ホーム インターフェイス I2C & I3C ICs I2C & I3C level shifters, buffers & hubs

2 ビット双方向 2V ~ 15V、400kHz I2C/SMBus バッファ / ケーブル・エクステンダ

製品詳細

Features Buffer Protocols I2C Frequency (max) (MHz) 0.4 VCCA (min) (V) 2 VCCA (max) (V) 15 VCCB (min) (V) 2 VCCB (max) (V) 15 Supply restrictions VCC Single Supply Rating Catalog Operating temperature range (°C) -40 to 85
Features Buffer Protocols I2C Frequency (max) (MHz) 0.4 VCCA (min) (V) 2 VCCA (max) (V) 15 VCCB (min) (V) 2 VCCB (max) (V) 15 Supply restrictions VCC Single Supply Rating Catalog Operating temperature range (°C) -40 to 85
PDIP (P) 8 92.5083 mm² 9.81 x 9.43 SOIC (D) 8 29.4 mm² 4.9 x 6 TSSOP (PW) 8 19.2 mm² 3 x 6.4 VSSOP (DGK) 8 14.7 mm² 3 x 4.9
  • Operating Power-Supply Voltage Range
    of 2 V to 15 V
  • Can Interface Between I2C Buses Operating at
    Different Logic Levels (2 V to 15 V)
  • Longer Cables by allowing bus capacitance of
    400 pF on Main Side (Sx/Sy) and 4000 pF on
    Transmission Side (Tx/Ty)
  • Outputs on the Transmission Side (Tx/Ty) Have
    High Current Sink Capability for Driving Low-
    Impedance or High-Capacitive Buses
  • Interface With Optoelectrical Isolators and Similar
    Devices That Need Unidirectional Input and
    Output Signal Paths by Splitting I2C Bus Signals
    Into Pairs of Forward (Tx/Ty) and Reverse (Rx/Ry)
    Signals
  • 400-kHz Fast I2C Bus Operation Over at Least
    20 Meters of Wire
  • Latch-Up Performance Exceeds 100 mA Per
    JESD 78, Class II
  • ESD Protection Exceeds JESD 22
  • Operating Power-Supply Voltage Range
    of 2 V to 15 V
  • Can Interface Between I2C Buses Operating at
    Different Logic Levels (2 V to 15 V)
  • Longer Cables by allowing bus capacitance of
    400 pF on Main Side (Sx/Sy) and 4000 pF on
    Transmission Side (Tx/Ty)
  • Outputs on the Transmission Side (Tx/Ty) Have
    High Current Sink Capability for Driving Low-
    Impedance or High-Capacitive Buses
  • Interface With Optoelectrical Isolators and Similar
    Devices That Need Unidirectional Input and
    Output Signal Paths by Splitting I2C Bus Signals
    Into Pairs of Forward (Tx/Ty) and Reverse (Rx/Ry)
    Signals
  • 400-kHz Fast I2C Bus Operation Over at Least
    20 Meters of Wire
  • Latch-Up Performance Exceeds 100 mA Per
    JESD 78, Class II
  • ESD Protection Exceeds JESD 22

The P82B96 device is a bus buffer that supports bidirectional data transfer between an I2C bus and a range of other bus configurations with different voltage and current levels.

One of the advantages of the P82B96 is that it supports longer cables/traces and allows for more devices per I2C bus because it can isolate bus capacitance such that the total loading (devices and trace lengths) of the new bus or remote I2C nodes are not apparent to other I2C buses (or nodes). The restrictions on the number of I2C devices in a system due to capacitance, or the physical separation between them, are greatly improved.

The device is able to provide galvanic isolation (optocoupling) or use balanced transmission lines (twisted pairs), because separate directional Tx and Rx signals are provided. The Tx and Rx signals may be connected directly (without causing bus latching), to provide an bidirectional signal line with I2C properties (open-drain driver). Likewise, the Ty and Ry signals may also be connected together to provide an bidirectional signal line with I2C properties (open-drain driver). This allows for a simple communication design, saving design time and costs.

Two or more Sx or Sy I/Os must not be connected to each other on the same node. The P82B96 design does not support this configuration. Bidirectional I2C signals do not have a direction control pin so, instead, slightly different logic low-voltage levels are used at Sx/Sy to avoid latching of this buffer. A standard I2C low applied at the Rx/Ry of a P82B96 is propagated to Sx/Sy as a buffered low with a slightly higher voltage level. If this special buffered low is applied to the Sx/Sy of another P82B96, the second P82B96 does not recognize it as a standard I2C bus low and does not propagate it to its Tx/Ty output. The Sx/Sy side of P82B96 may not be connected to similar buffers that rely on special logic thresholds for their operation.

The Sx/Sy side of the P82B96 is intended for I2C logic voltage levels of I2C master and slave devices or Tx/Rx signals of a second P82B96, if required. If Rx and Tx are connected, Sx can function as either the SDA or SCL line. Similarly, if Ry and Ty are connected, Sy can function as either the SDA or SCL line. There are no restrictions on the interconnection of the Tx/Rx and Ty/Ry I/O pins to other P82B96s, for example in a star or multi-point configuration (multiple P82B96 devices share the same Tx/Rx and Ty/Ry nodes) with the Tx/Rx and Ty/Ry I/O pins on the common bus, and the Sx/Sy side connected to the line-card slave devices.

In any design, the Sx pins of different devices should never be linked, because the resulting system would be very susceptible to induced noise and would not support all I2C operating modes.

The P82B96 device is a bus buffer that supports bidirectional data transfer between an I2C bus and a range of other bus configurations with different voltage and current levels.

One of the advantages of the P82B96 is that it supports longer cables/traces and allows for more devices per I2C bus because it can isolate bus capacitance such that the total loading (devices and trace lengths) of the new bus or remote I2C nodes are not apparent to other I2C buses (or nodes). The restrictions on the number of I2C devices in a system due to capacitance, or the physical separation between them, are greatly improved.

The device is able to provide galvanic isolation (optocoupling) or use balanced transmission lines (twisted pairs), because separate directional Tx and Rx signals are provided. The Tx and Rx signals may be connected directly (without causing bus latching), to provide an bidirectional signal line with I2C properties (open-drain driver). Likewise, the Ty and Ry signals may also be connected together to provide an bidirectional signal line with I2C properties (open-drain driver). This allows for a simple communication design, saving design time and costs.

Two or more Sx or Sy I/Os must not be connected to each other on the same node. The P82B96 design does not support this configuration. Bidirectional I2C signals do not have a direction control pin so, instead, slightly different logic low-voltage levels are used at Sx/Sy to avoid latching of this buffer. A standard I2C low applied at the Rx/Ry of a P82B96 is propagated to Sx/Sy as a buffered low with a slightly higher voltage level. If this special buffered low is applied to the Sx/Sy of another P82B96, the second P82B96 does not recognize it as a standard I2C bus low and does not propagate it to its Tx/Ty output. The Sx/Sy side of P82B96 may not be connected to similar buffers that rely on special logic thresholds for their operation.

The Sx/Sy side of the P82B96 is intended for I2C logic voltage levels of I2C master and slave devices or Tx/Rx signals of a second P82B96, if required. If Rx and Tx are connected, Sx can function as either the SDA or SCL line. Similarly, if Ry and Ty are connected, Sy can function as either the SDA or SCL line. There are no restrictions on the interconnection of the Tx/Rx and Ty/Ry I/O pins to other P82B96s, for example in a star or multi-point configuration (multiple P82B96 devices share the same Tx/Rx and Ty/Ry nodes) with the Tx/Rx and Ty/Ry I/O pins on the common bus, and the Sx/Sy side connected to the line-card slave devices.

In any design, the Sx pins of different devices should never be linked, because the resulting system would be very susceptible to induced noise and would not support all I2C operating modes.

ダウンロード 字幕付きのビデオを表示 ビデオ

技術資料

star =TI が選定したこの製品の主要ドキュメント
結果が見つかりませんでした。検索条件をクリアしてから、再度検索を試してください。
7 をすべて表示
種類 タイトル 最新の英語版をダウンロード 日付
* データシート P82B96 I2C Compatible Dual Bidirectional Bus Buffer データシート (Rev. C) PDF | HTML 2017年 5月 14日
設計ガイド I2C 通信距離の延長:I2C と CAN の組み合わせ 英語版 2019年 1月 30日
アプリケーション・ノート Choosing the Correct I2C Device for New Designs PDF | HTML 2016年 9月 7日
セレクション・ガイド I2C Infographic Flyer 2015年 12月 3日
アプリケーション・ノート Understanding the I2C Bus PDF | HTML 2015年 6月 30日
アプリケーション・ノート Maximum Clock Frequency of I2C Bus Using Repeaters 2015年 5月 15日
アプリケーション・ノート I2C Bus Pull-Up Resistor Calculation PDF | HTML 2015年 2月 13日

設計と開発

その他のアイテムや必要なリソースを参照するには、以下のタイトルをクリックして詳細ページをご覧ください。

シミュレーション・モデル

P82B96 IBIS Model

SCPM008.ZIP (62 KB) - IBIS Model
シミュレーション・ツール

PSPICE-FOR-TI — TI Design / シミュレーション・ツール向け PSpice®

PSpice® for TI は、各種アナログ回路の機能評価に役立つ、設計とシミュレーション向けの環境です。設計とシミュレーションに適したこのフル機能スイートは、Cadence® のアナログ分析エンジンを使用しています。PSpice for TI は無償で使用でき、アナログや電源に関する TI の製品ラインアップを対象とする、業界でも有数の大規模なモデル・ライブラリが付属しているほか、選択された一部のアナログ動作モデルも利用できます。

設計とシミュレーション向けの環境である PSpice for TI (...)
シミュレーション・ツール

TINA-TI — SPICE ベースのアナログ・シミュレーション・プログラム

TINA-TI は、DC 解析、過渡解析、周波数ドメイン解析など、SPICE の標準的な機能すべてを搭載しています。TINA には多彩な後処理機能があり、結果を必要なフォーマットにすることができます。仮想計測機能を使用すると、入力波形を選択し、回路ノードの電圧や波形を仮想的に測定することができます。TINA の回路キャプチャ機能は非常に直観的であり、「クイックスタート」を実現できます。

TINA-TI をインストールするには、約 500MB が必要です。インストールは簡単です。必要に応じてアンインストールも可能です。(そのようなことはないと思いますが)

TINA は DesignSoft (...)

ユーザー ガイド: PDF
英語版 (Rev.A): PDF
リファレンス・デザイン

TIDA-00420 — ADC ベース、デジタル絶縁型、広い入力範囲、16 チャネル、AC/DC バイナリ入力のリファレンス・デザイン

このリファレンス・デザインは、コスト最適化済みかつスケーラビリティの高い ADC をベースとした AC/DC バイナリ入力モジュール (BIM) アーキテクチャと強化絶縁機能の組み合わせを示します。1 個の 10 ビットまたは 12 ビット SAR ADC の 16 チャネルを使用して、複数のバイナリ入力をセンスできます。複数のオペアンプは、チャネルあたりのコストを低く維持することに加え、各入力に対する最適なシグナル・コンディショニングを実現します。デジタル・アイソレータ (基本絶縁型または強化絶縁型) (...)
設計ガイド: PDF
回路図: PDF
リファレンス・デザイン

TIDA-060013 — I2C レンジ拡張:I2C から CAN への接続のリファレンス・デザイン

This reference design focuses on extending I2C range from on-board to off-board through transmission cables using CAN transceivers and then converting the signal back to I2C. This approach allows for better signal integrity due to the differential signaling of the CAN transceivers. The (...)
設計ガイド: PDF
回路図: PDF
リファレンス・デザイン

TIDA-01608 — シャント抵抗と I2C インターフェイスを使用する絶縁型電流センスのリファレンス・デザイン

This verified design can accurately measure current on a bus that carries hundreds of volts. This design is targeted for solar and server applications due to their wide high-voltage input range requirements. This design uses the INA260 current shunt monitor with integrated shunt resistor for (...)
設計ガイド: PDF
回路図: PDF
パッケージ ピン数 ダウンロード
PDIP (P) 8 オプションの表示
SOIC (D) 8 オプションの表示
TSSOP (PW) 8 オプションの表示
VSSOP (DGK) 8 オプションの表示

購入と品質

記載されている情報:
  • RoHS
  • REACH
  • デバイスのマーキング
  • リード端子の仕上げ / ボールの原材料
  • MSL 定格 / ピーク リフロー
  • MTBF/FIT 推定値
  • 材質成分
  • 認定試験結果
  • 継続的な信頼性モニタ試験結果
記載されている情報:
  • ファブの拠点
  • 組み立てを実施した拠点

推奨製品には、この TI 製品に関連するパラメータ、評価基板、またはリファレンス デザインが存在する可能性があります。

サポートとトレーニング

TI E2E™ フォーラムでは、TI のエンジニアからの技術サポートを提供

コンテンツは、TI 投稿者やコミュニティ投稿者によって「現状のまま」提供されるもので、TI による仕様の追加を意図するものではありません。使用条件をご確認ください。

TI 製品の品質、パッケージ、ご注文に関するお問い合わせは、TI サポートをご覧ください。​​​​​​​​​​​​​​

ビデオ