously with the timer interface clock. When
writing to any of these registers (regardless of whether they are 16-bit or 32-hit
write), the access mode can be the posted mode, if the following condition is
true:

frequency (interface_clock) > 4 X frequency(function domain clock)

Otherwise the write mode has to be non-posted.

6.2.4.1 Posted Write Mode

This mode is used if the POSTED bit is set to 1 in the timer synchronization
interface control register (GPTMR_TSICR). However, before setting this bit,
the interface clock frequency must be four times greater than the domain clock
frequency.

It uses a posted write scheme for updating any internal register. This means
that the write transaction is immediately acknowledged on the OCP interface,
although the effective write operation occurs later, because of a
resynchronization in the timer clock domain. The advantage is that neither the
interconnect nor the CPU that requested the write transaction are stalled.
Each register has a status bit that is set if there is a pending write access to
the register.

In this mode, it is mandatory that the processor check this status bit prior to any
write access. If a write is attempted to a register with a previous access
pending, the previous access is discarded without notice. The status bits are
bits [4:0] (pending write status bits) in the timer write pending status register
(GPTMR_TWPS). These bits are automatically cleared by internal logic when
the write to the corresponding register is acknowledged.

The timer module updates the timer counter register (GPTMR_TCRR) value
synchronously with the OCP clock. Consequently, any read access to
GPTMR_TCRR does not add any resynchronization latency; the current value
is always available.

58 Timers SPRU891

General Purpose Timers

If a write access is pending for a register, reading from this register does not
yield a correct result. Software synchronization must be used to avoid
incorrect results.

The drawback of this automatic update mechanism is that it assumes a given
relationship between the timer interface frequency and the timer clock
frequency.

Note:

The GPTMR_TISR and GPTMR_TIER registers operate only with the timer
interface clock, so they do not need a write pending status bit.

6.2.4.2 Software Synchronous Non-Post Write
This mode is used if the POSTED bit in the GPTMR_TSICR is set to 0.

It uses a non-posted write scheme for updating any internal register. This
means that the write transaction is not acknowledged on the OCP interface
until the effective write operation occurs, after the resynchronization in the
timer clock domain. The drawback is that both the interconnect and the
processor are stalled during this period. The processor cannot serve
interrupts, increasing the interrupt latency. An interconnect that includes
timeout logic to detect erroneous transactions can generate an unwanted
system abort event.

This stall period can be quantified as follows:
T(stall) = 3 interface_clock_cycles + 5 X function domain_clock cycles

The same full resynchronization scheme is used for a read transaction. The
same stall period applies. A register read following a write to the same register
is always coherent. This mode is functional regardless of the ratio between the
OCP interface frequency and the functional clock frequency.

6.2.4.3 Write Mode Selection

Upon reset, the posted mode is enabled by default. The posted mode can be
disabled by configuring the POSTED bit to 0 in the GPTMR_TSICR register.
The choice between the synchronization modes must consider the frequency
ratio and the stall periods that can be supported by the system, without
affecting the global performance.

6.2.5 Reset Considerations

Upon a power reset, a GP timer defaults to a one-shot timer but is stopped.
Both the overflow and match interrupts are disabled. The prescaler is also
disabled. The register access mode is posted.

SPRU891 Timers 59

General Purpose Timers

A GP timer can also be reset by setting the SFT bit in the GPTMR_TSICR
register. The effect on the GP timer is the same as a power reset.

As the GP timers are outside of the OMAP3.2 gigacell, an MPU or DSP
software reset does not automatically reset them, nor does an MPU/DSP
watchdog reset.

See section 6.2.7 for more information on how to bring a GP out of reset.

6.2.6 Interrupt Support

6.2.6.1 Interrupt Events

Both events are combined into one interrupt request signal and one wakeup
signal, as shown in Figure 13. Each event can be independently
enabled/disabled with the corresponding bit in the timer interrupt enable
register (GPTMR_TIER) for the interrupt and the corresponding bit in the timer
wakeup enable register (GPTMR_TWER) for the wakeup.

Figure 13. GP Timer Interrupt Architecture

r
| TWER | | TIOCP_CFG | Wakeup
| request
: MAT_WUP_ENA| |[OVF_WUP_ENA : | ENAWAKEUP : to the MPU
| 4 L R —| |_+
I
r———————— |
TISR | MPU idle
I
MAT _IT_FLA
_T_FLAG P~ MAT and OVF
[events
OVF_IT_FLAG ¢
I —— J \::
Interrupt Interrupt
—\ request signal » 10 host
::1 / — processor
| e r— — "
TIER |

The internal interrupt line of each GP timer is connected to the host interrupt
handler separately. Table 39 lists the interrupt numbers for each GP timer. All
the interrupts are level sensitive.

60 Timers SPRU891

Table 39. GP Timer Interrupt Lines

General Purpose Timers

GP Timer
Instance

MPU Interrupt Number

DSP Interrupt Number

GP timer 1
GP timer 2
GP timer 3
GP timer 4
GP timer 5
GP timer 6
GP timer 7

GP timer 8

Level 1 interrupt #17
Level 1 interrupt #18
Level 1 interrupt #34
Level 1 interrupt #35
Level 1 interrupt #36
Level 1 interrupt #37
Level 1 interrupt #38

Level 1 interrupt #39

Level 2.1 interrupt #1
Level 2.1 interrupt #2
Level 2.1 interrupt #3
Level 2.1 interrupt #4
Level 2.1 interrupt #5
Level 2.1 interrupt #6
Level 2.1 interrupt #7

Level 2.1 interrupt #8

The wakeup line of all the GP timers are merged before connecting to the host
interrupt handler. The interrupt number is MPU level 2 #46 (peripheral wakeup
interrupt). It is falling edge sensitive.

When the interrupt or wakeup event has been issued, the associated interrupt
status bit is set in the GPTMR_TISR register. The pending interrupt event is
reset when the set status bit is overwritten by a 1.

6.2.7 Initialization

SPRU891

The following initialization procedure needs to be done before a GP timer can
be used.

1)

2)

3)

If the GP timer is accessed by the DSP:

a) The MPU needs to program the corresponding static switch register
to release the GP timer.

b) The DSP needs to the program the corresponding static switch
register to take the ownership.
The MPU configures the interface clock for the GP timer.

a) Program the PERDIV field in the ARM_CKCTL register to set the clock
divisor for the interface clock.

b) Setthe EN_PERCK bit to enable the GP timer interface clock.

The MPU selects the function clock for the GP timer by configuring the
CONF_MOD_GPTIMERx_CLK_SEL_R field in the MOD_CONF_CTRL_1
register.

Timers 61

General Purpose Timers

4) Configure the interrupt controller module. If the GP timer is accessed by
the MPU, the MPU interrupt controller is configured as follows:

a) Enable the MPU global interrupt.

b) Program the corresponding level 1 or 2 interrupt priority-level (ILR)

register.
i) Program the PRIORITY field to set the interrupt priority (O highest;
31 lowest).

i) Setthe SENS_LEVEL bitto 1 as low level active.
iii) Set the FIQ bit to 1 to set the interrupt as a FIQ.

c) Prepare the FIQ ISR and put its address in the appropriate entry of the
interrupt vector (entry 7 in the vector).

d) Prepare the GP timer ISR.

e) Enable the GP timer interrupt by clearing the corresponding bit in the
level 1 or 2 MPU interrupt mask register.
5) Configure the interrupt controller module. If the GP timer is accessed by
the DSP, the DSP interrupt controller is configured as following:
a) Enable the DSP global interrupt.

b) Program the corresponding DSP level 2.1 interrupt priority-level (ILR)
register for the interrupt being used.

i) Program the PRIORITY field to set the interrupt priority (O highest;
31 lowest).

i) Setthe SENS_LEVEL bit to 1 as low level active.
iiiy Set the FIQ bit to 1 to set the interrupt as a FIQ.

c) Prepare the GP timer ISR and put its address in the appropriate entry
of the interrupt vector (based on the interrupt number being used).

d) Enable the GP timer interrupt by clearing the corresponding bit in the
DSP level 2.1 interrupt mask register.

6.2.8 Common Operations

6.2.8.1 Read Timer Counter

The GPTMR_TCRR register is a 32-bit register (16-bit addressable).
Therefore, the MPU can either perform one 32-bit access or two 16-bit
accesses to it, while the DSP needs to perform two consecutive 16-bit
accesses. Because the timer interface clock is completely asynchronous with
the timer function clock, some synchronization is done to ensure that the
GPTMR_TCRR value is not read while it is being incremented.

62 Timers SPRU891

6.2.8.2

6.2.8.3

6.2.9

SPRU891

General Purpose Timers

In 16-bit mode, the following sequence must be followed to read
GPTMR_TCRR properly:

1)

2)

Read the lower 16-bits of GPTMR_TCRR. When the lower 16 bits are
read, the upper 16 bits of are stored in a temporary register.

Read the upper 16 bits of GPTMR_TCRR. During this read, the values of
the upper 16 bits that have been stored in the temporary register are read.

Update Timer Counter Timer

The GPTMR_TCRR can be updated in three different ways:

a
U

Write the new counter value directly to GPTMR_TCRR.

Write the new counter value to GPTMR_TLDR in auto-reload mode. When
the timer overflows, the value in GPTMR_TLDR will be loaded to
GPTMR_TCRR automatically.

Write the new counter value to GPTMR_TLDR and trigger a timer counter
reload by writing anything to timer trigger register (GPTMR_TTGR). When
TTGR is written, the value in GPTMR_TLDR is loaded into
GPTMR_TCRR. The PTV field in the timer control register (TCLR) is
cleared in this operation.

The MPU can access the GPTMR_TCCR, GPTMR_TLDR or GPTMR_TLDR
registers by either performing one 32-bit access or two 16-bit accesses to
them, while the DSP needs to perform two consecutive 16-bit accesses.

Start/Stop a GP Timer

Each GP timer can be started and stopped at any time by configuring the ST
bit in the GPTMR_TCLR register. GPTMR_TCRR keeps the current value
after the timer is stopped. The timer can be restarted from the old value unless
GPTMR_TCRR has been reloaded with a new value.

Emulation Considerations

During emulation mode, the GP timer can either run free or stop counting,
depending on the value of the EMUFREE bit in the GPTMR_TIOCP_CFG
register.

U

a

EMUFREE = 1: The timer keeps running in emulation mode and the
interrupt is still generated when overflow is reached.

EMUFREE = 0: The prescaler and timer are frozen and both resume on
exit from emulation mode.

Timers 63

General Purpose Timers

6.2.10

64

Pseudo Code Example

Timers

The following pseudo code shows how to use a GP timer for its housekeeping

capability.

1) Initialize to configure the clocks and interrupt module (see section 6.2.7).

2) Set the desired timeout period:

a) Program the GPTMR_TLDR and GPTMR_TCRR register.

b) If the prescaler is needed, set the PRE bit and program the PTV field
in the TCLR register.

c) Otherwise, reset the prescaler bit in the GPTMR_TCLR register.

3) Set the AR bit in the GPTMR_TCLR register if auto-reload mode is
needed.

4) Enable the overflow interrupt by setting the OVF_IT_ENA bit in the
GPTMR_TIER register.

5) Enable or disable the compare capability. To enable the compare logic,
see section 6.3. Disable the compare logic as follows:

a) Resetthe CE bitin the GPTMR_TCLR register.
b) Reset the MAT_IT_ENA bit in the GPTMR_TIER register to disable
match event interrupt.

6) Disable the PWM output by programming the TRG field in the
GPTMR_TCLR register.

7) Configure the idle mode and wakeup response:

a) Configure the IDLEMODE, ENWAKEUP and AUTOIDLE fields in the
GPTMR_TIOCP_CFG register.
b) Configure the GPTMR_TWER register.

8) Configure the emulation mode by configuring the EMUFREE bit in the
GPTMR_TIOCP_CFG register (1: run free; 0: timer frozen in emulation
mode).

9) Select the posted/non-posted register write mode by configuring the

POSTED bit in the GPTMR_TSICR register (1: posted; 0: non-posted).

10) Start the timer by setting the ST bit in the GPTMR_TCLR register. An

interrupt will occur upon timeout.

SPRUS891

General Purpose Timers

11) When an interrupt occurs, control jumps to the FIQ ISR if the GP timer is
used by the MPU. The FIQ ISR should:

a) Read the MPU interrupt level 1 and level 2 source register for FIQ to
get the interrupt number (which should be the number corresponding
to the GP timer interrupt number).

b) Call the GP timer ISR, which will:

i) Read the TISR register to get the interrupt source. Bit
OVF_IT_FLAG should be set.

i) Write a 1 to the OVF_IT_FLAG bit to clear the interrupt.
iii) Process the interrupt.

c) Upon returning from GP timer ISR, the FIQ ISR sets the
NEW_FIQ_ARG bit in both the interrupt level 2 and level 1 control
registers to acknowledge the interrupt (which allows new interrupt
generation).

12) When an interrupt occurs, control jumps to DSP interrupt level 2.1 ISR if
the GP timer is used by the DSP, which will:

a) Read the DSP interrupt level 2.1 source register to get the interrupt
number (which should be the GP timer interrupt number).

b) Call the GP timer interrupt ISR , which will:

i) Read the TISR register to get the interrupt source. Bit
OVF_IT_FLAG should be set.

i) Write a 1 to the OVF_IT_FLAG bit to clear the interrupt.
iii) Process the interrupt.

¢) Upon returning from GP timer ISR, it sets the NEW_FIQ_ ARG bit in
the DSP level 2.1 interrupt control register to acknowledge the
interrupt.

13) If the GP timer is configured for auto-reload mode, GPTMR_TCRR is
reloaded from the TLDR register and then starts to count up again. If the
GP timer is configured for one-shot mode, reloading GPTMR_TCRR and
starting the timer again will allow the next interrupt generation.

6.3 Compare Mode Operations

When the compare enable (CE) bit in GPTMR_TCLR is set to 1, the
GPTMR_TCRR register is continuously compared to the value held in the
timer match register (GPTMR_TMAR). GPTMR_TMAR value can be loaded
at any time. When the GPTMR_TCRR and the GPTMR_TMAR value match,
an interrupt event is issued if the MAT_IT_ENA bit is set.

SPRU891 Timers 65

General Purpose Timers

6.3.1

66

Pseudo Code Example

Timers

1)

2)

3)

4)

5)

6)
7

8)

9)

Initialize to configure the clocks and interrupt module (see section 6.2.7).

Program GPTMR_TLDR, and GPTMR_TCRR registers. Configure
prescaler if needed.

Set the AR bit in the TCLR register if auto-reload mode is needed.

Enable or disable the overflow interrupt by configuring the OVF_IT_ENA
bit in the GPTMR_TIER register.

Enable the compare mode:
a) Setthe CE bit in the GPTMR_TCLR register.

b) Set the MAT _IT_ENA bit in the GPTMR_TIER register to enable
match event interrupt.

c) Load the GPTMR_TMAR register with the desired value to be
compared.

Disable the PWM output.
Configure the idle mode and wakeup response.

Configure the emulation mode by configuring the EMUFREE bit in the
GPTMR_TIOCP_CFG register.

Select the posted/non-posted register write mode.

10) Start the timer.

11) An interrupt will occur when GPTMR_TCRR = GPTMR_TMAR. When an

interrupt occurs, control jumps to the FIQ ISR if the GP timer is used by
the MPU. The FIQ ISR should:

a) Read the MPU interrupt level 1 and level 2 source register for FIQ.
b) Call the GP timer ISR, which will:

i) Read the GPTMR_TISR register to get the interrupt source. Bit
MAT _IT_FLAG should be set.

i) Write a 1 to the MAT_IT_FLAG bit to clear the interrupt.
iii) Process the interrupt.

c) Setthe NEW_FIQ_ ARG bit in both the interrupt level 2 and level 1
control register to acknowledge the interrupt.

SPRUS891

6.4

SPRU891

General Purpose Timers

12) An interrupt will occur when GPTMR_TCRR = GPTMR_TMAR. When an
interrupt occurs, control jumps to DSP interrupt level 2.1 ISR if the GP
timer is used by the DSP, which should:

a) Read the DSP interrupt level 2.1 source register to get the interrupt
number, which should be the GP timer interrupt number.

b) Call the GP timer interrupt ISR, which will:

i) Read the GPTMR_TISR register to get the interrupt source. Bit
MAT _IT_FLAG should be set.

i) Write a 1 to the MAT_IT_FLAG bit to clear the interrupt.
iii) Process the interrupt.

c) Set the NEW_FIQ_ARG bit in the DSP level 2.1 interrupt control
register.

Pulse-Width Modulation

The GP timer 1, 2, and 3 can be configured to provide a programmable
pulse-width modulation (PWM) output. The dedicated output pin can be
programmed through the TRG and PT bits in GPTMR_TCLR to generate one
pulse (one function clock cycle) or to invert the current value (toggle mode)
when an overflow or a match event occurs.

The PT bit determines the pulse mode and toggle mode. The TRG bits
determine on which register value the timer PWM pin toggles. The PWM pin
can toggle when an overflow event occurs, or if an overflow or a match event
occurs. When the match event is used, the CE bit in GPTMR_TCLR must be
set. For detailed information on TRG and PT, see section 6.5.

The SCPWM bit in GPTMR_TCLR determines the output pulse polarity. It can
only be set or cleared when the counter is stopped or the trigger is off (TRG
bits are cleared). This allows the PWM output pin to be set to a known state
before modulation starts.

The modulation is synchronously stopped when the TRG bits are cleared and
overflow occurs. This allows the output pin to be set to a known state when
modulation is stopped.

In Figure 14 and Figure 15, the internal overflow pulse is set each time the
(OXFFFF FFFFF - GPTMR_TLDR +1) value is reached, and the internal match
pulse is set when the counter reaches GPTMR_TMAR register value. In
Figure 14, the SCPWM bit in TCLR is set to 0, while in Figure 15 it is set to 1.

Timers 67

General Purpose Timers

When configuring the GPTMR_TLDR and GPTMR_TMAR registers, the
values written must be at least two units smaller than the overflow value
(OXFFFFFFFF). If the PWM trigger events are both overflow and match, the
difference between the value kept in GPTMR_TMAR and in GPTMR_TLDR
must be at least two units.

Figure 14. Timing Diagram of Pulse-Width Modulation With SCPWM Bit =

Timer clock 'l'l'l'l'l'l'l'l'lIlIl'l'lll'l'l'l'll

Internal overflow pulse

[I [
| | | | ((| | I
I I 1 I I)) I i i 1

[O N I I I [
Internal match pulse | | | | | | ((| | |

))

, [I [I [
Timer PWM (TRG=01&PT=0) | | N_| [((/| I

| /J_\ | | T |
Timer PWM (TRG =10&PT=0) | | I /| (o I
[T I

[I
|

Timer PWM (TRG=10&PT=1) | /
I

[1~

Timer PWM (TRG = 01 & PT = 1) . / i
[R N B

e

In Figure 15, TCLR (SCPWM bit) is set to 1.

Figure 15. Timing Diagram of Pulse-Width Modulation With SCPWM Bit = 1

68

Tlmerclock'l'l'l'l'l'l'l'l'||||||'||||I|I|I|I|I

Internal overflow pulse | I\ I I

| Q¢
| .
I
L
T
I

J

))

I

|
|
|
)) I
|
|
|
|
|

T
Internal match pulse !
I
|

C

|
Timer PWM (TRG = 10 & PT = 0)I

Q¢
))

I

|

I

|

T

} }

Timer PWM (TRG =01 & PT=0)| |
|

I

I

(
ICC

/

Timer PWM (TRG =10 & PT =1) |
I

Timer PWM (TRG=01&PT=1) | | I\
I

T

—_— A —

Timers SPRU891

General Purpose Timers

6.4.1 PWM Output Signal

Table 40 and Table 41 show the PWM output pins and the pin mux control
register configurations for GP timers 1, 2, and 3.

Table 40. OMAP5912 ZDY Package: Pin Mux Configuration for the PWM Output Pins

GP Timer Pin FUNC_MUX_CNTL_6
1 K17 bits[2:0] = 110
2 K15 bits[5:3] = 100
3 K16 bits[8:6] = 010

Table 41. OMAP5912 ZZG Package: Pin Mux Configuration for the PWM Output Pins

GP Timer Pin FUNC_MUX_CNTL_6
1 M18 bits[2:0] = 110
2 L14 bits[5:3] = 100
3 M20 bits[8:6] = 010
6.5 GP Timer Registers

Table 42 lists the base addresses for all GP timers.

Table 42. GP Timer Register Base Address

GP Timer MPU Domain Byte Address DSP Word Address (I/O Space)
GP timer 1 OxFFFB 1400 0x8A00
GP timer 2 OxFFFB 1C00 O0x8E00
GP timer 3 OxFFFB 2400 0x9200
GP timer 4 OxFFFB 2C00 0x9600
GP timer 5 OxFFFB 3400 0x9A00
GP timer 6 OxFFFB 3C00 0x9E00
GP timer 7 OxFFFB 7400 0xBAOO
GP timer 8 OxFFFB D400 OxEAOQ0

SPRU891 Timers 69

General Purpose Timers

Table 43 lists the 32-bit (or 2 x 16-bit) GP timer registers. The registers are
accessible in 16-bit mode and use little-endian addressing.

Table 44 through Table 56 contain the register descriptions.

Table 43. GP Timer Registers

MPU Byte DSP Word
Offset Offset LSW/

Name Description R/W MSW/LSW MSW
GPTMR_TIDR Timer identification R 0x00/0x02 0x00/0x01
GPTMR_TIOCP_ Timer OCP configuration R/W 0x10/0x12 0x08/0x09
CFG
GPTMR_TISTAT Timer system status R 0x14/0x16 0x0A/0x0B
GPTMR_TISR Timer status R/W 0x18/0x1A 0x0C/0x0D
GPTMR_TIER Timer interrupt enable R/W 0x1C/Ox1E OxOE/OxOF
GPTMR_TWER Timer wakeup enable R/W 0x20/0x22 0x10/0x11
GPTMR_TCLR Timer control R/W 0x24/0x26 0x12/0x13
GPTMR_TCRR Timer counter R/W 0x28/0x2A 0x14/0x15
GPTMR_TLDR Timer load R/W 0x2C/0x2E 0x16/0x17
GPTMR_TTGR Timer trigger R/W 0x30/0x32 0x18/0x19
GPTMR_TWPS Timer write pending status R 0x34/0x36 0x1A/0x1B
GPTMR_TMAR Timer match R/W 0x38/0x3A 0x1C/0x1D
GPTMR_TSICR Timer synchronization interface control R/W 0x40/0x42 0x20/0x21

Table 44. Timer Identification Register (GPTMR_TIDR)

MPU Byte Offset = 0x0 (MSW), 0x02 (LSW), DSP Word Offset = 0x0 (LSW), 0x01 (MSW)

Bit Name Function R/W Reset
318 RESERVED 0x000000
7:0 TID_REV Module HW revision number of the current timer 0x10
module: value set by hardware.
Four LSBs of TID_REV indicate a minor revision.
Four MSBs of TID_REYV indicate a major revision.
A reset has no effect on value returned.
70 Timers SPRU891

General Purpose Timers

Table 45. Timer OCP Configuration Register (GPTMR_TIOCP_CFG)

MPU Byte Offset = 0x10 (MSW), 0x12 (LSW), DSP Word Offset = 0x08 (LSW), 0x09 (MSW)

Bit Name Function R/W Reset
31:6 RESERVED Reserved. 0x000000
5 EMUFREE 0: The timer stops in emulation mode. R/W 0

1: The timer keeps running in emulation mode
unless the ST bit in the GPTMR_TCLR register
is 0.

4:3 IDLEMODE Power management, request/acknowledge control ~ R/W 00

00: Force idle. Put the timer in idle mode
unconditionally.

01: No idle. Never put the timer in idle mode.

10: Smart idle. Behavior is defined by the
AUTOIDLE bit.

11: Reserved.

2 ENAWAKEUP Wakeup feature control R/W 0
0: Wakeup is disabled.
1: Wakeup is enabled.

1 SOFTRESET Software reset. Set this bit to 1 to reset the timer. R/W 0

The bit is automatically cleared by hardware. It
always returns 0 for reads.

0: Normal mode.

1: Reset the OCP and the functional domain.

0 AUTOIDLE Auto idle configuration R/W 0
0: Disable auto idle function.

1: Enable auto idle function, which puts the timer
in idle mode when there is no access.

This register controls various parameters of the GP timer interface.

SPRU891 Timers 71

General

Purpose Timers

Table 46. Timer System Status Register (GPTMR_TISTAT)

MPU Byte Offset = 0x14 (MSW), 0x16 (LSW), DSP Word Offset = 0x0A (LSW), 0xOB (MSW)

Bit Name Function R/W Reset
31:1 RESERVED Reserved. 0x000000
0 RESETDONE Internal global reset monitoring. R 1

0: Reset is ongoing.

1: Reset completed.

This register monitors the internal global reset status. This status bit is set to
1 when all clock domains have been reset. This status can be monitored by
the software to check if the module is ready-to-use following a reset (either
hardware or software reset).

Table 47. Timer Status Register (GPTMR_TISR)

MPU Byte Offset = 0x18 (MSW), Ox1A (LSW), DSP Word Offset = 0x0C (LSW), 0xOD (MSW)

Bit

Name

Function R/W Reset

31:2

1

0

RESERVED

OVF_IT_FLAG

MAT_IT_FLAG

Reserved. 0x000000

0: No overflow interrupt request. R/W 0

1: Overflow interrupt pending.

0: No compare interrupt request. R/W 0

1: Compare interrupt pending.

72

Timers

The timer status register is used to determine which timer event requested an
interrupt. Bit O corresponds to the compare result of TCRR and TMAR, and is
set when the compare register matches the counter value. Bit 1 corresponds
to the TCRR overflow.

If the value is 1, then that timer event is requesting the interrupt. To reset the
status bit, a 1 must be written to the appropriate bit. However, an interrupt
cannot be generated by writing a 1 to the timer status register bits. If a 0 is
written to a bit in the timer status register bits, the value remains unchanged.

SPRUS891

General Purpose Timers

Table 48. Timer Interrupt Enable Register (GPTMR_TIER)

MPU Byte Offset = 0x1C (MSW), OX1E (LSW), DSP Word Offset = OxOE (LSW), 0XOF (MSW)

Bit Name Function R/W Reset
31:2 RESERVED Bit 2 must always be set to 0. Writing to bits 31:3 0x000000
does not have any effect.
1 OVF_IT_ENA Overflow interrupt enable R/W 0
0: Overflow interrupt is disabled.
1: Overflow interrupt is enabled.
0 MAT_IT_ENA Compare interrupt enable R/W 0

0: Compare interrupt is disabled.

1: Compare interrupt is enabled.

The timer interrupt enable register enables certain timer events for generating
an interrupt request. Bit 0 determines whether or not the compare register flag

MAT _IT_FLAG can generate an interrupt. Bit 1 determines whether or not the

overflow counter flag OVF_IT_FLAG can generate an interrupt. Bit 2 must
always be written as 0.

Table 49. Timer Wakeup Enable Register (GPTMR_TWER)

MPU Byte Offset = 0x20 (MSW), 0x22 (LSW), DSP Word Offset = 0x10 (LSW), 0x11 (MSW)

Bit Name Function R/W Reset
31:2 RESERVED Bit 2 must always be set to 0. Writing to bits 31:3 0x0000000
does not have any effects.
1 OVF_WUP_ENA 0: Overflow wakeup generation is disabled. R/W 0
1: Overflow wakeup generation is enabled.
0 MAT_WUP_ENA Compare interrupt enable R/W 0

0: Compare wakeup generation is disabled.

1: Compare wakeup generation is enabled.

SPRU891

The timer wakeup enable register (TWER) masks the expected source of a
wakeup event that generates a wakeup request. The TWER is programmed

synchronously with the interface clock before any idle mode request coming

from the host processor. Bit 2 must always be written as 0.

Timers 73

General Purpose Timers

Table 50. Timer Control Register (GPTMR_TCLR)

MPU Byte Offset = 0x24 (MSW), 0x26 (LSW), DSP Word Offset = 0x12 (LSW), 0x13 (MSW)

Bit Name

Function

R/W

Reset

31:13 RESERVED

12 PT

11:10 TRG

9:8 RESERVED

7 SCPWM

5 PRE

4:2 PTV

Pulse or toggle mode on timer PWM output pin
0: Pulse.
1: Toggle.

Trigger output mode on timer PWM output pin
00: No trigger.

01: Trigger on overflow.

10: Trigger on overflow and match.

11: Reserved.
Bit 9:8 must always be set to 00.

This bit must be set or cleared while the timer is
stopped or the trigger is off.

1: Set the timer PWM output pin and select negative
pulse for pulse mode.

0: Clear the timer PWM output pin and select
positive pulse for pulse mode.

1: Compare mode is enabled.
0: Compare mode is disabled.

Prescaler enable

0: Prescaler is disabled.
1: Prescaler is enabled.

Prescale clock timer value
Function clock divisor = 2(PTV+1) if PRE is enabled.

1: Auto-reload timer.
0: One-shot timer.

1: Start timer.
0: Stop timer.

In one-shot mode (AR = 0), this bit is automatically
cleared when the counter overflows.

R/W

R/W
R/IW

R/W

R/W

R/W

R/W

R/W

0x00000

0

00

00

000

74 Timers

SPRUS891

General Purpose Timers

Table 51. Timer Counter Register (GPTMR_TCRR)

MPU Byte Offset = 0x28 (MSW), 0x2A (LSW), DSP Word Offset = 0x14 (LSW), 0x15 (MSW)

Bit Name Function R/W Reset

31:.0 GPTMR_TCRR Value of timer counter. R/W 0x00000000

Table 52. Timer Load Register (GPTMR_TLDR)

MPU Byte Offset = 0x2C (MSW), 0x2E (LSW), DSP Word Offset = 0x16 (LSW), 0x17 (MSW)
Bit Name Function R/W Reset

31:.0 GPTMR_TLDR Timer counter value loaded on overflow in R/W 0x00000000
auto-reload mode or on TTGR write access.

Table 53. Timer Trigger Register (GPTMR_TTGR)

MPU Byte Offset = 0x30 (MSW), 0x32 (LSW), DSP Word Offset = 0x18 (LSW), 0x19 (MSW)

Bit Name Function R/W Reset

31:0 GPTMR_TTGR Writing in the TTGR register, TCRR is loaded R/W 0x00000000
from TLDR and prescaler counter is cleared.
Reload is done regardless the AR field value of
TCLR register.

Table 54. Timer Write Pending Status Register (GPTMR_TWPS)

MPU Byte Offset = 0x34 (MSW), 0x36 (LSW), DSP Word Offset = Ox1A (LSW), 0x1B (MSW)

Bit Name Function R/W Reset
31:5 RESERVED Reserved. R 0x00000
00
4 W_PEND_TMAR When equal to 1, a write is pending to the TMAR register. R 0
3 W_PEND_TTGR When equal to 1, a write is pending to the TTGR register. R 0
2 W_PEND_TLDR When equal to 1, a write is pending to the TLDR register. R 0
1 W_PEND_TCRR When equal to 1, a write is pending to the TCRR register. R 0
0 W_PEND_TCLR When equal to 1, a write is pending to the TCLR register. R 0

SPRU891 Timers 75

General Purpose Timers

Table 55. Timer Match Register (GPTMR_TMAR)

MPU Byte Offset = 0x38 (MSW), 0x3A (LSW), DSP Word Offset = 0x1C (LSW), 0x1D (MSW)
Bit Name Function R/W Reset

31:0 COMPARE VALUE Value to be compared to the timer counter. R/W 0x00000000

The compare logic consists of a 32-bit wide, read/write data TMAR register
and logic to compare the counter current value with the value stored in the
TMAR register.

Table 56. Timer Synchronization Interface Control Register (GPTMR_TSICR)

MPU Byte Offset = 0x40 (MSW), 0x42 (LSW), DSP Word Offset = 0x20 (LSW), 0x21 (MSW)

Bit Name Function R/W Reset
31:3 RESERVED Reserved. R 0x0000000
2 POSTED 1: Posted mode active (clock ratio needs to fit the R/W 1

interface clock frequency > 4 function domain clock
frequency requirement)

0: Posted mode inactive.
1 SFT This bit resets the all of the functional parts of the R/W 0
module.
During reset, it always returns 0.
1: Software reset is enabled.
0: Software reset is disabled.

0 RESERVED Reserved. R 0

The timer clock has different sources. Based on the timer clock source
selection, the reset value can be overwritten for POSTED to perform
non-posted read/write accesses.

76 Timers SPRU891

	Title Page - SPRU891
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Timers
	1 Introduction
	2 MPU and DSP Private Timers
	2.1 Introduction to the MPU and DSP Private Timers
	2.1.1 Features
	2.1.2 Functional Block Diagram

	2.2 Common Architecture and Operations
	2.2.1 Clock Control
	2.2.1.1 Configuration of the Input Reference Clock
	2.2.1.2 Input Clock Enable

	2.2.2 Interrupt Period
	2.2.3 Power Management
	2.2.4 Reset Considerations
	2.2.5 Interrupt Support
	2.2.6 One-Shot Mode versus Auto-Reload Mode
	2.2.7 Initialization
	2.2.8 Common Operations
	2.2.8.1 Start/Stop an MPU/DSP Private Timer
	2.2.8.2 Read Timer Count Value

	2.2.9 Emulation Considerations
	2.2.10 Pseudo Code Example

	2.3 MPU Private Timer Registers
	2.4 DSP Private Timer Registers

	3 Watchdog Timers
	3.1 Introduction
	3.1.1 Purpose
	3.1.2 Features
	3.1.3 Functional Block Diagram
	3.1.4 Supported Modes

	3.2 Common Architecture and Operations
	3.2.1 Clock Control
	3.2.1.1 Configuration of the Input Reference Clock for Watchdog Timers

	3.2.2 Timeout Period
	3.2.3 Power Management
	3.2.4 Reset Considerations
	3.2.5 Interrupt Support
	3.2.6 Common Operations
	3.2.6.1 Read Timer Values

	3.2.7 Emulation Considerations

	3.3 Watchdog Mode Operations
	3.3.1 Initialization
	3.3.2 Programming the Watchdog Timer in Watchdog Mode
	3.3.3 Pseudo Code Example

	3.4 Housekeeping Mode Operations
	3.4.1 Initialization
	3.4.2 Programming the Watchdog Timer in Housekeeping Mode
	3.4.3 Pseudo Code Example

	3.5 MPU Watchdog Timer Registers
	3.6 DSP Watchdog Timer Registers

	4 32-KHz OS Timer
	4.1 Introduction
	4.1.1 Purpose
	4.1.2 Features
	4.1.3 Functional Block Diagram

	4.2 Common Architecture and Operations
	4.2.1 Interrupt Period
	4.2.2 Clock Control
	4.2.2.1 Internal Interface Clock Enable for the OS Timer

	4.2.3 Power Management
	4.2.3.1 Host Sleep
	4.2.3.2 Wakeup

	4.2.4 Reset Considerations
	4.2.5 Interrupt Support
	4.2.6 Auto-Reload Mode versus One-Shot Mode
	4.2.7 Initialization
	4.2.8 Common Operations
	4.2.8.1 Read Timer Counter
	4.2.8.2 Start/Stop
	4.2.8.3 Loading/Auto-Reloading
	4.2.8.4 Peripheral Alignment and Data Width

	4.2.9 Emulation Considerations
	4.2.10 Pseudo Code Example

	4.3 32-KHz OS Timer Registers

	5 32-KHz Synchronization Timer
	5.1 Introduction
	5.1.1 Purpose
	5.1.2 Features
	5.1.3 Functional Block Diagram

	5.2 Common Architecture and Operations
	5.2.1 Clock Control
	5.2.1.1 Interface Clock Configuration

	5.2.2 Reset Considerations
	5.2.3 Common Operations
	5.2.3.1 Read Timer Counter

	5.3 Synchronization Timer Registers

	6 General Purpose Timers
	6.1 Introduction
	6.1.1 Purpose
	6.1.2 Features
	6.1.3 Functional Block Diagram
	6.1.4 Supported Modes

	6.2 Common Architecture and Operations
	6.2.1 Clock Control
	6.2.1.1 Configuration of the Input Clock for GP Timers

	6.2.2 Timeout Period
	6.2.3 Power Management
	6.2.3.1 Host Sleep
	6.2.3.2 GP Timer Sleep
	6.2.3.3 Wakeup

	6.2.4 Register Write Mode: Posted versus Non-Posted
	6.2.4.1 Posted Write Mode
	6.2.4.2 Software Synchronous Non-Post Write
	6.2.4.3 Write Mode Selection

	6.2.5 Reset Considerations
	6.2.6 Interrupt Support
	6.2.6.1 Interrupt Events

	6.2.7 Initialization
	6.2.8 Common Operations
	6.2.8.1 Read Timer Counter
	6.2.8.2 Update Timer Counter Timer
	6.2.8.3 Start/Stop a GP Timer

	6.2.9 Emulation Considerations
	6.2.10 Pseudo Code Example

	6.3 Compare Mode Operations
	6.3.1 Pseudo Code Example

	6.4 Pulse-Width Modulation
	6.4.1 PWM Output Signal

	6.5 GP Timer Registers

