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Designing a negative boost converter from 
a standard positive buck converter

Introduction
There are very few options for the designer when it comes 
to creating negative voltage rails in point-of-load applica-
tions. Integrated devices that are specifically designed for 
this are uncommon, and other available options typically 
have significant drawbacks, such as being too large, noisy, 
inefficient, etc. If a negative voltage is available, it is 
advantageous to use that as the input for the converter. 
This article describes a method using a standard positive 
buck converter to form a negative boost converter, which 
takes an existing negative voltage and creates an output 
voltage with a larger (more negative) amplitude. Using a 
boost regulator results in a smaller, more efficient, and 
more cost-effective design. A complete design example 
using an integrated FET buck converter is provided here. 
The basic theory of operation, high-level design trade-offs, 
and closed-loop compensation design of the resulting con-
verter are discussed.

Negative boost topology
Implementing a negative boost converter takes advantage 
of some parallels between the power design and control of 
a positive buck converter and a negative boost converter. 
Figure 1 depicts the basic operation of a positive buck  
regulator. The buck consists of a half bridge that chops  
VIN and a filter to extract the DC component. The filtered 
output voltage is regulated by varying the duty cycle (D) 
of the upper FET. When VOUT is too low, the control loop 
reacts by causing D to increase. When VOUT is too high, D 
is decreased. The buck input current is discontinuous (has 
a higher RMS current), and the output current is continu-
ous and equal to the inductor current waveform. The 
 current flow through the inductor is positive, flowing away 
from the half bridge.

Figure 2 depicts the negative boost topology in which a 
more negative voltage is generated from an existing nega-
tive voltage. During D, the inductor current is increased, 
storing energy (dI = –VIN × D × T/L). During 1 – D, the 
energy is transferred to the output. When the upper FET 
is turned off and the lower FET is turned on, the inductor 
current flows into the output, supporting the load as the 
inductor current decreases. From Figures 1 and 2 it can 
be seen that the negative boost regulator resembles the 
positive buck regulator, except that it is level shifted 

below ground. Also, VIN and VOUT are transposed. Notice 
these common features:

• The upper FET is the controlled switch.

• The inductor current flows in the same direction 
through the inductor (away from the half bridge).

• Increasing VOUT results from increasing D.
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The significance of these similarities is that the negative 
boost converter can be constructed by using a readily 
available positive buck converter. One difference in opera-
tion is that the boost converter has a discontinuous output 
current and a continuous input current, the opposite of 
the buck converter.

Converter selection
There are three additional things that need to be consid-
ered when selecting a converter:

1. The converter should have external compensation to 
accommodate the different control algorithm associated 
with the boost converter, which will be discussed later.

2. The converter is processing current equal to the input 
current, not the load current, so the current rating and 
current limit need to be sized accordingly. For instance, 
neglecting the effects of efficiency (h), a 12-W, –6-V to 
–12-V boost converter has an output current of 1 A  
(12 W) and an input current of 2 A (12 W). A converter 
with a current rating greater than 2 A is required for 
this design. The output-current rating of the converter 
selected must be greater than that in Equation 1:
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3. The converter’s VDD is biased by –VOUT. When the con-
verter is first powered on, VOUT equals VIN, and VOUT is 
increased until it is in regulation. Therefore, the control-
ler specification should allow the converter to start with 
VDD = |–VIN|, and the converter should be rated to oper-
ate with VDD = |–VOUT|. For instance, a design that con-
verts a –6-V input to a –12-V output requires the con-
troller to start with VDD = 6 V and to continue running 
after start-up with VDD = 12 V. This can be a problem 
when the negative input is a low voltage. A solution is to 
use a converter that has a VDD separate from the power 
supply’s VIN. Figure 3 shows a negative boost regulator 
designed to convert –2.0 V to –2.2 V by using the 
TPS54020 from Texas Instruments (TI). Although this 
is a relatively low-voltage regulator, the principle is the 
same for any –VIN and –VOUT as long as the converter 
specifications support the voltages. Notice that the 
power to U1, pin VIN, is separate from the power 
ground to pin PVIN, allowing low-voltage operation.

As previously mentioned and defined in Equation 1, the 
current rating of the converter is driven by input current. 
Therefore, the power dissipation in the converter is 
dependent on input current.
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Figure 3. Complete schematic of the example negative boost regulator
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The efficiency of the negative boost regula-
tor (hBOOST) is related to that of the positive 
buck regulator (hBUCK) but is slightly lower. 
Figure 4 and Equation 2 show the relationship 
of the two efficiencies, which are about equal 
when the specified hBUCK is above 90%:

 

BUCK
BOOST

BUCK

2 1η −
η = η  (2)

Component selection
The inductor can be chosen by using the same 
criteria as defined in the buck converter’s data-
sheet. The boost converter’s input and output 
capacitors should be chosen based on ripple 
voltages required by the application, keeping in 
mind that the output capacitor must be rated 
for the higher RMS current.

Control theory
Boost converters have a different, more com-
plicated transfer function than buck converters. 
As with buck converters, the transfer function 
is different between voltage-mode control and current-
mode control. This analysis uses a current-mode- 
controlled boost converter based on the TPS54020, a  
current-mode device. The Bode-plot method  is used to 
evaluate the stability of this control-loop design. Points of 
interest for stability are the phase when the open-loop 
gain crosses unity, and the gain when the phase crosses 
–180°. The open-loop gain is equal to the forward transfer 
function multiplied by the control transfer function, 
including all gains around the control loop.

The current-mode power stage (“plant” in control jargon) 
has the forward transfer function given in Equation 3:1
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where s is the complex Laplace variable and He(s) repre-
sents the higher-frequency dynamics. The continuous 
boost has two salient control features. First, the plant is a 
single-pole system, owing to the effect of current-mode 
control. Second, there is a right-half-plane zero (RHPZ).1, 2 
The RHPZ, plant pole, and COUT equivalent-series-
resistance (ESR) zero frequencies are described respec-
tively by the following equations:
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The RHPZ requires that the unity-gain bandwidth of the 
loop be less than the minimum RHPZ frequency, usually by 
a factor of 5 to 10. If lower bandwidth is desired, the RHPZ 
can be ignored, and so can He(s) in Equation 3. This design 
uses ceramic output capacitors, so the ESR zero also can 
be ignored. Now the control equations simplify to
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Equations 3 and 5 are modified, using gM (the compensa-
tion to output-current gain in A/V) instead of RSENSE, with 
gM = 1/RSENSE.

Designing a negative boost regulator
It has been established that the forward transfer func- 
tion simplifies to a single-pole system as described by 
Equa tion 5. A real control-loop example can be based on  
a design using TI’s TPS54020EVM082, with VIN = –2.0 V, 
VOUT = –3.0 V, and IOUT = 6 A. This electrical design can 
be reconfigured as a negative boost regulator consistent 
with the circuit in Figure 3, using many of the same com-
ponents as in the EVM design. The terms “input” and 
“output” from here on refer to the boost mode input and 
output. Equation 4 can be used to calculate the minimum 
RHPZ as 32 kHz. The goal of the control-loop design is to 
have a unity-gain crossover at 1.0 kHz, so the effects of 
both the ESR zero and the RHPZ can be ignored.
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Table 1 contains some specific parameters and values. 
Equation 6 uses these values to describe the forward 
transfer function:
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The Bode plot of GPS(s) is depicted in Figure 5 for four 
different load-resistance values. Note that the pole location 
and low-frequency gain are functions of load resistance. 
Also note that the gain slope does not vary after the pole 
(driven by COUT). Before the pole, the gain is dependent 
on the load, with the highest-frequency pole at 
the maximum load (minimum RLOAD). A 0.5-Ω 
load (ILOAD = 6.0 A) results in a pole at 4.4 kHz. 
It can also be seen that the RHPZ causes the 
gain to rise and the phase to fall, which makes 
compensation impossible and requires cross-
over to occur before the effect of the RHPZ 
becomes detrimental.

The plan for this design is to have unity gain 
in the open-loop transfer function at 1.0 kHz. 
The plant has a gain of approximately +9 dB at 
1.0 kHz. This forward transfer function can be 
compensated easily with an integrator followed 
by a zero at the highest GPS(s) pole frequency, 
and with an overall gain that results in about  
–9 dB at the desired crossover of 1.0 kHz  
(+9 dB + –9 dB = 0 dB). This compensation 
approximates a single-pole rolloff characteristic 
through crossover and results in sufficient  
phase margin.

Bode stability criteria
A closed-loop system with negative feedback 
has a transfer function as in Equation 7:

 

G(s)
Y(s) ,

1 G(s)H(s)
=

+
 (7)

where G(s) is the forward (plant) transfer func-
tion, H(s) is the negative feedback control, and 
G(s)H(s) is the open-loop transfer function. The 
Bode stability criteria state that Y(s) is rational 
except where G(s)H(s) = –1. In the latter case, 
Y(s) is infinite and unstable. Two things have to 
happen at the same time for instability to occur. 
First, |G(s)H(s)| must equal 1 (gain = 0 dB); 
second, the phase of G(s)H(s) must equal –180°, 
corresponding to –1. Bode plots, including both 
the phase margin and the gain margin, are used 
to evaluate how near to this condition a control 
design approaches. Phase margin is defined as 
the phase difference between G(s)H(s) and 
–180° when the gain equals 0 dB, and gain  
margin refers to the negative gain when the 
phase equals –180°. A phase margin greater 
than 45° is generally considered good in power-
supply design.

Table 1. Design values and TPS54020 datasheet3 parameters 
for negative boost regulator

PARAMETER COMMENTS

COUT = 144 µF

L = 1 .1 µH

gM = 17 A/V = 1/RSENSE gM from datasheet = ISWITCH/VCOMP

gEA = 0 .0013 A/V From datasheet

D = (VOUT – VIN)/VOUT = 0 .33

VREF = 0 .600 V From datasheet

R10 = 10 .0 kΩ; R7 = 40 .2 kΩ Feedback-divider gain = 0 .2 V/V
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Error-amplifier compensation
The error amplifier (EA) is depicted in Figure 6, and the 
circuit’s transfer function is described by
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Note that the transfer function of the transconductance 
error amplifier includes the feedback-divider gain. If this 
was a voltage-feedback error amplifier, the divider would 
not be a gain term. Inspection of Equation 8 finds that 
GEA(s) has a pole at 0 Hz, a compensating zero at

1 15

1
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2 R C
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and a higher-frequency pole at
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Note that if the zero and pole are separated by 
a decade or more, then C15 >> C1. The plan is 
to set the gain equal to –9 dB at 1.0 kHz, place 
the zero at the highest GPS(s) pole (4.4 kHz) to 
compensate the pole in the plant, and place the 
additional pole at some higher frequency.

Evaluating |GEA(s)| at f = 1.0 kHz and setting it 
equal to –9 dB yields C1 + C15 ≈ C15 = 0.117 µF. 
The nearest standard value of 0.10 µF is chosen. 
Given C15 and the desired zero location of 
4.4 kHz, R1 can be calculated as 360 Ω. The 
nearest standard value of 357 Ω is chosen. The 
higher-frequency pole is placed at 50 kHz. This 
is rather arbitrary, but this pole needs to be 
greater than 10 times the crossover frequency 
to ensure that it doesn’t degrade the loop-phase 
margin. Adding this high-frequency pole is desir-
able because it keeps the loop gain decreasing at 
higher frequency. C1 is calculated to be 0.01 µF. 
Figure 7 shows the Bode plot of the converter’s 
final compensated loop. The predicted and mea-
sured open-loop gain and phase match closely 
near the 1.0-kHz unity-gain crossover.

Test data
Figure 7 also includes the measured Bode plot 
of the power supply with a 0.5-Ω load. There is 
good correlation near the 1.0-kHz crossover. 
The predicted waveforms in Figure 7 also 
include the effects of the RHPZ. The gain and 
phase disturbance between 1.0 kHz and 10 kHz 
is thought to result from a nonlinear character-
istic in the controller and only begins to appear 
at load currents above 50%. Since this occurs 
above the crossover, it is inconsequential to the 
stability of the loop.
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Figure 8 shows the switching waveform with a 
load of 0.5 Ω (6 A). As expected, it looks identical to 
a buck converter’s switching waveform but is level 
shifted below ground, riding on the programmed 
VOUT of –3.0 V.

Additional considerations
Three additional points about this type of converter 
should be noted. First, the TPS54020 has a separate 
VIN and VDD. This enables power conversion from a 
low voltage (2 V in this case), which would not be 
possible with many other converters. Second, this 
negative-boost design concept is extendable to 
higher voltages and is limited only by the ratings of 
the converter selected. Third and most important, 
before the boost converter starts but after voltage is 
applied to the PVIN pin, any load current on the 
boost output is conducted through the body diode of 
the lower FET. Although the TPS54020 functions 
well, starting up even with a DC current, not all 
devices may perform in the same way. Therefore, it 
might be necessary to add a Schottky diode in paral-
lel with the lower internal FET to provide an exter-
nal path for this current.

Conclusion
This article demonstrates that a positive buck regulator 
can be used to implement a negative boost regulator and 
obtain good performance. The actual performance very 
closely matches the expected behavior, both in real-time 
measurements and in the Bode plot of the control loop.
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non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity
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