製品の詳細

詳細を表示できません。製品の データシート を参照してください。
SOIC (D) 8 19 mm² 3.91 x 4.9
  • Qualified for Automotive Applications
  • Meets or Exceeds the Requirements of ISO 11898
  • GIFT/ICT Compliant
  • ESD Protection up to ±12 kV (Human-Body Model)
    on Bus Pins
  • Level Adapting I/O Voltage Range to Support MCUs
    With Digital I/Os From 3 V to 5.25 V
  • Low-Power Standby Mode <15 µA max
    • SN65HVDA540: No Wake Up
    • SN65HVDA541: Wake Up Powered By VIO
      Supply So VCC (5 V) Supply May Be Shut
      Down to Save System Power
  • High Electromagnetic Immunity (EMI)
  • Low Electromagnetic Emissions (EME)
  • Protection
    • Undervoltage Protection on VIO and VCC
    • Bus-Fault Protection of –27 V to 40 V
    • Dominant Time-Out Function
    • Thermal Shutdown Protection
    • Power-Up/Down Glitch-Free Bus Inputs and Outputs
  • APPLICATIONS
    • SAE J2284 High-Speed CAN for Automotive Applications
    • SAE J1939 Standard Data Bus Interface
    • ISO 11783 Standard Data Bus Interface
    • NMEA 2000 Standard Data Bus Interface

(1) The signaling rate of a line is the number of voltage transitions that are made per second, expressed in the units bps (bits per second).

  • Qualified for Automotive Applications
  • Meets or Exceeds the Requirements of ISO 11898
  • GIFT/ICT Compliant
  • ESD Protection up to ±12 kV (Human-Body Model)
    on Bus Pins
  • Level Adapting I/O Voltage Range to Support MCUs
    With Digital I/Os From 3 V to 5.25 V
  • Low-Power Standby Mode <15 µA max
    • SN65HVDA540: No Wake Up
    • SN65HVDA541: Wake Up Powered By VIO
      Supply So VCC (5 V) Supply May Be Shut
      Down to Save System Power
  • High Electromagnetic Immunity (EMI)
  • Low Electromagnetic Emissions (EME)
  • Protection
    • Undervoltage Protection on VIO and VCC
    • Bus-Fault Protection of –27 V to 40 V
    • Dominant Time-Out Function
    • Thermal Shutdown Protection
    • Power-Up/Down Glitch-Free Bus Inputs and Outputs
  • APPLICATIONS
    • SAE J2284 High-Speed CAN for Automotive Applications
    • SAE J1939 Standard Data Bus Interface
    • ISO 11783 Standard Data Bus Interface
    • NMEA 2000 Standard Data Bus Interface

(1) The signaling rate of a line is the number of voltage transitions that are made per second, expressed in the units bps (bits per second).

The SN65HVDA540/SN65HVDA541 meets or exceeds the specifications of the ISO 11898 standard for use in applications employing a Controller Area Network (CAN). The device is qualified for use in automotive applications.

As a CAN transceiver, this device provides differential transmit capability to the bus and differential receive capability to a CAN controller at signaling rates up to 1 megabit per second (Mbps)(1).

Designed for operation in especially harsh environments, the SN65HVDA540/SN65HVDA541 features cross-wire, bus over voltage, loss of ground protection, over temperature thermal shut down protection, and a wide common-mode range.

The SN65HVDA540/SN65HVDA541 has an I/O supply voltage input pin (VIO , pin 5) to ratiometrically level shift the digital logic input and output levels with repsect to VIO for compatibility with protocol controllers having I/O supply voltages between 3 V and 5.25 V. The VIO supply also powers the low-power bus monitor and wake-up receiver of the SN65HVDA541 allowing the 5 V (VCC) supply to be switched off for additional power savings at the system level during standby mode for either the SN65HVDA540 or SN65HVDA541. The 5 V (VCC) supply needs to be reactivated by the local protocol controller at any time to resume high speed operation if it has been turned off for low-power standby operation. Both of the supply pins have undervoltage detection which place the device in standby mode to protect the bus during an undervoltage event on either the VCC or VIO supply pins. If VIO is undervoltage the RXD pin is 3-statedn and the device does not pass any wake-up signals from the bus to the RXD pin.

STB (pin 8) provides for two different modes of operation: normal mode or low-power standby mode. The normal mode of operation is selected by applying a low logic level to STB. If a high logic level is applied to STB, the device enters standby mode (see Figure 1 and Figure 2). In standby mode, the SN65HVDA541 provides a wake-up receiver and monitor that remains active supplied via the VIO pin so that VCC may be removed allowing a system level reduction in standby current. A dominant signal on the bus longer than the wake-up signal time (tBUS) is passed to the receiver output (RXD, pin 4) by the wake-up bus monitor circuit. The local protocol controller may then return the device to normal mode when the system needs to transmit or fully monitor the messages on the bus. If the bus has a fault condition where it is stuck dominant while the SN65HVDA541 is placed into standby mode, the device locks out the wake-up receiver output to RXD until the fault has been removed to prevent false wake-up signals in the system. Because the SN65HVDA540 does not have a low-power bus monitor and wake-up receiver, it provides a logic high output (recessive) on RXD while in standby mode.

A dominant time-out circuit prevents the driver from blocking network communication in event of a hardware or software failure. The dominant time out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is reset by the next rising edge on TXD.

The SN65HVDA540/SN65HVDA541 meets or exceeds the specifications of the ISO 11898 standard for use in applications employing a Controller Area Network (CAN). The device is qualified for use in automotive applications.

As a CAN transceiver, this device provides differential transmit capability to the bus and differential receive capability to a CAN controller at signaling rates up to 1 megabit per second (Mbps)(1).

Designed for operation in especially harsh environments, the SN65HVDA540/SN65HVDA541 features cross-wire, bus over voltage, loss of ground protection, over temperature thermal shut down protection, and a wide common-mode range.

The SN65HVDA540/SN65HVDA541 has an I/O supply voltage input pin (VIO , pin 5) to ratiometrically level shift the digital logic input and output levels with repsect to VIO for compatibility with protocol controllers having I/O supply voltages between 3 V and 5.25 V. The VIO supply also powers the low-power bus monitor and wake-up receiver of the SN65HVDA541 allowing the 5 V (VCC) supply to be switched off for additional power savings at the system level during standby mode for either the SN65HVDA540 or SN65HVDA541. The 5 V (VCC) supply needs to be reactivated by the local protocol controller at any time to resume high speed operation if it has been turned off for low-power standby operation. Both of the supply pins have undervoltage detection which place the device in standby mode to protect the bus during an undervoltage event on either the VCC or VIO supply pins. If VIO is undervoltage the RXD pin is 3-statedn and the device does not pass any wake-up signals from the bus to the RXD pin.

STB (pin 8) provides for two different modes of operation: normal mode or low-power standby mode. The normal mode of operation is selected by applying a low logic level to STB. If a high logic level is applied to STB, the device enters standby mode (see Figure 1 and Figure 2). In standby mode, the SN65HVDA541 provides a wake-up receiver and monitor that remains active supplied via the VIO pin so that VCC may be removed allowing a system level reduction in standby current. A dominant signal on the bus longer than the wake-up signal time (tBUS) is passed to the receiver output (RXD, pin 4) by the wake-up bus monitor circuit. The local protocol controller may then return the device to normal mode when the system needs to transmit or fully monitor the messages on the bus. If the bus has a fault condition where it is stuck dominant while the SN65HVDA541 is placed into standby mode, the device locks out the wake-up receiver output to RXD until the fault has been removed to prevent false wake-up signals in the system. Because the SN65HVDA540 does not have a low-power bus monitor and wake-up receiver, it provides a logic high output (recessive) on RXD while in standby mode.

A dominant time-out circuit prevents the driver from blocking network communication in event of a hardware or software failure. The dominant time out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is reset by the next rising edge on TXD.

ダウンロード

おすすめの類似製品

open-in-new 製品の比較
比較対象デバイスと同等の機能で、ピン互換製品。
TCAN1042V-Q1 アクティブ フレキシブル・データレート付き、車載向け故障保護機能搭載 CAN トランシーバ 高性能、スタンバイ・モード、VIO
TCAN1051V-Q1 アクティブ フレキシブル・データレート付き、車載向け故障保護機能搭載 CAN トランシーバ 高性能、サイレント・モード、VIO

技術資料

star = TI が選択したこの製品の主要ドキュメント
結果が見つかりませんでした。検索条件をクリアして、もう一度検索を行ってください。
1 資料すべて表示
種類 タイトル 英語版のダウンロード 日付
* データシート 5-V CAN Transceiver With I/O Level Shifting and Supply Optimization データシート 2009年 5月 8日

設計と開発

追加の事項や他のリソースを参照するには、以下のタイトルをクリックすると、詳細ページを表示できます。

評価ボード

MMWAVEICBOOST — ミリ波センサ・キャリア・カード・プラットフォーム

MMWAVEICBOOST キャリア・カードは、選択された 60GHz ミリ波評価基板の機能を拡張します。このボードを使用すると、先進的なソフトウェア開発機能に加え、TI の Code Composers と互換性のある各種デバッガを使用する場合に、トレースやシングル・ステップ実行などの各種デバッグ機能を実現できます。LaunchPad のオンボード・インターフェイスを使用すると、TI のブースタパックと互換性のある各種ハードウェアと組み合わせ、追加のセンサやワイヤレス・コネクティビティに対応することができます。TI の LaunchPad エコシステム (...)

シミュレーション・ツール

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI は、各種アナログ回路の機能評価に役立つ、設計とシミュレーション向けの環境です。設計とシミュレーションに適したこのフル機能スイートは、Cadence® のアナログ分析エンジンを使用しています。PSpice for TI は無償で使用でき、アナログや電源に関する TI の製品ラインアップを対象とする、業界でも有数の大規模なモデル・ライブラリが付属しているほか、選択された一部のアナログ動作モデルも利用できます。

設計とシミュレーション向けの環境である PSpice for TI (...)
シミュレーション・ツール

TINA-TI — SPICE ベースのアナログ・シミュレーション・プログラム

TINA-TI は、DC 解析、過渡解析、周波数ドメイン解析など、SPICE の標準的な機能すべてを搭載しています。TINA には多彩な後処理機能があり、結果を必要なフォーマットにすることができます。仮想計測機能を使用すると、入力波形を選択し、回路ノードの電圧や波形を仮想的に測定することができます。TINA の回路キャプチャ機能は非常に直観的であり、「クイックスタート」を実現できます。

TINA-TI をインストールするには、約 500MB が必要です。インストールは簡単です。必要に応じてアンインストールも可能です。(そのようなことはないと思いますが)

TINA は DesignSoft (...)

リファレンス・デザイン

TIDEP-0091 — 77GHz レベル・トランスミッタ向け電力最適化回路のリファレンス・デザイン

TIDEP-0091 は、最小の電力エンベロープで距離を高精度検出することが求められる、タンク液面検知アプリケーション、変位センサ、4 ~ 20mA センサや他の低消費電力アプリケーションで、76 ~ 81GHz のミリ波センサ IWR14xx を使用して電力を最適化する方法を提示します。これらのアプリケーションで、システムは多くの場合、システム本体の動作より消費電力の小さい低電圧のデータ・ラインを使用して動作します。 電力入力の制約を満たす目的で平均消費電力を低減するために、デューティ・サイクルを設定した動作も不可欠です。MSP432 を使用して外部から IWR14xx (...)
パッケージ ピン数 ダウンロード
SOIC (D) 8 オプションの表示

購入と品質

含まれる情報:
  • RoHS
  • REACH
  • デバイスのマーキング
  • リード端子の仕上げ / ボールの原材料
  • MSL rating/ リフローピーク温度
  • MTBF/FIT の推定値
  • 原材料組成
  • 認定試験結果
  • 継続的な信頼性モニタ試験結果

おすすめの製品には、この TI 製品に関連するパラメータ、評価モジュール、またはリファレンス・デザインが含まれている場合があります。

サポートとトレーニング

TI E2E™ Forums (英語) では、TI のエンジニアからの技術サポートが活用できます

コンテンツは、TI 投稿者やコミュニティ投稿者によって「現状のまま」提供されるもので、TI による仕様の追加を意図するものではありません。使用条件をご確認ください

TI 製品の品質、パッケージ、ご注文に関する質問は、TI サポートのページをご覧ください。

ビデオ