
TMS320C6474
Digital Signal Processor
Silicon Revisions 2.1, 1.3, 1.2

Silicon Errata

Literature Number: SPRZ283C

October 2008–Revised March 2011

2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

1 Introduction .. 5
1.1 Device and Development Support Tool Nomenclature ... 5

1.2 Package Symbolization and Revision Identification .. 6

1.3 Silicon Updates .. 7

2 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional
Specifications ... 8

2.1 Silicon Revision 2.1 Usage Notes ... 8
2.1.1 EMAC: SERDES PLL Lock ... 8
2.1.2 User-Initiated Cache Coherence Operations Using Global Address Causes an Access Across the

SCR ... 9
2.1.3 Bootloader: Multicore Reset Control Enhancement ... 9

2.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications 10

3 Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional
Specifications ... 32

3.1 Silicon Revision 1.3 Usage Notes ... 32
3.1.1 Bootloader: Multicore Boot Takes Core1 and Core 2 Out of Reset 32

3.2 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications 33

4 Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional
Specifications ... 56

4.1 Silicon Revision 1.2 Usage Notes ... 56

4.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications 56

Appendix A Revision History .. 62

3SPRZ283C–October 2008–Revised March 2011 Table of Contents
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com

List of Figures

1 Lot Trace Code Examples for TMS320C6474 (ZUN Package)... 6

2 LOCK_CTL Register.. 8

3 L1D Cache Address Mapping.. 15

4 Cache Line Operations Flow... 16

5 L1D Cache Address Mapping.. 25

6 Sequence of Events... 26

7 ISR Workaround Flowchart .. 30

8 IDMA, SDMA, and MDMA Paths .. 35

9 SCR F Write Requests/Write Status .. 50

10 Correct Device Input Clocks, Clock Selects, and Scaled Supply Timings ... 58

11 Prog Set Options Register ... 60

List of Tables

1 Lot Trace Codes .. 6

2 Silicon Revision Variables ... 6

3 Silicon Revisions 1.2, 1.3, 2.1 Updates .. 7

4 LOCK_CTL Register Field Descriptions ... 8

5 Silicon Revision 2.1 Advisory List ... 10

6 C6474 Default Master Priorities ... 12

7 C6474 Valid Priority Settings .. 13

8 C6474 UMAP1 Allocation .. 14

9 Value of X for L1D Cache .. 15

10 Value of X for L1D Cache .. 25

11 Silicon Revision 1.3 Advisory List ... 33

12 GEM Transaction IDs ... 48

13 C6474 Default Master Priorities ... 52

14 C6474 Valid Priority Settings .. 53

15 Stall Conditions on Silicon Revisions ... 54

16 UMAP0 and UMAP1 Address Ranges ... 54

17 Silicon Revision 1.2 Advisory List ... 56

18 Device Input Clock Timing Parameter Descriptions .. 57

19 TC Registers Summary... 60

20 C6474 Revision History... 62

4 List of Figures SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Errata
SPRZ283C–October 2008–Revised March 2011

TMS320C6474 DSP
Silicon Revisions 2.1, 1.3, 1.2

1 Introduction

This document describes the silicon updates to the functional specifications for the TMS320C6474 digital
signal processor; see the device-specific data manual, TMS320C6474 Multicore Digital Signal Processor
(literature number SPRS552).

1.1 Device and Development Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,
TMP, or TMS (e.g., TMS320C6474ZUN). Texas Instruments recommends two of three possible prefix
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of
product development from engineering prototypes (TMX/TMDX) through fully qualified production
devices/tools (TMS/TMDS).

Device development evolutionary flow:
TMX Experimental device that is not necessarily representative of the final device's electrical

specifications
TMP Final silicon die that conforms to the device's electrical specifications but has not

completed quality and reliability verification
TMS Fully-qualified production device
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal

qualification testing
TMDS Fully-qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:

"Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.

TMS320C64x+ is a trademark of Texas Instruments.
RapidIO is a registered trademark of RapidIO Trade Association.
All other trademarks are the property of their respective owners.

5SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS552
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

DSP

TMS320C6474ZUN

#xx−#######

Lot Trace Code

Introduction www.ti.com

1.2 Package Symbolization and Revision Identification

The device revision can be determined by the lot trace code marked on the top of the package. The
location of the lot trace code for the ZUN package is shown in Figure 1. Figure 1 also shows an example
of C6474 package symbolization.

Figure 1. Lot Trace Code Examples for TMS320C6474 (ZUN Package)

Silicon revision correlates to the lot trace code marked on the package. This code is of the format
#xx-#######. If xx is "21", then the silicon is revision 2.1. Table 1 lists the silicon revisions associated with
each lot trace code for the C6474 device.

Each silicon revision uses a specific revision of the CPU and the TMS320C64x+™ megamodule. The
CPU revision ID identifies the silicon revision of the CPU. Table 2 lists the CPU and C64x+ megamodule
revision associated with each silicon revision. The CPU revision can be read from the REVISION_ID field
of the CPU control status register (CSR). The C64x+ megamodule revision can be read from the
REVISION field of the megamodule revision ID register (MM_REVID) located at address 0181 2000h.

The VARIANT field of the JTAG ID register (located at 0288 0814h) changes between silicon revisions.
Table 2 lists the contents of the JTAG ID register for each revision of the device. More details on the
JTAG ID register can be found in the device-specific data manual, TMS320C6474 Multicore Digital Signal
Processor (literature number SPRS552).

Table 1. Lot Trace Codes

LOT TRACE CODE (xx) SILICON REVISION COMMENTS

21 2.1 Silicon revision 2.1

13 1.3 Silicon revision 1.3

12 1.2 Silicon revision 1.2

Table 2. Silicon Revision Variables

SILICON REVISION CPU REVISION C64X+ MEGAMODULE REVISION JTAG ID REGISTER VALUE

2.1 CPU_ID = 10h Rev. 3.2 0x4009 202Fh
REVISION_ID = 05h MM_REVID[REVISION] = 2h VARIANT = 0100b

1.3 CPU_ID = 10h Rev. 3.0 0x2009 202Fh
REVISION_ID = 00h MM_REVID[REVISION] = 0h VARIANT = 0010b

1.2 CPU_ID = 10h Rev. 3.0 0x1009 202Fh
REVISION_ID = 00h MM_REVID[REVISION] = 0h VARIANT = 0001b

6 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS552
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Introduction

1.3 Silicon Updates

Table 3 lists the silicon updates applicable to each silicon revision. For details on each advisory, see
Section 2.2, Section 3.2, and Section 4.2 or click on the link below.

If the design exceptions are still applicable, the advisories have been moved up to the latest silicon
revision section. Therefore, advisory numbering may not be sequential.

Table 3. Silicon Revisions 1.2, 1.3, 2.1 Updates

APPLIES TO SILICON REVISON
SILICON UPDATE ADVISORY SEE

1.2 1.3 2.1

Potential Random E-fuse Blow Advisory 1.2.7 X - -

EDMA3CC COMPACTV Issue Advisory 1.2.9 X - -

DSP SDMA/IDMA: Unexpected Stalling of SDMA/IDMA Access Advisory 1.3.1 X X -to L2 SRAM

Potential Data Corruption on SCR Bridge Advisory 1.3.2 X X -

Potential Insertion or Deletion of 2 Bits in SerDes Data Stream Advisory 1.3.3 X X -

MAC EOI Register Write Causes Potential CPU Lockup Advisory 1.3.4 X X -

I2C: Slave Boot Aborts Advisory 1.3.6 X X -

EMAC Boot Issue Advisory 1.3.7 X X -

IP Block Containing CIC, CFGC, DTF, and IPC Registers Does Advisory 1.3.8 X X -Not Return Write Request Correctly

DMA Access to L2 SRAM May Stall When the DMA Has Lower Advisory 1.3.9 X X -Priority Than the CPU

L2 Victim Traffic Due To L2 Block Writeback During Any Advisory X X -Pending CPU Request 1.3.10

Potential SerDes Clocking Issue Advisory 2.1.1 X X X

SRIO OUTBOUND_ACKID Field Not Read Correctly Advisory 2.1.2 X X X

SRIO Port 0 Reset Affects Other Ports Advisory 2.1.3 X X X

DMA Access to L2 SRAM May Stall When the DMA and the Advisory 2.1.4 X X XCPU Command Priority is Equal

DMA Corruption of External Data Buffer Advisory 2.1.5 X X X

SPLOOP CPU Cross-Path Stall Advisory 2.1.6 X X X

DMA Corruption of L1D$ Allocation Advisory 2.1.7 - - X

Error Detection and Correction Incorrectly Reporting Error Advisory 2.1.8 X X X

SRIO May Fail to Send Interrupt for Completed TX or RX Advisory 2.1.9 X X XMessage

AdvisorySerial RapidIO Internal Digital Loopback is Not Always Stable X X X2.1.10

7SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

2 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional
Specifications

2.1 Silicon Revision 2.1 Usage Notes

Usage Notes highlight and describe particular situations where the device's behavior may not match
presumed or documented behavior. This may include behaviors that affect device performance or
functional correctness. These notes will be incorporated into future documentation updates for the device
(such as the device-specific data manual), and the behaviors they describe will not be altered in future
silicon revisions.

2.1.1 EMAC: SERDES PLL Lock

A LOCK_CTL register is missing in the EMAC Subsystem SGMII Registers section of the TMS320C6474
DSP Ethernet Media Access Controller (EMAC)/ Management Data Input/Output (MDIO) User's Guide
(literature number SPRUG08). The register is present in the device, but it is not documented.

The register is at address offset 0x88 in the EMAC Control Module Registers memory map (base address
0x02C8 1000). The LOCK_CTL register is shown in Figure 2 and described in Table 4.

31 1 0

Reserved LOCK_EN

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 2. LOCK_CTL Register

Table 4. LOCK_CTL Register Field Descriptions

Bit Field Value Description

31 Reserved Reserved. Read as zero.

0 LOCK_EN Lock Enable. This bit controls enabling of the SERDES lock function.

0 SERDES lock function is disabled. The lock function does not asynchronously reset the SGMII
block.

1 SERDES lock function is enabled. The lock function asynchronously resets SGMII block.

The value of the LOCK bit of the SGMII status register is valid only if the lock function is enabled. If
the lock function is disabled, then the value of the LOCK bit is always read as 1.

The SGMII initialization has the following steps:
Uint32 * lock_ctl;

/* Soft reset SGMII and wait till the Reset is complete */
SGMII_REGS->SOFT_RESET = 0x00000001;
while (SGMII_REGS->SOFT_RESET != 0x00000000);

SGMII_REGS->CONTROL = 0x00000001;
SGMII_REGS->MR_ADV_ABILITY = 0x00000001;
SGMII_REGS->TX_CFG = 0x00000e21;
SGMII_REGS->RX_CFG = 0x00081021;
SGMII_REGS->AUX_CFG = 0x0000000b;

The SGMII AUX_CFG register enables power for the SERDES PLL. After the SERDES PLL is powered
up, it takes 1 μs (for SERDES PLL power regulator to stabilize) + 200 REFCLKP/N (1.6 μs for 125-MHz
REFCLK) cycles to lock in the required frequency. So, software has to run a loop for checking the status
of the PLL lock before proceeding. The SGMII status register provides the status of the SERDES PLL (the
LOCK bit shows whether it is locked or not).

The LOCK signal is a field (single bit) of the SGMII status register. It is pulled high at reset and remains
high until the LOCK_EN field in the LOCK_CTL register is disabled. Only after enabling the LOCK_EN bit
in the LOCK_CTL register can the LOCK bit in the SGMII status register reflect the correct status of the
SERDES PLL lock.

8 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUG08
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

2.1.2 User-Initiated Cache Coherence Operations Using Global Address Causes an Access Across the
SCR

It has been found that if a user issues a manual writeback or writeback and invalidate command using the
global address of the Core, a single 128-bit word access is issued out of the MDMA port across the SCR
to the same core's SDMA port. Note that this does not happen on manual invalidate commands. Also, it
does not happen when the local address is used instead of the global address.

NOTE: This behavior violates Advisory 1.3.1, DSP SDMA/IDMA: Unexpected Stalling of
SDMA/IDMA Access to L2 SRAM. If performing these operations, ensure that only local
addresses are used. For further details, see the Deadlock Avoidance section in Workaround
Method 3 of Advisory 1.3.1.

2.1.3 Bootloader: Multicore Reset Control Enhancement

For silicon revisions 2.x on the C6474 device, an enhancement has been added to enable the user to
control whether to take core1 and core2 out of reset in the bootloader.

Address 0x108FFFF8 is used as a flag to signal the bootloader whether to take core1 and core2 out of
reset at the end of the boot. The bootloader initializes this address to 0. If this address is initialized to a
non-zero value by the application code or the secondary bootloader after the bootloader finishes
downloading the boot image, the first-level bootloader does not take core1 and core2 out of reset;
otherwise, the first-level bootloader takes core1 and core2 out of reset.

If core1 and core2 are kept in the reset state after the first-level boot, the application code or the
secondary bootloader in core0 can choose when to take core1 and core2 out of reset by setting the
EVTPULSE4 bit (bit 4) of the C64x+ Megamodule core0's EVTASRT register to 1. This process is valid
only once: writing 1, then writing 1 again does not bring core1 and core2 out of reset again. Core1 and
core2 begin execution from their L2 RAM base address after this operation.

9SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

2.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

Table 5 lists the silicon revision 2.1 known design exceptions to functional specifications.

Table 5. Silicon Revision 2.1 Advisory List

Title .. Page

Advisory 2.1.1 —Potential SerDes Clocking Issue... 11
Advisory 2.1.2 —SRIO OUTBOUND_ACKID Field Not Read Correctly .. 11
Advisory 2.1.3 —SRIO Port 0 Reset Affects Other Ports ... 11
Advisory 2.1.4 —DMA Access to L2 SRAM May Stall When the DMA and the CPU Command Priority is Equal........ 12
Advisory 2.1.5 —DMA Corruption of External Data Buffer.. 14
Advisory 2.1.6 —SPLOOP CPU Cross-Path Stall ... 22
Advisory 2.1.7 —DMA Corruption of L1D$ Allocation ... 24
Advisory 2.1.8 —Error Detection and Correction Incorrectly Reporting Error ... 27
Advisory 2.1.9 —SRIO May Fail to Send Interrupt for Completed TX or RX Message 29
Advisory 2.1.10 —Serial RapidIO Internal Digital Loopback is Not Always Stable .. 31

10 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.1.1 Potential SerDes Clocking Issue

Revision(s) Affected: 2.1, 1.3, 1.2

Details: An issue has been found in the SerDes interfaces that causes a SerDes clocking
problem in normal functional operation. This problem will not occur when external
pull-down is applied on the TCK pin (JTAG controller clock). SerDes are used in the
Ethernet interface (EMAC), Serial RapidIO® interface (SRIO) and the Antenna Interface
(AIF).

The TCK pin (JTAG controller clock) is internally assigned to an internal signal that is
used by the SerDes macro. For the SerDes macro to get proper clocking in the normal
functional operation, it needs the internal signal to be held low. However, there is an
internal pull-up on the TCK, creating problems for SerDes operation. This problem exists
on all SerDes interfaces.

Workaround: The TCK pin should be externally pulled down with an 1-kΩ resistor.

Advisory 2.1.2 SRIO OUTBOUND_ACKID Field Not Read Correctly

Revision(s) Affected: 2.1, 1.3, 1.2

Details: The OUTBOUND_ACKID field of the RIO_SP(n)_ACKID_STAT register should be
updated by hardware each time a packet is sent out. The value should reflect the ACKID
value to be used on the next transmit packet. This field is being updated by the hardware
as expected. The field can also be written by the software and these writes also
succeed. However, a hardware error prevents this field from being read. The
OUTBOUND_ACKID always reads as zero. This problem does not cause any impact to
link operation.

Workaround: There is no workaround for this advisory.

Advisory 2.1.3 SRIO Port 0 Reset Affects Other Ports

Revision(s) Affected: 2.1, 1.3, 1.2

Details: The SerDes for SRIO should allow the reset of individual 1X ports without affecting the
state of the other operational ports. There are dedicated MMR bits to reset 1X ports,
which are the BLKn_EN (n=5..8) at offsets 0x60 and 0x68. However, the BLK5_EN that
controls reset for port 0 also resets all other ports. Therefore, it is impossible to reset
port 0 without affecting all other ports.

Workaround: There is no workaround for this advisory.

11SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.1.4 DMA Access to L2 SRAM May Stall When the DMA and the CPU Command Priority
is Equal

Revision(s) Affected: 2.1, 1.3, 1.2

Details: The L2 memory controller in the GEM has programmable bandwidth management
features that are used to control bandwidth allocation for all requestors. There are two
parameters to control this, command priority and arbitration counter MAXWAIT values.
Each requestor has a command priority and the requestor with the higher priority wins.
However, there are also counters associated with each requestor that track the number
of cycles each requestor loses arbitration. When this counter reaches a threshold
(MAXWAIT), which is programmed by the user (or default value), the losing requestor
gets an arbitration slot and wins for that cycle. There are four such requestors: CPU,
DMA (SDMA and IDMA), user cache coherency operation, and global cache coherence.
Global-coherence operations are highest priority, while user-coherence operations are
lowest priority. However, there is active arbitration done for the CPU and the DMA
(SDMA/IDMA) commands. The priority for DMA commands comes from an external
master as part of the SDMA command or a programmable register, IDMA1_COUNT, in
the GEM for IDMA commands. The priority for CPU accesses to L2 is in a
programmable register, CPUARBU, in the GEM. For the default priority values, see
Table 6.

More details on the bandwidth management feature can be found in the C64x+ DSP
Megamodule Reference Guide (SPRU871).

Table 6. C6474 Default Master Priorities

DEFAULT MASTER PRIORITIES
MASTER (0 = Highest priority, PRIORITY CONTROL

7 = Lowest priority)

EDMA3TCx 0 QUEPRI.PRIQx (EDMA3 register)

SRIO (Data Access) 0 PER_SET_CNTL.CBA_TRANS_PRI
(SRIO register)

SRIO (Descriptor Access) 1 PRI_ALLOC.SRIO_CPPI

EMAC 1 PRI_ALLOC.EMAC

C64x+ Megamodule (MDMA port) 7 MDMAARBE.PRI (C64x+ Megamodule
register)

C64x+ Megamodule (CPU Arbitration 1 CPUARBU (C64x+ Megamodule register)
control to L2)

C64x+ Megamodule (IDMA channel 1) 0 IDMA1_COUNT (C64x+ Megamodule
register)

NOTE: When the SDMA has finished sending all of its commands to the L2
controller, the C64x+ Megamodule drops the transfer priority down to 7 if
no further commands are in the pipeline. This condition happens when
there is a single-word access, a burst of <32B with no other SDMA
commands pending or for the last 64B only of a burst that is >64B with
no other SDMA commands pending. This effective priority level is what
the L2 controller uses to arbitrate these SDMA commands with the CPU,
irrespective of the master peripheral's actual programmed priority value.
Therefore, priority 7 is not a valid priority level for the CPU. If, for any
reason, this "demoted" transfer is still pending upon initiation of another
transfer, it automatically inherits the priority of that new transfer and is
pushed through such that it does not stall the new transfer.

12 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

The L2 memory controller is supposed to give equal bandwidth to the DMA and the
CPU, by alternating between the two for arbitration. Instead, the L2 memory controller
gives larger bandwidth allocation to the CPU accesses when the DMA and the CPU
priorities are same. The CPU commands keep winning arbitration over the DMA as long
as there are no other internal conditions (stalls, etc.) that force the DMA to win
arbitration. This typically happens when CPU accesses keep the L2 memory controller
busy every cycle, hence, the DMAs stall until the stream of CPU accesses completes.
For example, if a continuous stream of L1D write misses to L2 keep the L2 memory
controller busy every cycle, the DMAs stall for the entire duration of the write miss
stream.

Workaround: Ensure that the CPU is at a different priority than the DMA commands to L2. The priority
for CPU accesses to L2 is in a programmable register, CPUARBU, in the GEM.
However, lowering the CPU priority may impact the performance since, in case of
contention, the CPU accesses to L2 can get stalled due to DMA accesses. The
CPUARBU should not be set to 7 (see Note above).

The recommended workaround is to pick a single priority value for the CPU accesses to
L2 only. That leaves the remaining 6 priority levels free for other accesses to L2 (see
Table 7).

Table 7. C6474 Valid Priority Settings

CPU PRIORITY ALLOWED SDMA PRIORITIES

0 1-7

1 0, 2-7

2 0-1, 3-7

3 0-2, 4-7

4 0-3, 5-7

5 0-4, 6-7

6 0-5, 7

7 (1) -
(1) Do not set CPU priority to 7.

13SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.1.5 DMA Corruption of External Data Buffer

Revision(s) Affected: 2.1, 1.3, 1.2

Details: Under a specific set of circumstances, an L1D snoop-write updates an unintended L1D
cache line. This leads to a corrupted line in L1D and can lead directly to program
misbehavior. If the corrupted line is then modified by a CPU write access, a subsequent
victim writeback from L1D could commit the corrupted line to lower levels of memory.
Two key requirements for this issue are:

• The DMA writes to buffers in UMAP1 only (see below).

– This must be cached and unmodified in L1D (read by the CPU but not yet written
to it).

The L2 memory is typically shared across the two unified memory access ports,
UMAP0 and UMAP1. This issue occurs only if the buffer is located in UMAP1. For
the UMAP1 allocation on the C6474 device, see Table 8.

Table 8. C6474 UMAP1 Allocation

L2 CONFIGURATION UMAP1 ADDRESS RANGE AFFECTED

Symmetric N/A N/A No

• The CPU reads from an external, cacheable address.

– UMAP0 and UMAP1 are the two ports on the C64x+ Megamodule used to
connect the L2 Memory controller and the physical RAMs. For the UMAP1
allocation on the C6474 device, see Table 8

– For information on L1D cache coherence protocol, see section 3.3.6, Cache
Coherence Protocol, in the C64x+ DSP Megamodule Reference Guide
(SPRU871).

– DMA in the following description refers to all non-CPU requestors. This includes
IDMA, EDMA, and any other master in the system.

Under the specific set of circumstances listed below, a snoop-write updates an L1D
cache line other than the one intended. This leads to a corrupted line in L1D. Corruption
only happens when the buffer in UMAP1 is cached in L1D while the CPU is consuming
external, cacheable data.

The prerequisite before the window where the issue occurs is:

• The CPU reads an L2 location in UMAP1 and has not modified (written) to the same
location before the window where the issue occurs.

– Because of this, a 64B cache line is allocated clean in L1D (referred to here as
Cache Line A).

The following steps must all occur concurrently to see the issue (note that the
concurrency is within the cache subsystem, so events visible at the CPU or the DMA are
not occurring during the same exact cycle):

1. The L1D is currently processing a snoop request or some other request that prevents
it from accepting new snoops. This could have been caused by any of the following
that is still being processed from previous actions:

• DMA read/write
• L1D read/invalidate
• L1D read + victim

2. The DMA writes to Cache Line A, mentioned in the prerequisite above. This means
that it is not necessarily the same exact address, but must be within the same 64B
cache line.

• As a result, a snoop-write request is generated but it is blocked because the L1D
is still busy with Step 1.

3. The CPU reads from a cacheable, external memory (e.g., DDR) that is a set match to
Cache Line A (referred to here as Cache Line B).
Determining if two addresses are a set match can be done by comparing certain bits

14 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

31 X+1 X 6 5 4 2 1 0

Tag Set
Offset

Sub-line Bank Byte

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

of two addresses. The mapping of an address to a location in L1D cache is shown in
Figure 3.

The value X is determined by how large the L1D cache is in the particular application (see Table 9).

Figure 3. L1D Cache Address Mapping

Table 9. Value of X for L1D Cache

AMOUNT OF L1D CACHE X BIT POSITION

0KB N/A

4KB 10

8KB 11

16KB 12

32KB 13

If you use the default configuration, 32KB, as an example, bits [13:6] are a set match
if they are identical in two different addresses. Some examples of set matches are
shown below:

• 0x0080 2A80 00000000100000000010101010000000
• 0x8000 2A80 10000000100000000010101010000000
• 0x0080 2A8A 00000000100000000010101010001010

• This results in a cache miss from the CPU for an external address and sends a
read request to L2 cache for the line (and possibly to the external source on an L2
cache miss or if no L2 cache is present).

The results of the above cause the following:

L2 sends both the return data for the L1D read miss request (response of Step 3 above)
and the data for the snoop-write (response of Step 2 above). The L1D commits the
snoop-write data after the L2 return data.

As a result, L1D now holds the wrong data for the external address (Cache Line B) and
commits the data to cache. Cache Line B remains marked "clean." If the program does
not write to the uncorrupted portion of the line and does not read the corrupted portion of
the line, the corruption goes unnoticed. If the program writes to the uncorrupted portion
of the line, the corrupted data gets written back to L2 cache and/or external memory.
Otherwise, the corruption disappears when L1D discards the line.

Cache lines holding external addresses are the only cache lines that exhibit corruption.
Corruption only happens when DMA buffers in UMAP1 get cached in L1D. Additionally,
corruption only happens when the DMA buffer is clean, meaning that it gets discarded
without generating a victim. Thus, this affects buffers where the DMA writes and the
CPU reads. It does not affect buffers that the CPU only writes and/or DMA only reads.

One can identify this issue unambiguously by examining the corrupted memory range in
CCStudio using the cache tag viewer. The corrupted data shows up in the include L1D
view in a memory window, but not in the exclude L1D view. The cache tag viewer should
indicate that the line is also "clean" and the corrupt data should also be visible in its
intended destination, which must be in UMAP1 and map to the same L1D set as the
corrupted line.

Figure 4 shows the flow of these operations, the incorrect order that causes the issue,
and the correct order. The blue line is Cache Line A and the yellow line is Cache line B.

15SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

L1D

UMAP0 UMAP1

t0: DMA Write

t1: CPU Allocate

t2: Allocation Data

t3: Snoop Write

t0: DMA Write

t1: CPU Allocate

t3: Allocation Data

t2: Snoop Write

Incorrect Order Correct Order

t1

t2

t3

t0

Corruption

Clean

CPU Read
(L2 Cache)

DMA Write
(Snoop Write)

External
Buffer

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 4. Cache Line Operations Flow

Workarounds: In the issue described above, all of the conditions must be true for the issue to occur.
The workarounds focus on picking one of the conditions and removing it so that you do
not need to worry about the other conditions.

TI proposes starting with workaround 1 as an immediate fix. The other workarounds that
follow may provide a solution with reduced overhead and/or simplified implementation,
depending on the customer's system.

16 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Workaround 1: Write Back and Invalidate DMA Buffers

L1D corruption occurs when the DMA writes to a buffer in UMAP1 that is also cached in
L1D at the same time the L1D is discarding the buffer. Thus, this affects buffers where
the DMA writes and the CPU reads. It does not affect buffers that the CPU only writes
and/or the DMA only reads.

To prevent this sort of race condition, programs should discard inbound DMA buffers in
UMAP1 immediately after use and keep a strict policy of "buffer ownership" such that a
given buffer is owned only by the CPU or the DMA at any given time.

This model assumes the following:

1. The DMA fills the buffer during a period when the CPU does not access it.
2. The DMA engine or other mechanism signals to the CPU that it has finished filling the

buffer.
3. The CPU operates on the buffer, reading and writing to it, as necessary. The DMA

does not access the buffer at this time.
4. The CPU relinquishes control of the buffer so that DMA may refill it. (This may be an

implicit step in many implementations if the period between refills is much longer than
the time it takes the CPU to process the refilled buffer.)

To implement this workaround, programmers must write back and invalidate the buffer
from L1D cache after Step 3 and before Step 4. This eliminates the prerequisite for the
issue to occur should another DMA, in the future, be a set match to the reads that the
CPU just performed.

There are multiple mechanisms for doing this, but the most straightforward is to use the
L1D block cache writeback-invalidate mechanism via L1DWIBAR/L1DWIWC.

The recommended implementation of this workaround requires calling the
l1d_block_wbinv.asm function (see the L1D Block Writeback-Invalidate Routine below).
It can be invoked as follows:
void l1d_block_wbinv(void *base, size_t byte_count);

To writeback-invalidate a C array, one could then do:
/* ... */

l1d_block_wbinv(&array[0], sizeof(array));

Programmers should insert such a call whenever the code is done with a particular DMA
buffer in UMAP1, before the DMA controller can refill it. The l1d_block_wbinv() function
is non-interruptible. Its overhead is proportional to the size of the buffer.

NOTE: To ensure complete effectiveness, DMA buffers must always start on an
L1D cache-line boundary (64-byte boundary) and occupy a multiple of 64
bytes. This may require increasing the size of some DMA buffers slightly.
This is necessary to prevent accesses to an unrelated buffer or variable
from bringing a portion of the DMA buffer back into the L1D cache.

L1D Block Writeback-Invalidate Routine
;; == ;;
;; L1D Block Writeback-Invalidate ;;
;; ;;
;; l1d_block_wbinv(void *base, size_t byte_count); ;;
;; ;;
;; Performs a block writeback-invalidate from L1D to L2. It can be used ;;
;; on any address range (L2 or external), but it only operates on L1D ;;
;; cache. ;;
;; ;;
;; Maximum block size is 256K. Exact maximum byte count depends on the ;;
;; alignment of the block. ;;
;; ;;
;; Interrupts are disabled during the block writeback operation. ;;
;; == ;;

17SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

.asg 0x01844030, L1DWI ; L1D Block Wb-Inv; BAR at 0, WC at 1

.global _l1d_block_wbinv

.text

.asmfunc
_l1d_block_wbinv:

MVC DNUM, B0 ; _ Get global alias prefix
ADDK 0x10, B0 ; /
SHRU A4, 24, B2 ; Get prefix from address
CMPEQ B0, B2, B0 ; Check if address prefix is global

[B0] EXTU A4, 8, 8, A4 ; Remove global prefix from address
MVKL L1DWI, B6 ;

CLR A4, 0, 5, A1 ; Align to L1D cache line boundary
|| ADD A4, B4, B1 ; Compute end of buffer

ADDK 63, B1 ; _ Round to next L1D cache line
CLR B1, 0, 5, B1 ; /

SUB B1, A1, B1 ; Count cache-line span in bytes
|| MVKH L1DWI, B6 ;

SHR B1, 2, B1 ; Convert to "word count"
|| DINT ; Disable interrupts

STW A1, *B6[0] ; Store base address
STW B1, *B6[1] ; Store word count

; Note: The following loop is intentionally low-rate to avoid
; interfering with the block writeback operation.

loop: LDW *B6[1], B1 ; Read remaining word-count
NOP 4

[B1] BNOP loop, 5 ; Loop until done

RINT ; Reenable interrupts
RETNOP B3, 5 ; Return to caller

.endasmfunc

;; == ;;
;; End of file: l1d_block_wbinv.asm ;;
;; == ;;

Workaround 2: Make DMA Buffers Dirty After Use

The errant snoop-write occurs only when the DMA buffer in L1D has not been modified.
This is due to the additional snoop-checking mechanisms associated with tracking
victims as they leave L1D.

Therefore, another workaround is to mark DMA buffers as "dirty" before releasing them.
This generates additional victims whenever the buffer gets pushed out of L1D. It also
blocks the errant snoop-write.

This workaround assumes a similar model to Workaround 1, but uses the make_dirty()
function (see the Mark Buffer Dirty Routine below). The make_dirty() function reads one
byte from each cache line of the buffer and writes the same value back to it immediately.

The function is called as follows:
void make_dirty(void *base, size_t byte_count);

Mark Buffer Dirty Routine
;; == ;;
;; Make a block of data "dirty" in L1D ;;
;; ;;
;; make_dirty(void *base, size_t byte_count); ;;
;; ;;
;; == ;;

.global _make_dirty

.text

.asmfunc

18 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

_make_dirty:
ADDK 63, B4
SHR B4, 6, B4
MVC B4, ILC
MVK 64, A5
MVK 64, B5
MV A4, B4
NOP
SPLOOP 1
LDBU *A4++[A5], A1
NOP 4
MV.L A1, B1
STB B1, *B4++[B5]
SPKERNEL

RETNOP B3, 5

.endasmfunc

;; == ;;
;; End of file: make_dirty.asm ;;
;; == ;;

NOTE:
1. This workaround is not acceptable if the DMA could be writing to the

buffer at the same time make_dirty() function gets called. The
process of making the cache line dirty requires reading and writing
within the buffer and, so, the CPU's writes could overwrite the
inbound data from the DMA.

2. This workaround may cause the application to be affected by the
issue described in Advisory 2.0.6, DMA Corruption of L2 RAM Data.

Workaround 3: Do Not Cache Data From External Memory in L1D

If your program only makes a small number of data accesses to external memory,
consider marking the data portions of external memory as non-cacheable. This prevents
caching copies of external memory in L1D cache.

Alternately, to prevent the line from allocating in L1D, freeze the L1D cache around each
access to an external address. The long_dist_load_word function (see the Long Distance
Load Word Routine below) is suitable for isolated accesses. For larger accesses, such
as reading a block, other techniques may be more appropriate.

The incorrect snoop-write only occurs when the L1D read miss involved is to an external
address. The snoop-write corrupts the newly cached copy in L1D. If all accesses to
external data memory are non-cacheable or occur while L1D is frozen, this prevents
copies from being stored in L1D.

Long Distance Load Word Routine
;; == ;;
;; Long Distance Load Word ;;
;; ;;
;; int long_dist_load_word(volatile int *addr) ;;
;; ;;
;; This function reads a single word from a remote location with the L1D ;;
;; cache frozen. This prevents L1D from sending victims in response to ;;
;; these reads, thus preventing the L1D victim lock from engaging for the ;;
;; corresponding L1D set. ;;
;; ;;
;; The code below does the following: ;;
;; ;;
;; 1. Disable interrupts ;;
;; 2. Freeze L1D ;;
;; 3. Load the requested word ;;
;; 4. Unfreeze L1D ;;
;; 5. Restore interrupts ;;
;; ;;
;; Interrupts are disabled while the cache is frozen to prevent affecting ;;
;; the performance of interrupt handlers. Disabling interrupts during ;;

19SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

;; the long distance load does not greatly impact interrupt latency, ;;
;; because the CPU already cannot service interrupts when it's stalled by ;;
;; the cache. This function adds a small amount of overhead (~20 cycles) ;;
;; to that operation. ;;
;; ;;
;; == ;;

.asg 0x01840044, L1DCC ; L1D Cache Control

.global _long_dist_load_word

.text

.asmfunc
; int long_dist_load_word(volatile int *addr)
_long_dist_load_word:

MVKL L1DCC, B4
MVKH L1DCC, B4

|| DINT ; Disable interrupts
|| MVK 1, B5

STW B5, *B4 ; _ Freeze cache
LDW *B4, B5 ; /
NOP 4
SHR B5, 16, B5 ; POPER -> OPER

|| LDW *A4, A4 ; read value remotely
NOP 4
STW B5, *B4 ; _ Restore cache
RET B3

|| LDW *B4, B5 ; /
NOP 4
RINT ; Restore interrupts

.endasmfunc

;; == ;;
;; End of file: ldld.asm ;;
;; == ;;

Workaround 4: Allocate DMA buffers in L1D RAM or UMAP0

If possible, move DMA buffers that the CPU reads directly out of UMAP1 to either
UMAP0 or L1D RAM. DMA buffers that the CPU does not access directly can remain in
UMAP1 safely, as these do not generate snoops.

If your set of in-bound DMA buffers does not fit in L1D RAM and UMAP0 statically,
consider paging buffers from UMAP1 to either UMAP0 or L1D RAM. That is, allow the
DMA to write to buffers in UMAP1 freely, but never read them directly from the CPU.
Instead, use the IDMA to copy a buffer from UMAP 1 to either UMAP0 or L1D RAM
before using it.

The IDMA1 utility functions (see the IDMA Channel 1 Block Copy Routine below) can be
used for copying data with the IDMA controller.

IDMA Channel 1 Block Copy Routine
;; == ;;
;; TEXAS INSTRUMENTS INC. ;;
;; ;;
;; Block Copy with IDMA Channel 1 ;;
;; ;;
;; REVISION HISTORY ;;
;; 13-Feb-2009 Initial version J. Zbiciak ;;
;; ;;
;; DESCRIPTION ;;
;; The following macro functions are defined in this file: ;;
;; ;;
;; idma1_copy(void *dst, void *src, int word_count) ;;
;; idma1_wait(IDMA_PEND or IDMA_ACTV) ;;
;; ;;
;; NOTE: The last arg is WORD count, not byte count. 1 word = 4 bytes. ;;
;; ;;
;; -- ;;
;; Copyright ©) 2009 Texas Instruments, Incorporated. ;;
;; All Rights Reserved. ;;
;; == ;;

.asg 0x01820100, IDMA1_STATUS

20 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

.asg 0x01820108, IDMA1_SOURCE

.asg 0x0182010C, IDMA1_DEST

.asg 0x01820110, IDMA1_COUNT

.asg 0x01820100, IDMA1_BASE

.asg (IDMA1_STATUS - IDMA1_BASE), OFS_IDMA1_STATUS

.asg (IDMA1_SOURCE - IDMA1_BASE), OFS_IDMA1_SOURCE

.asg (IDMA1_DEST - IDMA1_BASE), OFS_IDMA1_DEST

.asg (IDMA1_COUNT - IDMA1_BASE), OFS_IDMA1_COUNT

;; -- ;;
;; IDMA1_COPY: Copy a block of words to dst from src with IDMA channel 1 ;;
;; ;;
;; USAGE ;;
;; idma1_copy(<dest address>, <source address>, <word count>) ;;
;; ;;
;; Both source and destination addresses must be word aligned. ;;
;; ;;
;; The IDMA gets issued at top priority. Only bits 13:0 of the word ;;
;; count are significant. ;;
;; -- ;;

.global _idma1_copy

.asmfunc
_idma1_copy:
; Point to IDMA channel 1's base

RET B3 ; return; also protect from interrupts
|| MVKL IDMA1_SOURCE, A7

MVKH IDMA1_SOURCE, A7

; Write second argument to "source" register
STW B4, *A7++(IDMA1_DEST - IDMA1_SOURCE)

; Write first argument to "destination" register
STW A4, *A7++(IDMA1_COUNT - IDMA1_DEST)

; Write last argument to "count" register.
EXTU A6, 18, 16, A6 ; truncate word count to 14 bits
STW A6, *A7
.endasmfunc

;; -- ;;
;; IDMA1_WAIT: Wait for IDMA "pend" or "actv" slot to free up. ;;
;; ;;
;; USAGE ;;
;; idma1_wait(IDMA_PEND) Waits for just PEND to be 0 ;;
;; idma1_wait(IDMA_ACTV) Waits for ACTV (and PEND) to be 0 ;;
;; ;;
;; NOTE ;;
;; IDMA_PEND = 2 ;;
;; IDMA_ACTV = 3 ;;
;; ;;
;; -- ;;

.global _idma1_wait

.asmfunc
_idma1_wait:

MVKL IDMA1_STATUS, A6
MVKH IDMA1_STATUS, A6

|| MVK 1, A0
loop?:

[A0] LDW *A6, A0
||[A0] BNOP.1 loop?, 4
; The 'AND' below is safe because IDMA never returns 10b in 2 LSBs

AND.L A4, A0, A0

RETNOP B3, 5
.endasmfunc

;; == ;;
;; End of file: idma1_util.asm ;;
;; == ;;

21SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.1.6 SPLOOP CPU Cross-Path Stall

Revision(s) Affected: 2.1 and earlier

Details: If the following three rules are met, a stall is seen when an SPKERNEL instruction is
executed.

1. Cross-path instruction rule: An instruction reading a register via the cross path in
the first cycle after SPKERNEL instruction.

2. Data dependence rule: An instruction in the SPLOOP body that writes to the above
cross-path read register. This instruction can be anywhere in the SPLOOP body.

3. Functional unit rule: No instruction in parallel with the SPKERNEL instruction that
uses the same functional unit as the cross-path read instruction mentioned in rule 1
above.

This results in a one CPU cycle stall for each iteration of the loop. The following are
three examples of code that are affected by this issue:

Example 1
SPLOOP 1
MV .S1 A0, A1 ;stalls every iteration due to MV after loop
SPKERNEL
MV .S2X A1, B2

Example 2
PLOOP 14
MV .S1 A0, A1 ;stalls every iteration due to MV after loop
NOP 9
NOP 9
NOP 9
NOP 9
SPKERNEL
MV .S2X A1, B2

Example 3
SMV .S1 A0, A1 ;stalls every iteration due to MV after loop
SPKERNEL
||NEG .L2 B3, B4 ;Qualifies for rule 3, functional unit rule
MV .S2X A1, B2

The following three examples are not affected by this issue:

Example 1
;No stalls: No cross path in instruction after SPKERNEL
SPLOOP 1
MV .S1 A0, A1
SPKERNEL
MV .S1 A1, A2

Example 2
;No stalls: A1 not written to in loop body
SPLOOP 1
MV .S1 A0, A2
SPKERNEL
MV .S2X A1, B2

Example 3
;No stalls: Instruction in parallel with SPKERNEL prevents bug since
;it's in the same unit as the instruction that uses the cross-path.
SPLOOP 1
MV .S1 A0, A1
SPKERNEL
||NEG .S2 B3, B4 ;masks the bug
MV .S2X A1, B2

22 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Workaround(s): The way SPLOOP code is scheduled is controlled by the compiler. Therefore, there are
no direct workarounds for non-assembly source code. There are new revisions of the
latest compilers that ensure that these three conditions are never met. The following
compiler releases include the fix:

• 6.0.25 or later
• 6.1.15 or later
• 7.0.2 or later
• 7.1.0B2 or later
• 7.2.0A or later.

23SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.1.7 DMA Corruption of L1D$ Allocation

Revision(s) Affected: 2.1

Details: Under a specific set of circumstances, a snoop-write updates unintended data being
allocated into L1D$ from external, cacheable memory. This can lead directly to program
misbehavior. If that line is then modified by CPU accesses, a subsequent victim
writeback from L1D could commit this corrupted line to lower levels of memory. The key
requirements for this issue are:

• Two clean lines in L1D$.

– This means that a CPU has read two L2 or external, cacheable addresses and
has not modified them.

• One more allocated line in L1D$ that can be clean or dirty.

– Dirty means that a CPU has read and written to any L2 or external, cacheable
address.

• Two more parallel CPU reads (occurring in the same CPU cycle).

– One of the reads must create an L2$ hit (implying an external, cacheable
address) and must be a set match to one of the clean lines already in L1D$.

– The other can be from an L2 SRAM address or an external, cacheable address
and must be a set match to the L1D$ cache line mentioned above as clean or
dirty.

• Two DMA writes to buffers in L2 SRAM that are a set match to the two clean lines in
L1D$.

NOTE:
1. For information on L1D cache coherence protocol, see section 3.3.6,

Cache Coherence Protocol, in the C64x+ DSP Megamodule
Reference Guide (SPRU871).

2. The DMA in the following description refers to all non-CPU
requestors. This includes IDMA, EDMA, and any other master in the
system.

Under a specific set of circumstances listed below, a snoop-write results in data
corruption of L1D$. The issue occurs when there is a DMA to L2 for one of the allocated
(clean) lines that is also in the process of being replaced by an allocation from external,
cacheable memory (implying there was a set match between the two); this is along with
another allocation and a DMA to the other allocated (clean) line. L2 sends the DMA
requests as snoop-writes to the L1D cache. When the error occurs, the line the second
snoop-write was destined for has already been replaced by the allocation from external,
cacheable memory. The logic to kill the snoop-write did not get sensitized and the
snoop-write ends up corrupting the line that was allocated. Subsequent writes to the
corrupted line cause this to get committed to lower levels of memory.

The prerequisite before the window where the issue occurs is:

• The CPU reads two L2 locations that are not a set match to each other and have not
been modified since then (CPU/DMA has not written to it). For a description on how
to determine if you have a set match or not, see below.

– These are now two separate 64B cache lines allocated and clean in L1D (referred
to here as Cache Lines B and E).

• The CPU reads another L2 location that is not a set match to Cache Lines B and E. It
does not matter whether this particular cache line is modified or not before the issue
window arrives.

– Because of this, another 64B cache line is allocated in L1D as clean or dirty
(referred to here as Cache Line A).

– Note that both ways for this particular set must be occupied. It may require more
than one read to this particular cache set.

24 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

31 X+1 X 6 5 4 2 1 0

Tag Set
Offset

Sub-line Bank Byte

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

How to determine if two addresses are a set match:

Determining if two addresses are a set match can be done by comparing certain bits of
two addresses. The mapping of an address to a location in L1D cache is shown in
Figure 5.

The value X is determined by how large the L1D cache is in the particular application (see Table 10).

Figure 5. L1D Cache Address Mapping

Table 10. Value of X for L1D Cache

AMOUNT OF L1D CACHE X BIT POSITION

0KB N/A

4KB 10

8KB 11

16KB 12

32KB 13

If you use the default configuration, 32KB, as an example, bits [13:6] are a set match if
they are identical in two different addresses. Some examples of set matches are shown
below:

• 0x0080 2A80 00000000100000000010101010000000
• 0x8000 2A80 10000000100000000010101010000000
• 0x0080 2A8A 00000000100000000010101010001010

The following steps must all occur in a very tight window to see the issue:

1. The DMA writes to Cache Line E. This means that it is not necessarily the same
exact address, but within the same 64B cache line.

• As a result, a snoop- write request is generated.
2. The DMA writes to Cache Line B. This means that it is not necessarily the same

exact address, but within the same 64B cache line.

• As a result, a snoop-write request is generated but not immediately issued as it is
blocked by the snoop-write issued in the previous Step 1.

• Once the snoop-write from Step 1 is complete, this snoop-write is processed.
3. The CPU reads from any address in external, cacheable memory that is a set match

to Cache Line B. This must also create an L2$ hit (referred to here as Cache Line D).

• This results in a cache miss from the CPU and sends a read request to L2 cache
for the line.

• Assuming this was also mapped to the same way as Cache Line B, this results in
a replacement of Cache Line B since it was clean in L1D$.

• Note that there is no method to determine what particular way is used, so it is not
possible to tell whether this replacement would actually happen for a particular
operation. This is why only a set match is mentioned here.

4. In parallel (the same CPU cycle) with Step 3, the CPU reads from any address in L2
SRAM that is a set match to Cache Line A, mentioned in prerequisite Step 2 (referred
to here as Cache Line C).

• This results in a cache miss from the CPU and sends a read request to L2 SRAM
for the line.

• Assuming this was also mapped to the same way as Cache Line A, this results in
a replacement of Cache Line A if it was clean in L1D$. If Cache Line A was dirty,
an eviction would occur before the allocation completed.

• Note that there is no method to determine what particular way is used, so it is not

25SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

L1D Cache

UMAP0/1

t0

Corruption

t2

Clean line [E]

Int buff [C]

Int buff [A]

Int buff [B]

Ext buff [D]

CacheClean line [E]

Dirty line [A]

Clean line [B]

Snoop to [E] Snoop to [B]

t1

t4

t3

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

possible to tell whether this replacement would actually happen for a particular
operation. This is why only a set match is mentioned here.

The results of the above cause the following:

(A) The snoop-write to Cache Line E, from Step 1 above, is now in process and blocking
the snoop-write to Cache Line B from Step 2.

(B) While Step A is going on, Cache Line A has either now been evicted and/or replaced
by Cache Line C from Step 4 above and Cache Line B (the intended target of the
delayed snoop-write) is now replaced with Cache Line D from Step 3 above.

(C) Once the first snoop-write from operation C1 completes, the second (delayed)
snoop-write mentioned in Step A to Cache Line B should be killed since Cache Line
B was replaced in the operation in Step B. Instead, it is not killed and the line cached
(which is now actually Cache Line D) is now updated incorrectly.

As a result, the following is true:

1. Cache Line D now holds data that was corrupted by the operation in Step C above
(as a result of Step 2 above).

• A subsequent read of this data returns a corrupted value.
• Subsequent writes to this cache line also cause the corrupted values to be

committed to lower levels of memory.

Figure 6 shows the sequence of events.

Figure 6. Sequence of Events

Workaround(s): A compiler flag (--c64p_dma_l1d_workaround) has been added to the latest Code
Generation Tools to resolve this potential issue. This flag can be utilized for all code in
the system or used on particular files/functions that may be susceptible to the conditions
listed in this advisory.

26 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.1.8 Error Detection and Correction Incorrectly Reporting Error

Revision(s) Affected: 2.1 and earlier

Details: The C64x+ Megamodule L2 Memory Controller provides support for error detection and
correction (EDC). The primary purpose of this is to protect code and largely static data
held in L2 memory. Because the likelihood of a bit error on a given bit is proportional to
the time since it was last written, and program images are rarely written, the focus of
EDC is on those portions of L2 that are written rarely but must be correct when read.

The EDC implements a distance-3 "detect 2, correct 1" Hamming code. The L2 controller
always performs a full Hamming code check on 256-bit reads, regardless of whether the
fetch is from L1D controller, L1P controller, IDMA, or DMA. There is a parity value
associated with every 256 bits (32B) of L2 memory and a valid bit to qualify each parity
value. EDC uses parity RAM to store this parity information. Parity is calculated and
made valid in the parity RAM for following operations:

• 256 bits IDMA write
• 256 bits DMA writes through SDMA
• L2 cache allocate (both read and write allocate, except for the line to which the write

allocate writes).

Parity is made invalid in the parity RAM for the following operations:

• DMA writes through SDMA or IDMA writes for less than 256 bits.
• All L1D writes to L2, either cache or SRAM.
• L1D writes that cause an L2 write allocate on the line that gets written (part of the L2

cache line).
• All L1D victims.

EDC configuration registers are available to enable EDC individually for each of the L2
memory pages. Status registers are also available to report the address that shows the
EDC error as well as the type of the error, whether it is 1-bit error or multiple-bit error. It
also indicates whether it is corrected or not.

Problem Symptoms:

EDC is reporting EDC error (parity error) even when there is no error present in L2
memory. The error is random and the status register reports either 1-bit or multiple-bit
error. It is also not consistent that after some defined iterations EDC reports an error.
The EDC error can occur at any time and at any location in the memory. The error is a
false positive; i.e., there is actually no error present in the memory, but EDC reports an
error. There are two dedicated events (event 116, corrected bit error, and event 117,
uncorrected bit error) going from EDC to the megamodule INTC. If interrupt is enabled
and configured for those events, then the CPU reports an EDC interrupt.

Problem Prerequisites:

The following two operations must happen in parallel for this error to occur:

• L2 block coherence operation (WB and WBInv Only)
• L1D victim generation.

When there is an L2 block coherence operation going on (it could be either L2_WB or
L2_WBInv) and before that operation is complete, if the CPU does the operations that
generates the L1D victims, then it is possible that the L1D victim operation will mark the
parity valid bit to be 1, which is incorrect behavior. This can easily occur when there are
interrupts happening during the L2 Block WriteBack (L2_WB) or L2 WriteBackInvalidate
(L2_WBInv) operation. The error does not occur during block invalidate operation. As
mentioned above, it is a random occurrence that the L1D victim could validate the parity
and generate the EDC interrupt.

27SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Correct Behavior:
• L2 coherence operation in progress

and
• L1D victim generated
• L1D victims are not EDC protected and, so, the parity valid bit should get reset to 0

and junk should be written to parity RAM.

Incorrect Behavior:
• L2 coherence operation in progress

and
• L1D victim generated
• L1D victims are not EDC protected but the parity valid bit is marked valid with no

parity calculated and junk written to parity RAM.
• Any subsequent reads to this cache line cause the L2 EDC error. EDC protection is

performed as per junk parity data on that cache sub-line (256 bits) and it can corrupt
the data in that cache sub-line.

Workaround(s): Workaround 1:

Disable interrupts during L2 block coherence operations. If there are large block
coherence operations and disabling the interrupt during those coherence operations is
not feasible, then divide the big coherence operation into multiple, small coherence
operations and protect each of them against allowing interrupts during two coherence
operations.

Workaround 2:

Allow interrupts, but put the L1D cache in freeze mode before starting L2 block
coherence operation so that L1D victims are not generated during the L2 block
coherence operation. Un-freeze the L1D cache as soon as the L2 block coherence
operation is complete.

28 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.1.9 SRIO May Fail to Send Interrupt for Completed TX or RX Message

Revision(s) Affected: 2.1 and earlier

Details: The interrupt clearing/setting mechanism for the RXU/TXU gives priority to clearing the
interrupt rather than setting it. The sequence of the peripheral for handling buffer
descriptors of a completed message is to: write the buffer descriptor info, set the ICSR
interrupt bit, and, finally, write the completion pointer (CP). As software processes the
buffer descriptors during an ISR, it ends the process by writing the CP register to
indicate to the peripheral what was the last buffer descriptor processed. This clears the
interrupt, if both peripheral and software are at the same point; i.e., the interrupt is not
cleared and will fire again once the pacing register has completed its countdown.

Due to the implementation of the interrupt clearing/setting, where priority is given to
clearing the interrupt, if software writes the CP (which the peripheral compares to it's CP
and matches) causing the interrupt to be cleared on the same internal clock cycle as the
peripheral trying to set the interrupt bit for the next buffer descriptor, the interrupt bit is
cleared and the interrupt for that next packet is lost. Note that no data is actually lost, the
interrupt simply does not occur. Once an additional message is processed and the
descriptor is completed, the interrupt is fired as normal and all descriptors can be
processed at that point. Although not guaranteed, it is possible for this missed interrupt
condition to occur with every ISR that attempts to write the TX or RX CP. However, since
the missed interrupt descriptor can be processed during the next interrupt ISR, the only
concern is added latency. For systems with a steady flow of messages, this added
latency is usually insignificant, but it is evident on scenarios where it occurs on the last
buffer descriptor in a group of messages since nothing is behind it to cause another
interrupt. For example, if the RX queue received 10 messages and the tenth interrupt is
lost, and no other messages were ever routed to that same RX queue, it will never fire
another interrupt.

Workaround: Change the ISR as shown in the following steps and in Figure 7. Every time an interrupt
is received:

1. Determine that the interrupt is related to CPPI. If not, call another handler.
2. Fetch the next descriptor (software maintains a current pointer, SW_Pointer).
3. Check the ownership bit for this next descriptor:

(a) If it is not owned by software, go to Step 6.
(b) If it is owned by software, then check the “CC” code and perform the remaining

packet processing.
(c) If EOQ is reached, write the completion pointer and go to Step 8.
(d) Otherwise, continue with Step 4.

4. Move the SW_Pointer to point to this next descriptor.
5. Go back to Step 3.
6. Write the completion pointer based on the current SW_Pointer value.
7. Check the ownership bit for the next descriptor again:

(a) If it is owned by software, go to Step 3b.
(b) Otherwise, continue with Step 8.

8. Write the interrupt pacing register to enable the next interrupt.

29SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

If CPPI
Interrupt?

End
No

Current_Desc

Yes

Check CC and
Perform Packet

Processing

Peripheral

Application Software (CPU)

Write the
Interrupt Pacing

Register

Peripheral

Return from ISR

Application
Software
(CPU)

Check EOQ?

Yes

Current_Desc =
Current_Desc +

0x10

No

Write the
completion

pointer

Write the
completion
pointer with

Previous_Desc

Previous_Desc =
Current_Desc –

0x10

Ownership of
Current_Desc?

Ownership of
Current_Desc?

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 7. ISR Workaround Flowchart

30 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.1.10 Serial RapidIO Internal Digital Loopback is Not Always Stable

Revision(s) Affected: 2.1, 1.3, 1.2

Details: A digital loopback control function provides testability features with the ability to loop a
port's transmit data back to the receive side. Digital loopback is controlled through bit 25
of the RIO_PER_SET_CNTL register. This single bit control affects every 1X port, or all
lanes of a 4X port, depending on the supported mode of the device. This loopback is
done in the digital logic domain and is before the SerDes. An issue was discovered
where ports that are in digital loopback exhibit sporadic errors and are unreliable. In
these instances, the ports are unable to maintain Port_ok status and may encounter
multiple various error stopped states.

In digital loopback, the normal physical layer RX FIFO is bypassed altogether for data.
The data is actually handed from TX to RX via a separate path. This handoff is being
performed correctly, however, the RX FIFO sideband signals that indicate under/over run
conditions are erroneously being evaluated by the digital logic, instead of being ignored.
This means that the RX state machine continues acting upon the under/over run signals
that can be affected by external signals or even noise coming in on the device pins. For
example, if the SerDes device pins are connected to a link partner's active transmitter,
the port is not able to remain initialized in loopback since the under/over run signals are
following the link traffic. Unreliable digital loopback has also been observed without an
active transmitting device attached.

Workaround: Avoid using the digital loopback mode. TX-to-RX loopback is also supported within the
SerDes macros themselves. This internal SerDes loopback mode incorporates the
complete RapidIO data path (including the RX FIFO) and eliminates the above
mentioned issue. SerDes loopback is very stable and can be enabled with the following
bits in the RapidIO SerDes registers:

RIO_SERDES_CFG1_CNTL[7:6] = 0b10
RIO_SERDES_CFGRXn_CNTL[1] = 0b1
RIO_SERDES_CFGTXn_CNTL[1] = 0b1

Note that loopback needs to be individually enabled for each port, or each lane of a 4X
port, by setting bit 1 of the appropriate RIO_SERDES_CFGRXn_CNTL and
RIO_SERDES_CFGTXn_CNTL register.

31SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

3 Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional
Specifications

3.1 Silicon Revision 1.3 Usage Notes

Usage Notes highlight and describe particular situations where the device's behavior may not match
presumed or documented behavior. This may include behaviors that affect device performance or
functional correctness. These notes will be incorporated into future documentation updates for the device
(such as the device-specific data manual), and the behaviors they describe will not be altered in future
silicon revisions.

Some silicon revision 1.3 applicable usage notes have been found on later silicon revisions; for more
detail, see Section 2.1.

3.1.1 Bootloader: Multicore Boot Takes Core1 and Core 2 Out of Reset

For silicon revisions 1.x on the C6474 device, the bootloader checks that the base of L2 for core1 and
core2 is 0. If they are 0, the idle code (0x0001E000) is written to the base of the L2 (address 0x11800000
for core1 and 0x12800000 for core2). At the end of the bootloader before application code starts to run,
the bootloader takes core1 and core2 out of reset.

If the first-level bootloader does not put any valid code into core1 and core2 L2 memory space and relies
on the secondary level bootloader to load application code into core1 and core2 L2 RAM, the second-level
bootloader in core0 needs to perform the following to make sure the core1 and core2 application software
can run properly:

• Load the application software into core1 and core2 from the base address of the L2 RAM.
• At the end of the secondary bootloader in core0, apply Timer64_4 and Timer64_5 in watchdog mode.

To ensure that both core1 and core2 start execution cleanly, use Timer64_4 to reset core1 and
Timer64_5 to reset core2 before exiting the secondary bootloader. For timer watchdog configuration,
see the TMS320C6474 Multicore Digital Signal Processor (literature number SPRS552).

32 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS552
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

3.2 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications

Table 11 lists the silicon revision 1.3 known design exceptions to functional specifications. If the design
exceptions are still applicable, the advisories move up to the latest silicon revision section. Therefore,
advisory numbering may not be sequential.

All other known design exceptions to functional specifications for silicon revision 1.3 still apply and have
been moved up; see Table 3 and Section 2.2 .

Table 11. Silicon Revision 1.3 Advisory List

Title .. Page

Advisory 1.3.1 —DSP SDMA/IDMA: Unexpected Stalling of SDMA/IDMA Access to L2 SRAM 34
Advisory 1.3.2 —Potential Data Corruption on SCR Bridge .. 41
Advisory 1.3.3 —Potential Insertion or Deletion of 2 Bits in SerDes Data Stream .. 42
Advisory 1.3.4 —MAC EOI Register Write Causes Potential CPU Lockup... 44
Advisory 1.3.6 —I2C: Slave Boot Aborts.. 45
Advisory 1.3.7 —EMAC Boot Issue ... 46

Advisory 1.3.8 —IP Block Containing CIC, CFGC, DTF, and IPC Registers Does Not Return Write Request
Correctly.. 48

Advisory 1.3.9 —DMA Access to L2 SRAM May Stall When the DMA Has Lower Priority Than the CPU 52
Advisory 1.3.10 —L2 Victim Traffic Due To L2 Block Writeback During Any Pending CPU Request 54

33SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.1 DSP SDMA/IDMA: Unexpected Stalling of SDMA/IDMA Access to L2 SRAM

Revision(s) Affected: 1.3, 1.2

Details:

NOTE: Only when DSP level 2 (L2) memory is configured as non-cache (RAM),
unexpected stalling may occur on DSP SDMA/IDMA accesses. If DSP L2
memory is used only as cache or if L2 RAM is not accessed by IDMA or
via the SDMA interface during run-time, then this exception does not
apply.

The C64x+ megamodule has a Master Direct Memory Access (MDMA) bus interface and
a Slave Direct Memory Access (SDMA) bus interface. The MDMA interface provides
DSP access to resources outside the C64x+ megamodule (i.e., DDR2 memory). The
MDMA interface is used for CPU/cache accesses to memory beyond the level 2 (L2)
memory level. These accesses include cache line allocates, write-backs, and
non-cacheable loads and stores to/from system memories. The SDMA interface allows
other master peripherals in the system to access level 1 data (L1D), level 1 program
(L1P), and L2 RAM DSP memories. The masters allowed accesses to these memories
are DMA controllers, EMAC, and SRIO. The DSP Internal Direct Memory Access (IDMA)
is a C64x+ megamodule DMA engine used to move data between internal DSP
memories (L1, L2) and/or the DSP peripheral configuration bus. The IDMA engine
shares resources with the SDMA interface.

The C64x+ megamodule has an L1D cache and an L2 caches, both of which implement
write-back data caches. The C64x+ megamodule holds updated values for external
memory as long as possible. It writes these updated values, called victims, to external
memory when it needs to make room for new data, when requested to do so by the
application, or when a load is performed from a non-cacheable memory for which there
is a set match in the cache (i.e., the non-cacheable line would replace a dirty line if
cached). The L1D sends its victims to L2. The caching architecture has pipelining,
meaning multiple requests could be pending between L1, L2, and MDMA. For more
details on the C64x+ megamodule and its MDMA and SDMA ports, see the
TMS320C64x+ Megamodule Reference Guide (literature number SPRU871).

Ideally, the MDMA (the blue lines in Figure 8) and SDMA/IDMA paths (the orange lines
in Figure 8) operate independently with minimal interference. Normally, MDMA accesses
may stall for extended periods of time (clock cycles) due to expected system level delays
(e.g., bandwidth limitations, DDR2 memory refreshes). However, when using L2 as
RAM, SDMA and/or IDMA accesses to L2/L1 may experience unexpected stalling in
addition to the normal stalls seen by the MDMA interface. For latency-sensitive traffic,
the SDMA stall can result in missing real-time deadlines.

NOTE: SDMA/IDMA accesses to L1P/D will not experience an unexpected stall
if there are no SDMA/IDMA accesses to L2. Unexpected SDMA/IDMA
stalls to L1 happen only when they are pipelined behind L2 accesses.

Figure 8 is a simplified view for illustrative purposes only. The IDMA/SDMA path (orange
lines) can also go to L1D/L1P memories and IDMA can go to the DSP CFG peripherals.
MDMA transactions (blue lines) can also originate from L1P or L1D through the L2
controller or directly from the DSP.

34 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Cache Control

Memory Protect

Bandwidth Mgmt

L1P

RAM/
Cache

256

Bandwidth Mgmt

Memory Protect

Cache Control

256

L2

256

RAM/
Cache ROM

256

Instruction Fetch

C64x + CPU

256

Cache Control

Memory Protect

Bandwidth Mgmt

L1D

64 64

8 x 32

256

256

256
CFG

MDMA SDMA

EMC

256

32
Peripherals

128 128

RAM/
Cache

Register
File A

Register
File B

EDMA Master
Peripherals

ID
M

A

128
Power Down

Interrupt
Controller

CPU/Cache Access Origination

Master Peripheral Origination

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Figure 8. IDMA, SDMA, and MDMA Paths

35SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

SDMA/IDMA stalls may occur during the following scenarios. Each of these scenarios
describes expected normal DSP functionality, but the SDMA/IDMA access potentially
exhibits additional unexpected stalling.

1. Bursts of writes to non-cacheable MDMA space (i.e., DDR2). The DSP buffers up to
4 non-cacheable writes. When this buffer fills, SDMA/IDMA is blocked until the buffer
is no longer full. Therefore, bursts of non-cacheable writes longer than three writes
can stall SDMA/IDMA traffic.

2. Various combinations of L1 and L2 cache activity:

(a) L1D read miss generating victim traffic to L2 (cache or SRAM) or external
memory. The SDMA/MDMA may be stalled while servicing the read miss and the
victim. If the read miss also misses L2 cache, the SDMA/IDMA may be stalled
until data is fetched from external memory to service the read miss. If the read
access is to non-cacheable memory there will still potentially be an L1D victim
generated even though the read data will not replace the line in the L1D cache.

(b) L1D read request missing L2 (going external) while another L1D request is
pending. The SDMA/IDMA may be stalled until the external memory access is
complete.

(c) L2 victim traffic to external memory during any pending L1D request. The
SDMA/IDMA may be stalled until external memory access and the pending L1D
request are complete.

The duration of the SDMA/IDMA stalls depends on the quantity/characteristics of the
L1/L2 cache and the MDMA traffic in the system. In cases 2a, 2b, and 2c, stalling may or
may not occur depending on the state of the cache request pipelines and the traffic
target locations. These stalling mechanisms may also interact in various ways, causing
longer stalls. Therefore, it is difficult to predict if stalling will occur and for how long.

SDMA/IDMA stalling and any system impact is most likely in systems with excessive
context switching, L1/L2 cache miss/victim traffic, and heavily loaded EMIF.

Use the following steps to determine if SDMA/IDMA stalling is the cause of real-time
deadline misses for existing applications. Situations where real-time deadlines may be
missed include loss of McBSP samples and low peripheral throughput.

1. Determine if the transfer missing the real-time deadline is accessing L2 or L1D
memory. If not, then SDMA/IDMA stalling is not the source of the real-time deadline
miss.

2. Identify all SDMA transfers to/from L2 memory (e.g., EDMA transfer to/from L2
from/to a McBSP or from/to AIF, TCP, or VCP). If there are no SDMA transfers going
to L2, then SDMA/IDMA stalling is not the source of the problem.

3. Redirect all SDMA transfers to L2 memory to other memories using one of the
following methods:

• Temporarily transfer all the L2 SDMA transfers to L1D SRAM.
• If not all L2 SDMA transfers can be moved to L1D memory, temporarily direct

some of the transfers to DDR memory and keep the rest in L1D memory. There
should be no L2 SDMA transfers.

• If neither of the above approaches are possible, move the transfer with the
real-time deadline to the EMAC CPPI RAM. If the EMAC CPPI RAM is not big
enough, a two-step mechanism can be used to page a small working buffer
defined in the EMAC CPPI RAM into a bigger buffer in L2 SRAM. The EDMA
module can be setup to automate this double buffering scheme without CPU
intervention for moving data from the EMAC CPPI RAM. Some throughput
degradation is expected when the buffers are moved to the EMAC CPPI RAM.

Note: Note that EMAC CPPI RAM memory is word-addressable only and,
therefore, must be accessed using an EDMA index of 4 bytes.

If real-time deadlines are still missed after implementing any of the options in Step 3,
then SDMA/IDMA stalling is likely not the cause of the problem. If real-time deadline
misses are solved using any of the options in Step 3, then SDMA/IDMA stalling is likely
the source of the problem.

36 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

An extreme manifestation of the IDMA/SDMA stall issue is the C64x+ MDMA-SDMA
deadlock that requires a device reset or power-on reset in order for the system to
recover. The following summarizes the deadlock conditions:

• Master(s) on a single main MSCR port write to the GEM's SDMA followed by a write
to slaveX

• The GEM issues victim traffic or a non-cacheable write to slaveX
• Any one of the following:

– A write data path pipelined in main MSCR between master(s) and the GEM's
SDMA

– A bridge exists between master(s) and the main MSCR
– Master(s) are able to issue a command to slaveX concurrent with the write to the

GEM's SDMA.

A load (either cacheable or non-cacheable) from another core's L1D or L2 memory can
additionally create a deadlock condition. When the load is issued the read command is
propagated to the SDMA port of the other core through a bridge that is shared with the
EDMA TC1, EMAC, RapidIO (both data and CPPI), and other GEM MDMA. When the
load is issued, if a victim is generated in L1D cache, then the SDMA may stall until the
load completes. If other masters are issuing commands through the shared bridge, then
the bridge may fill due to the stalled SDMA before the read command can propagate
through the bridge and complete. In summary, a deadlock can occur if the following is
true:

• GEMx issues a read to GEMy or GEMz L1D or L2 SRAM
• Any of the following are issuing commands to GEMx L2: TC1, EMAC (data or CPPI),

RapidIO (data or CPPI), GEMy, or GEMz.

37SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Workarounds: Method 1

Issues such as dropped McBSP samples can be worked around by moving
latency-sensitive buffers outside the C64x+ megamodule. For example, rather than
placing buffers for the McBSP into L1/L2, those buffers can instead be placed in other
memory, such as the EMAC CPPI RAM.

Note: Note that EMAC CPPI RAM memory is word-addressable only and, therefore,
must be accessed using an EDMA index of 4 bytes.

Method 2

To reduce the SDMA/IDMA stalling system impact, perform any of the following:

1. Improve system tolerance on DMA side (SDMA/IDMA/MDMA):

• Understand and minimize latency-critical SDMA/IDMA accesses to L2 or L1P/D.
• Directly reduce critical real-time deadlines, if possible, at peripheral/IO level (e.g.,

increase word size and/or reduce bit rates on serial ports).
• To reduce DSP MDMA latency:

– Increase the priority of the DSP access to DDR2 such that MDMA latency of
MDMA accesses causing stalls is minimized.
Note: Other masters may have real-time deadlines that dictate higher priority
than the DSP.

– Lower the PRIO_RAISE field setting in the DDR2 memory controller's burst
priority register. Values ranging between 0x10 and 0x20 should give decent
performance and minimize latency; lower values may cause excessive
SDRAM row thrashing.

2. Minimize offending scenarios on DSP/caching side:

• If the DSP performing non-cacheable writes is causing the issue, insert protected
non-cacheable reads (as shown in the last list item below) every few writes to
allow the write buffer to empty.

• Use explicit cache commands to trigger cache writebacks during appropriate
times (L1D Writeback All, L2 Writeback All). Do not use these commands when
real-time deadlines must be met.

• Restructure program data and data flow to minimize the offending cache activity.

– Define the read-only data as const. The const C keyword tells the compiler
not to write to the array. By default, such arrays are allocated to the .const
section as opposed to BSS. With a suitable linker command file, the
developer can link the .const section off chip, while linking .bss on chip.
Because programs initialize .bss at run time, this reduces the program's
initialization time and total memory image.

– Explicitly allocate lookup tables and writeable buffers to their own sections.
The #pragma DATA_SECTION (label, section) directive tells the compiler to
place a particular variable in the specified COFF section. The developer can
explicitly control the layout of the program with this directive and an
appropriate linker command file.

– Avoid directly accessing data in slow memories (e.g., flash); copy at
initialization time to faster memories.

• Modify troublesome code.

– Rewrite using DMAs to minimize data cache writebacks. If the code accesses
a large quantity of data externally, consider using DMAs to bring in the data,
using double buffering and related techniques. This will minimize cache
write-back traffic and the likelihood of SDMA/IDMA stalling.

– Re-block the loops. In some cases, restructuring loops can increase reuse in
the cache and reduce the total traffic to external memory.

– Throttle the loops. If restructuring the code is impractical, then it is reasonable
to slow it down. This reduces the likelihood that consecutive SDMA/IDMA
blocks stack up in the cache request pipelines, resulting in a long stall.

•

38 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Protect non-cacheable reads from generating an SDMA stall by freezing the L1D
cache during the non-cacheable read access(es). The following example code
contains a function that protects non-cacheable reads, avoids blocking during the
reads, and, therefore, avoids the deadlock state.

;; == ;;
;; Long Distance Load Word ;;
;; ;;
;; int long_dist_load_word(volatile int *addr) ;;
;; ;;
;; This function reads a single word from a remote location with the L1D ;;
;; cache frozen. This prevents L1D from sending victims in response to ;;
;; these reads, thus preventing the L1D victim lock from engaging for the ;;
;; corresponding L1D set. ;;
;; ;;
;; The code below does the following: ;;
;; ;;
;; 1. Disable interrupts ;;
;; 2. Freeze L1D ;;
;; 3. Load the requested word ;;
;; 4. Unfreeze L1D ;;
;; 5. Restore interrupts ;;
;; ;;
;; Interrupts are disabled while the cache is frozen to prevent affecting ;;
;; the performance of interrupt handlers. Disabling interrupts during ;;
;; the long distance load does not greatly impact interrupt latency, ;;
;; because the CPU already cannot service interrupts when it's stalled by ;;
;; the cache. This function adds a small amount of overhead (~20 cycles) ;;
;; to that operation. ;;
;; ;;
;; == ;;

.asg 0x01840044, L1DCC ; L1D Cache Control

.global _long_dist_load_word

.text

.asmfunc
; int long_dist_load_word(volatile int *addr)
_long_dist_load_word:

MVKL L1DCC, B4
MVKH L1DCC, B4

|| DINT ; Disable interrupts
|| MVK 1, B5

STW B5, *B4 ; _ Freeze cache
LDW *B4, B5 ; /
NOP 4
SHR B5, 16, B5 ; POPER -> OPER

|| LDW *A4, A4 ; read value remotely
NOP 4
STW B5, *B4 ; _ Restore cache
RET B3

|| LDW *B4, B5 ; /
NOP 4
RINT ; Restore interrupts
.endasmfunc

;; == ;;
;; End of file: ldld.asm ;;
;; == ;;

In the C6474 multicore device, when one GEM is accessing another GEM's L1 or L2
memory it is an MDMA access, so the potential SDMA/IDMA stall can occur. The stall
can be avoided by using the EDMA to transfer data from one GEM's memory to another.

39SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Method 3

Entirely eliminate the exception by removing all SDMA/IDMA accesses to L2 SRAM. For
example, EMAC descriptors and EMAC payload cannot reside in L2. Master peripherals
like the EDMA/QDMA, IDMA, and SRIO cannot access L2. There are no issues with the
CPU itself accessing code/data in L2. This issue only pertains to SDMA/IDMA accesses
to L2.

Deadlock Avoidance

To avoid the manifestation of a C64x+ deadlock, several Workarounds: are suggested
depending on the VBUSM master in question:

VBUSM MASTER WORKAROUND

GEM GEMs should not write to the memory of any other GEM. This will cause complications across
any master peripheral that is transferring data to multiple L2s. GEMs must not directly read from
the memory of any other GEMs without providing the L1D cache disable workaround mentioned in
Method 2 to ensure that the load will not stall itself indefinitely and hang the system.

EDMA3TCx Inbound and outbound traffic should be programmed on different TC ports (i.e., two different
EDMA queues, since a given queue maps to a given TC). Note that in-/out-bound direction is
defined as the write direction, meaning that a DDR2-to-DDR2 transfer is outbound and L2-to-L2 is
inbound. Any TC used to write to DDR should not be used to write to a GEM even when the TC
writing to the DDR is also reading from DDR.

EMAC EMAC should write to the GEM's memory or the DDR, but not both. This includes buffers and
buffer descriptors. EMAC CPPI descriptors should be placed wholly in the local wrapper memory,
any combination of wrapper and L2 memory (must match other master transactions), or any
combination of wrapper and DDR2 SDRAM (must match other master transactions). Buffer
descriptors should not be placed in any combination of L2 and DDR2 SDRAM.

SRIO SRIO should transfer payload data to only GEM memories or to DDR2 SDRAM, but not both. This
includes any direct I/O writes as well as any inbound RX messaging transfer.

SRIO CPPI SRIO CPPI descriptors should be placed wholly in the local wrapper memory, any combination of
wrapper and L2 memory, or any combination of wrapper and DDR2 SDRAM. Buffer descriptors
should not be placed in any combination of L2 and DDR2 SDRAM.

40 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.2 Potential Data Corruption on SCR Bridge

Revision(s) Affected: 1.3, 1.2

Details: This issue manifests itself when two masters write to a bridge endpoint and the
commands arrive on the same clock cycle. The VBUS protocol is violated and the data is
corrupted. The consequence is that one of the writes goes through with corrupt data, the
other completes normally.

On some occasions the bridge may not recover without a reset. There is no software
indication of this nor a means to reset only the bridge. Therefore, the situation must be
avoided. The affected bridges are: TCP, VCP, AIF write port, and DMA bridge to
configuration bus (where key endpoints beyond this bus could include Semaphore
configuration port, EMAC configuration ports, PaRAM configuration port, or SRIO
configuration ports).

Workarounds: Corrective action is taken by avoiding the issue as described in the following:

• TCP: Access to R/W ports is controlled by the Semaphore module; no issue.
• VCP: Access to R/W ports is controlled by the Semaphore module; no issue.
• AIF: DMA access is from a single transfer controller (TC); no issue. If more than one

TC is used, the issue will be exposed.
• DMA bridge to configuration bus: Dedicate a single TC for use of the DMA to write

through this bridge to all the endpoints beyond or use the configuration bus directly
and do not use the DMA to program the following:

– Semaphore configuration port: Configuration registers
– SRIO configuration ports: Configuration registers
– EMAC configuration ports: Configuration registers (caution on using EMAC CPPI

buffer to work around the DSP SDMA/IDMA unexpected stalling, see Advisory
1.3.1)

– PaRAM configuration port: Do not auto-program channels from one TC to another

41SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.3 Potential Insertion or Deletion of 2 Bits in SerDes Data Stream

Revision(s) Affected: 1.3, 1.2

Details: For arbitrary phase mode, a FIFO function is integrated into the SerDes TX serializer.
This FIFO has three states (minus1, center, plus1) and is supposed to be reset to the
center state at startup. From this position, the SerDes is then tolerant to variations of
phase between the input clock (TXBCLKIN) and the SerDes internal clock, caused by
temperature and voltage variations. However, as a result of a logic issue, the possibility
exists that under some circumstances, the FIFO may not start in the center state. When
this happens, there is a risk that the FIFO may subsequently overflow or underflow.

Whether the FIFO fails to initialize to the center state depends on the timing
relationships between several signals, including the SerDes internal clock. Even if the
FIFO fails to initialize to the center state, the FIFO will only underflow or overflow if the
phase relationship between the TXBCLKIN input and the internal SerDes clock vary (due
to temperature or voltage changes) in such a way as to cause their edges to cross in
one particular direction. Overflow results in two bits being added to the data stream.
Underflow results in two bits being deleted. If overflow or underflow occurs at all, it only
happens once per TX lane because after it has occurred the FIFO is configured exactly
as if it had initialized to the center state at startup.

The precise silicon process of the device will also be a factor in whether the overflow or
underflow occurs. Some devices may exhibit this behavior at some particular PVT
combinations, others may never exhibit it. It is not possible to predict whether, or under
what conditions, a device is susceptible. If overflow or underflow occur, it could be at any
time ranging from immediately after startup to weeks, months, or years later.

Workarounds: The issue can be worked around by software control of two ports on the SerDes. At
initialization, cycling of bits resets the circuit and resolves the issue.

• AIF has a software workaround as follows:
The software workaround limits restart to per macro, not per lane. There is one set of
software control bits for the B8 and another for the B4. For details, see the
device-specific data manual, TMS320C6474 Multicore Digital Signal Processor
(literature number SPRS552). There are new recommendations for the initialization
sequence that is shown in the following code example:

//Enable the Tx Link
CSL_FINST(hAifLink[0]->regs->LCFG[1].LINK_CFG, AIF_LINK_CFG_TX_LINK_EN, ENABLED);

//Set the Link Rate
if (aCommoncfg[0].linkRate == CSL_AIF_LINK_RATE_1x){

CSL_FINST(hAifLink[0]->regs->LCFG[1].LINK_CFG, AIF_LINK_CFG_LINK_RATE, 1X);
}
else if (aCommoncfg[0].linkRate == CSL_AIF_LINK_RATE_2x)

CSL_FINST(hAifLink[0]->regs->LCFG[1].LINK_CFG, AIF_LINK_CFG_LINK_RATE, 2X);
}
else if (aCommoncfg[0].linkRate == CSL_AIF_LINK_RATE_4x)

CSL_FINST(hAifLink[0]->regs->LCFG[1].LINK_CFG, AIF_LINK_CFG_LINK_RATE, 4X);
}

//Toggle the ENFTP bit
CSL_FINS(hAifLink[0]->regs->AI_SerDes0_TST_CFG, AIF_AI_SerDes0_TST_CFG_INVPATT,
1);
CSL_FINS(hAifLink[0]->regs->AI_SerDes0_TST_CFG, AIF_AI_SerDes0_TST_CFG_INVPATT,
0);

CSL version 3.0.6.2 for the C6474 device has a new hardware control command
(CSL_AIF_CMD_ENABLE_DISABLE_TX_LINK_SI1_1) that has the fix for this
advisory.

42 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS552
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

• EMAC has a software workaround and an auto-recovery for this advisory as follows:
There is a new recommendation for initialization sequence as shown in the following
code example. This example code should be used with CSL version 03.00.06.01.

SgmiiCfg.masterEn = 0x1;
SgmiiCfg.loopbackEn = 0x1;
SgmiiCfg.auxConfig = 0x0000000b;

if (0 == SGMII_config(&SgmiiCfg))
printf("SGMII config successful........\n");

else
printf("SGMII config NOT successful........\n");

LocalTicks = 0;
while(LocalTicks !=3); // wait for 2us

SgmiiCfg.txConfig = 0x00000e21; // enable transmitter
SgmiiCfg.rxConfig = 0x00081021;

if (0 == SGMII_config(&SgmiiCfg))
printf("SGMII config successful........\n");

else
printf("SGMII config NOT successful........\n");

SgmiiCfg.txConfig = 0x00010e21; // toggle the ENFTP bit

if (0 == SGMII_config(&SgmiiCfg))
printf("SGMII config successful........\n");

else
printf("SGMII config NOT successful........\n");

SgmiiCfg.masterEn = 0x1;
SgmiiCfg.loopbackEn = 0x1;
SgmiiCfg.txConfig = 0x00000e21; // toggle the ENFTP bit

if (0 == SGMII_config(&SgmiiCfg))
printf("SGMII config successful........\n");

else
printf("SGMII config NOT successful........\n");

// wait for the Auto-negotiation Complete
SGMII_REGS->CONTROL |= 0x1; // Loopback mode is selected

// set full dupex and Gig bits
SGMII_REGS->MR_ADV_ABILITY = 0x9801;

• SRIO has an auto-recovery as follows:
Auto-recovery resets the link and re-exposes the issue. TI is working to understand
the likelihood of repeated recovery and whether there could be performance impacts
due to repeated recovery.

The software workaround is enabled with a partial fix for AIF and EMAC. A complete fix
will be available in silicon revision 2.x.

43SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.4 MAC EOI Register Write Causes Potential CPU Lockup

Revision(s) Affected: 1.3, 1.2; Fixed in CSL version 03.00.06.01

Details: An issue has been found affecting multiple cores trying to write the EOI register via the
MAC interface. It causes a lockup of one of the three MAC interfaces that is attempting
to write the EOI register.

When multiple cores try to access the MAC interface one of the three cores that
requested the EOI write gets locked up. This situation occurs when the MAC interface
receives the EOI register write requests from multiple cores like "X" write followed by "Y"
write at same clock, the EOI register updates only one write at a time, X or Y, and
ignores the other write. The EOI write request that was ignored by the MAC locks up the
CPU that requested the write.

Workarounds: Semaphores can be used to fix the EOI issue. There are two new APIs added to write
the EOI register, one for receive and the other for transmit. The application can make
use of those APIs with the semaphore module, to protect the EOI write when all the 3
cores try to access EOI register at same time.

This workaround is required only when more than one core requests the EOI write. Code
examples for receive and transmit writes are shown below.
• Before and after rxEoiWrite, the semaphore APIs are called:
/* Check Whether Handle opened successfully and then read module status*/
if(hSemHandle!= NULL){

/* Check whether semaphore resource is Free or not */
do{
/* Get the semaphore*/
CSL_semGetHwStatus(hSemHandle,CSL_SEM_QUERY_DIRECT,&response);
}while(response.semFree != CSL_SEM_FREE);

/* write the EOI register */
EMAC_rxEoiWrite(coreNum);

/* Release the semaphore*/
CSL_semHwControl(hSemHandle, CSL_SEM_CMD_FREE_DIRECT,NULL);

• Before and after txEoiWrite the semaphore APIs are called:
/* Check Whether Handle opened successfully and then read module status*/
if(hSemHandle!= NULL){
/* Check whether semaphore resource is Free or not*/

do {
/* Get the semaphore*/

CSL_semGetHwStatus(hSemHandle,CSL_SEM_QUERY_DIRECT,&response);
} while (response.semFree != CSL_SEM_FREE);

/* write the EOI register */
EMAC_txEoiWrite(coreNum);

/* Release the semaphore*/
CSL_semHwControl(hSemHandle, CSL_SEM_CMD_FREE_DIRECT,NULL);

This issue is fixed in the CSL version 03.00.06.01

44 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.3.6 I2C: Slave Boot Aborts

Revision(s) Affected: 1.3, 1.2

Details: I2C Slave Boot is intended to speed the boot process for a system with more than two
devices by allowing a single master read of the I2C EEPROM followed by a broadcast
by that master to all remaining devices on the I2C bus. However, during the I2C slave
boot process an internal exception is encountered, causing the boot sequence to abort
on the slave device(s). Consequently, I2C slave boot does not complete.

Workaround: Use I2C master boot for all devices in the system. Other boot modes with SRIO or
EMAC may also be utilized, if available on system.

45SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.7 EMAC Boot Issue

Revision(s) Affected: 1.3, 1.2

Details: The EMAC ready announcement frame is not transmitted at correct time when the
C6474 device is booted in master, slave, and force modes.

When the DSP is booted in EMAC master/slave boot modes (boot modes 4, 5), the DSP
transmits an Ethernet Ready Announcement (ERA) frame in the form of a BOOTP
request. The BOOTP request is intended to inform the host server that the DSP is ready
to receive boot packets. The ERA frame packet is described in more detail in the
TMS320C6474 Bootloader User's Guide (literature number SPRUG24).

Silicon Revision 1.2 Silicon Revision 2.1 and later

Ethernet-ready annoucement packet is sent out after link is up Ethernet-ready annoucement packet is sent out after link is up
and after SERDES PLL lock is obtained. and after SERDES PLL lock is obtained.

Texas Instruments will fix the Ethernet Ready Announcement frame transmission in the
next silicon revision for C6474 devices.

Workaround 1: Have the host that is responsible for sending the boot packets broadcast a small boot
table with the program that is shown in the example below. This will cause any C6474
device to restart the EMAC boot procedure (without configuring the MAC peripheral
again) and re-transmit the ERA.

Re-send ERA packet code:
.text

BOOT_REENTRY_ADDR .equ 03c000110h
BOOT_EMAC_OPT .equ 01088480Ah
NETIF_CHANNEL_OPEN .equ 03c0040ACh

;; -- ;;
;; MVKx: Helper MVK that issues MVK or MVKL/MVKH as needed. ;;
;; -- ;;

MVKx .macro xcst, xdst

.if ((:xcst:) & 0xFFFF8000) == 0
MVK xcst, xdst
.elseif ((:xcst:) & 0xFFFF8000) == 0xFFFF8000
MVK xcst, xdst
.else
MVKL xcst, xdst
MVKH xcst, xdst
.endif
.endm

.def _c_int00

_c_int00:

MVKx BOOT_EMAC_OPT, A1
MVKx 0x26, A4 ; overwrite option field in EMAC bootparam
STH A4, *A1
NOP 4

MVKx NETIF_CHANNEL_OPEN, A1
MVKx 0, A4
MVKx 0, B4

B A1

ADDKPC LABELIT,B3,4

LABELIT:

MVKx BOOT_REENTRY_ADDR, B3

46 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUG24
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

BNOP B3, 5

Workaround 2: The host server would need to rely on prior knowledge of the DSP MAC address to
transmit boot packets to the correct DSP. The DSP will be ready to receive EMAC boot
packets within 2 ms following deassertion of reset.

In the scenario where the boot server reads the MAC address of the DSP from the ERA
packet, the procedure would need to be changed. After some customer TBD delay
where the ERA is not received, the host sends the broadcast packet with the payload
described in Workaround 1.

47SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.8 IP Block Containing CIC, CFGC, DTF, and IPC Registers Does Not Return Write
Request Correctly

Revision(s) Affected: 1.3, 1.2, 1.1, 1.0

Details: For every write transaction issued by a master peripheral to a slave, the bus protocol
internal to the device (VBUS) makes the slave send a write status back to the master
that initiated the transfer. This acknowledges that the write actually completed. For each
write transaction, the master sends a transaction ID (xid) with each write that is issued to
a slave. The slave returns the same ID that was used for the write transaction along with
an end-of-transaction signal.

The master endpoint on the SCR, to which status is being returned, has its own
arbitration block. This arbitration block sends a ready/not-ready signal to each slave
denoting whether it is ready to receive status or not. If it responds as ready to a slave,
the status is forwarded that clock cycle to the master. When it is not ready, the
transaction repeats until it is ready.

This issue was found in a chip-level block that consolidates the following modules into a
single slave endpoint: CIC, CFGC, DTF, and IPC. When this block sends write status
back to a master via SCR F, the status signal from SCR F is ignored. This means that if
SCR F sends back a not-ready signal during a write status transaction, the write status is
lost since it is not forwarded to SCR D and it is no longer generated by the slave. If the
block was behaving properly, the status should have been re-sent the next clock cycle.

The SCR F write status arbitration block returns a not-ready signal when two or more
slaves return status on the same clock cycle. One slave wins the arbitration and the
others see a not ready.

Each master behaves differently when write status is lost. The most common interface
that is writing to these registers is GEM. Note that if GEM misses a write status
response, it eventually stalls the CFG port. This happens exactly three CFG transactions
(read or write) later.

The GEM CFG bus uses transaction IDs 0x0 to 0xB for IDMA transfers and 0xC to 0xF
for other transfers. As transactions are issued, they recycle through the IDs in a
round-robin fashion. The GEM does not reuse an ID until it gets write status back for that
ID. Table 12 shows an example of how the write status never makes it back to the GEM,
it issues transactions for the other three IDs and, when it gets to the one that did not see
status, the GEM hangs and never issues further commands because it is stuck waiting
for the status.

Table 12. GEM Transaction IDs

TRANSACTION R/W XID WSTATUS ID RETURNED

1 W D D

2 W E E

3 R F <N/A>

4 W C C

5 W D NO STATUS RETURNED

6 R E <N/A>

7 W F F

8 W C C

The next transaction is never issued since the GEM is expecting to use xid D and no
status is ever returned. Note that this means that the CFG port is now completely stalled
and no reads or writes can be issued. In addition, once the CFG port stalls, the MDMA
port can stop issuing writes as well.

48 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

NOTE: This is a description of how GEM issues transactions since it is the most
common master of these blocks. Other masters writing to these blocks
are somewhat more tolerant, but stall (stop issuing commands)
eventually. The write accesses in the workaround below refer to all
masters, not only the GEM.

Workaround: There are three ways to avoid this issue. Workaround 3 is the recommended method.

Workaround 1

Do not issue any writes to the affected peripherals. Note that reads are acceptable,
assuming the affected block (CIC, CFGC, DTF, or IPC) is not written to. Systems that
already follow this rule are not affected by this issue. The following lists how to avoid
writes on each of these peripherals if they are currently used:

• CIC – The main writes to this module should be limited to configuration writes.
Therefore, systems should program this block during system initialization. Most
systems use the CIC as only a means of routing an event. This means that the CIC is
programmed only to route an event input to a particular event output. The other use
model of this block is to use the combiner that allows you to combine multiple events
into a single output. For systems only utilizing the routing feature and not using the
combiner, no writes are necessary during run-time operation. When using the
combiner, an interrupt flag is set that requires a software write to clear the flag. The
document infers that all events set flags that need to be cleared by the software. This
is not true as it is limited only to when the combiner is used. Do not use the combiner
feature of the CIC and program during system initialization time and this block should
be write-free during run time.

• CFGC – There should only be need to write to this block during initialization of the
device. Perform these initial configurations early before writes to the other blocks
occur. The only writable register in this block is the DEVCFG1 register that controls
enabling of internal McBSP, CLKS, and SYSCLKOUT.

• DTF – There should be no writes to this block so it should be unaffected.
• IPC – These registers are the most widely used in this set of peripherals. The EDMA

can be used to avoid writing to the IPC registers. Set up a dummy EDMA transfer
and use the EDMA completion interrupt as your signal to the intended core. The CIC
cannot be used as it would require a write across SCR F to manually trigger the
interrupt, thus creating a potential violation of this issue. This may add some
additional latency but it is the only way to generate an interrupt to another core
without writing to the IPC registers.

Workaround 2

Do not write to the FSYNC or SEM block during run time. If your system performs no
writes to these modules during run time, it is not affected by this issue.

By studying the write status behavior of each of the modules on SCR F, we have found
that as long as there are no writes to the FSYNC or SEM, it is safe to write to any of the
other modules on SCR F. All modules, except the FSYNC and SEM, respond back with
write status on the cycle following the write. On SCR F, since there is only a single
master port, all writes are forced to be back to back. Therefore, all write status
responses are back to back as well. The FSYNC and SEM blocks respond back three
cycles after a write. For this reason, writing to these blocks poses potential write status
conflicts.

49SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

cycle x

cycle x + 1

cycle x + 2

cycle x + 3

SCR F FSYNC/SEM CIC/CFGC/DTF/IPC

Write

Write

Write

Status

Write status

+ not ready

This write status is
not re-sent because
this block does not
consider the
not-ready signal

No command
in this cycle

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 9 shows the SCR F write requests to and write staus from the modules. The
following descibes the actions shown in the figure:

• On cycle x, there is a write request from SCR F to FSYNC/SEM. Its write status is
expected to come after three cycles.

• On cycle x + 1, no command is issued in this cycle.
• On cycle x + 2, there is one write request from SCR F to CIC/CFGC/DTF/IPC. The

SCR F sends a not-ready signal to the CIC/CFGC/DTF/IPC, but the
CIC/CFGC/DTF/IPC sends write status irrespective of the not-ready signal, assuming
that it responded to the write request and SCR F received it properly.

• The SCR F accepts the write status from the FSYNC/SEM and the write status from
the CIC/CFGC/DTF/IPC is lost.

Figure 9. SCR F Write Requests/Write Status

Workaround 3 (Recommended Workaround)

This workaround involves aspects of both workarounds 1 and 2 to create a workaround
for systems that utilize the CIC combiner, IPC registers, SEM, and FSYNC. The
following are the basic rules:

• Guarantee single master access for CIC, FSYNC, or IPC writes using a SEM.
• A single global semaphore in the SEM module should be assigned for all write

accesses to CIC, IPC, FSYNC, and SEM. Note that the write to free the global SEM
used to protect these blocks does not have to be protected. All other writes to the
SEM block must be protected by the global SEM.

• When using the SEM, you must use the direct or combination access methods for the
global semaphore. Any mode can be used for other semaphores as long as the
writes are protected.

• If you are following any single write or a block of writes to the FSYNC and/or SEM
with writes to the CIC or IPC modules, perform a dummy read from the FSYNC or
SEM block before performing the write to the CIC or IPC modules. Note that the
dummy read must be from the last block that was written to and must use the same
master.

• Try not to hold on to the global semaphore for this workaround for too long as other
masters may be stalled waiting for the semaphore as well.

• Ensure that any interrupts taken during this time do not try to access any of these
blocks (CIC, FSYNC, IPC, or SEM).

Before writing to the CIC, FSYNC, IPC registers, or SEM, use a single global semaphore
in the SEM module to secure the space to all of these modules exclusively. You must
use the direct or combination methods as described in the TMS320TCI6487/8
Semaphore User's Guide (SPRUEF6). Since this requires no writes to gain a
semaphore, it is safe to use the SEM block here. Do not use the indirect mode as this
requires a write. If you perform writes to FSYNC and/or SEM while you have the global
SEM, you should insert a dummy read after the writes are completed. Note that you are

50 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUEF6
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

allowed a block of writes to the FSYNC and/or SEM block, but the last one must be
followed by the dummy read. In addition, you are allowed to mix FSYNC/SEM writes with
CIC/IPC writes, but ensure that a dummy read always follows the FSYNC/SEM writes
before writes are allowed to anything else, especially the CIC/IPC. This dummy read
must also be from the same block that the last write was issued to using the same
master. Freeing the global SEM involves a write but the write status is guaranteed to
land back at the master before the SEM block accepts a read from another master that
would grant it access to the CIC, FSYNC, IPC, or other SEM writes. Again, note that this
is only legal SEM write allowed without being protected. All other SEM writes need to be
managed or protected using this workaround as well. It is highly recommended that you
keep the semaphore "checked-out" for as little time as possible as other masters may be
pending its availability.

Examples:
• Single Write to CIC/IPC

– The master reads the global semaphore from the SEM module using direct or
combination mode to ensure exclusive access to the CIC/IPC register space.

– Once granted, the master performs a write to the destination module.
– Free the global semaphore by writing to the SEM module.

• Single Write to FSYNC/SEM

– The master reads the global semaphore from the SEM module using direct or
combination mode to ensure exclusive access to the FSYNC/SEM register space.

– Once granted, the master performs a write to the destination module.
– The same master performs a dummy read from the same module (FSYNC or

SEM).
– Free the global semaphore by writing to the SEM module.

• Multiple Writes to CIC/IPC

– The master reads the global semaphore from the SEM module using direct or
combination mode to ensure exclusive access to the CIC/IPC register space.

– Once granted, the master performs a writes to the destination module(s). Writes
to these two modules can be interleaved.

– Free the global semaphore by writing to the SEM module.
• Multiple Writes to FSYNC/SEM

– The master reads the global semaphore from the SEM module using direct or
combination mode to ensure exclusive access to the FSYNC/SEM register space.

– Once granted, the master performs a writes to the destination module(s). Writes
to these two modules can be interleaved.

– The same master performs a dummy read from the same module as the last write
(FSYNC or SEM).

– Free the global semaphore by writing to the SEM module.
• Multiple Writes to CIC/FSYNC/IPC/SEM

– The master reads the global semaphore from the SEM module using direct or
combination mode to ensure exclusive access to the CIC/FSYNC/IPC/SEM
register space.

– Once granted, the master performs a writes to the destination module(s). Note
that writes to modules may be interleaved, but a dummy read must be performed
after each single or block of FSYNC/SEM writes. The dummy write must be from
the same module as the last write (FSYNC or SEM) and use the same master.

– Free the global semaphore by writing to the SEM module.

51SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.9 DMA Access to L2 SRAM May Stall When the DMA Has Lower Priority Than the
CPU

Revision(s) Affected: 1.3, 1.2

Details: The L2 memory controller in the GEM has programmable bandwidth management
features that are used to control bandwidth allocation for all requestors. There are two
parameters to control this, command priority and arbitration counter MAXWAIT values.
Each requestor has a command priority and the requestor with the higher priority wins.
However, there are also counters associated with each requestor that track the number
of cycles each requestor loses arbitration. When this counter reaches a threshold
(MAXWAIT), which is programmed by the user (or default value), the losing requestor
gets an arbitration slot and wins for that cycle. There are four such requestors: CPU,
DMA (SDMA and IDMA), user cache coherency operation, and global cache coherence.
Global-coherence operations are highest priority, while user-coherence operations are
lowest priority. However, there is active arbitration done for the CPU and the DMA
(SDMA/IDMA) commands. The priority for DMA commands comes from an external
master as part of the SDMA command or a programmable register, IDMA1_COUNT, in
the GEM for IDMA commands. The priority for CPU accesses to L2 is in a
programmable register, CPUARBU, in the GEM. For the default priority values, see
Table 13.

More details on the bandwidth management feature can be found in the C64x+
Megamodule Reference Guide (SPRU871).

Table 13. C6474 Default Master Priorities

DEFAULT MASTER PRIORITIES
MASTER (0 = Highest priority, PRIORITY CONTROL

7 = Lowest priority)

EDMA3TCx 0 QUEPRI.PRIQx (EDMA3 register)

SRIO (Data Access) 0 PER_SET_CNTL.CBA_TRANS_PRI
(SRIO register)

SRIO (Descriptor Access) 1 PRI_ALLOC.SRIO_CPPI

EMAC 1 PRI_ALLOC.EMAC

C64x+ Megamodule (MDMA port) 7 MDMAARBE.PRI (C64x+ Megamodule
register)

C64x+ Megamodule (CPU Arbitration 1 CPUARBU (C64x+ Megamodule register)
control to L2)

C64x+ Megamodule (IDMA channel 1) 0 IDMA1_COUNT (C64x+ Megamodule
register)

NOTE: When the SDMA has finished sending all of its commands to the L2
controller, the C64x+ Megamodule drops the transfer priority down to 7 if
no further commands are in the pipeline. This condition happens when
there is a single-word access, a burst of <32B with no other SDMA
commands pending or for the last 64B only of a burst that is >64B with
no other SDMA commands pending. This effective priority level is what
the L2 controller uses to arbitrate these SDMA commands with the CPU,
irrespective of the master peripheral's actual programmed priority value.
Therefore, priority 7 is not a valid priority level for the CPU. If, for any
reason, this "demoted" transfer is still pending upon initiation of another
transfer, it automatically inherits the priority of that new transfer and is
pushed through such that it does not stall the new transfer.

52 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

To enable bandwidth management, the L2 memory controller has an internal (non-user
visible) counter that counts MAXWAIT every cycle that a DMA command is blocked
because of a CPU access. When the internal counter reaches the MAXWAIT threshold,
it is supposed to stay saturated at that value and force the DMA access to win arbitration
over the CPU. In the case where DMA priority is less than CPU priority, the internal
counter does not saturate at the MAXWAIT threshold value. Instead, it wraps around and
keeps counting, thereby, giving more bandwidth to the CPU than intended by the
MAXWAIT threshold value. The result is that the DMA may lose to the CPU over multiple
arbitration cycles. This typically happens when CPU accesses keep the L2 memory
controller busy every cycle; for example, a continuous stream of L1D write misses to L2.

Workaround: Set the CPU at a lower priority than the DMA commands to L2. The priority for CPU
accesses to L2 is in a programmable register, CPUARBU, in the GEM. However,
lowering the CPU priority may impact the performance since CPU accesses to L2 may
stall due to DMA accesses, in case of contention.

The CPUARBU should not be set to 7 (see the Note above). This means that since there
can be cases where the DMA will be at priority 7, there is no complete workaround for
this issue. The workaround recommended below ensures that only the types of accesses
mentioned in the note can potentially create an issue, that is single-word accesses,
bursts of <32B, or the last 64B of a burst >64B. The remainder of any bursts >64B are
not affected. This condition is only present when there is heavy CPU activity that can
block these SDMAs. A gap of even 1 CPU cycle between the CPU accesses to L2
allows any of these transfers to slip into the L2, regardless of priority.

The recommended workaround is to place the CPU priority to L2 (CPUARBU) to priority
6. That leaves priorities 0-5 free for other accesses to L2 (see Table 14).

Table 14. C6474 Valid Priority Settings

CPU PRIORITY ALLOWED SDMA PRIORITIES

0 -

1 0

2 0-1

3 0-2

4 0-3

5 0-4

6 0-5

7 -

53SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.3.10 L2 Victim Traffic Due To L2 Block Writeback During Any Pending CPU Request

Revision(s) Affected: 1.3, 1.2

Details: This advisory is an update to Advisory 1.3.1 in this document. Advisory 1.3.1 lists the
following four blocking conditions to trigger an SDMA/IDMA stall:

1. Bursts of writes to non-cacheable locations.
2. L1D read miss generating victim traffic to L2 (cache or SRAM) or external memory.
3. L1D read request missing L2 (going external) while another L1D request is pending.
4. L2 victim traffic to external memory during any pending L1D request.

NOTE: Items 1, 2, 3, and 4 shown in the list above and in Table 15 below are
actually labeled as 1, 2a, 2b, and 2c in Advisory 1.3.1.

This advisory covers one more blocking condition:
5. L2 victim traffic due to L2 block writeback during any pending CPU request.

For silicon revisions 1.2 and 1.3 that contain the original SDMA/IDMA blocking errata,
this is a fifth way to encounter the issue in addition to the previously communicated four
errata conditions in Advisory 1.3.1.

No additional deadlock risk potential is created by the addition of the new condition to
silicon revisions 1.2 and 1.3 that currently contain the SDMA/IDMA blocking conditions
1-4. This means that this issue can lead to a deadlock in the same manner that the other
four conditions can.

Table 15. Stall Conditions on Silicon Revisions

STALL CONDITIONSSILICON
REVISIONS 1 2 3 4 5

1.2 YES YES YES YES YES

1.3 YES YES YES YES YES

Under certain conditions, L2 victim traffic due to a block writeback can block
SDMA/IDMA accesses to UMAP0 during CPU requests. Table 16 shows the UMAP0
and UMAP1 address ranges of the device.

Table 16. UMAP0 and UMAP1 Address Ranges

ADDRESS ADDRESSDevices UMAP0 UMAP1RANGE RANGE

C6472 (Symmetric) RAM 0x00800000 - N/A N/A
0x008FFFFF

There are four transactions that must happen to cause an SDMA/IDMA to stall because
of this condition:

1. L1D/L1P needs to create an L2$ hit. This happens as a result of one of the following:

• An L1D victim (through L1D writeback or writeback-invalidate).
• An L1D read+victim (through L1D read miss resulting in a writeback).
• An L1D write miss (write-through to an uncached line).
• An L1D read miss.
• An L1P fetch miss.

2. A user-initiated L2 block writeback must occur involving the same cache set as the
L1D/L1P cache accesses in the previous bullet.

3. An SDMA access to UMAP0.
4. The CPU also accesses the same cache set as the L1D/L1P cache accesses and

the L2 block writeback as described in the first two bullets. This happens as a result
of a CPU LDx/STx instruction that causes one of the following:

• An L1D victim (through L1D writeback or writeback-invalidate).

54 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

• An L1D write miss (write-through to an uncached line).
• An L1D read miss.
• An L1P fetch miss.

As a result of the four items above, any further SDMAs to UMAP0 are blocked. SDMAs
to UMAP1 are unaffected. Note that three of these items must involve the same L2$ set
in order to see the issue and, thus, is not as likely as the other conditions listed in the
original errata. The stall persists until the operations above are complete.

Workarounds: Workaround 1: Leave in previous SDMA/IDMA stall workarounds

For silicon revisions 1.0, 1.1, 1.2, and 1.3 that were already affected with the other four
conditions of the SDMA/IDMA stall issue from Advisory 1.3.1, there is no additional
workaround needed. If all of the deadlock avoidance steps listed in Advisory 1.3.1 have
been followed, there is no risk for a deadlock because of this issue. Methods to reduce
stalling due to this issue are also already covered in Advisory 1.3.1.

For silicon revision 2.0 that fixed the initial four conditions of SDMA/IDMA stall issue, the
deadlock avoidance steps that are already listed in Advisory 1.3.1 for previous revisions
of silicon should be followed to ensure that there is no chance of a deadlock. The
workarounds to avoid stalls are also the same as communicated in previous revisions of
the device with the issue.

Workaround 2: Do not use L2$

Systems that do not use L2$ are not affected by this issue.

55SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

4 Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional
Specifications

4.1 Silicon Revision 1.2 Usage Notes

Silicon revision 1.2 applicable usage notes have been found on later silicon revisions; for more detail, see
Section 3.1 and Section 2.1.

4.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications

Table 17 lists the silicon revision 1.2 known design exceptions to functional specifications. If the design
exceptions are still applicable, the advisories move up to the latest silicon revision section. Therefore,
advisory numbering may not be sequential.

All other known design exceptions to functional specifications for silicon revision 1.2 still apply and have
been moved up; see Table 3 and Section 2.2 or Section 3.2.

Table 17. Silicon Revision 1.2 Advisory List

Title .. Page

Advisory 1.2.7 —Potential Random E-fuse Blow.. 57
Advisory 1.2.9 —EDMA3CC COMPACTV Issue .. 59

56 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.2.7 Potential Random E-fuse Blow

Revision(s) Affected: 1.2

Details: In the final stages of screening the C6474 device for qualification, a subtle issue has
been uncovered involving e-fuses being inadvertently blown during power up if an
improper power and clock sequence is applied to the device. The e-fuse controller on
the C6474 device may unintentionally blow e-fuses during power up when an invalid
power sequence is used:

• The e-fuse controller has a defect that gates the output of an accidental programming
prevention circuit with a clocked register.

• If proper sequencing of supplies and clocks is not maintained, then the program
enable on the e-fuse ROM will be active until a valid reset (SYS_INITZ) is
propagated to the register.

• The result is susceptibility to inadvertent blowing of e-fuses.

If the 1.1-V CVDD scaled supply ramps before the 1.8-V and 1.1-V fixed supplies, the
logic in the CVDD domain powers up in random state. In this random state, there is small
probability that conditions are met for inadvertent blowing of e-fuses.

The possible impact is that e-fuses that are not supposed to be blown are blown.

• Which e-fuses could inadvertently be blown is random.
• The type of e-fuse randomly blown will determine the end impact to the system,

ranging from no impact to severe impact.
• Each power up event is a new opportunity for exposure to the issue in which e-fuses

could be unintentionally blown.
• The probability of this is low, but not low enough.

Workaround: Guarantee that the 1.8-V DVDD device input clocks and clock selects are active before a
1.1-V CVDD scaled supply ramps (see Table 18 and Figure 10).

TI's TMS test procedure follows the above recommendation to ensure that no devices
are shipped with unintentionally blown e-fuses.

NOTE: E-fuses are used in multiple areas within the device. They are used for
memory repair, device ID, EMAC ID, etc.

Table 18. Device Input Clock Timing Parameter Descriptions

NO. PARAMETERS MIN MAX UNITS

1 DVDD18 at 0.8 V to CVDD at 0.4 V 0.5 ms

2 Stable clock to CVDD at 0.4 V 100 μs

3 DVDD11 at 0.8 V to CVDD at 0.4 V 0.5 μs

57SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

SYSCLK or

ALTCORECLK

POR

CLKSEL

0.4 V

0.8 V

1

2

0.8 V1.8-V DV
DD

1.1-V DV
DD

1.1-V CV
DD

3

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 10. Correct Device Input Clocks, Clock Selects, and Scaled Supply Timings

58 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.2.9 EDMA3CC COMPACTV Issue

Revision(s) Affected: 1.2

Details: A issue has been found inside the EDMA3 channel controller (EDMA3CC). The logic for
decrementing the completion request active (COMPACTV) counter is incorrect for
devices having six or more EDMA3 transfer controllers (EDMA3TCs). Therefore, the
C6474 devices are affected by this issue.

The COMPACTV field inside the channel controller status register (CCSTAT) indicates
the count for the number of outstanding transfer requests requiring completion status
that have been submitted to the transfer controllers. The channel controller increments
this count every time a transfer request (TR) is submitted and is programmed to report
completion (the TCINTEN or TCCHEN or the ITCINTEN or ITCCHEN bits in OPT in the
parameter entry associated with the TR are set). The counter decrements for every valid
transfer completion code (TCC) received back from the transfer controllers. The issue
occurs because the channel controller decrements the counter by an insufficient value
when multiple responses are received concurrently from multiple (two or more) transfer
controllers. Thus, the counter may gradually increase over time until it saturates at 0x3F.
If at any time the count reaches a value of 0x3F, the channel controller does not service
new TRs until the count is less than 0x3F (which will happen when a transfer completion
code is received from a transfer controller for an in-flight request). Once the state is
reached where the counter is close to the saturation value of 0x3F, the performance of
the EDMA decreases dramatically. This decreased performance happens because the
channel controller will artificially limit its number of TRs in flight to the COMPACTV
saturation value thereby preventing full usage of the available TCs. When the count
reaches 0x3F, the TCCERR bit is set in the channel controller error register (CCERR)
causing an error interrupt when enabled.

Workaround: The workaround is achieved by having the DSP directly program one of the transfer
controllers (bypassing the channel controller) with a transfer request that requires
completion. This request avoids the COMPACTV increment (because TC is programmed
directly) and forces a COMPACTV decrement when the TC responds to the CC with the
completion signaling.

A specific transfer controller and a specific TCC value should be dedicated in the
system for this workaround. TC2 or TC5 are suggested. TC2 is suggested because
TC0 and TC1 can replace its connectivity. TC0 can be used for TCP/VCP transfers. TC5
is suggested because TC4 can replace its connectivity. TC4/TC3 can be used for AIF
transfers.

The DSP should poll the COMPACTV field often enough such that the counter is not
allowed to exceed 0x30. The actual COMPACTV polling interval may need to be set
through experimentation on the specific end system, since the rate of increment of the
counter is system and load specific.

Upon polling, if the value of the COMPACTV field is greater than a certain threshold
(0x20 is suggested), then the DSP should program the TC with a COMPACTV
decrement transfer. Upon completion of that transfer (as signaled in the CC IPR register)
the COMPACTV field should be re-checked, and another COMPACTV decrement
transfer submitted until the value of the counter is less than the threshold.

NOTE: Care must be taken such that the software does not over-decrement the
counter since at the time of polling multiple requests may be in flight in
the system and may result in additional decrements compared to the
current observed value. If too many decrements occur, the counter may
roll under from 0x0 to 0x3F and accidentally result in saturation of the
counter. This is why a value of 0x20 is suggested as the threshold value
(sufficiently large with respect to the number of actual requests that may
be outstanding).

59SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

This workaround requires that a specific TC instance is dedicated to the COMPACTV
decrement transfer. The reason is that, depending on the nature of the traffic on a given
queue/TC, it may be difficult to control the timing of the normal CC TR submission to that
TC versus the DSP programming of that TC. There is no hardware protection to prevent
corruption of the TC registers in the case that both CC and DSP software attempt to
program the TC simultaneously.

For the base addresses of the TCs, see the device-specific data manual, TMS320C6474
Multicore Digital Signal Processor (literature number SPRS552). A brief summary of the
TC registers to be configured are provided in Table 19.

Table 19. TC Registers Summary

ADDRESS REGISTER DESCRIPTION SUGGESTED VALUE

TCx Base + 0x0200 Prog Set Options See the Prog Set Options Register description below.

TCx Base + 0x0204 Prog Set Src Address See Prog Set Src/Dst Address Register description below.

TCx Base + 0x0208 Prog Set Count 0x00010004 (ACNT = 4 and BCNT =1)

TCx Base + 0x020C Prog Set Dst Address See Prog Set Src/Dst Address Register description below.

0x0 (don't care since BCNT=1). Writing to the PBIDX registerTCx Base + 0x0210 Prog Set B-Dim Idx triggers the transfer. Thus, this register should be written.

Note: The five registers listed in Table 19 should be written in the sequence shown (i.e.,
top to bottom). The last write, to the Prog Set B-Dim Idx register, triggers the transfer.

Prog Set Options Register

The Prog Set Option register is shown in Figure 11. The TCINTEN bit should be set to
0x1. The TCC code should be set to some known value that is not used by other
requests in the system. The other fields should be set to 0x0. Upon completion of the
transfer, the TCC value will be set in the corresponding bit in the IPR/IPRH registers.
The software should poll for this bit in the IPR/IPRH registers and then clear it with the
ICR/ICRH registers before programming the next COMPACTV decrement transfer.

Figure 11. Prog Set Options Register
31 23 22 21 20 19 18 17 16

TCCH TCINTReserved Rsvd Reserved TCC_EN _EN

R-0 R/W-0 R-0 R/W-0 R-0 R/W-0

15 12 11 10 8 7 6 4 3 2 1 0

TCC Rsvd FWID Rsvd PRI Reserved DAM SAM

R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Prog Set Src/Dst Address Register

Although the user can specify any address for src/dst, one of the following settings is
suggested:

1. Set the src/dst address as 0x31000000. This is a reserved location and transfer to
this address takes less latency. However, the bus error (BUSERR) bit in the TCx
error status register(ERRSTAT) will be set (the TCx error details register (ERRDET)
will also be set). This TCx error should be ignored. This error is localized to the
dedicated TC for this transfer and will not affect the system. Also, by default, the
BUSERR will not cause the EDMA3TC error interrupt. This interrupt gets generated
only when the TCx error enable (ERREN) register is set.

2. The other option is to set the src/dst address to the EDMA3TCx or the EDMA3CC
peripheral ID (PID) register location. This transfer has more latency when compared
to option 1, but will not cause TCx BUSERR condition.

Example code for programming the TC for this workaround (this example uses
TC5):

60 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2 SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS552
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

#include <csl_edma3.h>
#include <soc.h>

#define EDMA3TC_POPT_REG (*(volatile Uint32*)(CSL_EDMA3TC_5_REGS + 0x200))
#define EDMA3TC_PSRC_REG (*(volatile Uint32*)(CSL_EDMA3TC_5_REGS + 0x204))
#define EDMA3TC_PCNT_REG (*(volatile Uint32*)(CSL_EDMA3TC_5_REGS + 0x208))
#define EDMA3TC_PDST_REG (*(volatile Uint32*)(CSL_EDMA3TC_5_REGS + 0x20C))
#define EDMA3TC_PBIDX_REG (*(volatile Uint32*)(CSL_EDMA3TC_5_REGS + 0x210))
#define COMPACTV_XFER_ADDRESS (0x31000000)
#define COMPACTV_XFER_COMPLETION_CODE (63) /* dedicate one TCC value for this */

void triggerCompactvDecTransfer ()
{

EDMA3TC_POPT_REG = CSL_EDMA3_OPT_MAKE(FALSE, FALSE, FALSE, TRUE,\
COMPACTV_XFER_COMPLETION_CODE, FALSE,\
CSL_EDMA3_FIFOWIDTH_NONE, FALSE, FALSE,\
CSL_EDMA3_ADDRMODE_INCR, CSL_EDMA3_ADDRMODE_INCR);

EDMA3TC_PSRC_REG = COMPACTV_XFER_ADDRESS;
EDMA3TC_PCNT_REG = CSL_EDMA3_CNT_MAKE(4, 1);
EDMA3TC_PDST_REG = COMPACTV_XFER_ADDRESS;
EDMA3TC_PBIDX_REG = CSL_EDMA3_BIDX_MAKE(0, 0);

}

61SPRZ283C–October 2008–Revised March 2011 TMS320C6474 DSP—Silicon Revisions 2.1, 1.3, 1.2
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

www.ti.com

Appendix A Revision History

This silicon errata revision history highlights the technical changes made to the document.

Scope: Applicable updates relating to the C6474 device have been incorporated.

Table 20. C6474 Revision History

SEE ADDITIONS/MODIFICATIONS/DELETIONS

Section 1.3 Silicon Updates:
Modified Table 3, Silicon Revisions 1.2, 1.3, 2.1 Updates

Section 2.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications:
Added the following new advisories:
Advisory 2.1.6 - SPLOOP CPU Cross-Path Stall
Advisory 2.1.7 - DMA Corruption of L1D$ Allocation
Advisory 2.1.8 - Error Detection and Correction Incorrectly Reporting Error
Advisory 2.1.9 - SRIO May Fail to Send Interrupt for Completed TX or RX Message
Advisory 2.1.10 - Serial RapidIO Internal Digital Loopback is Not Always Stable

Section 4.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications:
Modified Advisory 1.2.7 - Potential Random E-fuse Blow

62 Revision History SPRZ283C–October 2008–Revised March 2011
Submit Documentation Feedback

© 2008–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ283C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps

RF/IF and ZigBee® Solutions www.ti.com/lprf

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/wireless-apps
http://www.ti.com/lprf
http://e2e.ti.com

	TMS320C6474 Digital Signal ProcessorSilicon Revisions 2.1, 1.3, 1.2
	Table of Contents
	1 Introduction
	1.1 Device and Development Support Tool Nomenclature
	1.2 Package Symbolization and Revision Identification
	1.3 Silicon Updates

	2 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications
	2.1 Silicon Revision 2.1 Usage Notes
	2.1.1 EMAC: SERDES PLL Lock
	2.1.2 User-Initiated Cache Coherence Operations Using Global Address Causes an Access Across the SCR
	2.1.3 Bootloader: Multicore Reset Control Enhancement

	2.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

	3 Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications
	3.1 Silicon Revision 1.3 Usage Notes
	3.1.1 Bootloader: Multicore Boot Takes Core1 and Core 2 Out of Reset

	3.2 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications

	4 Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications
	4.1 Silicon Revision 1.2 Usage Notes
	4.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications

	Appendix A Revision History

