Technical Article **Deciphering Low Iq: Using WEBENCH® to Design near 100% Duty-cycle for Ultra-low Power Applications**

Dorian Brillet de Cande

Many battery-powered applications require a step-down buck converter to work in 100% duty-cycle, where V_{IN} is close to V_{OUT} , in order to extend battery run time when battery voltage is at its lowest value. For example, let's say that there are two lithium manganese dioxide (Li-MnO₂) batteries powering a smart meter. Li-MnO₂ batteries are primary non-rechargeable cells used increasingly in smart gas or water meters because of their long operational lives (as much as 20 years) while being more cost-effective than lithium thionyl chloride batteries. Figure 1 shows the system configuration of two Li-MnO₂ cells placed in series (2s1p) and then stepped down to power a microcontroller.

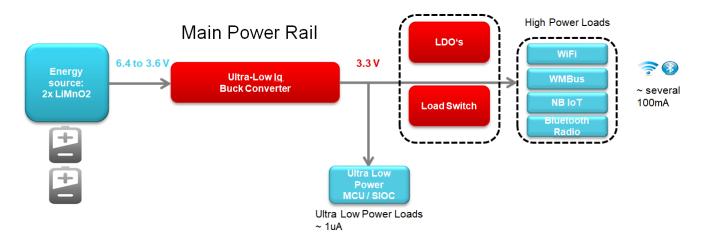


Figure 1. A Smart Meter Power Architecture

Ultra-low quiescent current (I_Q) DC/DC converters can help you design applications with a battery lifetime up to 20 years. The load profile of a smart meter application is not a continuous load but a variable load profile. In order to enable long battery life, the system will draw a high current only occasionally (to send a wireless signal or actuate a valve), and then go back to a very low load condition. This type of load profile enables low average current consumption in the microampere range. High efficiency at such light loads requires ultra-low I_Q , especially during the off-time where current consumption could be much lower than the average current consumption. TI's TPS62840 ultra-low power buck converter has an operating I_Q of only 60 nA and can regulate a 3.3-V power rail. The TPS62840's very low I_Q in 100% mode – 150 nA – further extends battery run time.

To better help you design and simulate your ultra-low power-supply circuit, WEBENCH® Power Designer is an online tool that enables the creation of customized power supply designs based on your specifications.

In our example, the average voltage per cell is around 3.0 V. The initial voltage of a cell is approximately 3.2 V when fresh, and the voltage can drop to less than 2 V when fully discharged. Assuming that each battery discharges down to 1.8 V and is 3.2 V when fresh, enter these parameters into WEBENCH Power Designer (Figure 2).

1

WEBENCH [®] POWER DESIGNER					
	Create a new DC/DC power design WEBENCH [®] Power Designer creates customized power supply circuits based on your requirements. The environment gives you end-to-end power supply design capabilities that save you time during all phases of the design process. Learn more				
	Input Supply type is DC AC Vin Min * Vin Max * 3.6 V 6.4 V (0-1000) (0-1000) (0-1000) (0-1000)	Vout * Four Max * 3.3 V 0.75 A (-80-500) (0-180) (0-180)			
	Advanced ~	Advanced ~			
	Design Consideration I want my design to be Balanced Low Cost High Efficiency Small Footprint				
	Design Parameters	~			
	UPDATE DESIGNS				

Figure 2. Design Specification Entered in WEBENCH Power Designer

Using a 3.6-V minimum input voltage in the WEBENCH Power Designer search tool yields 51 possible devices, but the TPS62840 is not one of them. Why is that?

WEBENCH focuses on two initial parameters to help you find the best device for your system:

- V_{INMIN} > V_{OUT} is the first check WEBENCH Power Designer looks for in the user inputs for buck converters topologies. If V_{INMIN} > V_{OUT}, then WEBENCH Power Designer selects buck converters as part of the solutions list. If V_{INMIN} ≤ V_{OUT}, WEBENCH Power Designer recommends buck-boost converters to regulate your V_{OUT} instead of buck converters that operate in 100% Duty Cycle mode. This is because WEBENCH wants to give you a solution where your V_{OUT} is regulated even when V_{INMIN} ≤ V_{OUT}.
- 2. After passing the first check, the second check verifies if the calculated duty cycle is greater than the max duty cycle specified in the buck converter datasheet. For buck converters that can operate in 100% duty cycle mode, 99.9% is used as the threshold. Losses are included when calculating the duty cycle. This increases the calculated duty cycle in WEBENCH Power Designer far above the ideal V_{OUT}/V_{IN}.

After selecting numerous devices, WEBENCH Power Designer performs detailed designs for each device. Below are three different outcomes which can be observed depending on the input parameters used:

V_{IN} from 3.2 V to 6.4 V, I_{OUT_MAX} = 0.75 A and V_{OUT} = 3.3 V in the TPS62840 WEBENCH Power Designer model (Figure 3).

2

Update Design						
() Design update	failed.					
Vin Min *		Vin Max *				
3.2	V	6.4	V			
(1.8 - 6.5)		(1.8 - 6.5)				
Vout *		lout Max *				
3.3	V	0.75	A			
(1.8 - 3.3)		(0 - 0.75)				
Max Ambient Temp						
30			°C			
(-40 - 125)						
	C	LOSE	UPDATE DESIGN			

Figure 3. Error Message That the Input Voltage Is Too Low

The design update is failing because the minimum V_{IN} is lower than V_{OUT} . This design does not pass WEBENCH's first check.

V_{IN} from 3.6 V to 6.4 V, I_{OUT_MAX} = 0.75 A and V_{OUT} = 3.3 V in the TPS62840 WEBENCH Power Designer model (Figure 4).

Vin Min *		Vin Max *	
3.6	V	6.4	V
(1.8 - 6.5)		(1.8 - 6.5)	
Vout *		lout Max *	
3.3	V	0.75	A
(1.8 - 3.3)		(0 - 0.75)	
Max Ambient Temp			
30			°C

Figure 4. Error Message That the Duty Cycle Is Too High

The design does not update because the duty cycle when calculated includes losses such as the high-side MOSFET RDSON and inductor DCR. Here, the duty-cycle value is greater than 99.9%. This design does not pass WEBENCH's second check.

V_{IN} from 3.7 V to 6.4 V, I_{OUT_MAX} = 0.75 A and V_{OUT} = 3.3 V on the WEBENCH Power Designer Select a Design screen (Figure 5).

E WEBENCH® POWER DESIGNER New DESIGN MY DESIGN				
Select a Design Input: DC37V-6.4V Output: 3.3Vat0.75A Temp: 30 °C Change	SELECT CUSTOMIZE SIMULATE EXPORT			
Filters CLEAR FILTERS 99 matching designs out of 99 total designs	Sort by: Default - TABLE VIEW			
Filter by Part Number Regulator Type Module (integrated lowitch) Converter (integrated lowitch) Design Attributes				
Do r7 Compare : Utra low 10 Step Down Converter	TPS62840-YBG Compare :			
BOM Cost (5) 0-9 Efficiency: 90.3% BOM Cost: 50.82 Footprint: 25 mm ³ BOM Count: 5 Topology: Buck Frequency: 1.5 MHz IC Cost: 50.60 1ku	Efficiency: 90.2% BOM Cost: \$0.82 Footprint: 23 mm ⁴ BOM Count: 5 Topology: Buck Frequency: 1.5.MHz IC Cost: \$0.60 1ku			
Footprint (nm*) 22-477	CUSTOMIZE SIMULATE EXPORT			
Switching Frequency (Hz)				
TEXAS INSTRUMENTS	opyright 1995-2019 Texas Instruments Incorporated. All rights reserved. Privacy Policy Terms of Use Important Notice Send Feedback			

4

The final example displays the TPS62840 since the design passed both checks.

Tips to Use WEBENCH Power Designer More Effectively When Close to 100% Duty-cycle:

- Add a sufficient delta between the input voltage and the output voltage to reduce the duty cycle.
- Reduce the output current to reduce losses and reduce the duty cycle.

Either of these solutions enable WEBENCH Power Designer to design with the TPS62840. In an actual application, operating in 100% mode is normal and generally acceptable in order to fully discharge the battery. In 100% mode, the output voltage of a step-down converter decreases as the battery voltage decreases. This can still fit the system specifications of most loads. If 100% mode or the output voltage drop is not acceptable, low I_Q buck-boost devices like the TPS63802 can help maintain a regulated output voltage.

Additional Resources

- Read our technical article to find out if all rails need low Iq.
- Consider this TI Design for smart meters.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated