トップ

製品の詳細

パラメータ

Features OpAmp, Real-Time Clock, Transimpedance amplifier Non-volatile memory (kB) 2 RAM (KB) 1 ADC 10-bit SAR ADC: channels (#) 8 GPIO pins (#) 16 I2C 1 SPI 2 UART 1 Comparator channels (#) 2 Timers - 16-bit 2 Bootloader (BSL) I2C, UART Special I/O Operating temperature range (C) -40 to 85 Rating Catalog open-in-new その他の MSP430 超低消費電力マイコン

パッケージ|ピン|サイズ

TSSOP (PW) 20 42 mm² 6.5 x 6.4 TSSOP (PW) 16 22 mm² 5 x 4.4 VQFN (RGY) 16 14 mm² 4 x 3.5 open-in-new その他の MSP430 超低消費電力マイコン

特長

  • 組み込みマイクロコントローラ
    • 最高 16MHz の 16 ビット RISC アーキテクチャ
    • 3.6V~1.8V の広い電源電圧範囲 (最低電源電圧は SVS レベルにより制限されます。「SVS 仕様」を参照)
  • 最適化された低消費電力モード (3V 時)
    • アクティブ・モード:126µA/MHz
    • スタンバイ:リアルタイム・クロック (RTC) カウンタ (LPM3. 5で 32768Hz の水晶発振器を使用):0.71µA
    • シャットダウン (LPM4.5):SVS なしで 32nA
  • 高性能アナログ
    • トランスインピーダンス・アンプ (TIA) (1)
      • 電流/電圧変換
      • ハーフ・レール入力
      • 低リーク電流の負入力、最低 5pA、TSSOP16 パッケージでのみ有効
      • レール・ツー・レール出力
      • 複数の入力選択
      • 構成可能な大消費電力モードと低消費電力モード
    • 8 チャネル、10 ビットの A/D コンバータ (ADC)
      • 内蔵の 1.5V 基準電圧
      • サンプル・アンド・ホールド 200ksps
    • 拡張コンパレータ (eCOMP)
      • 基準電圧として 6 ビットのデジタル/アナログ・コンバータ (DAC) を内蔵
      • プログラマブル・ヒステリシス
      • 高消費電力モードと低消費電力モードを構成可能
    • スマート・アナログ・コンボ (SAC-L1)
      • 汎用オペアンプをサポート
      • レール・ツー・レールの入出力
      • 複数の入力選択
      • 構成可能な大消費電力モードと低消費電力モード
  • 低消費電力の強誘電体 RAM (FRAM)
    • 最大 3.75KB の不揮発性メモリ
    • エラー訂正コード (ECC) 搭載
    • 書き込み保護を設定可能
    • プログラム、定数、ストレージの統合メモリ
    • 書き込みサイクルの耐久性:1015
    • 放射線耐性、非磁性
  • インテリジェントなデジタル・ペリフェラル
    • IR 変調ロジック
    • 3 つのキャプチャ / 比較レジスタを搭載した 16 ビット・タイマ (Timer_B3) × 2
    • 16 ビットのカウンタ専用 RTC × 1
    • 16 ビットの巡回冗長性検査 (CRC)
  • 拡張シリアル通信
    • 拡張 USCI A (eUSCI_A) により UART、IrDA、SPI をサポート
    • 拡張 USCI B (eUSCI_B) により SPI および I2C をサポート、リマップ機能をサポート(「信号概要」を参照)
  • クロック・システム (CS)
    • オンチップの 32kHz RC 発振器 (REFO)
    • オンチップの 16MHz デジタル制御発振器 (DCO)、周波数ロック・ループ (FLL) 付き
      • オンチップの基準電圧は室温で ±1% 精度
    • オンチップの超低周波数 10kHz 発振器 (VLO)
    • オンチップの高周波数変調発振器 (MODOSC)
    • 外付けの 32kHz 水晶発振器 (LFXT)
    • 最大 16 MHz の外付けの高周波数水晶発振器 (HFXT)
    • 1~128 の MCLK プリスケーラをプログラム可能
    • 1、2、4、8 のプログラマブル・プリスケーラを使って MCLK から SMCLK を生成
  • 汎用入出力およびピン機能
    • 20 ピンのパッケージに 16 の I/O を搭載
    • 12 本の割り込みピン (P1 に 8 ピン、P2 に 4 ピン) により、MCU を LPM からウェイクアップ可能
    • すべての I/O で静電容量式タッチ機能をサポート
  • 開発ツールとソフトウェア
  • ファミリ・メンバー (「デバイスの比較」も参照)
    • MSP430FR2311:3.75KB のプログラム FRAM と 1KB の RAM
    • MSP430FR2310:2KB のプログラム FRAM と 1KB の RAM
  • パッケージ・オプション
    • 20 ピン TSSOP (PW20)
    • 16 ピン TSSOP (PW16)
    • 16 ピン VQFN (RGY16)

(1)トランスインピーダンス・アンプについては、当初はTRIという略語を説明文、ピン名、およびレジスタ名で使用することとしました。説明文では全面的にこの略語をTIAに変更しましたが、ピン名およびレジスタ名では引き続きTRIを使用しています。

All trademarks are the property of their respective owners.

open-in-new その他の MSP430 超低消費電力マイコン

概要

MSP430FR231x FRAMマイクロコントローラ(MCU)は、 MSP430™MCUバリュー・ライン・センシング・ファミリの製品であり、リーク電流の小さいトランスインピーダンス・アンプ(TIA)と汎用オペアンプを内蔵しています。このMCUには強力な16ビットRISC CPU、16ビット・レジスタ、および定数ジェネレータが搭載されているため、最高水準のコード効率を実現できます。また、デジタル制御発振器(DCO)により、低消費電力モードからアクティブ・モードへ通常10µs未満でウェイクアップできます。このMCUの各種機能は、煙感知器からポータブル健康管理/フィットネス・アクセサリまで、幅広い用途に最適です。

超低消費電力のMSP430FR231x MCUファミリは複数のデバイスからなり、組み込み型の不揮発性FRAMや、さまざまなセンシングおよび測定機器に対応する多様なペリフェラル・セットを特長としています。アーキテクチャ、FRAM、ペリフェラルに多様な低消費電力モードを組み合わせ、携帯型/ワイヤレス・センシング機器で長いバッテリ駆動時間を実現するように最適化しています。FRAMは、SRAMの速度、柔軟性、耐久性とフラッシュの安定性および信頼性を両立しながら総消費電力を抑制できる不揮発性メモリ・テクノロジです。

MSP430FR231x MCUは、ハードウェアおよびソフトウェアの大規模なエコシステムによってサポートされており、リファレンス・デザインやサンプル・コードを利用して設計をすぐに開始できます。開発キットにはMSP‑EXP430FR2311 LaunchPad™開発キットと、MSP‑TS430PW20 20ピン・ターゲット開発ボードが含まれます。また、TIは無償のMSP430Ware™ソフトウェアも提供しており、Code Composer Studio™ IDEデスクトップのコンポーネントとして利用できます。TI Resource Explorerではクラウド・バージョンも利用可能です。MSP430 MCUには、幅広い範囲のオンライン資料、トレーニング、およびE2E™コミュニティ・フォーラムによるオンライン・サポートも用意されています。

モジュールの詳細な説明については、『MSP430FR4xx and MSP430FR2xx Family User’s Guide』 (英語) を参照してください。

open-in-new その他の MSP430 超低消費電力マイコン
ダウンロード

技術資料

= 主要な資料
結果が見つかりませんでした。検索条件をクリアして、もう一度検索を行ってください。 すべて表示 28
種類 タイトル 英語版のダウンロード 日付
* データシート MSP430FR231x ミクスト・シグナル・マイクロコントローラ データシート (Rev. E 翻訳版) 英語版をダウンロード (Rev.E) 2020年 3月 31日
* エラッタ MSP430FR2310 Device Erratasheet 2019年 4月 24日
* ユーザー・ガイド MSP430FR4xx and MSP430FR2xx Family User's Guide 2019年 3月 13日
ユーザー・ガイド MSP430 FRAM Devices Bootloader (BSL) User's Guide 2020年 3月 23日
アプリケーション・ノート Temperature Sensing NTC Circuit With MSP430 Smart Analog Combo 2020年 3月 9日
アプリケーション・ノート High-side current-sensing circuit design with MSP430 smart analog combo 2020年 3月 6日
アプリケーション・ノート Low-noise long-range PIR sensor conditioner circuit MSP430 smart analog combo 2020年 3月 6日
アプリケーション・ノート Low-side bidirectional current sensing circuit with MSP430™ smart analog combo 2020年 3月 6日
アプリケーション・ノート Single-supply low-side unidirectional current-sensing circuit with MSP430 SAC 2020年 3月 6日
アプリケーション・ノート Strain gauge bridge amplifier circuit with MSP430 smart analog combo 2020年 3月 6日
アプリケーション・ノート Temperature Sensing PTC Circuit With MSP430 Smart Analog Combo 2020年 3月 6日
アプリケーション・ノート Transimpedance amplifier circuit with MSP430 smart analog combo 2020年 3月 6日
アプリケーション・ノート MSP430 System-Level ESD Considerations 2020年 1月 13日
アプリケーション・ノート Designing with the MP430FR4xx and MP430FR2xx ADC 2019年 12月 30日
アプリケーション・ノート MSP430 System ESD Troubleshooting Guide 2019年 12月 13日
ホワイト・ペーパー Enabling tomorrow’s sensing applications with smart analog microcontrollers 2019年 11月 22日
アプリケーション・ノート How to Use the Smart Analog Combo and Transimpedance Amplifier on MSP430FR2311 2019年 11月 15日
アプリケーション・ノート Low-Power Battery Voltage Measurement With MSP430FR MCU On-Chip VREF and ADC 2019年 11月 4日
アプリケーション・ノート UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs 2019年 9月 11日
アプリケーション・ノート Migrating From MSP430 F2xx and G2xx Families to MSP430 FR4xx and FR2xx Family 2019年 3月 26日
アプリケーション・ノート Migration From MSP430 FR58xx, FR59xx, and FR6xx to FR4xx and FR2xx 2019年 3月 26日
ホワイト・ペーパー Enhance simple analog and digital functions for $0.25 2018年 2月 7日
アプリケーション・ノート VLO Calibration on MSP430FR4xx and MSP430FR2xx Family 2016年 2月 19日
技術記事 Don’t miss out on the top training videos of 2015 2015年 12月 16日
ホワイト・ペーパー ビル・オートメーションの消費電力低減のための技術的課題 英語版をダウンロード 2015年 9月 18日
技術記事 How fast is your 32-bit MCU? 2015年 7月 15日
技術記事 Lose power, not data with new FRAM microcontrollers 2015年 5月 20日
技術記事 Easily increase functionality in motor drive applications 2015年 5月 19日

設計と開発

追加の事項や他のリソースを参照するには、以下のタイトルをクリックすると、詳細ページを表示できます。

ハードウェア開発

開発キット ダウンロード
document-generic ユーザー・ガイド
概要
MSP-EXP430FR2311 ローンチパッド開発キットは、MSP430FR2311 マイコン向けの使いやすいマイコン開発ボードです。プログラミング、デバッグ、電力測定を行うためのオンボード・エミュレーションなど、MSP430FR2x FRAM プラットフォームの迅速な開発に必要なすべての機能を備えています。迅速な開発の着手を可能にするため、このボードにはシンプルなユーザー・インターフェイスと光センサ・インターフェイスを統合するためのオンボード・ボタンや LED が搭載されています。このキットには、光強度測定と内蔵オペアンプの使用のために事前プログラミング済みのコードが付属しています。MSP430FR2311 マイコンは、50pA の電流リーケージを実現する構成可能な低リーケージ電流センス・アンプと、超低消費電力、高い耐久性、高速書き込みアクセスを可能にする不揮発性メモリの 4KB 組込み FRAM(強誘電体ランダム・アクセス・メモリ)を搭載した、世界初のマイコンです。このデバイスは、スマート・アナログ機能(内蔵オペアンプ、コンパレータ、DAC、ADC)を搭載しており、広範な産業用センサの接続を容易にします。また、ほとんどのセンシング・アプリケーションでシングル・チップ実装が可能です。20 ピンのヘッダーと、広範なブースタパック・プラグイン・モジュールによりワイヤレス・コネクティビティ、グラフィカル・ディスプレイ、環境センシングなどの技術を実現でき、迅速なプロトタイプ制作が可能です。
特長
  • MSP430 ULP FRAM をベースとし、4KB FRAM 搭載の 16 ビット・マイコン MSP430FR2311
  • EnergyTrace は超低消費電力デバッグ向けに使用可能
  • ブースタパック・エコシステムの活用を可能にする 20 ピン・ローンチパッド標準
  • オンボード eZ-FET エミュレーション
  • ユーザー・インタラクション用の 1 個のボタンと 2 個の LED
  • バック・チャネル UART は USB 経由で PC に接続
  • 光センシング回路
開発キット ダウンロード $204.00
概要
  • Note: This kit does not include MSP430FR2xx microcontroller samples. To sample the compatible devices, please visit the product page or select the related MCU after adding the tool to the TI Store cart:

The MSP-FET430U20 bundle (...)

開発キット ダウンロード
document-generic ユーザー・ガイド
$89.00
概要

注:このキットには、MSP430 マイコンのサンプルは付属していません。互換性のあるデバイスのサンプルを入手するには、製品ページにアクセスするか、TI Store のカートにこのツールを追加した後、関連するマイコンを選択してください。
MSP430FR2311

MSP-TS430PW20 はスタンドアロン型 ZIF ソケット・ターゲット・ボードで、JTAG インターフェイスまたは Spy Bi-Wire(2 線式の JTAG)プロトコルにより MSP430 イン・システムのプログラムとデバッグに使用できます。この開発ボードは、20 ピンまたは 16 ピンの TSSOP パッケージ(TI パッケージ・コード: PW)に封止された MSP430FR23x と MSP430FR21x のフラッシュ・パーツすべてをサポートしています。ターゲット・デバイスの資料をチェックし、最適なターゲット・ボードを選択してください。

フラッシュ・エミュレーション・ツール(FET)デバッグ・プローブは個別購入が可能なほか、ターゲット・ボードに同梱されている場合(MSP-FET)もあります。

特長
  • JTAG インターフェイスを通じて 20 ピン TSSOP パッケージのプログラムとデバッグを実行するためのソケット・ボード
  • すべてのデバイス・ピンへのアクセス
  • インジケータ LED
  • JTAG コネクタ

ソフトウェア開発

ソフトウェア開発キット (SDK) ダウンロード
MSPWare
MSPWARE MSPWare は、すべての MSP デバイスを対象にしたユーザーズ・ガイド、サンプル・コード、トレーニング、その他の設計リソースを便利なパッケージとして提供します。MSP430 と MSP432 の開発に必要なすべての要素が揃っています。 MSPWare は MSP430 と MSP432 に関する既存の設計リソース全体の提供に加え、高度に抽象化されたソフトウェア・ライブラリの幅広い選択肢も提供します。その中には、MSP ドライバ・ライブラリや USB のようにデバイス固有およびペリフェラル固有のソフトウェアから、グラフィック・ライブラリや静電容量式タッチパッド・ライブラリのようにアプリケーション固有のソフトウェアが含まれています。MSP ドライバ・ライブラリは重要なライブラリであり、ソフトウェア・デベロッパーが上位レベルの API を活用して下位レベルの複雑なハードウェア・ペリフェラルを制御するのに役立ちます。現時点で、MSP ドライバ・ライブラリは MSP430F5x / 6x シリーズ、および MSP432P4x シリーズのデバイスをサポートしています。

MSPWare の入手方法MSPWare は、Code Composer Studio(CCS)のコンポーネントとして、またはスタンドアロン・パッケージとして入手できます。Code Composer Studio のコンポーネントとして供給された場合は、CCS の TI Resource Explorer ウインドウ内で洗練された GUI を使用して MSPWare パッケージを操作できます。

  • MSPWare と GUI ベースのフロント・エンドを入手するには、Code Composer Studio の最新バージョンを単純にインストールします。CCS の最新バージョンの入手(推奨)
  • 代わりに、MSPWare をスタンドアロン・パッケージとして入手することもできます。ただし、この方式では MSPWare パッケージのフォルダ構造が供給されるのみであり、GUI ベースのフロント・エンドは供給されません。上記の「Get Software」リンクをクリックすると、MSP430Ware をスタンドアロン・パッケージとして入手できます。
    • * 注:ダウンロードの際、お客様は、輸出法令順守フォームへの記入を求められます。
  • MSPWare は、新しい「TI (...)
特長
  • MSP 設計リソースのコレクション
  • コンテンツを参照するための洗練された直感的な GUI
  • 独自の 2 ペイン・ビューを使用した、コンテンツの自動的なフィルタリング
  • Web 経由の自動更新
  • 新しい MSP ドライバ・ライブラリの特長
  • CCS 用のプラグインかスタンドアロンの実行ファイルとして入手可能、または新しい TI Cloud Resource Explorer 内で利用可能
ドライバとライブラリ ダウンロード
固定小数点 Math ライブラリ、MSP 用
MSP-IQMATHLIB TI の MSP IQmath および Qmath ライブラリは、C プログラマ向けの高度に最適化された高精度の数学関数ライブラリで、MSP430 と MSP432 の各デバイスで、浮動小数点アルゴリズムを固定小数点コードにシームレスに変換できます。これらのルーチンは通常、最適な実行速度、高精度、超低消費電力が重視される、演算集中型のリアルタイム・アプリケーションで使用するものです。IQmath ライブラリと Qmath ライブラリを使用すると、浮動小数点演算を使用して記述した同等のコードに比べて、実行速度を大幅に高速化するとともに、消費電力の大幅な削減が可能です。

以下の MSP デバイスは、MSP-IQmathlib によってサポートされています。
  • MSP430F1xx
  • MSP430F2xx
  • MSP430G2xx
  • MSP430F4xx
  • MSP430F5xx
  • MSP430F6xx
  • MSP430FRxx
  • MSP432P4xx
MSP-IQmathlib は、設計に簡単に統合できます。このライブラリは無料であり、Code Composer Studio 内で使用すること、またはスタンドアロン・パッケージとしてダウンロードすることができます。ベンチマークの詳細とファンクションの説明については、付属のユーザーズ・ガイドをご覧ください。
特長
  • 最適化された固定小数点関数により、開発期間を短縮し、アプリケーション・コードの最適化に集中することが可能
  • CCS で共通の固定小数点スカラーの演算機能を実行すると、最大で 100 倍の性能を発揮。つまり、MSP マイコンを長時間にわたって低消費電力モードにとどめることが可能
  • 無料 – Code Composer Studio を単純に使用するか、ライブラリをダウンロード
ドライバとライブラリ ダウンロード
ブートストラップ・ローダ(BSL)、MSP 低消費電力マイコン用
MSPBSL Below are the steps needed in order to both understand and use the MSPBSL effectively across the MSP portfolio. For the most up to date information on what features the BSL on your device supports or which interface methods are needed to communicate with the BSL, please see “TABLE 1. Overview (...)
IDE (統合開発環境)、構成機能、コンパイラ、デバッガ ダウンロード
Code Composer Studio(CCStudio)統合開発環境(IDE)、MSP マイコン用
CCSTUDIO-MSP

Code Composer Studio の最新バージョンをダウンロード

Code Composer Studio™ - 統合開発環境(IDE)、MSP マイコン用

 

  • 最新バージョン - 以下をクリックして、指定したホスト・プラットフォームに対応した Code Composer Studio をダウンロードしてください。
  • 追加のダウンロード - ダウンロードの包括的なリストについては、CCS ダウンロード・サイトをご覧ください。
  • 無料の CCS の使用 - MSP430 では 16KB、MSP432 では 32KB のコード・サイズ制限付きで TI の最適化コンパイラをサポートする無料ライセンスが生成されます。フル機能の 90 日間評価ライセンスも利用できます。CCS 内にある App Center から MSP430 用と MSP432 用の GCC リリースも利用でき、無料ライセンスと組み合わせて使用することができます。
  • クラウド・ツール - Code Composer Studio は、初期の評価と開発の目的で、クラウドベースの環境で利用することもできます。クラウド・ツールは、LaunchPad で迅速に開発を開始しようとするユーザーにとって優れた選択肢です。

 

Windows         Linux     

Code Composer Studio は、すべての MSP マイコン・デバイスをサポートする統合開発環境(IDE)です。Code Composer Studio は、組込みアプリケーションの開発およびデバッグに必要な一連のツールで構成されています。最適化 C/C++ コンパイラ、ソース・コード・エディタ、プロジェクト・ビルド環境、デバッガ、プロファイラなど、多数の機能が含まれています。直感的な IDE には、アプリケーションの開発フローをステップごとに実行できる、単一のユーザー・インターフェイスが備わっています。使い慣れたツールとインターフェイスにより、ユーザーは従来より迅速に作業を開始できます。Code Composer Studio は、Eclipse ソフトウェア・フレームワークの利点と、TI の先進的な組込みデバッグ機能の利点を組み合わせ、組込み分野のデベロッパーにとって豊富な機能を備えた魅力的な開発環境を実現します。

CCS を MSP マイコンとともに使用する場合、MSP マイコンを最大限に活用するための独自の強力な一連のプラグインやツールを入手できます。

追加情報

プログラミング・ツール ダウンロード
MSP430 フラッシュ・エミュレーション・ツール
MSP-FET ステップ 1:MSP-FET を購入
ステップ 2: Debuggers User’s Guide と Hardware User’s Guide をダウンロード
ステップ 3:デバッグ・ビデオを参照

**第 2 世代の MSP-FET はCode Composer Studio™ v7.0、IAR EW430 v7.1、IAR EWAR v8.10 以降の IDE でサポートされています。それ以前のリリースの IDE と組み合わせて使用する際はこちらの E2E 記事をご覧ください。第 2 世代の MSP-FET を第 1 世代の MSP-FET と見分けるため方法はMSP Debugger’s Guide (section 5.6.1 &ndash (...)

$115.00
特長
  • USB デバッグ・インターフェイスは MSP430 マイコンをコンピュータに接続し、リアルタイムでインシステムのプログラミングとデバッグを実行
  • EnergyTrace™ テクノロジーにより、Code Composer Studio と IAR Embedded Workbench 開発環境ですべての MSP430 / MSP432 デバイスのエネルギー測定とデバッグが可能
  • 3 ステート・モードをサポートし、EnergyTrace による電力消費量を高精度に表示
  • MSP430 と PC 間の双方向通信のためにバックチャネル UART を搭載
    • これにより、アプリケーション実行中にセンサからの入力のシミュレーションやデバッグ・データのロギングが可能
    • MSP ブートストラップ・ローダ(BSL)インターフェイス
  • FET プログラマの以前のバージョンである MSP-FET430UIF に比べ最大 4 倍の読み書き速度
プログラミング・ツール ダウンロード
MSP-GANG Production Programmer
MSP-GANG  

MSP Gang プログラマとは、MSP430 デバイス用のプログラマであり、一度に最大 8 個の同一 MSP430 フラッシュ・デバイスまたは FRAM デバイスに対するプログラムを実行できます。MSP ギャング・プログラマは、標準の RS-232 または USB 接続を使用してホスト PC に接続できるほか、フレキシブルなプログラミング・オプションを利用すれば、ユーザーによるプロセスのフル・カスタマイズが可能です。

MSP Gang プログラマには、Gang Splitter(ギャング・スプリッタ、複数書き込みの分割機能) と呼ばれる拡張ボードが付属しており、MSP Gang プログラマと複数のターゲット・デバイス間の相互接続機能を提供します。拡張ボードと 8 個のターゲット・デバイスを接続する 8 本のケーブルが付属しています(JTAG または Spy-Bi-Wire コネクタ経由)。プログラミングは、PC を使用しても、スタンドアロン・デバイスとしても行うことができます。DLL ベースのPC 側グラフィカル・ユーザー・インターフェイスも使用可能です。

特長
  • 以前のバージョンの GANG プログラマである MSP-GANG430 に比べて 3 倍の速度
  • RS-232 または USB インターフェイスを経由して、フラッシュ・ベースまたは FRAM ベースの MSP デバイスに迅速かつ信頼性の高い方法でプログラム
  • 数種類のプログラミング・モード:
    • 対話モード - PC に接続した状態で、MSP GANG プログラマの GUI を使用してプログラミング
    • イメージからのプログラミング - 構成オプションとコード・ファイルを収録しているイメージを保存することが可能。この場合は、ユーザーは PC を使用しないスタンドアロンで MSP デバイスにプログラミングすることが可能
    • スクリプトからのプログラミング - より複雑なプログラミング手順の自動化が可能。
  • 設定、プログラミングおよび量産テストのための直観的にわかりやすい GUI
  • イメージ保存用の SD カード・スロット
  • PC なしでも簡単にプログラミングできる LCD 画面
  • 同時に 8 個のターゲットに対応
  • 現在および将来の MSP430 デバイスをすべてサポート
サポート・ソフトウェア ダウンロード
SLAC708E.ZIP (417 KB)

設計ツールとシミュレーション

シミュレーション・モデル ダウンロード
SLAM331C.TSC (567 KB) - TINA-TI Reference Design
シミュレーション・モデル ダウンロード
SLAM332C.ZIP (6 KB) - TINA-TI Spice Model
シミュレーション・モデル ダウンロード
SLAM346.TSC (59 KB) - TINA-TI Reference Design
シミュレーション・モデル ダウンロード
SLAM347.ZIP (6 KB) - TINA-TI Spice Model
設計ツール ダウンロード
トランスインピーダンス・アンプ回路
CIRCUIT0020 このトランスインピーダンス・オペアンプ回路構成は、入力電流源を出力電圧に変換します。電流から電圧へのゲインは、帰還抵抗に基づきます。この回路は、入力電流が変化しても、入力ソースで一定の電圧バイアスを維持することができるため、多くのセンサで利点があります。
特長
  • DC 誤差を減らすため、バイアス電流の小さい JFET または CMOS 入力のオペアンプを使用
  • 出力を設定するため、非反転入力にバイアス電圧を追加可能
  • 非直線性誤差を最小限に抑えるため、直線性出力電圧スイング (Aol 仕様を参照) の範囲内で動作

使用許諾、知的財産権、免責事項に関する「重要なお知らせ」をご覧ください

設計ツール ダウンロード
単一電源、ローサイド、単方向の電流センシング回路
CIRCUIT060001 — この単一電源、ローサイド、電流センシング・ソリューションは最大 1A の負荷電流を正確に検出し、50mV ~ 4.9V の電圧に変換します。入力電流範囲と出力電圧範囲は必要に応じてスケーリングでき、大きなスイングに対応するため、より高電圧の電源も使用できます。
document-generic ユーザー・ガイド
特長
  • 25°C ~ 50°C の温度を検出
  • 出力:0.05V ~ 3.25V
  • 半分の基準電圧付きの 3.3V 単一電源
設計ツール ダウンロード
Temperature sensing with NTC thermistor circuit(英語)(NTC サーミスタ回路搭載、温度センシング)
CIRCUIT060002 — この温度センシング回路は NTC (Negative Temperature Coefficient:負の温度係数) サーミスタに直列に接続した抵抗を使用して分圧器を形成します。これには、温度に比例した出力電圧が得られる効果があります。この回路では、非反転構成 (反転入力に基準電圧を接続) でオペアンプを使用し、信号のオフセットと増幅を行います。これにより、ADC の分解能を最大限に活用し、測定精度を高めることができます。
document-generic ユーザー・ガイド
特長
  • 25°C ~ 50°C の温度を検出
  • 出力:0.05V ~ 3.25V
  • 半分の基準電圧付きの 3.3V 単一電源
設計ツール ダウンロード
Temperature sensing with PTC thermistor circuit(英語)(PTC サーミスタ回路搭載、温度センシング)
CIRCUIT060003 — この温度センシング回路は PTC (Positive Temperature Coefficient:正の温度係数) サーミスタに直列に接続した抵抗を使用して分圧器を形成します。これには、温度に比例した出力電圧が得られる効果があります。この回路では、非反転構成 (反転入力に基準電圧を接続) でオペアンプを使用し、信号のオフセットと増幅を行います。これにより、ADC の分解能を最大限に活用し、測定精度を高めることができます。
document-generic ユーザー・ガイド
特長
  • 0°C ~ 50°C の温度を検出
  • 出力:0.05V ~ 3.25V
  • 半分の基準電圧付きの 3.3V 単一電源
設計ツール ダウンロード
Low-noise and long-range PIR sensor conditioner circuit(英語)(低ノイズの長距離 PIR センサ向けコンディショナ回路)
CIRCUIT060004 — この 2 段式アンプの設計は、受動赤外線 (PIR) センサからの信号を増幅し、フィルタ処理します。回路には、回路の出力におけるノイズを低減するため複数のローパスおよびハイパス・フィルタが含まれており、長距離での動作を検出でき、誤認トリガを減らすことができます。この回路の後にウィンドウ・コンパレータを追加してデジタル出力を生成するか、A/D コンバータ (ADC) 入力へ直接接続できます。
特長
  • 5V 単一電源
  • 0.7Hz ~ 10Hz の周波数を提供
  • AC ゲイン:90dB
設計ツール ダウンロード
ディスクリート差動アンプ回路搭載ハイサイド電流センシング
CIRCUIT060005 — この単一電源、ハイサイド、低コストの電流センシング・ソリューションは、50mA ~ 1A の負荷電流を検出し、0.25V ~ 5V の出力電圧に変換します。ハイサイドのセンシングにより、システムはグランドへの短絡を識別でき、負荷のグランドを動揺させません。
document-generic ユーザー・ガイド
特長
  • 36V 単一電源
  • 入力:50mA ~ 1A
  • 出力:0.25V ~ 5V
設計ツール ダウンロード
ブリッジ・アンプ回路
CIRCUIT060006 — ひずみゲージは、加えられた力に応じて抵抗値が変化するセンサです。抵抗値の変化を測定するため、ひずみゲージはブリッジ構成で配置されます。この設計では、2 オペアンプ構成の計測回路を使用して、ひずみゲージの抵抗値の変化により発生する差動信号を増幅します。R10 の変化によりホイートストーン・ブリッジの出力に発生した小さな差動電圧が 2 オペアンプ構成の計測アンプに入力されます。
document-generic ユーザー・ガイド
特長
  • 半分の基準電圧付きの 5V 単一電源
  • 入力:-2.22mV ~ 2.27mV 差動
  • 出力:225mV ~ 4.72V
  • ひずみゲージ抵抗値の変化:115 ~ 125Ω
  • ゲイン:1001V/V
設計ツール ダウンロード
ローサイド双方向電流センシング回路
CIRCUIT060007 — この単一電源、ローサイド、双方向電流センシング・ソリューションは、-1A ~ 1A の負荷電流を正確に検出できます。出力のリニアな動作範囲は 110mV ~ 3.19V です。ローサイド電流センシングにより、同相電圧がグランド近くに維持されるため、バス電圧の高いアプリケーションで最も有用です。
document-generic ユーザー・ガイド
特長
  • 半分の基準電圧付きの 5V 単一電源
  • 入力:-2.22mV ~ 2.27mV 差動
  • 出力:225mV ~ 4.72V
  • ひずみゲージ抵抗値の変化:115 ~ 125Ω
  • ゲイン: 1001V/V
設計ツール ダウンロード
半波整流回路
CIRCUIT060009 — この高精度の半波整流器は、変動する入力信号 (正弦波が望ましい) の負側の半分だけを反転して出力します。帰還抵抗の値を適切に選択することで、各種のゲインを実現できます。高精度の半波整流器は一般に、DC 出力電圧を生成するため、ピーク検出器や帯域幅の制限された非反転アンプなど、他のオペアンプ回路とともに使用されます。この構成は、最高 50kHz の周波数で、0.2mVpp ~ 4Vpp の範囲の正弦波入力信号に対して動作するよう設計されています。
特長
  • 5V 分割電源
  • 入力:±0.2mVpp ~ ±4Vpp
  • 出力:0.1V ~ 2V

リファレンス・デザイン

リファレンス・デザイン ダウンロード
MSP430 FRAM マイコンを使用する EEPROM エミュレーション / センシング
TIDM-FRAM-EEPROM — This TI Design reference design describes an implementation of emulating EEPROM using Ferroelectric Random Access Memory (FRAM) technology on MSP430™ ultra-low-power microcontrollers (MCUs) combined with the additional sensing capabilities that can be enabled when using an MCU. The reference (...)
document-generic 回路 document-generic ユーザー・ガイド

CAD/CAE シンボル

パッケージ ピン数 ダウンロード
TSSOP (PW) 16 オプションの表示
TSSOP (PW) 20 オプションの表示
VQFN (RGY) 16 オプションの表示

購入と品質

サポートとトレーニング

TI E2E™ Forums (英語) では、TI のエンジニアからの技術サポートが活用できます

コンテンツは、TI 投稿者やコミュニティ投稿者によって「現状のまま」提供されるもので、TI による仕様の追加を意図するものではありません。使用条件をご確認ください

TI 製品の品質、パッケージ、ご注文に関する質問は、TI サポートのページをご覧ください。

トレーニング・シリーズ

TI のトレーニングとビデオをすべて表示

ビデオ

関連ビデオ